圆锥曲线的经典性质总结

合集下载

圆锥曲线重要结论

圆锥曲线重要结论

圆锥曲线重要结论性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b)某2y21上,F1,F2为椭圆之左右焦点,点G为△F1PF2内心,试1.已知动点P在椭圆43求点G的轨迹方程.某2y21上,F1,F2为双曲线之左右焦点,圆G是△F1PF2的内2.已知动点P在双曲线43切圆,探究圆G是否过定点,并证明之.性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。

椭圆的焦点弦的两个焦半径倒数之和为常数112|AF1||BF1|ep双曲线的焦点弦的两个焦半径倒数之和为常数AB 在同支时112112AB在异支时|||AF1||BF1|ep|AF1||BF1|ep112|AF||BF|ep抛物线的焦点弦的两个焦半径倒数之和为常数某2y21,F为椭圆之左焦点,过点F的直线交椭圆于A,B两点,是否存在3.已知椭圆43实常数,使ABFAFB恒成立.并由此求∣AB∣的最小值.性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数112e2椭圆互相垂直的焦点弦倒数之和为常数|AB||CD|2ep11|2e2|双曲线互相垂直的焦点弦倒数之和为常数|AB||CD|2ep112e2抛物线互相垂直的焦点弦倒数之和为常数|AB||CD|2ep某2y21,F1为椭圆之左焦点,过点F1的直线l1,l2分别交椭圆于A,B两4.已知椭圆43点和C,D两点,且l1l2,是否存在实常数,使ABCDABCD恒成立.并由此求四边形ABCD面积的最小值.性质四:椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值某2y21,点F1为椭圆之左焦点,过点F1的直线l1分别交椭圆于A,B两点,5.已知椭圆84设直线AB与y轴于点M,MAAF1,MBBF1,试求的值.性质五:椭圆、双曲线的焦半径向量模的比之和为定值过椭圆或双曲线上任点A作两焦点的焦点弦AB,AC,其共线向量比之和为定值.即AF1F1B1e2AF2F2C2定值21e某2y26.已知方向向量为e(1,3)的直线l过点A(0,23)和椭圆C:221(ab0)ab的焦点,且椭圆C的中心O和椭圆的右准线上的点B满足:OBe0,ABAO.⑴求椭圆C的方程;⑵设E为椭圆C上任一点,过焦点F1,F2的弦分别为ES,ET,设EF11F1S,EF22F2T,求12的值.2圆锥曲线中的重要性质经典精讲中a2性质一:过圆锥曲线焦点所在轴上任意一点N(t,0)的一条弦端点与对应点t,0的连线所成角被对称轴平分。

圆锥曲线知识点总结6篇

圆锥曲线知识点总结6篇

圆锥曲线知识点总结6篇第1篇示例:圆锥曲线是解析几何学中非常重要的概念,它们分为三种:椭圆、双曲线和抛物线。

在数学中,圆锥曲线具有丰富的性质和应用,掌握其基本知识对于理解其在几何、物理、工程等多个领域的应用至关重要。

本文将对圆锥曲线的基本性质和特点进行详细总结。

我们从圆锥曲线的定义入手。

圆锥曲线是平面上一点到一个固定点(焦点)和一条直线(准线)的距离之比为常数的点的轨迹。

根据这个定义,椭圆的准线是实直线,双曲线的准线是虚直线,而抛物线的准线是平行于其自身的直线。

椭圆是圆锥曲线中最简单的一种。

椭圆的定义是到焦点和准线的距离之比小于1的点构成的轨迹。

椭圆具有对称性,其焦点到准线的垂直距离之和恒等于两焦距之和,这个性质被称为焦点定理。

椭圆还有面积、周长等重要性质,在几何中有重要的应用。

抛物线是圆锥曲线中最特殊的一种,其定义是到焦点和准线的距离相等的点构成的轨迹。

抛物线具有对称性,其焦点到准线的垂直距离恰好等于焦距。

抛物线是一种非常重要的曲线,常见于物理学和工程学中的抛物线运动、光学、无线电通信等领域。

除了上述基本性质外,圆锥曲线还有许多重要的定理和性质。

焦点、准线、焦距、离心率等概念是理解圆锥曲线的重要基础。

圆锥曲线的方程形式也是研究和应用圆锥曲线的关键,椭圆和双曲线的标准方程分别为x^2/a^2 + y^2/b^2 = 1和x^2/a^2 - y^2/b^2 = 1,而抛物线的标准方程为y^2 = 2px。

