极值最值与导数习题附答案

合集下载

导数与函数的极值、最值(经典导学案及练习答案详解)

导数与函数的极值、最值(经典导学案及练习答案详解)

§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。

(完整版)极值、最值与导数习题(附答案)

(完整版)极值、最值与导数习题(附答案)

极值、最值与导数
1.若函数f(x)=2x3-3x2+c的极大值为6,那么c的值为( )
A.0
B.5
C.6
D.1
2.设函数2
()ln
f x x
x
=+,则( )
A .
1
2
x=为f(x)的极大值点 B .
1
2
x=为f(x)的极小值点
C .x=2为f(x)的极大值点
D .x=2为f(x)的极小值点
3.函数f(x)=(x-3)e x的单调递增区间是________.
4.如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①-2是函数y=f(x)的极值点; ②1是函数y=f(x)的极值点;
③y=f(x)在x=0处切线的斜率小于零; ④y=f(x)在区间(-2,2)上单调递增. 则正确命题的序号是________.(写出所有正确命题的序号)
5.已知函数f(x)=-x3+3x2+9x-2.
(Ⅰ)求f(x)的单调递减区间; (Ⅱ)求f(x)在区间[-2,2]上的最大值与最小值.
答案:
1.C
2.D
3.(2,+∞)
4.①④
5. (Ⅰ)函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(Ⅱ)函数f(x)在闭区间[-2,2]上的最大值为f(2)=20,最小值为f(-1)=-7.。

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。

极值,最值(含答案)

极值,最值(含答案)

导数的极值、最值考点一.求函数的极值1.求函数的极值:(1)612y 3++-=x x ; (2)212y 2-+=x x ; (3)x x ln 6)5(21y 2+-=; (4)x ex 2y =; 解:(1)22)2(f 10-)2(f ,220123y 2==--=∴=+-='极大极小,则或x x ;(2)1,1x 0)1(1)(1(2)1(22)1(2y 22222-=∴=++-=+⨯-+=',)x x x x x x x ,则f(-1)极小=-3;f(1)极大=-1.(3)定义域:x>0,则x x x x x x x x )3)(2(6565y 2--=+-=+-=',3ln 62)3(f ;2ln 629)2(f +=+=∴极小极大;(4)2,0x 0e2y 2=∴=-=',xx x ,0)0(f ;e 4)2(f 2==∴极小极大; (5)若bx x x +=3a )(f 在x=1处取得极值-2,求a,b 的值。

解:-3b 1,a -2b a f(1)0,3(1)f ,a 3)(f 2==∴=+==+='+=',又b a b x x 。

(6)若c bx ax x x +++=23)(f ,当x=-1时取极大值7,x=3取极小值,求极小值。

解:25-)3(f 2c -9b -3,a 7,f(-1)0(3)f 0,(-1)f ,23)(f 2====∴=='='++='极小值,,,又b ax x x 。

(7)若x e x ax --+=)1(y 2(a<0),求f(x )取极小值时,x 的值. 解:a1-2x 0)2)(1()1()1()12()(f 2或,=∴=-+-=--+++='---x ax e e x ax e ax x x x x,(1)当021-,2a 1-<<>a 即,0)(f )a1-2-,0)(f ),a 1-2--<'>'+∞∞x x 上,在(上)和(,在(,取极小值时,)(f 1x x a -=∴。

课时导数与函数的极值、最值检测题与详解答案

课时导数与函数的极值、最值检测题与详解答案

导数与函数的极值、最值测试题与详解答案A 级——保大分专练1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选 A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:3.5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f =-1+2b +c =0,f=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y=2x -1x2在x =-1处取得极值,因此a =2.答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=x 2+-2x x +x 2+2=-x +x -x 2+2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件.解析:y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧f =3×22+6a ×2+3b =0,f=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值;(2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a-ln xx 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln x x ,f ′(x )=1-ln xx2. 令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x. 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞), f ′(x )=1x -a =1-axx(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a.当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级——创高分自选1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________.解析:因为f (x )的单调递减区间为(-1,1),所以a >0. 由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t>0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝ ⎛⎭⎪⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫1a,+∞;由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎪⎫0,1a .所以当x =1a时,函数f (x )有极小值f ⎝ ⎛⎭⎪⎫1a =a ln 1a+a =a -a ln a ,无极大值.(2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎪⎫0,1a 时,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1. ②若1<1a <e ,即1e <a <1时,函数f (x )在⎣⎢⎡⎭⎪⎫1,1a 上为减函数,在⎝ ⎛⎦⎥⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝ ⎛⎭⎪⎫1a=a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1.③若1a ≥e,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e=0,即a =-1e ,故不满足条件0<a ≤1e.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值 最新习题(含解析)

