函数的单调性证明
函数单调性的判定方法
函数单调性的判定方法
函数单调性的判断方法有导数法、定义法、性质法和复合函数同增异减法。
首先对函
数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增
函数,小于零是减函数。
(1)证明一个函数的单调性的'方法:定义法,导数法;
(2)推论一个函数的单调性的常用方法:定义法,导数法,图象法,化归常用函数法,运用无机函数单调性规律。
3.常用复合函数单调性规律:
(1)若函数f(x),g(x)在区间d上均为减(减至)函数,则函数f(x)+g(x)在区间d上仍
为减(减至)函数。
(2)若函数f(x)在区间d上为增(减)函数,则函数-f(x)在区间d上为减(增)函数。
(3)无机函数f[g(x)]的单调性的推论分后两步:ⅰ考量函数f[g(x)]的定义域;ⅱ利
用内层函数t=g(x)和外层函数y=f(t)确认函数f[g(x)]的单调性,法则就是“同增异减至”,即为内外函数单调性相同时为增函数,内外层函数单调性恰好相反时为减至函数。
函数单调性的判断或证明方法
函数单调性的判断或证明方法.(1)定义法。
用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。
例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得(2)运算性质法.①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)②若.③当函数.④函数二者有相反的单调性。
⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。
(3)图像法.根据函数图像的上升或下降判断函数的单调性。
例3.求函数的单调区间。
解:在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。
函数单调性怎么证明
函数的单调性指的是函数在定义域内的取值随着其自变量的变化而单调变化。
函数单调性的证明方法有以下几种:
1.导函数法:如果函数f(x)在定义域内可导,那么当f'(x) > 0时,函数f(x)单调递增;当f'(x)
< 0时,函数f(x)单调递减。
2.分段单调性:如果函数f(x)在定义域的不同子区间上单调,则函数f(x)在整个定义域上
单调。
3.数学归纳法:通过归纳证明函数在一定范围内单调,再扩大该范围,最终证明函数在整
个定义域内单调。
4.数学归纳法:通过归纳证明函数在一定范围内单调,再扩大该范围,最终证明函数在整
个定义域内单调。
5.极值法:如果函数在定义域内没有极值,或者极值都是局部极值,那么函数是单调的。
证明单调性需要根据具体函数的性质来判断使用哪种方法。
高中数学函数单调性的判定和证明方法(详细)
⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -
=
=
∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。
证明函数单调性的方法总结
证明函数单调性的方法总结导读:1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的'单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.【证明函数单调性的方法总结】1.函数单调性的说课稿2.高中数学函数的单调性的教学设计3.导数与函数的单调性的教学反思4.高中函数单调性的教学设计5.《函数的单调性》的说课稿6.函数单调性教案练习题7.函数单调性说课课件8.《函数的单调性》教学设计上文是关于证明函数单调性的方法总结,感谢您的阅读,希望对您有帮助,谢谢。
证明函数单调性的方法总结归纳
证明函数单调性的方法总结归纳1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.搜集整理,仅供参考学习,请按需要编辑修改。
函数单调性地判断或证明方法
函数单调性地判断或证明方法
一、函数单调性的概念
函数单调性指的是函数在增量部分的增量,即在其定义域内沿曲线一边的变化必须保持另一边的变化。
函数单调性的特点是,曲线的增量不会发生改变,甚至不会出现拐点,也不会发生有限个极值的情况。
即曲线在增量部分的变化是单调的,因此在曲线的增量部分,可以把函数的增量分为上升斜率和下降斜率,而且这些斜率的变化也是单调递增或递减的。
二、函数单调性的判断方法
要判断函数是否具有单调性,首先要把函数以增量的形式表示出来,然后根据函数的增量情况来判断函数是否具有单调性,可以把函数的增量情况分为以下几种:
1.恒定增量:即函数的增量是一个恒定的常数,我们把函数的增量称之为恒定增量,这个函数具有单调的性质。
2.单调增量:即函数增量是一个不断递增的函数,这样的函数也具有单调的性质。
3.单调减量:即函数的增量是一个不断递减的函数,这样的函数也具有单调的性质。
4.变量增量:即函数的增量随变量的变化而变化,这样的函数也具有单调的性质。