圆锥曲线是解析几何学中的重要内容,掌握其基本性质和定理对于理解几何学、物理学和工程学中的问题有重要意义。

通过对圆锥曲线的学习,我们不仅可以深入理解几何形体的性质,还可以应用圆锥曲线的知识解决实际问题,提高数学建模和问题求解的能力。

加强对圆锥曲线知识的学习和应用是十分必要的。

第2篇示例:圆锥曲线是解析几何中最重要的一类曲线,它包括椭圆、双曲线和抛物线这三种。

这些曲线在数学和物理学等领域中有着重要的应用,是我们熟悉的常见数学概念之一。

高中圆锥曲线性质总结全面经典

高中圆锥曲线性质总结全面经典

高中圆锥曲线性质总结全面经典
一、椭圆的性质
* 椭圆是固定点到平面上所有点的距离之和等于常数的轨迹。

* 椭圆具有两个焦点和长轴、短轴。

焦距定理:椭圆上任意一
点到两个焦点的距离之和等于长轴的长度。

* 椭圆的离心率小于1,且离心率越小,椭圆越圆。

二、双曲线的性质
* 双曲线是固定点到平面上所有点的距离之差等于常数的轨迹。

* 双曲线具有两个焦点和两个虚焦点。

焦距定理:双曲线上任
意一点到两个焦点的距离之差等于常数的绝对值。

* 双曲线的离心率大于1,且离心率越大,双曲线越扁。

三、抛物线的性质
* 抛物线是固定点到平面上所有点的距离等于常数的轨迹。

* 抛物线具有一个焦点和一个直线称为准线。

焦点到准线的距
离等于焦点到抛物线上任意一点的距离。

* 抛物线的离心率等于1,且离心率为1的抛物线为特殊情况。

四、圆形的性质
* 圆是平面上所有距离中心点相等的点的集合。

* 圆的半径是由圆心到圆上任意一点的距离。

* 圆上的弧度是由半径对应的圆心角所确定,弧度等于圆心角
的度数除以360度再乘以2π。

以上是高中圆锥曲线的性质总结。

希望对你有帮助!。

高考数学圆锥曲线的常用性质

高考数学圆锥曲线的常用性质

椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=. 7.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a xb K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b +=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。

圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。

本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。

一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。

2. 定点:圆锥曲线的两个定点分别称为焦点。

3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。

4. 准线:通过两个焦点的直线段称为准线。

二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。

2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

3. 性质:椭圆具有对称性、渐近线和切线性质等。

4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。

三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。

2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。

3. 性质:双曲线具有渐近线和切线性质,且有两个分支。

4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。

四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。

2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。

3. 性质:抛物线具有对称性、渐近线和切线性质等。

4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。

五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。

2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。

3. 性质:圆具有对称性、切线性质和切圆定理等。

4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。

总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。

圆锥曲线几何性质总汇

圆锥曲线几何性质总汇

圆锥曲线的几何性质一、椭圆的几何性质(以22a x +22by =1(a ﹥b ﹥0)为例)1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义12121212242AF AF a AF AF BF BF a BF BF a +=⎫⎪⇒+++=⎬+=⎪⎭即24ABF Ca =2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2tan2θ∙b(2)(S ⊿PF1F2)max = bc(3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F 中∵ 22212124cos 2PF PF c PF PF θ+-=⋅∴ ()2121212c o s 2P F P F P F P F P Fθ⋅=+-⋅∴ 21221cos b PF PF θ⋅=+∴ 1222112sin cos tan 21cos 2PF F b S b θθθθ-=⨯⋅=⋅+ (2)(S ⊿PF1F2)max =max 122c h bc ⨯⨯= (3 ()()()2222222212002222222120004444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---===-⋅-+ 当0x =0时 cos θ有最小值2222a c a- 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2证明:延长1F M 交2F P 于F ,连接OMxxx由已知有 1P F F P = M 为1F F 中点 ∴ 212O M F F ==()1212PF PF +=a 所以M 的轨迹方程为 222x y a +=4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切证明:取1PF 的中点M ,连接OM 。

令圆M 的直径1PF ,半径为∵ OM =()2111112222PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵1212121222F R F R F R F R I R ce P I P F P F P F P F a +=====+ ∴IRPI= e6、以任一焦点弦为直径的圆与相应准线相离。