导数与函数的极值、最值课时作业一、选择题1.如图2是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:图2①-2是函数y=f(x)的极值点;②1是函数y=f(x)的极值点;③y=f(x)的图象在x=0处切线的斜率小于零;④函数y=f(x)在区间(-2,2)上单调递增.则正确命题的序号是()A.①③B.②④C.②③D.①④解析:根据导函数图象可知,-2是导函数的零点且-2的左右两侧导函数符号异号,故-2是极值点;1不是极值点,因为1的左右两侧导函数符号一致;0处的导函数值即为此点的切线斜率,显然为正值,导函数在(-2,2)上恒大于或等于零,故为函数的增区间,所以选D.答案:D2.设f(x)=12x2-x+cos(1-x),则函数f(x)()A.仅有一个极小值B.仅有一个极大值C.有无数个极值D.没有极值解析:由f(x)=12x2-x+cos(1-x),得f′(x)=x-1+sin(1-x).设g(x)=x-1+sin(1-x),则g′(x)=1-cos(1-x)≥0.所以g(x)为增函数,且g(1)=0.所以当x∈(-∞,1)时,g(x)<0,f′(x)<0,则f(x)单调递减;当x∈(1,+∞)时,g(x)>0,f′(x)>0,则f(x)单调递增.又f′(1)=0,所以函数f(x)仅有一个极小值f(1).故选A.答案:A3.已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则a=()A .4或-3B .4或-11C .4D .-3 解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b .由题意得⎩⎨⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 即⎩⎨⎧2a +b =-3,a +b +a 2=9,解得⎩⎨⎧a =-3,b =3或⎩⎨⎧a =4,b =-11.当⎩⎨⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故函数f (x )单调递增,无极值.不符合题意.∴a =4.故选C. 答案:C 4.函数f (x )=2+ln x x +1在[1e ,e]上的最小值为 ( ) A .1 B.e 1+e C.21+e D.31+e解析:∵f ′(x )=x +1x -(2+ln x )(x +1)2=1x-1-ln x (x +1)2,∴当e ≥x >1时,f ′(x )<0;当1e ≤x <1时,f ′(x )>0. 所以f (x )的最小值为min ⎩⎨⎧⎭⎬⎫f (1e ),f (e )=min{e 1+e ,31+e }=e 1+e ,选B.答案:B5.若函数f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点,则实数a 的取值范围是 ( )A .(0,62)B .(1,62)C .(-62,62)D .(63,1)∪(1,62) 解析:∵f (x )=(a +1)e 2x -2e x +(a -1)x , ∴f ′(x )=2(a +1)e 2x -2e x +a -1,∵f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点, ∴f ′(x )=0有两个不等实根,设t =e x >0,则关于t 的方程2(a +1)t 2-2t +a -1=0有两个不等正根,可得⎩⎪⎨⎪⎧a -12(a +1)>0,22(a +1)>0,4-8(a -1)(a +1)>0⇒1<a <62,∴实数a 的取值范围是(1,62),故选B. 答案:B 6.图1如图1,可导函数y =f (x )在点P (x 0,f (x 0))处的切线为l :y =g (x ),设h (x )=f (x )-g (x ),则下列说法正确的是( )A .h ′(x 0)=0,x =x 0是h (x )的极大值点B .h ′(x 0)=0,x =x 0是h (x )的极小值点C .h ′(x 0)≠0,x =x 0不是h (x )的极值点D .h ′(x 0)≠0,x =x 0是h (x )的极值点解析:由题意可得函数f (x )在点(x 0,f (x 0))处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), ∴h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), ∴h ′(x )=f ′(x )-f ′(x 0), ∴h ′(x 0)=f ′(x 0)-f ′(x 0)=0. 又当x <x 0时,f ′(x )<f ′(x 0), 故h ′(x )<0,h (x )单调递减; 当x >x 0时,f ′(x )>f ′(x 0), 故h ′(x )>0,h (x )单调递增.∴x =x 0是h (x )的极小值点.故选B. 答案:B7.若函数g (x )=mx +sin xe x 在区间(0,2π)内有一个极大值和一个极小值,则实数m 的取值范围是 ( )A .[-e -2π,e -π2)B .(-e -π,e -2π)C .(-e π,e -5π2) D .(-e -3π,e π) 解析:函数g (x )=mx +sin xe x , 求导得g ′(x )=m +cos x -sin xe x. 令f (x )=m +cos x -sin x e x,则f ′(x )=-2cos xe x .易知,当x ∈(0,π2)时,f ′(x )<0,f (x )单调递减; 当x ∈(π2,3π2)时,f ′(x )>0,f (x )单调递增; 当x ∈(3π2,2π)时,f ′(x )<0,f (x )单调递减. 且f (0)=m +1,f (π2)=m -e -π2,f (3π2)=m +e -3π2, f (2π)=m +e -2π,有f (π2)<f (2π),f (0)>f (3π2).根据题意可得⎩⎪⎨⎪⎧f (π2)=m -e -π2<0,f (2π)=m +e -2π≥0,解得-e-2π≤m <e -π2.故选A.答案:A8.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是 ( )A .-4,-15B .5,-15C .5,-4D .5,-16 解析:由题意知y ′=6x 2-6x -12, 令y ′>0,解得x >2或x <-1,故函数y=2x3-3x2-12x+5在[0,2]上递减,在[2,3]上递增,当x=0时,y=5;当x=3时,y=-4;当x=2时,y=-15.由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15.故选B.答案:B9.若函数f(x)=13x3-⎝⎛⎭⎪⎫1+b2x2+2bx在区间[-3,1]上不是单调函数,则f(x)在R上的极小值为()A.2b-43 B.32b-23C.0 D.b2-16b3解析:由题意得f′(x)=(x-b)(x-2).因为f(x)在区间[-3,1]上不是单调函数,所以-3<b<1.由f′(x)>0,解得x>2或x<b;由f′(x)<0,解得b<x<2.所以f(x)的极小值为f(2)=2b-43.故选A.答案:A10.已知函数f(x)=ln x+a,g(x)=ax+b+1,若∀x>0,f(x)≤g(x),则ba的最小值是()A.1+e B.1-e C.e-1D.2e-1解析:由题意,∀x>0,f(x)≤g(x),即ln x+a≤ax+b+1,即ln x-ax+a≤b+1,设h(x)=ln x-ax+a,则h′(x)=1x-a,当a≤0时,h′(x)=1x-a>0,函数h(x)单调递增,无最大值,不合题意;当a>0时,令h′(x)=1x-a=0,解得x=1a,当x∈(0,1a)时,h′(x)>0,函数h(x)单调递增;当x∈(1a,+∞)时,h′(x)<0,函数h(x)单调递减,所以h(x)max=h(1a)=-ln a+a-1,故-ln a+a-1≤b+1,即-ln a+a-b-2≤0,令ba=k,则b=ak,所以-ln a+(1-k)a-2≤0,设φ(a)=-ln a+(1-k)a-2,则φ′(a)=-1a+(1-k),若1-k≤0,则φ′(a)<0,此时φ(a)单调递减,无最小值,所以k<1,由φ′(a)=0,得a=11-k,此时φ(a)min=ln(1-k)-1≤0,解得k≥1-e,所以k的小值为1-e,故选B.答案:B11.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是()A.-13 B.-15 C.10 D.15解析:∵f′(x)=-3x2+2ax,函数f(x)=-x3+ax2-4在x=2处取得极值,∴-12+4a=0,解得a=3,∴f′(x)=-3x2+6x,f(x)=-3x3+3x2-4,∴n∈[-1,1]时,f′(n)=-3n2+6n,当n=-1时,f′(n)最小,最小为-9,当m∈[-1,1]时,f(m)=-m3+3m2-4,f′(m)=-3m2+6m,令f′(m)=0,得m=0或m=2,所以当m=0时,f(m)最小,最小为-4,故f(m)+f′(n)的最小值为-9+(-4)=-13.故选A.答案:A12.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=16x3-12mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上() A.既有极大值,也有极小值B.没有极大值,有极小值C.有极大值,没有极小值D.没有极大值,也没有极小值解析:由题设可知,f″(x)<0在(-1,2)上恒成立,由于f ′(x )=12x 2-mx +1,从而f ″(x )=x -m ,所以有x -m <0在(-1,2)上恒成立,故知m ≥2,又因为m ≤2,所以m =2,从而f (x )=16x 3-x 2+x ,f ′(x )=12x 2-2x +1=0,得x 1=2-2∈(-1,2),x 2=2+2∉(-1,2),且当x ∈(-1,2-2)时,f ′(x )>0,当x ∈(2-2,2)时,f ′(x )<0,所以f (x )在x =2-2处取得极大值,没有极小值.答案:C 二、填空题13.已知函数f (x )=1-x x +ln x ,则f (x )在[12,2]上的最大值等于________.解析:∵函数f (x )=1-xx +ln x , ∴f ′(x )=-1x 2+1x =x -1x 2.故f (x )在[12,1]上单调递减,在[1,2]上单调递增, 又∵f (12)=1-ln2,f (2)=ln2-12,f (1)=0, f (12)-f (2)=32-2ln2>0,∴f (x )max =1-ln2,故答案为1-ln2. 答案:1-ln214.