5.上凸函数:函数的增量在变化时具有上凸函数的性质,这样的函数也具有单调的性质。
6.下凸函数:函数的增量在变化时具有下凸函数的性质。
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
函数单调性的判断与证明
函数单调性的判断与证明【方法综述】 1.函数的单调性(1).增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.要确定t =g (x )(常称内层函数)的值域,否则无法确定f (t )(常称外层函数)的单调性.3.用定义证明函数单调性中的变形策略由定义证明函数f (x )在区间D 上的单调性,其步骤为:取值→作差→变形→定号.其中变形是最关键的一步,合理变形是准确判断f (x 1)-f (x 2)的符号的关键所在.常见变形方法有因式分解、配方、同分、有理化等,下面举例说明.例1.求证:函数f (x )=x 2-4x 在(-∞,2]上是减函数.证明:设x 1,x 2是(-∞,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(x 21-4x 1)-(x 22-4x 2)=(x 1-x 2)(x 1+x 2-4).因为x 1<x 2≤2,所以x 1-x 2<0,x 1+x 2-4<0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 故函数f (x )在(-∞,2]上是减函数.评注 因式分解是变形的常用策略,但必须注意,分解时一定要彻底,这样才利于判断f (x 1)-f (x 2)的符号.例2.求证:函数f (x )=x 3+1在R 上是增函数.证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 31+1-x 32-1=x 31-x 32=(x 1-x 2)(x 21+x 1x 2+x 22)=(x 1-x 2)⎣⎡⎦⎤⎝⎛⎭⎫x 1+x 222+34x 22. 因为x 1<x 2,所以x 1-x 2<0,⎝⎛⎭⎫x 1+x 222+34x 22>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故函数f (x )在R 上是增函数.评注 本题极易在(x 1-x 2)(x 21+x 1x 2+x 22)处“止步”而致误.而实际上当我们不能直接判断x 21+x 1x 2+x 22的符号,又不能因式分解时,采用配方则会“柳暗花明”.例3.已知函数f (x )=x +1x,求证:函数f (x )在区间(0,1]上是减函数.证明:设x 1,x 2是区间(0,1]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)+⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1x 2-1x 1x 2. 因为x 1<x 2,且x 1,x 2∈(0, 1],所以x 1-x 2<0,0<x 1x 2<1.所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).故函数f (x )在(0,1]上是减函数.评注 同样,我们可以证明f (x )=x +1x在区间[1,+∞)上是增函数.例4.已知函数f (x )=x -1,求证:函数f (x )在区间[1,+∞)上是增函数.证明:设x 1,x 2是区间[1,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-1-x 2-1=x 1-x 2x 1-1+x 2-1 .因为x 1<x 2,且x 1,x 2∈[1,+∞),所以x 1-x 2<0,x 1-1+x 2-1>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 故函数f (x )在[1,+∞)上是增函数.评注 对于根式函数常采用分子或分母有理化变形手段以达到判断f (x 1)-f (x 2)符号的目的. 例5.求函数y =1(x +1)2的单调区间.解:函数y =1(x +1)2的定义域为(-∞,-1)∪(-1,+∞),设t =(x +1)2,则y =1t(t >0).当x ∈(-∞,-1)时,t 是x 的减函数,y 是t 的减函数,所以(-∞,-1)是y =1(x +1)2的递增区间;当x ∈(-1,+∞)时,t 是x 的增函数,y 是t 的减函数,所以(-1,+∞)是y =1(x +1)2的递减区间.综上知,函数y =1(x +1)2的递增区间为(-∞,-1),递减区间为(-1,+∞).例6. 求y =1x 2-2x -3的单调区间.解:由x 2-2x -3≠0,得x ≠-1或x ≠3,令t =x 2-2x -3(t ≠0),则y =1t ,因为y =1t在(-∞,0),(0,+∞)上为减函数,而t =x 2-2x -3在(-∞,-1),(-1,1)上为减函数,在(1,3),(3,+∞)上是增函数,所以函数y =1x 2-2x -3的递增区间为(-∞,-1),(-1,1),递减区间为(1,3),(3,+∞). 