圆锥曲线经典性质总结及证明

圆锥曲线经典性质总结及证明

圆锥曲线的经典结论一、椭圆1.点 P 处的切线 PT平分△ PF1F2 在点 P 处的外角 . (椭圆的光学性质)2.PT 平分△ PF1F2 在点 P处的外角,则焦点在直线 PT 上的射影 H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 . (中位线)3.以焦点弦 PQ为直径的圆必与对应准线相离 . 以焦点半径 PF1 为直径的圆必与以长轴为直径的圆内切 . (第二定义)4.若 P0 ( x0,y0 )x2y21x0 x y0 y1.(求在椭圆b2上,则过 P0的椭圆的切线方程是b2a2a2导)5.若 P0 ( x0,y0 )x2y21外,则过 Po 作椭圆的两条切线切点为P1、P2,则切点在椭圆b2a2弦 P1P2 的直线方程是x0x y0 y 1. (结合 4)a2b26.椭圆 x2y2 1 (a > b > 0) 的左右焦点分别为F1 , F 2 ,点 P 为椭圆上任意一点a2b2F1 PF2,则椭圆的焦点角形的面积为S F1PF2b2 tan . (余弦定理 +面积公式 +2半角公式)7.x2y21( a> b> 0)的焦半径公式:椭圆2 b2a|MF1| a ex0 , | MF2 | a ex0 (F1 ( c,0) , F2 (c,0) M ( x0 , y0 ) ). (第二定义)8.设过椭圆焦点F 作直线与椭圆相交P 、 Q两点, A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点 F 的椭圆准线于M、 N两点,则M F⊥ NF9. 过椭圆一个焦点F 的直线与椭圆交于两点P、Q, A1、 A2 为椭圆长轴上的顶点,A1P和A2Q交于点 M,A2P 和 A1Q交于点 N,则 MF⊥ NF. MN 其实就在准线上,下面证明他在准线上根据第 8 条,证毕10. AB 是椭圆x2 y21 的不平行于对称轴的弦, M(x0 , y0 ) 为 AB 的中点,则a2 b2k OM k ABb2a2 ,即K AB b2x0 。

圆锥曲线经典性质总结及证明

圆锥曲线经典性质总结及证明

③当 2a | F1F2 | 时,|| PF1 | | PF2 || 2a 不表示任何图形;④两定点 F1, F2 叫做双曲线的焦点,| F1F2 | 叫做焦距。
(2)双曲线的性质
①范围:从标准方程 x 2 a2
y2 b2
1,看出曲线在坐标系中的范围:双曲线在两条直线 x a 的外侧。即 x2
圆锥曲线的方程与性质
1.椭圆
(1)椭圆概念:平面内与两个定点 F1 、 F2 的距离的和等于常数 2 a (大于| F1F2 | )的点的轨迹叫做椭圆。这两
个定点叫做椭圆的焦点,两焦点的距离 2c 叫椭圆的焦距。若 M 为椭圆上任意一点,则有| MF1 | | MF2 | 2a 。
椭圆的标准方程为: x2 a2
y
b 所围成的矩形里;
②对称性:在曲线方程里,若以 y 代替 y 方程不变,所以若点 (x, y) 在曲线上时,点 (x, y) 也在曲线上,所
以曲线关于 x 轴对称,同理,以 x 代替 x 方程不变,则曲线关于 y 轴对称。若同时以 x 代替 x , y 代替 y 方程
也不变,则曲线关于原点对称。
y2 b2
1(
a
b
0
)(焦点在
x
轴上)或
y a
2 2
x2 b2
1( a b 0 )(焦点在 y 轴上)。
注:①以上方程中 a, b 的大小 a b 0 ,其中 b2 a2 c2 ;
②在 x2 a2
y2 b2
1和
y2 a2
x2 b2
1两个方程中都有 a b 0 的条件,要分清焦点的位置,只要看 x2 和
点与曲线的关系:若曲线 C 的方程是 f(x,y)=0,则点 P0(x0,y0)在曲线 C 上 f(x0,y 0)=0;点 P0(x0,y0)不在曲线 C 上 f(x0,y0)≠0。

方法技巧专题07圆锥曲线的概念及其几何性质

方法技巧专题07圆锥曲线的概念及其几何性质

方法技巧专题07圆锥曲线的概念及其几何性质圆锥曲线是平面几何中的一个重要概念,是指由一个动点P在平面上,以一个定点F为焦点和一个定直线L为准线,满足动点P到焦点F的距离与动点P到准线L的距离的比值始终保持不变的轨迹。