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2处取得极值,所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0 ①,又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0 ②, 联立①②可得a =-1,b =0, 所以f ′(x )=3x 2-6x =3x (x -2), 当f ′(x )>0时,x <0或x >2; 当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=c , 极小值为f (2)=c -4,故函数的极大值与极小值的差为c -(c -4)=4, 故答案为4. 答案:415.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:由f ′(x )=6x 2-2ax =0,得x =0或x =a3,因为函数f (x )在(0,+∞)上有且仅有一个零点且f (0)=1,所以a 3>0,f (a 3)=0,因此2(a 3)3-a (a3)2+1=0,a =3.从而函数f (x )在[-1,0]上单调递增,在[0,1]上单调递减,所以f (x )max =f (0),f (x )min =min{f (-1),f (1)}=f (-1),f (x )max +f (x )min =f (0)+f (-1)=1-4=-3.答案:-316.已知函数f (x )=x 3+ax 2+(a +6)x +1,(1)若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a =________;(2)若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是________.解析:∵f (x )=x 3+ax 2+(a +6)x +1, ∴f ′(x )=3x 2+2ax +(a +6), ∴f ′(1)=3a +9=6,∴a =-1.函数在(-1,3)内既有极大值又有极小值,则f ′(x )=3x 2+2ax +(a +6)=0在(-1,3)内有不同的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)=-a +9>0,f ′(3)=7a +33>0,-1<-2a 6<3,∴-337<a <-3.答案:-1 (-337,-3) 三、解答题17.已知函数f (x )=x +ax ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2. 解:(1)由题意x >0,f ′(x )=1+a +a ln x ,①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增; ②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )<0,当x ∈(e -1-1a ,+∞)时,f ′(x )>0,所以函数f (x )在(0,e -1-1a )上单调递减,函数f (x )在(e -1-1a ,+∞)上单调递增;③当a <0,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫e -1-1a ,+∞时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,e -1-1a 上单调递增,函数f (x )在⎝ ⎛⎭⎪⎫e -1-1a ,+∞上单调递减. (2)由f ′(1)=0,得a =-1,令h (x )=e -x +x 2-x +x ln x ,则h ′(x )=-e -x +2x +ln x ,h ″(x )=e -x +2+1x >0,∴h ′(x )在(0,+∞)上单调递增,∵h ′⎝ ⎛⎭⎪⎫1e =-e -1e +2e -1<0,h ′(1)=-e -1+2>0, ∴∃x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得h ′(x 0)=0,即-e -x 0+2x 0+ln x 0=0. ∴当x ∈(0,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0,∴h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴h (x )≥h (x 0).由-e -x 0+2x 0+ln x 0=0,得e -x 0=2x 0+ln x 0, ∴h (x 0)=e -x 0+x 20-x 0+x 0ln x 0 =(x 0+1)(x 0+ln x 0).当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x 0 ⇒-e -x 0+x 0<0,所以-e -x 0+x 0+x 0+ln x 0<0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x 0⇒-e -x 0+x 0>0, 所以-e -x 0+x 0+x 0+ln x 0>0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x 0⇒-e -x 0+x 0=0, 得-e -x 0+2x 0+ln x 0=0,故x 0+ln x 0=0成立, 得h (x 0)=(x 0+1)(x 0+ln x 0)=0,所以h (x )≥0, 即f (x )≤e -x +x 2.18.已知函数f (x )=x ln x .(1)求函数y =f (x )的单调区间和最小值;(2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值; (3)若k ∈Z ,且f (x )+x -k (x -1)>0对任意x >1恒成立,求k 的最大值. 解:(1)f (x )的单调增区间为[1e ,+∞),单调减区间为⎝ ⎛⎦⎥⎤0,1e , f (x )min =f (1e )=-1e .(2)F (x )=ln x -ax ,F ′(x )=x +a x 2,(ⅰ)当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉[0,+∞),舍去.(ⅱ)当a <0时,F (x )在(0,-a )在上单调递减, 在(-a ,+∞)上单调递增,①若a ∈(-1,0),F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去;②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减,在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,解得a =-e ∈[-e ,-1];③若a ∈(-∞,-e), F (x )在[1,e]上单调递减, F (x )min =F (e)=1-a e =32,所以a =-e 2∉(-∞,-e),舍去.综上所述, a =- e.(3)由题意得,k (x -1)<x +x ln x 对任意x >1恒成立,即k <x ln x +x x -1对任意x >1恒成立. 令h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2, 令φ(x )=x -ln x -2(x >1),则φ′(x )=1-1x =x -1x >0,所以函数φ(x )在(1,+∞)上单调递增,因为方程φ(x )=0在(1,+∞)上存在唯一的实根x 0,且x 0∈(3,4),当1<x <x 0时,φ(x )<0,即h ′(x )<0,当x >x 0时,φ(x )>0,即h ′(x )>0.所以函数h (x )在(1,x 0)上递减,在(x 0,+∞)上单调递增.所以h (x )min =h (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4),所以k <g (x )min =x 0, 又因为x 0∈(3,4),故整数k 的最大值为3.19.高三模拟考试)已知函数f (x )=-4x 3+ax ,x ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在[-1,1]上的最大值为1,求实数a 的取值集合.解:(1)f ′(x )=-12x 2+a .当a =0时,f (x )=-4x 3在R 上单调递减;当a <0时,f ′(x )=-12x 2+a <0,即f (x )=-4x 3+ax 在R 上单调递减;当a >0时,f ′(x )=-12x 2+a =0,解得x 1=36a ,x 2=-3a 6,∴当x ∈⎝⎛⎭⎪⎫-∞,-3a 6时,f ′(x )<0, f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减;当x ∈⎝⎛⎭⎪⎫-3a 6,3a 6时,f ′(x )>0, f (x )在⎝⎛⎭⎪⎫-3a 6,3a 6上递增; 当x ∈⎝ ⎛⎭⎪⎫3a 6,+∞时,f ′(x )<0, f (x )在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. 综上,当a ≤0时,f (x )在R 上单调递减;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减; 在⎝ ⎛⎭⎪⎫-3a 6,3a 6上递增;在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. (2)∵函数f (x )在[-1,1]上的最大值为1,∴对任意x ∈[-1,1],f (x )≤1恒成立,即-4x 3+ax ≤1对任意x ∈[-1,1]恒成立,变形可得ax ≤1+4x 3.当x =0时,a ·0≤1+4·03,即0≤1,可得a ∈R ;当x ∈(0,1]时,a ≤1x +4x 2,则a ≤⎝ ⎛⎭⎪⎫1x +4x 2min, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2.当x ∈⎝ ⎛⎭⎪⎫0,12时,g ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤12,1时, g ′(x )>0. 因此,g (x )min =g ⎝ ⎛⎭⎪⎫12=3, ∴a ≤3.当x ∈[-1,0)时,a ≥1x +4x 2,则a ≥⎝ ⎛⎭⎪⎫1x +4x 2max, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2,当x ∈[-1,0)时,g ′(x )<0,因此,g (x )max =g (-1)=3,∴a ≥3.综上,a=3.∴a的取值集合为{3}。