【针对训练】1.下列四个函数中,在上为减函数的是( )A .B .C .D .【答案】A【解析】对于选项A,函数的图像的对称轴为开口向上,所以函数在上为减函数.所以选项A 是正确的.对于选项B,在在上为增函数,所以选项B 是错误的. 对于选项C,在在上为增函数,所以选项C 是错误的.对于选项D,,当x=0时,没有意义,所以选项D 是错误的. 2.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f(x)=3-x B .f(x)=x 2-3xC .f(x)=-1x +1 D .f(x)=-|x|【答案】C【解析】当x>0时,f(x)=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f(x)=x 2-3x 为减函数;当x ∈⎝⎛⎭⎫32,+∞时,f(x)=x 2-3x 为增函数;当x ∈(0,+∞)时,f(x)=-1x +1为增函数;当x ∈(0,+∞)时,f(x)=-|x|为减函数.3.若函数y ax =与b y x=-在()0,+∞上都是减函数,则()2f x ax bx =+在()0,+∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增 【答案】B【解析】由函数y ax =与by x=-在()0,+∞上都是减函数,可得0,b 0a <<.则一元二次函数()2f x ax bx=+在()0,+∞上为减函数.故选B.4.定义在R 上的函数()f x 对任意两个不相等实数a ,b ,总有()()0f a f b a b->-成立, 则必有( )A.()f x 在R 上是增函数B.()f x 在R 上是减函数C.函数()f x 是先增加后减少D.函数()f x 是先减少后增加【答案】A【解析】若a b <则由题意()()0f a f b a b->-知,一定有()()f a f b <成立,由增函数的定义知,该函数()f x 在R 上是增函数;同理若a b >,则一定有()()f a f b >成立,即该函数()f x 在R 上是增函数.所以函数()f x 在R 上是增函数.故应选A.5.已知,那么( ) A. 在区间上单调递增 B. 在上单调递增 C. 在上单调递增 D. 在上单调递增【答案】D 【解析】,记,则当时,单调递增,且而在不具有单调性,故A 错误;当时,不具有单调性,故B 错误;当时,单调递增,且而在不具有单调性,故C 错误;当时,单调递减,且而在单调递减,根据“同增异减”知,D 正确.故选:D 6.试讨论函数f(x)=axx -1(a≠0)在(-1,1)上的单调性. 【解析】设-1<x 1<x 2<1,f(x)=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f(x 1)-f(x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a>0时,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),函数f(x)在(-1,1)上递减; 当a<0时,f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),函数f(x)在(-1,1)上递增.综上,当a>0时,f(x)在(-1,1)上单调递减;当a<0时,f(x)在(-1,1)上单调递增.7.已知a>0,函数f(x)=x +ax (x>0),证明:函数f(x)在(0,a]上是减函数,在[a ,+∞)上是增函数.【解析】任意取x 1>x 2>0,则f(x 1)-f(x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-ax 2=(x 1-x 2)+ax 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 此时,函数f(x)=x +ax(a>0)在(0,a]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0,有f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),此时,函数f(x)=x+ax(a>0)在[a,+∞)上为增函数;综上可知,函数f(x)=x+ax(a>0)在(0,a]上为减函数,在[a,+∞)上为增函数.8.已知函数的图象经过点(1,1),.(1)求函数的解析式;(2)判断函数在(0,+)上的单调性并用定义证明;【答案】(1).(2)见解析.【解析】(1)由f(x)的图象过A、B,则,解得.∴(x≠0).(2)证明:设任意x1,x2∈0+∞(,),且x1<x2.∴.由x1,x2∈0+∞(,),得x1x2>0,x1x2+2>0.由x1<x2,得.∴,即.∴函数在0+∞(,)上为减函数.9.已知函数在上满足,且,.(1)求,的值;(2)判断的单调性并证明;【答案】(1);(2)单调递增,证明见解析;(3).