根据这个定义可以推导出圆锥曲线的几何性质。

一、圆锥曲线的种类根据焦点和准线的位置不同,圆锥曲线分为三种:1.当焦点F在线上准线L上时,得到的是一个圆。

2.当焦点F在准线L上方时,得到的是一个椭圆。

3.当焦点F在准线L下方时,得到的是一个双曲线。

二、圆锥曲线的性质1.定义性质:圆锥曲线上的任意一点P到焦点F的距离与点P到准线L的距离的比值始终保持不变。

这个比值称为离心率,用e表示。

2.焦点和准线之间的距离:对于椭圆和双曲线,焦点到准线的距离是有限的。

对于双曲线,焦点到准线的距离大于焦点到曲线上任意一点的距离。

对于椭圆,焦点到准线的距离小于焦点到曲线上任意一点的距离。

3.长轴和短轴:对于椭圆,长轴是两个焦点之间的距离的2倍,而短轴是两个准线之间的距离的2倍。

长轴和短轴的长度决定了椭圆的形状。

4.焦点和准线的关系:焦点位于准线的内部,且焦点到准线的距离等于焦点到曲线上最远的点的距离。

每条曲线上都存在两个焦点,两个焦点是关于准线的镜像。

5.对称性:圆锥曲线具有轴对称性。

对于椭圆和双曲线,轴是通过两个焦点的直线,称为主轴。

对于圆和抛物线,轴是和准线平行的直线,称为准轴。

6.双曲线的渐近线:双曲线有两条渐近线,分别与曲线无限延伸的两个分支趋于平行。

渐近线的斜率是曲线离心率e的倒数。

7.抛物线的焦点性质:抛物线的焦点是准线上的一个点,且抛物线上任意一点到焦点的距离等于该点到准线的垂直距离。

三、圆锥曲线的应用圆锥曲线广泛应用于科学和工程中的各个领域,如天文学、物理学、航天工程、建筑设计等。

其中一些应用包括:1.天体运动:天体运动中的椭圆轨道和抛物线轨道可以用圆锥曲线来描述。

2.反射器:抛物线可以用于设计反射器,如车灯和卫星碟天线。

解析几何中的圆锥曲线性质

解析几何中的圆锥曲线性质

解析几何中的圆锥曲线性质圆锥曲线是解析几何中的重要概念,是由圆锥与平面相交产生的图形。

它包括椭圆、双曲线和抛物线三种,并具有许多重要的性质。

一、椭圆椭圆是圆锥曲线中的一种,具有很多独特的性质。

椭圆的中心为O,两个焦点分别为F和F',长轴为2a,短轴为2b。

则有以下性质:1、椭圆两焦点到中心的距离相等。

即OF=OF'=c,c是椭圆离心率。

椭圆为两焦点间距的等差中项轨迹。

2、椭圆满足反射定律。

即从一个焦点出发的光线照射到椭圆上的任意点P,然后反射出去后的光线将直接通过另一个焦点。

这是最初发现椭圆的方式之一。

3、椭圆的周长公式周长为C=4a (1-e²) 的等效标准式,其中e是离心率。

4、椭圆面积公式面积为S=πab。

二、双曲线双曲线与椭圆相似,也是圆锥曲线的一种。

其中心为O,两个焦点分别为F和F',距离为2a,离心率为c/a。

则有以下性质:1、双曲线离心率大于1。

离心率c/a>1,两焦点同时在x轴中心两侧。

2、双曲线的渐近线。

双曲线上有两根等角的斜渐近线,在两根直线的中间,双曲线成了自己的渐近线。

渐近线k是y=±(a/c)x.3、双曲线的公切线从椭圆的任一点P引一条与焦点之间连线的中垂线M,与焦点之间连线交椭圆于A、B两点,P到A、B的两条公切线交于双曲线上的另一点Q。

三、抛物线抛物线也是圆锥曲线中的一种,拥有自己独特的性质。

其上的每个点到焦点的距离等于该点到准线的距离。

抛物线的焦点为O,准线为x轴。

则有以下性质:1、抛物线的反射定律抛物线反射定律是一个光学原理,指入射光线垂直于抛物线,在焦点后方入射时,经过反射后的光线都汇聚到焦点上。

2、抛物线的标准式抛物线的标准式为 y²=2px,其中p为焦距;若以顶点为起点,则顶点V为坐标原点,到焦点的距离p为负,此时抛物线开口向上;反之,抛物线开口向下。