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案一、选择题1.已知函数fx在点x0处连续,下列命题中,正确的是A.导数为零的点一定是极值点B.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极小值C.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值D.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如fx=x3,fx=3x2,f0=0,但x=0不是fx的极值点,故A错;由极值的定义可知C正确,故应选C.2.函数y=1+3x-x3有A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值3[答案] D[解析] y=3-3x2=31-x1+x令y=0,解得x1=-1,x2=1当x-1时,y0,函数y=1+3x-x3是减函数,当-11时,y0,函数y=1+3x-x3是增函数,当x1时,y0,函数y=1+3x-x3是减函数,当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.设x0为fx的极值点,则下列说法正确的是A.必有fx0=0B.fx0不存在C.fx0=0或fx0不存在D.fx0存在但可能不为0[答案] C[解析] 如:y=|x|,在x=0时取得极小值,但f0不存在.4.对于可导函数,有一点两侧的导数值异号是这一点为极值的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.5.对于函数fx=x3-3x2,给出命题:①fx是增函数,无极值;②fx是减函数,无极值;③fx的’递增区间为-,0,2,+,递减区间为0,2;④f0=0是极大值,f2=-4是极小值.其中正确的命题有A.1个 B.2个C.3个 D.4个[答案] B[解析] fx=3x2-6x=3xx-2,令fx0,得x2或x0,令fx0,得02,①②错误. 6.函数fx=x+1x的极值情况是A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为2[答案] D[解析] fx=1-1x2,令fx=0,得x=1,函数fx在区间-,-1和1,+上单调递增,在-1,0和0,1上单调递减,当x=-1时,取极大值-2,当x=1时,取极小值2.7.函数fx的定义域为开区间a,b,导函数fx在a,b内的图象如图所示,则函数fx在开区间a,b内有极小值点A.1个 B.2个C.3个 D.4个[答案] A[解析] 由fx的图象可知,函数fx在区间a,b内,先增,再减,再增,最后再减,故函数fx在区间a,b内只有一个极小值点.8.已知函数y=x-ln1+x2,则函数y的极值情况是A.有极小值B.有极大值C.既有极大值又有极小值D.无极值[答案] D[解析] ∵y=1-11+x2x2+1=1-2xx2+1=x-12x2+1令y=0得x=1,当x1时,y0,当x1时,y0,函数无极值,故应选D.9.已知函数fx=x3-px2-qx的图象与x轴切于1,0点,则函数fx的极值是 A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为0[答案] A[解析] 由题意得,f1=0,p+q=1①f1=0,2p+q=3②由①②得p=2,q=-1.fx=x3-2x2+x,fx=3x2-4x+1=3x-1x-1,令fx=0,得x=13或x=1,极大值f13=427,极小值f1=0.10.下列函数中,x=0是极值点的是A.y=-x3 B.y=cos2xC.y=tanx-x D.y=1x[答案] B[解析] y=cos2x=1+cos2x2,y=-sin2x,x=0是y=0的根且在x=0附近,y左正右负,x=0是函数的极大值点.二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.[答案] 1-1[解析] y=21+x1-xx2+12,令y0得-11,令y0得x1或x-1,当x=-1时,取极小值-1,当x=1时,取极大值1.12.函数y=x3-6x+a的极大值为____________,极小值为____________.[答案] a+42 a-42[解析] y=3x2-6=3x+2x-2,令y0,得x2或x-2,令y0,得-22,当x=-2时取极大值a+42,当x=2时取极小值a-42.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a =______,b=________.[答案] -3-9[解析] y=3x2+2ax+b,方程y=0有根-1及3,由韦达定理应有14.已知函数fx=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.[答案] -2,2[解析] 令fx=3x2-3=0得x=1,可得极大值为f-1=2,极小值为f1=-2,y=fx的大致图象如图观察图象得-22时恰有三个不同的公共点.三、解答题15.已知函数fx=x3-3x2-9x+11.1写出函数fx的递减区间;2讨论函数fx的极大值或极小值,如有试写出极值.[解析] fx=3x2-6x-9=3x+1x-3,令fx=0,得x1=-1,x2=3.x变化时,fx的符号变化情况及fx的增减性如下表所示:x -,-1 -1 -1,3 3 3,+fx + 0 - 0 +fx 增极大值f-1 减极小值f3 增1由表可得函数的递减区间为-1,3;2由表可得,当x=-1时,函数有极大值为f-1=16;当x=3时,函数有极小值为f3=-16.16.设函数fx=ax3+bx2+cx,在x=1和x=-1处有极值,且f1=-1,求a、b、c的值,并求出相应的极值.[解析] fx=3ax2+2bx+c.∵x=1是函数的极值点,-1、1是方程fx=0的根,即有又f1=-1,则有a+b+c=-1,此时函数的表达式为fx=12x3-32x.fx=32x2-32.令fx=0,得x=1.当x变化时,fx,fx变化情况如下表:x -,-1 -1 -1,1 1 1,+fx + 0 - 0 +fx ? 极大值1 ? 极小值-1 ?由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.已知函数fx=ax3+bx2-3x在x=1处取得极值.1讨论f1和f-1是函数fx的极大值还是极小值;2过点A0,16作曲线y=fx的切线,求此切线方程.[解析] 1fx=3ax2+2bx-3,依题意,f1=f-1=0,即解得a=1,b=0.fx=x3-3x,fx=3x2-3=3x-1x+1.令fx=0,得x1=-1,x2=1.若x-,-11,+,则fx>0,故fx在-,-1上是增函数,fx在1,+上是增函数.若x-1,1,则fx<0,故fx在-1,1上是减函数.f-1=2是极大值;f1=-2是极小值.2曲线方程为y=x3-3x.点A0,16不在曲线上.设切点为Mx0,y0,则点M的坐标满足y0=x30-3x0.∵fx0=3x20-1,故切线的方程为y-y0=3x20-1x-x0.注意到点A0,16在切线上,有16-x30-3x0=3x20-10-x0.化简得x30=-8,解得x0=-2.切点为M-2,-2,切线方程为9x-y+16=0.18.2021北京文,18设函数fx=a3x3+bx2+cx+da0,且方程fx-9x=0的两个根分别为1,4.1当a=3且曲线y=fx过原点时,求fx的解析式;2若fx在-,+内无极值点,求a的取值范围.[解析] 本题考查了函数与导函数的综合应用.由fx=a3x3+bx2+cx+d得fx=ax2+2bx+c∵fx-9x=ax2+2bx+c-9x=0的两根为1,4.1当a=3时,由*式得,解得b=-3,c=12.又∵曲线y=fx过原点,d=0.故fx=x3-3x2+12x.2由于a0,所以“fx=a3x3+bx2+cx+d在-,+内无极值点”等价于“fx=ax2+2bx+c0在-,+内恒成立”由*式得2b=9-5a,c=4a.又∵=2b2-4ac=9a-1a-9解得a[1,9],即a的取值范围[1,9].感谢您的阅读,祝您生活愉快。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.【答案】(1)极大值为;(2)综上所述:时,恒成立.【解析】(1)通过“求导数、求驻点、讨论驻点附近导数值的符号、确定极值”,“表解法”形象直观;(2)应用转化与化归思想.要使得恒成立,即时,恒成立;构造函数,应用导数研究函数的最值,注意分以下情况:(ⅰ)当时,(ii)当时,(iii)当时,(iv)当a>1时,综上所述:时,恒成立.试题解析:(1)是的极值点解得 2分当时,当变化时,+4分的极大值为 6分(2)要使得恒成立,即时,恒成立 8分设,则(ⅰ)当时,由得单减区间为,由得单增区间为,得 10分(ii)当时,由得单减区间为,由得单增区间为,此时,不合题意. 10分(iii)当时,在上单增,不合题意. 12分(iv)当a>1时,由得单减区间为,由得单增区间为,此时不合题意. 13分综上所述:时,恒成立. 14分【考点】1.应用导数研究函数的单调性、极(最)值,2.应用导数证明不等式3.转化与化归思想.2.设函数在处取极值,则= .【答案】2.【解析】因为,又函数在处取极值,所以,从而.【考点】1.函数导数的求法;2.三角恒等变形公式.3.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值4.已知曲线.(1)若曲线C在点处的切线为,求实数和的值;(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.【答案】(1),,(2).【解析】(1)根据导数几何意义,所以.因为,所以.因为过点,所以,(2)由题意得:不等式恒成立,恒成立问题一般转化为最值问题.一是分类讨论求函数最小值,二是变量分离为恒成立,求函数最小值.两种方法都是,然后对实数a进行讨论,当时,,所以.当时,由得,不论还是,都是先减后增,即的最小值为,所以.试题解析:解(1), 2分因为曲线C在点(0,1)处的切线为L:,所以且. 4分解得, -5分(2)法1:对于任意实数a,曲线C总在直线的的上方,等价于∀x,,都有,即∀x,R,恒成立, 6分令, 7分①若a=0,则,所以实数b的取值范围是; 8分②若,,由得, 9分的情况如下:+11分所以的最小值为, 12分所以实数b的取值范围是;综上,实数b的取值范围是. 13分法2:对于任意实数a,曲线C总在直线的的上方,等价于∀x,,都有,即∀x,R,恒成立, 6分令,则等价于∀,恒成立,令,则, 7分由得, 9分的情况如下:+-11分所以的最小值为, 12分实数b的取值范围是. 13分【考点】利用导数求切线、最值.5.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图像不可能为y=f(x)的图像的是()【答案】D【解析】若x=-1为函数f(x)e x的一个极值点,则易得a=c.∵选项A、B的函数为f(x)=a(x+1)2,其中a≠0,则[f(x)e x]′=f′(x)e x+f(x)(e x)′=a(x+1)·(x+3)e x,∴x=-1为函数f(x)e x的一个极值点,满足条件;选项C中,对称轴x=->0,且开口向下,∴a<0,b>0,∴f(-1)=2a-b<0,也满足条件;选项D中,对称轴x=-<-1,且开口向上,∴a>0,b>2a,∴f(-1)=2a-b<0,与图像矛盾,故选D.6.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.7.若函数满足:在定义域内存在实数,使(k为常数),则称“f(x)关于k可线性分解”.(Ⅰ)函数是否关于1可线性分解?请说明理由;(Ⅱ)已知函数关于可线性分解,求的取值范围;(Ⅲ)证明不等式:.【答案】(Ⅰ)是关于1可线性分解;(Ⅱ)a的取值范围是;(Ⅲ)详见解析.【解析】(Ⅰ)函数是否关于1可线性分解,关键是看是否存在使得成立,若成立,是关于1可线性分解,否则不是关于1可线性分解,故看是否有解,构造函数,看它是否有零点,而,观察得,,有根的存在性定理可得存在,使;(Ⅱ)先确定定义域为,函数关于可线性分解,即存在,使,即有解,整理得有解,即,从而求出的取值范围;(Ⅲ)证明不等式:,当时,,对求导,判断最大值为,可得,分别令,叠加可得证结论.试题解析:(Ⅰ)函数的定义域是R,若是关于1可线性分解,则定义域内存在实数,使得.构造函数.∵,且在上是连续的,∴在上至少存在一个零点.即存在,使. 4分(Ⅱ)的定义域为.由已知,存在,使.即.整理,得,即.∴,所以.由且,得.∴a的取值范围是. 9分(Ⅲ)由(Ⅱ)知,a =1,,.当时,,所以的单调递增区间是,当时,,所以的单调递减区间是,因此时,的最大值为,所以,即,因此得:,,,,,以上各式相加得:,即,所以,即.14分【考点】导数在最大值、最小值问题中的应用.8.如图,已知点,函数的图象上的动点在轴上的射影为,且点在点的左侧.设,的面积为.(Ⅰ)求函数的解析式及的取值范围;(Ⅱ)求函数的最大值.【答案】(Ⅰ).(Ⅱ)当时,函数取得最大值8.【解析】(Ⅰ)确定三角形面积,主要确定底和高.(Ⅱ)应用导数研究函数的最值,遵循“求导数,求驻点,讨论驻点两侧导数正负,比较极值与区间端点函数值”.利用“表解法”形象直观,易以理解.试题解析:(Ⅰ)由已知可得,所以点的横坐标为, 2分因为点在点的左侧,所以,即.由已知,所以, 4分所以所以的面积为. 6分(Ⅱ) 7分由,得(舍),或. 8分函数与在定义域上的情况如下:2+↘12分所以当时,函数取得最大值8. 13分【考点】三角形面积,应用导数研究函数的最值.9.设.(1)若时,单调递增,求的取值范围;(2)讨论方程的实数根的个数.【答案】(1);(2)见解析.【解析】(1)求出函数导数,当时,单调递增,说明当时,,即在恒成立,又函数在上递减,所以;(2)将方程化为,令,利用导数求出的单调区间,讨论的取值当时,,当时,,所以当时,方程无解,当时,方程有一个根,当时,方程有两个根.试题解析:(1)∵∴∵当时,单调递增∴当时,∴,,函数在上递减∴(2)∴令当时∵∴即在递增当时∵∴即在递减∵当时当时∴①当时,方程无解②当时,方程有一个根③当时,方程有两个根【考点】利用导数求函数最值、利用导数研究函数取值、函数和方程思想.10.函数上有最小值,实数a的取值范围是()A.(-1,3)B.(-1,2)C.D.【答案】D【解析】由题 f'(x)=3-3x2,令f'(x)>0解得-1<x<1;令f'(x)<0解得x<-1或x>1,由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数故函数在x=-1处取到极小值-2,判断知此极小值必是区间(a2-12,a)上的最小值.∴a2-12<-1<a,解得-1<a<,又当x=2时,f(2)=-2,故有a≤2,综上知a∈(-1,2],故选D.【考点】用导数研究函数的最值11.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析12.定义在上的函数满足:①(为正常数);②当时,.若函数的所有极大值点均在同一条直线上,则_____________.【答案】或.【解析】当时,,故函数在上单调递增,在上单调递增,故函数在处取得极大值,当时,则,此时,此时,函数在处取得极大值,对任意,当时,函数在处取得极大值,故函数的所有极大值点为,由于这些极大值点均在同一直线上,则直线的斜率为定值,即为定值,故或,即或.【考点】1.函数的极值;2.直线的斜率13.若不等式对恒成立,则实数的取值范围是 .【答案】【解析】由得或,即或.又,所以或.因为不等式对恒成立,所以或.(1)令,则.令得,当时,;当时,.所以在上是增函数,在是减函数.所以,所以.(2)令,则,因为,所以,所以易知,所以在上是增函数.易知当时,,故在上无最小值,所以在上不能恒成立.综上所述,,即实数的取值范围是.【考点】利用导数研究函数的单调性、利用函数单调性求最值、含绝对值不等式的解法14.(本小题满分共12分)已知函数,曲线在点处切线方程为。