【解析】(1)令,即可得到,再令,可得,令即可求得;(2)单调递增,证明:任取且,则,,因为,所以,所以在上单调递增.10.已知定义在区间上的函数满足,且当时,. (1)求的值;(2)证明:为单调增函数;(3)若,求在上的最值.【答案】(1)f(1)=0.(2)见解析(3)最小值为﹣2,最大值为3.【解析】试题分析:(1)利用赋值法进行求的值;(2)根据函数的单调性的定义判断在上的单调性,并证明.(3)根据函数单调性的性质,并利用赋值法可得函数的最值.试题解析:(1)∵函数f(x)满足f(x1•x2)=f(x1)+f(x2),令x1=x2=1,则f(1)=f(1)+f(1),解得f(1)=0.(2)证明:(2)设x1,x2∈(0,+∞),且x1>x2,则>1,∴f()>0,∴f(x1)﹣f(x2)=f(x2⋅)﹣f(x2)=f(x2)+f()﹣f(x2)=f()>0,即f(x1)>f(x2),∴f(x)在(0,+∞)上的是增函数.(3)∵f(x)在(0,+∞)上的是增函数.若,则f()+f()=f()=﹣2,即f(•5)=f(1)=f()+f(5)=0,即f(5)=1,则f(5)+f(5)=f(25)=2,f(5)+f(25)=f(125)=3,即f(x)在上的最小值为﹣2,最大值为3.。
函数单调性的判断和证明
02
余弦函数 $y = cos x$ 在区间 $[2kpi, pi + 2kpi]$($k in mathbb{Z}$)上单调递减,在区间 $[pi + 2kpi, 2pi + 2kpi]$($k in mathbb{Z}$)上单调递增。
03
正切函数 $y = tan x$ 在区间 $(kpi - frac{pi}{2}, kpi + frac{pi}{2})$($k in mathbb{Z}$)上单调递增。
三角函数单调性
01
正弦函数 $y = sin x$ 在区间 $[-frac{pi}{2} + 2kpi, frac{pi}{2} + 2kpi]$($k in mathbb{Z}$)上单调递增,在区间 $[frac{pi}{2} + 2kpi, frac{3pi}{2} + 2kpi]$($k in mathbb{Z}$)上单调递减 。
通过实例分析和数值计算,验证了所提方法的正确性和有效性,为实际应 用提供了有力支持。
未来研究方向展望
01
进一步研究函数单调性的本质 和判别条件,探索更加简洁、 高效的判断方法。
02
将函数单调性的研究拓展到更 广泛的数学领域,如复变函数 、泛函分析等,推动相关理论 的发展。
03
结合实际问题,研究函数单调 性在优化算法、数值计算等领 域的应用,为实际问题提供更 加有效的解决方案。
导数法证明
01
利用导数与函数单调性的关系,通过求导来判断函数的单调 性。
02
如果函数在某区间内可导,且导数在该区间内恒大于0,则 函数在该区间内单调增加;如果导数恒小于0,则函数在该 区间内单调减少。
03
函数单调性_最全版
六、 函数的单调性:㈠函数单调性的判定与证明:1、讨论函数f (x )=12-x ax(a >0)在x ∈(-1,1)上的单调性.解:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=1211-x ax -1222-x ax=)1)(1(222122121221--+--x x ax x ax ax x ax =)1)(1()1)((22212112--+-x x x x x x a .∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 12-1)(x 22-1)>0.又a >0,∴f (x 1)-f (x 2)>0,函数f (x )在(-1,1)上为减函数. 练习1:利用单调性的定义证明函数y=12++x x 在(-1,+∞)上是减函数. 证明:设x 1>x 2>-1, 则y 1-y 2=)1)(1(121221122211++-=++-++x x x x x x x x . ∵x 1>x 2>-1,x 2-x 1<0,x 1+1>0,x 2+1>0, ∴)1)(1(2112++-x x x x <0,即y 1-y 2<0,y 1<y 2.∴y=12++x x 在(-1,+∞)上是减函数. ㈡求函数的单调区间 Ⅰ定义法: 1、求函数y =x +x1的单调区间. Ⅱ导数法:求下列函数的单调区间 1、 432()3861f x x x x =-++解:3222()12241212(21)12(1)f x x x x x x x x x '=-+=-+=- 当0x ≥时单调递增,0x <时单调递减. 2、1()1f x x x =+- 解:21()1(1)f x x -'=+-故2222(1)12()(1)(1)x x xf x x x ---'==-- 则[0,1)(1,2]x ∈⋃时单调递减;(,0][2,)x ∈-∞⋃+∞时单调递增3、()f x =解:21()2f x '=2== 当9[,3)(0,)2x ∈--⋃+∞时单调递增,[3,0]x ∈-时单调递减。