3、抛物线面积公式面积为S=2/3px²。

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

圆锥曲线的基本性质与应用

圆锥曲线的基本性质与应用

圆锥曲线的基本性质与应用圆锥曲线是平面上一类重要的几何图形,具有许多重要的性质和应用。

在本文中,我们将介绍圆锥曲线的基本性质、如何描述圆锥曲线、圆锥曲线在数学和自然科学中的应用等方面。

一、圆锥曲线的基本性质圆锥曲线是由一个可旋转的直角三角形通过旋转而产生的。

这个过程形成了三种类型的圆锥曲线:椭圆、双曲线和抛物线。

椭圆是一种具有中心对称性的圆锥曲线,它的两个焦点之间的距离是一定的,被称为椭圆的长轴。

椭圆的轴比是轴的长度之比,通常用e表示,并且e总是小于1。

椭圆在数学、物理和天文学中都有着广泛的应用,如描述行星轨道和电子轨道等。

双曲线也是一种具有中心对称性的圆锥曲线,但是它的两个焦点之间的距离却是一定的,被称为双曲线的轴。

双曲线的轴比是轴的长度之比,它总是大于1。

双曲线在数学、物理和天文学等领域中也有很多应用,如描述分子结构和测量天体距离等。

抛物线是一种只有一个焦点的圆锥曲线,它的轴是与曲线平行的直线。

抛物线在物理学中也有广泛的应用,如描述空气力学中的运动情况和设计天文望远镜等。

二、描述圆锥曲线的方式描述圆锥曲线的方式有很多种,其中最常见的是使用方程或参数来描述。

方程描述圆锥曲线通常用矩阵和向量的形式表示,而参数描述则需要指定曲线上的点的位置。

参数的方式是使用一个参数方程来描述曲线,其中曲线上的点可通过参数t计算得到。

例如,椭圆的参数方程可以表示为:x = acos(t)y = bsin(t)其中a、b分别是椭圆长轴和短轴的长度,t是椭圆上的点的参数。

三、圆锥曲线在数学和自然科学中的应用圆锥曲线在数学和自然科学中有许多应用。

在数学领域,椭圆曲线通常用于数论、代数几何和密码学等领域,而双曲线曲线则常用于微积分、微分几何和流体力学等领域。

抛物线曲线也经常用于机械学和空气力学等领域。

在自然科学领域,圆锥曲线同样有着广泛的应用。

例如,椭圆曲线可用于描述行星轨道、电子轨道和分子结构等,在物理学和化学中具有重要作用。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学中,圆锥曲线是重要的内容之一。

以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。

2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。

-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。

-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。

3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。

-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。

-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。

4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。

-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。

5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。

-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。

6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。

-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。

-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。

-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。

7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。

同时,准线也是曲线的对称轴。

圆锥曲线的经典性质总结

圆锥曲线的经典性质总结

椭圆 必背的经典结论1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6.若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b +=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7.双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

圆锥曲线性质总结

圆锥曲线性质总结

椭圆的定义、标准方程、图象及几何性质:双曲线的定义、标准方程、图象及几何性质:抛物线的定义、标准方程、图象及几何性质:0>p圆锥曲线的统一定义:若平面内一个动点M 到一个定点F 和一条定直线l 的距离之比等于一个常数)0(>e e ,则动点的轨迹为圆锥曲线。

其中定点F 为焦点,定直线l 为准线,e 为离心率。

当10<<e 时,轨迹为椭圆;当1=e 时,轨迹为抛物线;当1>e 时,轨迹为双曲线。

1.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x2,y2分母的大小决定,焦点在分母大的坐标轴上。

如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(答:)23,1()1,( --∞) (2)双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。

2、焦点三角形问题(椭圆或双曲线上的一点与两焦点所构成的三角形):常利用第一定义和正弦、余弦定理求解。

设椭圆或双曲线上的一点00(,)P x y 到两焦点12,F F 的距离分别为12,r r ,焦点12F PF ∆的面积为S ,(1)在椭圆12222=+b y a x 中, ①θ=)12arccos(212-r r b ,且当12r r =即P 为短轴端点时,θ最大为θm ax =222arccosa cb -;②20tan||2Sb c y θ==,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;(2)对于双曲线22221x y a b -=的焦点三角形有:①⎪⎪⎭⎫ ⎝⎛-=21221arccos r r b θ;②2cot sin 21221θθb r r S ==。