高三数学利用导数求最值和极值试题

高三数学利用导数求最值和极值试题

高三数学利用导数求最值和极值试题1. 函数f(x)=x 3-x 2-3x -1的图象与x 轴的交点个数是________.【答案】3【解析】f′(x)=x 2-2x -3=(x +1)(x -3),函数在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f(x)极小值=f(3)=-10<0,f(x)极大值=f(-1)=>0知函数f(x)的图象与x 轴的交点个数为3.2. 已知函数f (x )=x 3+ax 2+x +2(a >0)的极大值点和极小值点都在区间(-1,1)内,则实数a 的取值范围是( ). A .(0,2] B .(0,2) C .[,2) D .(,2)【答案】D【解析】由题意可知f ′(x )=0的两个不同解都在区间(-1,1)内.因为f ′(x )=3x 2+2ax +1,所以根据导函数图象可得又a >0,解得<a <2,故选D.3. 已知且关于的函数在上有极值,则与的夹角范围是( ) A .B .C .D .【答案】B 【解析】 ,因为在上有极值,所以【考点】有解,,即,,所以],故选B.【考点】1.函数的导数;2.向量的数量积以及向量的夹角.4. 不等式的解集为,且,则实数的取值范围是( )A .B .C .D .【答案】A【解析】①当时,不等式对任意实数恒成立;②当时,不等式可变形为,由不等式的解集为,且设,令,解得. 当时,,函数单调递减;当时,,函数单调递增.由此可知,当时,函数取得极小值,也即最小值,且..故选A.【考点】利用导数研究函数的极值5.记函数的最大值为M,最小值为m,则的值为( ) A.B.C.D.【答案】A【解析】由已知得,,解得,所以函数的定义域是. 已知函数求导得,,时,当时,,当时,,所以在区间上先增后减,最大值是,因为,,所以,所以.【考点】1.利用导数研究函数的最值;2.函数的单调性与导数的关系6.设.(Ⅰ)若对一切恒成立,求的取值范围;(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;(Ⅲ)求证:.【答案】(Ⅰ);(Ⅱ);(Ⅲ)详见解析【解析】(Ⅰ)∴对一切恒成立等价于恒成立.这只要求出函数的最小值即可.(Ⅱ)直线的斜率为:由题设有,不妨设则这样问题转化为函数,在上单调递增所以恒成立,即对任意,恒成立这样只需求出的最小值即可.(Ⅲ)不等式可变为由(Ⅰ) 知(时取等号),在此不等式中取得:变形得:取得:变形得:取得:变形得:取得:变形得:将以上不等式相加即可得证.试题解析:(Ⅰ)令,则由得.所以在上单调递增, 在单调递减.所以由此得:又时,即为此时取任意值都成立综上得:(II)由题设得,直线AB的斜率满足:,不妨设,则即:令函数,则由以上不等式知:在上单调递增,所以恒成立所以,对任意,恒成立又=故(Ⅲ)由(Ⅰ) 知时取等号),取,得即累加得所以【考点】1、函数的导数及其应用;2、不等关系及重要不等式;3、不等式的证明.7.已知函数只有一个零点,则实数m的取值范围是()A.B.∪C.D.∪【答案】B【解析】求导得:,所以的极大值为,极小值为.因为该函数只有一个零点,所以或,所以,选B.【考点】1、导数的应用;2、函数的零点;3、解不等式.8.已知且,现给出如下结论:①;②;③;④.其中正确结论的序号为:()A.①③B.①④C.②④D.②③【答案】D【解析】,函数在处取得极大值,在处取得极小值,由知函数有3个零点,则有,即解得,即,,所以,.【考点】1.函数的极值;2.函数的零点.9.设函数有三个零点,且则下列结论正确的是()A.B.C.D.【答案】C【解析】先求导数,令,解得故+0—0+又因为,,,,综合以上信息可得示意图如右,由图可知,.【考点】考查函数的零点.10.已知函数,且函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则的取值范围为( )A.B.C.D.【答案】B【解析】试题分析:因为函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,所以即画出可行域如图所示,为可行域内的点到的距离的平方,由图可知,距离的最小值为距离的最大值为,所以的取值范围为【考点】本小题主要考查导数与极值的关系以及线性规划的应用.点评:对于此类问题,必须牢固掌握导数的运算,利用导数求单调性以及极值和最值.本题导数与线性规划结合,学生必须熟练应用多个知识点,准确分析问题考查的实质,正确答题.11.已知函数既存在极大值又存在极小值,则实数的取值范围是_______________【答案】或;【解析】本试题主要是考查了一元三次函数的极值问题的运用。

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.函数在上的最小值为_____________________.【答案】-6【解析】;令得:列表如下:-1(-1,0)0(0,1)1(1,2)2所以由上表可知:函数的最小值为-6.【考点】函数的最值及导数的应用.2.已知函数f(x)=ax3+bx2+cx+d的图象与x轴有三个不同交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取得极值,则x1•x2的值为.【答案】6.【解析】因为的图像过,所以,即;因为f(x)在x=1,x=2时取得极值,所以的两根为1,2,则,即;则,所以.【考点】三次函数的零点、函数的极值.3.设函数f(x)=+ln x,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【答案】D【解析】因为,所以当时,,当x>2时,,故知x=2为f(x)的极小值点.故选D.【考点】函数的极值.4.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.5.函数在[0,3]上的最大值和最小值分别是( ).A.5,-15B.5,-14C.5,-16D.5,15【答案】A【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.6.点P是曲线x2-y-2ln=0上任意一点,则点P到直线4x+4y+1=0的最短距离是( ) A.(1-ln 2)B.(1+ln 2)C.D.(1+ln 2)【答案】B【解析】设P(,),则点P到直线4x+4y+1=0的距离= =,设==(),所以= =,当时,<0,当时,,所以在(0,)是减函数,在(,)上是增函数,所以当=时,==,所以= .【考点】点到直线距离公式;利用导数求最值7.已知函数既有极大值又有极小值,则实数的取值范围是。

完整版)导数与极值、最值练习题

完整版)导数与极值、最值练习题

完整版)导数与极值、最值练习题三、知识新授一)函数极值的概念函数极值指的是函数在某个点上的最大值或最小值,包括极大值和极小值。

二)函数极值的求法:1)确定函数的定义域,并求出函数的导数f'(x);2)解方程f'(x)=0,得到方程的根x(可能不止一个);3)如果在x附近的左侧f'(x)>0,右侧f'(x)<0,则f(x)是极大值;反之,则f(x)是极小值。

题型一图像问题1、函数f(x)的导函数图像如下图所示,则函数f(x)在图示区间上()第二题图)A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图像如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个3、若函数f(x)=x+bx+c的图像的顶点在第四象限,则函数f'(x)的图像可能为()图略)4、设f'(x)是函数f(x)的导函数,y=f'(x)的图像如下图所示,则y=f(x)的图像可能是()图略)A。

B。

C。

D。

5、已知函数f(x)的导函数f'(x)的图像如右图所示,那么函数f(x)的图像最有可能的是()图略)6、f'(x)是f(x)的导函数,f'(x)的图像如图所示,则f(x)的图像只可能是()图略)A。

B。

C。

D。

7、如果函数y=f(x)的图像如图,那么导函数y=f'(x)的图像可能是()图略)ABCD8、如图所示是函数y=f(x)的导函数y=f'(x)图像,则下列哪一个判断可能是正确的()图略)A.在区间(-2,0)内y=f(x)为增函数B.在区间(0,3)内y=f(x)为减函数C.在区间(4,+∞)内y=f(x)为增函数D.当x=2时y=f(x)有极小值9、如果函数y=f(x)的导函数的图像如图所示,给出下列判断:①函数y=f(x)在区间(-3,-1/2)内单调递增;②函数y=f(x)在区间(-1/2,2)内单调递减。