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x V x ,并是某个区间上任意二 值;X 叱)②作差;或作商:,g ) 丰0;f (叼)③ 变形/⑴叩(巧)向有利于判断差值符号的方向变形;-Si ) 乒o 向有利于判断商的值是否大于 1方向变形;(常用的变形技巧有:1、分解因式,当原函数是 多项式时,作差后进行因式分解; 2、通分,当原函数是 分式函数时,作差后往往进行通分再进行因式分解; 3、配 方,当原函数是 二次函数 时,作差后考虑配方便于判定符号; 4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④ 定号,判断的正负符号,当符号不确定时,需进行分类讨论; ⑤ 下结论,根据函数单调性的定义下结论。
作差法:解:设一1<X 1<X 2,如1 吧则 f (X 1)—f (X 2)= "+1 —冷 *1+1) ■皿(而 +1)-(升硕恐+1)Ui+i )(j+D例1.判断函数ax7+i 在(-1,+ 8 )上的单调性,并证明.—1<X i <X 2,X 1 — X 2<0 , X i+ 1>0 , X 2 + 1>0..•当 a>0 时,f (X 1)-f (X 2)<0 , 即f (X 1)<f (X 2), •••函数y=f (X )在(-1, + 8)上单调递增.当 a<0 时,f (X 1)—f (X 2)>0 , 即f (X 1)>f (X 2), 函数y=f (X )在(—1, + °°)上单调递减.所 W1-—<0所以砰砰 ,所以(心)二玉 -^2-—) 则 七 -因为知fE 泗对,三口所以所以砰砰所以「「一-":-解1、[ /⑴在+8)上为增函数*例2.证明函数*卜扁赌晌向上为减函数。
证明:设。
5也幅”'幻(-皿-石]屯尊\+00)在区间L ' V 」和妃% ,/ (增两端,减中间)/ 31) — J g )=瓦 + —-Xj-—上是增函数;在31—叱)(1-—)因为强而,所以5 〈泗e同理可得在(-咛-齐止为增函现在止为诫函氮作商法:例3.设函数y=f (x)定义在R上,对于任意实数m , n,恒有f (m+n ) =f (m) ?f (n) 且当x> 0 时,0v f (x) v 1(1) 求证:f (0) =1 且当xv 0 时,f (x) > 1(2) 求证:f (x)在R上是减函数.证明:(1) •.,对于任意实数m, n,恒有f (m+n ) =f (m) ?f (n),令m=1 , n=0,可得 f (1) =f (1) ?f (0),..当x> 0 时,0v f (x) v 1, . • f (1)乒0.f (0) =1 .令m=x v 0, n=-x > 0,则 f (m+n ) =f (0) =f (-x) ?f (x) =1 ,f (-x) f (x) =1 ,又.• -x > 0 时,0 V f (-x ) V 1 ,• • f(x)=1f(-x)> 1.(1)设x1 vx2,贝U x1-x2 v 0,根据(1)可知f (x1-x2 ) > 1, f (x2) > 0.. f (x1) =f[ (x1-x2 ) +x2]=f (x1-x2 ) ?f (x2) > f (x2),•••函数f (x)在R上单调递减.(二)、运算性质法.函数表达式单调区间次函数y kx b(k 0)二次函数_ 2 , - y ax bx c(a 0,a,b,c R)反比例函数指数函数对数函数ky -x(k R 且k 0)xy a(a 0,a 1)当k 0时,y在R上是增函数;当k 。
定义法证明函数的单调性
f
(x)
x
1 x
的图像
(1)判断函数 f (x) x 1 在区间 (,1) x
上的单调性并证明;
(2)判断函数 f (x) x 1 在区间 (1,0)
x
的单调性并证明。 (3)(0,1)的单调性呢?
(4) (1,) 的单调性怎样?
由上猜测函数 f (x) x a (a 0) 的单调情况并证明 x
定义法证明函数的 单调性
例1、用定义法证明下列函数的单调性
(1) f (x) 1 , x (2,) x2
(2) f (x) x3 x, x R
例2、判定函数 f (x) x x2 1
在区间 (,) 的单调性。
例3、讨论函数
f
(x)
x
ax 2 1
(1
x
1,
a
0)
的单调性。
例4、作出函数
(4)若y=f(u)为减函数,u=g(x)为减函数,则 y=f(g(x))也为增函数
结论即为:同增异减
函数 f (x) x2 2x 3的单调递减区
间为________
函数单调性的应用
一、利用单调性比较大小
(1)增函数中自变量大函数值也大,减函数中自变 量小函数值反而大。但要注意将自变量放在同一单 调区间。
由上猜测函数的单调情况并证明xxxf1??1???xxxf1??01?例4作出函数的图像xxxf1??1??0???axaxxf1已知函数fx在区间a上单增gx在区间b上单增则fxgx在公共区间上是增函数2已知函数fx在区间a上单增gx在区间b上单减则fxgx在公共区间上是增函数3已知函数fx在区间a上单减gx在区间b上单减则fxgx在公共区间上是减函数4已知函数fx在区间a上单减gx在区间b上单增则fxgx在公共区间上是减函数即