高考圆锥曲线经典性质

高考圆锥曲线经典性质

椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.6. 若000(,)P x y 在双曲线22221x ya b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。

圆锥曲线的经典性质总结

圆锥曲线的经典性质总结

圆锥曲线的经典性质总结(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--椭圆 必背的经典结论1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

圆锥曲线的经典性质总结

圆锥曲线的经典性质总结

圆锥曲线的经典性质总结椭圆 必背的经典结论1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y ab+=上,则过0P 的椭圆的切线方程是00221x x y ya b+=.6. 若0(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=.7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PFγ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=. 8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 0(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(0y x 为AB的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB-=。

12. 若0(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+.13. 若0(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲椭圆 推导的经典结论1. 椭圆22221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=. 2. 过椭圆22221x y a b+= (a >0, b >0)上任一点0(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且220BCb xk a y=(常数). 3. 若P 为椭圆22221x y a b +=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b +=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PFα∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+. 5. 若椭圆22221x y a b +=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 21时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P三点共线时,等号成立. 7. 椭圆2222()()1x x y y a b--+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b AxBy C +≥++.8. 已知椭圆22221x y ab+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OPOQ a b+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQS∆的最小值是2222a b a b +.9. 过椭圆22221x y a b +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则2222a b a b x a a---<<. 11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PFθ∠=,则(1)2122||||1cos b PF PF θ=+.(2)122tan2PF F S b γ∆=.12. 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1eαβ=-.(3)22222cot PABa b S b a γ∆=-.13. 已知椭圆22221x y a b +=( a >b >0)的右准线l 与x 轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC x 轴,则直线AC经过线段EF 的中点.14.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y ab+=. 2. 过双曲线22221x y a b -=(a >0,b >o )上任一点0(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BCb xk a y=-(常数). 3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点,12PF F α∠=,21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 4. 设双曲线22221x y a b -=(a >0,b >0)的两个焦点为F 1、F 2,P(异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PFα∠=,12PF F β∠=,12F F P γ∠=,则有sin(sin sin )ce aαγβ==±-. 5. 若双曲线22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 21时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项. 6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQS∆的最小值是2222a b b a -.9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x轴于P ,则||||2PF eMN=. 10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则22a b x a+≥或22a bx a +≤-. 11. 设P 点是双曲线22221x y a b -=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos bPF PF θ=-.(2) 122cot 2PF F S b γ∆=. 12. 设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b Sb a γ∆=+. 13. 已知双曲线22221x y a b -=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC经过线段EF 的中点.14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.抛物线的性质1、抛物线、椭圆、双曲线几何性质的区别2、弦长的算法设直线l:y=kx+b交抛物线于A(x1,y1),B(x2,y2)两点,则|AB|=|x1-x2|==·|y1-y2|=3、焦点弦的性质与弦长如果抛物线y2=2px(p>0)上两点M(x1,y1)、N(x2,y2)与焦点F(,0)共线,则有y1y2=-p2,x1x2=;当x1=x2=时,|MN|=2p叫通径,通径是最短的焦点弦.。

圆锥曲线的经典性质总结

圆锥曲线的经典性质总结

圆锥曲线的经典性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII椭圆 必背的经典结论1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆 必背的经典结论1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.6. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

12. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 13. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b -=-椭圆 推导的经典结论1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b--+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +. 9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x轴于P ,则||||2PF eMN =. 10. 已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=.12. 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b a γ∆=-. 13. 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2. 过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC 有定向且2020BC b x k a y =-(常数).3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -. 9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.11. 设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=.12. 设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b aγ∆=+. 13. 已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.抛物线的性质1、抛物线、椭圆、双曲线几何性质的区别2、弦长的算法设直线l:y=kx+b交抛物线于A(x1,y1),B(x2,y2)两点,则|AB|=|x1-x2|==·|y1-y2|=3、焦点弦的性质与弦长如果抛物线y2=2px(p>0)上两点M(x1,y1)、N(x2,y2)与焦点F(,0)共线,则有y1y2=-p2,x1x2=;当x1=x2=时,|MN|=2p叫通径,通径是最短的焦点弦.。

相关文档
最新文档