导数与函数的极值、最值

导数与函数的极值、最值

导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由.[解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增. 因此函数f (x )有两个极值点.③当a <0时,Δ>0,由g (-1)=1>0, 可得x 1<-1<x 2.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.考法(二) 已知函数的极值点的个数求参数[例3] 已知函数g (x )=ln x -mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.[解] 因为g (x )=ln x -mx +mx,所以g ′(x )=1x -m -mx 2=-mx 2-x +m x 2(x >0),令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m>0,h ⎝⎛⎭⎫12m <0,解得0<m <12.所以m 的取值范围为⎝⎛⎭⎫0,12. 考法(三) 已知函数的极值求参数[例4] (2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 考点二 利用导数研究函数的最值[典例精析]已知函数f (x )=ln x x -1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值.[解] (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2, 由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得 0<x <e ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m,2m ]上单调递增,所以f (x )max =f (2m )=ln (2m )2m-1;②当m <e <2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m,2m ]上单调递减, 所以f (x )max =f (m )=ln mm-1.综上所述,当0<m ≤e 2时,f (x )max =ln (2m )2m -1;当e 2<m <e 时,f (x )max =1e -1; 当m ≥e 时,f (x )max =ln mm-1. [题组训练]1.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-3322.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值. (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解:(1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0,又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x ,令f ′(x )=0,得x 1=12,x 2=1.当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝⎭⎫0,12,(1,+∞),单调递减区间为⎝⎛⎭12,1. (2)由(1)知f ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x(x >0),令f ′(x )=0,得x 1=1,x 2=12a, 因为f (x )在x =1处取得极值,所以x 2=12a≠x 1=1.①当a <0,即12a <0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. ②当a >0,即x 2=12a>0时,若12a <1,f (x )在⎝⎛⎭⎫0,12a ,[1,e]上单调递增,在⎣⎡⎭⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝⎛⎭⎫12a =ln 12a +a ⎝⎛⎭⎫12a 2-(2a +1)·12a =ln 12a -14a-1<0, 令f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 若1<12a <e ,f (x )在区间(0,1),⎣⎡⎦⎤12a ,e 上单调递增,在⎣⎡⎭⎫1,12a 上单调递减, 所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 令f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a <e 矛盾.若x 2=12a ≥e ,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x=1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾.综上所述,a =1e -2或a =-2.考点三 利用导数求解函数极值和最值的综合问题[典例精析](2019·贵阳模拟)已知函数f (x )=ln x +12x 2-ax +a (a ∈R).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.[解] (1)∵f ′(x )=1x+x -a (x >0),又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0, 即1x +x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min , 而x +1x≥2x ·1x=2,当且仅当x =1时取“=”,∴a ≤2. 即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2]. (2)∵f (x )在x =x 1和x =x 2处取得极值, 且f ′(x )=1x +x -a =x 2-ax +1x (x >0),∴x 1,x 2是方程x 2-ax +1=0的两个实根, 由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2, 设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在[e ,+∞)上是减函数, ∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +ee ,故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +ee .[题组训练]已知函数f (x )=ax 2+bx +ce x (a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +ce -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e-5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.[课时跟踪检测]A 级1.函数f (x )=x e -x ,x ∈[0,4]的最小值为( )A .0 B.1e C.4e4 D.2e2 解析:选A f ′(x )=1-xex ,当x ∈[0,1)时,f ′(x )>0,f (x )单调递增, 当x ∈(1,4]时,f ′(x )<0,f (x )单调递减,因为f (0)=0,f (4)=4e 4>0,所以当x =0时,f (x )有最小值,且最小值为0.2.若函数f (x )=a e x -sin x 在x =0处有极值,则a 的值为( ) A .-1 B .0 C .1D .e解析:选C f ′(x )=a e x -cos x ,若函数f (x )=a e x -sin x 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意,故选C.3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( ) A .15 B .16 C .17D .18解析:选D 因为x =2是函数f (x )=x 3-3ax +2的极小值点,所以f ′(2)=12-3a =0,解得a =4,所以函数f (x )的解析式为f (x )=x 3-12x +2,f ′(x )=3x 2-12,由f ′(x )=0,得x =±2,故函数f (x )在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时,函数f (x )取得极大值f (-2)=18.4.(2019·合肥模拟)已知函数f (x )=x 3+bx 2+cx 的大致图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 5.(2019·泉州质检)已知直线y =a 分别与函数y =e x+1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( )A.3-ln 22B.5-ln 22C.3+ln 22D.5+ln 22解析:选D 由y =e x+1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝⎛⎭⎫y -22⎝⎛⎭⎫y +22y (y >0),当0<y <22时,h ′(y )<0;当y >22时,h ′(y )>0,即函数h (y )在区间⎝⎛⎭⎫0,22上单调递减,在区间⎝⎛⎭⎫22,+∞上单调递增,所以h (y )min =h ⎝⎛⎭⎫22=⎝⎛⎭⎫222-ln 22+2=5+ln 22.6.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ), 由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增,∴f (x )的极大值为f (-a ),极小值为f (a ).∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是⎝⎛⎭⎫22,+∞. 答案:⎝⎛⎭⎫22,+∞7.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a ,当0<x <1a 时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝⎛⎭⎫1a =-ln a -1=-1,解得a =1. 答案:18.(2018·内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)求函数g (x )=f ⎝⎛⎭⎫x +π3x 在⎝⎛⎦⎤0,π2上的最小值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝⎛⎭⎫π3=32a +12b =0. ∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝⎛⎭⎫π3=12a -32b =1, ∴a =12,b =-32.(2) 由(1)知,f (x )=12sin x -32cos x =sin ⎝⎛⎭⎫x -π3,∴函数g (x )=sin x x ⎝⎛⎭⎫0<x ≤π2,g ′(x )=x cos x -sin x x 2.设u (x )=x cos x -sin x ⎝⎛⎭⎫0≤x ≤π2,则u ′(x )=-x sin x <0,故u (x )在⎣⎡⎦⎤0,π2上单调递减.∴u (x )<u (0)=0,∴g (x )在⎝⎛⎦⎤0,π2上单调递减.∴函数g (x )在 ⎝⎛⎦⎤0,π2上的最小值为g ⎝⎛⎭⎫π2=2π. 9.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2=ax -1x 2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a ,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在,理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件. ③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.B 级1.(2019·郑州质检)若函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .以上都不对解析:选C 由题意,f ′(x )=3x 2-2ax -b ,则f ′(1)=0,即2a +b =3.①f (1)=1-a -b +a 2=10,即a 2-a -b =9.②联立①②,解得⎩⎪⎨⎪⎧ a =-4,b =11或⎩⎪⎨⎪⎧a =3,b =-3. 经检验⎩⎪⎨⎪⎧a =3,b =-3不符合题意,舍去.故选C. 2.(2019·唐山联考)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________.解析:由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x,令f ′(x )=0,得x =12⎝⎛⎭⎫x =-12舍去, 则由已知得⎩⎪⎨⎪⎧ a -1≥0,a -1<12,a +1>12,解得1≤a <32. 答案:⎣⎡⎭⎫1,32 3.(2019·德州质检)已知函数f (x )=-13x 3+x 在(a,10-a 2)上有最大值,则实数a 的取值范围是________.解析:由f ′(x )=-x 2+1,知f (x )在(-∞,-1)上单调递减,在[-1,1]上单调递增,在(1,+∞)上单调递减,故函数f (x )在(a,10-a 2)上存在最大值的条件为⎩⎪⎨⎪⎧ a <1,10-a 2>1,f (1)≥f (a ),其中f (1)≥f (a ),即为-13+1≥-13a 3+a ,整理得a 3-3a +2≥0,即a 3-1-3a +3≥0,即(a -1)(a 2+a +1)-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0,即⎩⎪⎨⎪⎧a <1,10-a 2>1,(a -1)2(a +2)≥0,解得-2≤a <1.答案:[-2,1)4.已知函数f (x )是R 上的可导函数,f (x )的导函数f ′(x )的图象如图,则下列结论正确的是( )A .a ,c 分别是极大值点和极小值点B .b ,c 分别是极大值点和极小值点C .f (x )在区间(a ,c )上是增函数D .f (x )在区间(b ,c )上是减函数解析:选C 由极值点的定义可知,a 是极小值点,无极大值点;由导函数的图象可知,函数f (x )在区间(a ,+∞)上是增函数,故选C.5.如图,在半径为103的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中A ,B 在直径上,C ,D 在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁与拼接损耗),记圆柱形罐子的体积为V ,设AD =x ,则V max =________.解析:设圆柱形罐子的底面半径为r ,由题意得AB =2(103)2-x 2=2πr ,所以r =300-x 2π, 所以V =πr 2x =π⎝ ⎛⎭⎪⎫300-x 2π2x =1π(-x 3+300x )(0<x <103),故V ′=-3π(x 2-100)=-3π(x +10)(x -10)(0<x <103). 令V ′=0,得x =10(负值舍去),则V ′,V 随x 的变化情况如下表:所以当x =10所以V max =2 000π. 答案:2 000π6.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,其中a 为常数. (1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎫1+1x +1xln(1+x )的最大值. 解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3, ①当-1<2a -3<0,即1<a <32时, 当-1<x <2a -3或x >0时,f ′(x )>0,则f (x )在(-1,2a -3),(0,+∞)上单调递增, 当2a -3<x <0时,f ′(x )<0,则f (x )在(2a -3,0)上单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增. ③当2a -3>0,即a >32时, 当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增,当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减. (2)∵g (x )=⎝⎛⎭⎫x +1x ln(1+x )-x ln x =g ⎝⎛⎭⎫1x , ∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝⎛⎭⎫1-1x 2ln(1+x )+⎝⎛⎭⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎫1-1x 2ln(1+x )-ln x +1x-21+x, 则h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln (1+x )-2x 2+x (x +1)2. 由(1)可知当a =2时,f (x )在(0,1]上单调递减,∴f(x)<f(0)=0,∴h′(x)<0,从而h(x)在(0,1]上单调递减,∴h(x)≥h(1)=0,∴g(x)在(0,1]上单调递增,∴g(x)≤g(1)=2ln 2,∴g(x)的最大值为2ln 2.。

方法技巧专题12 函数单调性、极值、最值与导数问题(解析版)

方法技巧专题12  函数单调性、极值、最值与导数问题(解析版)