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
高中数学函数单调性的判定和证明方法
高中数学函数单调性的判定和证明方法函数的单调性判定是数学函数研究中的重要内容,它可以帮助我们更深入地理解函数的性质和特征。
本文将详细介绍高中数学中常用的函数单调性判定和证明方法。
一、函数的单调性概念在讨论函数的单调性之前,我们首先要了解函数的增减性和单调性的概念。
1.增减性设函数f(x)在区间[a,b]上有定义,若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)小于f(x2),则称函数f(x)在[a,b]上为增函数;若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)大于f(x2),则称函数f(x)在[a,b]上为减函数。
2.单调性设函数f(x)在区间[a,b]上有定义,若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)小于等于f(x2),则称函数f(x)在[a,b]上为递增函数;若对于任意的x1,x2在[a,b]上,当x1小于x2时,有f(x1)大于等于f(x2),则称函数f(x)在[a,b]上为递减函数。
二、判定函数单调性的方法根据函数的定义,我们可以得出一些判定函数单调性的常用方法。
1.导数法如果函数f(x)在区间(a,b)上是单调的,那么它在该区间上的导数f'(x)恒大于0(或恒小于0),即函数的增减性与导数的正负性相同。
因此,通过求函数的导数并研究导数的正负性可以得出函数的单调性。
以f(x)为例,通过以下步骤可以判断f(x)的单调性:(1)求函数f(x)的导数f'(x)。
(2)研究f(x)的导数f'(x)在区间(a,b)上的正负性。
(3)若f'(x)在区间(a,b)上恒大于0(或恒小于0),则f(x)在(a,b)上递增(或递减)。
(4)若f'(x)在区间(a,b)上既大于0又小于0,或在一些点上为0,则f(x)在(a,b)上不是单调函数。
2.函数表和图像法函数表和图像法是直观判断函数单调性的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性证明
•解答题(共40小题)
1.证明:函数f (x)二-在(—g, 0)上是减函数.
3.证明f (x) =「在定义域为[0 , +g 内是增函数.
4.应用函数单调性定义证明:函数(x
) 在区间(0, 2)上是减函数.
2•求证:函数(x) =4x』在(0, 二)上递减,在[匸|, +g)上递增.
5.证明函数f (x) =2x-丄在(-g, 0)上是增函数.
6.证明:函数f (x) =X2+3在[0 , +g)上的单调性.
7.证明:函数y「在(-1, +g)上是单调增函数.
8.求证:f (x)= —在(-g, 0)上递增,在(0, +g)上递增.
9. 用函数单调性的定义证明函数y=丄在区间(0, +g)上为减函数.
10. 已知函数f (x) =x+±.
(I )用定义证明:f (x)在[2 , +x)上为增函数;
(U)若丄匚〉0对任意x €[4 , 5]恒成立,求实数a的取值范围.
/-a
11. ----------------------------------- 证明:函数f (x)= 在x €( 1, +x)单调递减.
x-1
(0, 1) 上是减函数,在[1 , +x]上是增函数.
13.判断并证明f (x)二亠在(-1, +x)上的单调性. y+1
14.判断并证明函数f (x) =x+2在区间(0, 2)上的单调性.
15•求函数f (x) =—L的单调增区间.
16.求证:函数f (x)=-申一-1在区间(-K, 0)上是单调增函数.
17.求函数尸7旷2十J1券(5 x)的疋乂域.
X K J
18 •求函数二------- 的定义域.
19.根据下列条件分别求出函数f (x)的解析式
⑵ f (x)+2f住)=3x・
(1) f (X」)=行
20 .若 3f (x) +2f (- x) =2x+2,求 f (x).
21 •求下列函数的解析式
(1)已知f (x+1) =x2求f (x)(2) 已知f (- ) =x,
求f (x)
(3) 已知函数f (x)为一次函数,使f[f (x) ]=9x+1,求f (x)
(4) 已知 3f (x)- f (二)=x2,求 f (x)
22.已知函数 y=f (x),满足 2f (x) +f(+)=2x, x € R且 x^ 0,求 f (x).
23.已知 3f (x) +2f (丄)=x (x工 0),求 f (x).
24. 已知函数f =x2+ (丄)2 (x>0),求函数 f (x).
25. 已知 2f (- x) +f (x) =3x- 1 求 f (x).
26. 若 2f (x) +f (- x) =3x+1,则求 f (x)的解析式.
27. 已知 4f (x) - 5f (丄)=2x,求 f (x).
28. 已知函数f (占丁+2) =x2+1,求f (x)的解析式.。