方法技巧专题12 函数单调性、极值、最值与导数问题解析篇【一】判断函数单调性1.例题【例1】已知函数()xf x ax e =-判断函数()f x 的单调性。

【解析】由题意可求,()´xf x a e =-1.当0a ≤时,()()´0,f x f x <在R 上为减函数;2.当0a >时,令()´0f x >,解得x lna <, 令()´0f x <,解得x lna > 于是()f x 在(,ln ]a -∞为增函数,在[ln ,)a +∞为减函数;【例2】已知函数2()ln 1a f x x x +=++,其中a ∈R ,讨论并求出f (x )在其定义域内的单调区间. 【解析】()222121()1(1)(1)a f x x ax x x x x +'=-=-+++,设g (x )=x 2-ax +1, ∵x >0,∴①当a <0时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立, 此时函数f (x )在区间(0,+∞)上单调递增;②当a >0时,222()1124a a g x x ax x ⎛⎫=-+=-+-⎪⎝⎭. 当1-24a ≥0,即0<a ≤2时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立,此时函数f (x )在区间(0,+∞)上单调递增;当a >2时,方程g (x )=0的两根分别为12,22a a x x +==,且0<x 1<x 2, ∴当x ∈(0,x 1)时,g (x )>0,f ′(x )>0,故函数f (x )在(0,x 1)上单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,故函数f (x )在(x 1,x 2)上单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,故函数f (x )在(x 2,+∞)上单调递增. 综上所述,当a ≤2时,函数f (x )的单调增区间为(0)∞,+,没有减区间;当a >2时,函数f (x )的减区间为12()x x ,;增区间为(0,x 1),(x 2,+∞).2.巩固提升综合练习【练习1】已知函数()xf x e =,()()210g x ax x a =++>.设()()()g x F x f x =,讨论函数()F x 的单调性;【解析】因为2()1()()xg x ax x F x f x e++==, 所以221(21)'()xx a ax x ax a x a F x e e -⎛⎫-- ⎪-+-⎝⎭==, ①若12a =,2'()0xax F x e-=≤.∴()F x 在R 上单调递减. ②若12a >,则210a a->, 当0x <,或21a x a ->时,'()0F x <,当210a x a-<<时,'()0F x >,∴()F x 在(,0)-∞,21,a a -⎛⎫+∞ ⎪⎝⎭上单调递减,在210,a a -⎛⎫⎪⎝⎭上单调递增.③若102a <<,则210a a-<, 当21a x a -<,或0x >时,'()0F x <,当210a x a-<<时,'()0F x >. ∴()F x 在21,a a -⎛⎫-∞ ⎪⎝⎭,(0,)+∞上单调递减,在21,0a a -⎛⎫⎪⎝⎭上单调递增. 【练习2】已知x ax x x ax x f +--=2221ln )()(,求)(x f 单调区间. 【解析】该函数定义域为),(∞+0(第一步:对数真数大于0求定义域)令x ax x f ln 12)(')(-=,解得121,12x x a==(第二步,令导数等于0,解出两根21,x x ) (1)当0≤a 时,'(0,1),()0,()x f x f x ∈>单调增,'(1,),()0,()x f x f x ∈+∞<单调减 (第三步,1x 在不在进行分类,当其不存在得到0≤a ;第四步数轴穿根或图像判断正负)(2)当121=a 时即21=a '(0,),()0,()x f x f x ∈+∞>单调增, (第五步,x 1在区间时,进行比较大小,当21x x =得到21=a 第四步图像判断正负)①当1210<<a 时,即21>a'1(0,),(1,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[,1],()0,()2x f x f x a∈<单调减(当21x x <得到21>a ;第四步图像判断正负)②当121>a 时,即210<<a'1(0,1),(,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[1,],()0,()2x f x f x a∈<单调减(21x x >得到210<<a ;第四步图像判断正负)综上可知:0≤a ,'(0,1),()0,()x f x f x ∈>单调增,'(1,),()0,()x f x f x ∈+∞<单调减;21=a ,'(0,),()0,()x f x f x ∈+∞>单调增 21>a '1(0,),(1,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[,1],()0,()2x f x f x a ∈<单调减210<<a ,'1(0,1),(,)()0,()2x x f x f x a ∈∈+∞>单调增,'1[1,],()0,()2x f x f x a ∈< 单调减【二】根据单调性求参数 1.例题【例1】(1)若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是 . (2)函数()()2244xf x exx =--在区间()1,1k k -+上不单调,实数k 的范围是( )(3)若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为 .(4)若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .【解析】(1)因为函数2()2(1)2f x x a x =+-+的单调减区间为(],1a -∞-,又函数()f x 在区间(],4-∞上是减函数,则(],4-∞⊆(],1a -∞-,则14a -≥,解得:3a ≤-, (2)()()2244xf x exx =--,()()228x f x e x '∴=-,令()0f x '=,得2x =±. 当2x <-或2x >时,()0f x '>;当22x -<<时,()0f x '<. 所以,函数()y f x =的极大值点为2-,极小值点为2.由题意可得121k k -<-<+或121k k -<<+,解得31k -<<-或13k <<. (3)由2450x x -++>,即2450x x --<,解得15x -<<. 二次函数245y x x =-++的对称轴为2x =.由复合函数单调性可得函数()()212log 45f x x x =-++的单调递增区间为()2,5.要使函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增, 则()()32,22,5m m -+⊆,即32225322m m m m -≥⎧⎪+≤⎨⎪-<+⎩,解得423m ≤<.(4)若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.【例2】已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞ D .[)3,-+∞【解析】(1)2'()361f x ax x =+-,∴()f x 有三个单调区间,∴036120a a ≠⎧⎨∆=+>⎩,解得3a >-且0a ≠.故选B .2.巩固提升综合练习 【练习1】函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a > B .1a ≥C .2a >D .2a ≥【答案】D【解析】由题意得:()22f x ax x '=-()f x 在[]1,2上单调递增等价于:()0f x '≥在[]1,2上恒成立即:220ax x -≥ 222x a x x∴≥=当[]1,2x ∈时,22x≤ 2a ∴≥本题正确选项:D【练习2】已知函数f(x)=x 3+ax 2+x +1(a ∈R )在(−23,−13)内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3] C .(√3,+∞) D .(√3,3)【答案】C【解析】f ′(x )=3x 2+2ax +1 假设f(x) 在(−23,−13)内不存在单调递减区间,而f(x)又不存在常函数情况,所以f(x) 在(−23,−13)内递增,即有x ∈ (−23,−13)时不等式f ′(x )=3x 2+2ax +1≥0恒成立,即x ∈ (−23,−13)时,a ≤−32x −12x =−32(x +13x)恒成立,解得a ≤√3,所以函数f(x) 在(−23,−13)内存在单调递减区间,实数a 的取值范围是(√3,+∞)故选C【练习3】若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞【答案】B【解析】22222122(2)(1)()ln '()1(0)x x x x f x x x f x x x x x x x+-+-=++⇒=+-==> 1x ≥单调递增,01x <<单调递减.函数2()ln f x x x x=++在区间[],2t t +上是单调函数 区间[],2t t +上是单调递减不满足只能区间[],2t t +上是单调递增. 故1t ≥故答案选B【三】函数的极值问题1.例题【例1】(1)函数3()12f x x x =-的极大值点是_______,极大值是________。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.函数y=x4-4x+3在区间[-2,3]上的最小值为()A.72B.36C.12D.0【答案】D【解析】因为y′=4x3-4,令y′=0即4x3-4=0,解得x=1.当x<1时,y′<0,当x>1时,y′>0,所以函数的极小值为y|=1=0,而在端点处的函数值y|x=-2=27,y|x=3=72,所以y min=0.x2.若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是()A.(-,1)B.[-,1)C.[-2,1)D.(-2,1)【答案】C【解析】f′(x)=3x2-3=3(x+1)(x-1),令f′(x)=0,得x=±1,所以f(x)的大致图象如图所示,f(1)=-2,f(-2)=-2,若函数f(x)在(a,6-a2)上有最小值,则,解得-2≤a<1.3.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值4.若函数在(0,1)内有极小值,则实数a的取值范围是( )A.(0,3)B.(-∞,3)C.(0,+∞)D.【答案】D 【解析】∵,且f(x)在(0,1)内有极小值. ∴.5. 已知是奇函数,当时,,当时,的最小值为1,则的值等于( ) A .B .C .D .1【答案】D . 【解析】由已知是奇函数,且当时,的最小值为1,而奇函数图象关于原点对称性,可得当时,有最大值.,当,即时,,在上单调递增;当,即时,,在上单调递减.当时,取最大值,故选D .【考点】1.函数的奇偶性;2.导数与函数的最大值最小值.6. 如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l 1,在路南侧沿直线铺设线路l 2,现要在矩形区域ABCD 内沿直线将l 1与l 2接通.已知AB = 60m ,BC = 80m ,公路两侧铺设水管的费用为每米1万元,穿过公路的EF 部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W .(1)求W 关于α的函数关系式; (2)求W 的最小值及相应的角α. 【答案】(1)=80+60tanα;(2),.【解析】(1)过E 作,垂足为M ,由题意得∠MEF="α," 故有,,,化简即可;(2),利用导数求出的最大值和相应的角度即可.试题解析:(1)如图,过E 作,垂足为M ,由题意得∠MEF=α,故有,,, 3分所以=80+ 60tanα(其中8分 (2)W. 设,则. 11分令得,即,得.列表+0所以当时有,此时有. 14分答:铺设水管的最小费用为万元,相应的角. 16分【考点】函数模型的应用、利用导数求函数极值、三角函数综合.7.已知函数.(1)若在处取得极大值,求实数的值;(2)若,求在区间上的最大值.【答案】(1);(2)详见解析.【解析】(1) 本小题首先利用导数的公式和法则求得原函数的导函数,通过列表分析其单调性,进而寻找极大值点;(2) 本小题结合(1)中的分析可知参数的取值范围影响函数在区间上的单调性,于是对参数的取值范围进行分段讨论,从而求得函数在区间上的单调性,进而求得该区间上的最大值.试题解析:(1)因为令,得,所以,随的变化情况如下表:↗↘↗(2)因为所以当时,对成立所以当时,取得最大值当时,在时,,单调递增在时,,单调递减所以当时,取得最大值当时,在时,,单调递减所以当时,取得最大值当时,在时,,单调递减在时,,单调递增又,当时,在取得最大值当时,在取得最大值当时,在,处都取得最大值0. 14分综上所述,当或时,取得最大值当时,取得最大值当时,在,处都取得最大值0当时,在取得最大值.【考点】1.导数公式;2.函数的单调性;3.分类讨论.8.记函数的最大值为M,最小值为m,则的值为( ) A.B.C.D.【答案】A【解析】由已知得,,解得,所以函数的定义域是. 已知函数求导得,,时,当时,,当时,,所以在区间上先增后减,最大值是,因为,,所以,所以.【考点】1.利用导数研究函数的最值;2.函数的单调性与导数的关系9.设.(Ⅰ)若对一切恒成立,求的取值范围;(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;(Ⅲ)求证:.【答案】(Ⅰ);(Ⅱ);(Ⅲ)详见解析【解析】(Ⅰ)∴对一切恒成立等价于恒成立.这只要求出函数的最小值即可.(Ⅱ)直线的斜率为:由题设有,不妨设则这样问题转化为函数,在上单调递增所以恒成立,即对任意,恒成立这样只需求出的最小值即可.(Ⅲ)不等式可变为由(Ⅰ) 知(时取等号),在此不等式中取得:变形得:取得:变形得:取得:变形得:取得:变形得:将以上不等式相加即可得证.试题解析:(Ⅰ)令,则由得.所以在上单调递增, 在单调递减.所以由此得:又时,即为此时取任意值都成立综上得:(II)由题设得,直线AB的斜率满足:,不妨设,则即:令函数,则由以上不等式知:在上单调递增,所以恒成立所以,对任意,恒成立又=故(Ⅲ)由(Ⅰ) 知时取等号),取,得即累加得所以【考点】1、函数的导数及其应用;2、不等关系及重要不等式;3、不等式的证明.10.已知函数(1)当时,求函数在上的极值;(2)证明:当时,;(3)证明:.【答案】(1);(2)证明过程详见解析;(3)证明过程详见解析.【解析】本题主要考查导数的运算,利用导数研究函数的单调性、极值和最值、不等式等基础知识,考查函数思想,考查综合分析和解决问题的能力.第一问,将代入,得到解析式,对它求导,列出表格,通过单调性,判断极值;第二问,证明不等式转化为求函数的最小值大于0;第三问,利用第二问的结论,令,利用放缩法得到,再利用对数的性质和裂项相消法求和,得到所证不等式.试题解析:(1)当时,1分变化如下表+00+极大值, 4分(2)令则 6分∴在上为增函数。

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】函数为增函数, 函数为减函数, 当且左侧,右侧时为极小值点,从而只有一个满足,答案选A..【考点】函数的导数与极值2.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】令得或,当时, ,当时, ,因此当时, ,所以,当时, ,当时, ,因此,答案为.【考点】导数与最值3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数,且是函数的极值点。

给出以下几个问题:①;②;③;④其中正确的命题是__________。

(填出所有正确命题的序号)【答案】①③【解析】的定义域为,,所以有,所以有即即,所以有;因为,所以有。

【考点】导数在求函数极值中的应用5.已知函数在处有极大值.(Ⅰ)求的值;(Ⅱ)若过原点有三条直线与曲线相切,求的取值范围;(Ⅲ)当时,函数的图象在抛物线的下方,求的取值范围.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)通过对函数f(x)求导,根据函数在x=2处有极值,可知f'(2)=0,解得a的值.(Ⅱ)把(1)求得的a代入函数关系式,设切点坐标,进而根据导函数可知切线斜率,则切线方程可得,整理可求得b的表达式,令g'(x)=0解得x1和x2.进而可列出函数g(x)的单调性进而可知-64<b<0时,方程b=g(x)有三个不同的解,结论可得.(Ⅲ)当x∈[-2,4]时,函数y=f(x)的图象在抛物线y=1+45x-9x2的下方,进而可知x3-12x2+36x+b<1+45x-9x2在x∈[-2,4]时恒成立,整理可得关于b的不等式,令h(x)=-x3+3x2+9x+1,对h(x)进行求导由h'(x)=0得x1和x2.分别求得h,h(-1),h(3),h(4),进而可知h(x)在[-2,4]上的最小值是,进而求得b的范围.试题解析:(Ⅰ),或,当时,函数在处取得极小值,舍去;当时,,函数在处取得极大值,符合题意,∴.(3分)(Ⅱ),设切点为,则切线斜率为,切线方程为,即,∴.令,则,由得,.函数的单调性如下:↗极大值↘极小值↗∴当时,方程有三个不同的解,过原点有三条直线与曲线相切.(8分)(Ⅲ)∵当时,函数的图象在抛物线的下方,∴在时恒成立,即在时恒成立,令,则,由得,.∵,,,,∴在上的最小值是,.(12分)【考点】等比关系的确定;利用导数研究函数的极值.6.已知函数,在点处的切线方程是(e为自然对数的底)。

(完整版)导数与函数的极值、最值问题(解析版)

(完整版)导数与函数的极值、最值问题(解析版)

导数与函数的极值和最值问题 类型一 利用导数研究函数的极值解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 求方程'()0f x =的根;第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值.例1 已知函数x xx f ln 1)(+=,求函数()f x 的极值. 【答案】极小值为1,无极大值.【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( )A .11或18B .11C .18D .17或18 【答案】C 【解析】试题分析:b ax x x f ++='23)(2,⎩⎨⎧=+++=++∴1010232a b a b a ⎩⎨⎧-==⇒⎩⎨⎧=----=⇒114012232b a a a a b 或⎩⎨⎧=-=33b a .当⎩⎨⎧=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.当⎩⎨⎧-==114b a 时,)1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,311(<'-∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意.所以⎩⎨⎧-==114b a .181622168)2(=+-+=∴f .故选C .【变式演练2】设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为( )A .()1,0-B .()1,-+∞C .()0,+∞D .()(),10,-∞-+∞【答案】B 【解析】【变式演练3】函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】试题分析:因为x m x m x x f )1(2)1(2131)(23-++-=, 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,而()20,4∈,所以只有12m -=,3m =时,()f x 在R 上单调,才合题意,故答案为3.【变式演练4】设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数a 的取值范围是 .【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.【变式演练5】已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是 . 【答案】32a << 【解析】类型二 求函数在闭区间上的最值解题模板:第一步 求出函数()f x 在开区间(,)a b 内所有极值点;第二步 计算函数()f x 在极值点和端点的函数值;第三步 比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例2 若函数()2x f x e x mx =+-,在点()()1,1f 处的斜率为1e +. (1)求实数m 的值;(2)求函数()f x 在区间[]1,1-上的最大值. 【答案】(1)1m =;(2)()max f x e =. 【解析】试题分析:(1)由(1)1f e '=-解之即可;(2)()21x f x e x '=+-为递增函数且()()1110,130f e f e -''=+>-=-<,所以在区间(1,1)-上存在0x 使0()0f x '=,所以函数在区间0[1,]x -上单调递减,在区间0[,1]x 上单调递增,所以()()(){}max max 1,1f x f f =-,求之即可.试题解析: (1)()2x f x e x m '=+-,∴()12f e m '=+-,即21e m e +-=+,解得1m =; 实数m 的值为1;(2)()21x f x e x '=+-为递增函数,∴()()1110,130f e f e -''=+>-=-<, 存在[]01,1x ∈-,使得()00f x '=,所以()()(){}max max 1,1f x f f =-,()()112,1f e f e --=+=,∴()()max 1f x f e ==【变式演练6】已知函数()ln f x x x =,2()2g x x ax =-+-. 求函数()f x 在[,2](0)t t t +>上的最小值;【答案】(Ⅰ)min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,;. 【解析】试题分析:(Ⅰ)由'()ln 10f x x =+=,得极值点为1x e =,分情况讨论10t e <<及1t e≥时,函数)(x f 的最小值;(Ⅱ)当函数()()y f x g x =+有两个不同的极值点,即'ln 210y x x a =-++=有两个不同的实根1212,()x x x x <,问题等价于直线y a =与函数()ln 21G x x x =-+-的图象有两个不同的交点,由)(x G 单调性结合函数图象可知当min 1()()ln 22a G x G >==时,12,x x 存在,且21x x -的值随着a 的增大而增大,而当21ln 2x x -=时,由题意1122ln 210ln 210x x a x x a -++=⎧⎨-++=⎩,214x x ∴=代入上述方程可得2144ln 23x x ==,此时实数a 的取值范围为2ln 2ln 2ln()133a >--.试题解析:(Ⅰ)由'()ln 10f x x =+=,可得1x e=,∴①10t e <<时,函数()f x 在1(,)t e 上单调递减,在1(,2)t e+上单调递增,∴函数()f x 在[,2](0)t t t +>上的最小值为11()f e e=-,②当1t e≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ∴==,min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,; 练习1. 若322()7f x x ax bx a a =++--在1x =处取得极大值10,则ba的值为( ) A .32-或12- B .32-或12 C .32- D .12-【答案】C 【解析】试题分析:∵322()7f x x ax bx a a =++--,∴()bax x x f ++='232,又322()7f x x ax bx a a =++--在1=x 处取得极大值10,∴()023=++='b a x f ,()107112=--++=a a b a f ,∴01282=++a a ,∴2-=a ,1=b 或6-=a ,9=b .当2-=a ,1=b 时,()()()1131432--=+-='x x x x x f ,当131<<x 时,()0<'x f ,当1>x 时,()0>'x f ,∴()x f 在1=x 处取得极小值,与题意不符;当6-=a ,9=b 时,()()()31391232--=+-='x x x x x f ,当1<x 时,()0>'x f ,当31<<x 时,()0<'x f ,∴()x f 在1=x 处取得极大值,符合题意;23-=a b ,故选C . 考点:利用导数研究函数的极值. 2. 已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12,x x ,都有1212()()2f x f x x x ->-恒成立,则实数a 的取值范围是( )A .(0,1]B .(1,)+∞C .(0,1)D .[1,)+∞ 【答案】D 【解析】考点:函数导数与不等式,恒成立问题. 3.等差数列}{n a 中的40251a a ,是函数16431)(23-+-=x x x x f 的极值点,则20132log a 等于( ) A .2 B .3 C .4 D .5 【答案】A 【解析】试题分析:2'()86f x x x =-+,14025,a a 是方程2860x x -+=的两根,由韦达定理有140258a a +=,所以2013201328,4a a ==,故220132log log 42a ==,选A. 考点:1.函数的极点;2.等差数列的性质;3.导数的计算.4. 【2017届河南濮阳第一高级中学高三上学期检测二数学试卷,文12】已知函数321()3f x x x ax =++.若1()x g x e =,对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f x g x ≤成立,则实数a 的取值范围是( ) A .(,8]e e -∞- B .[8,)e e -+∞ C .[2,)e D .3(,]32e - 【答案】A 【解析】考点:1、利用导数研究函数的单调性;2、利用导数求函数的最值及全称量词与存在量词的应用.5. 已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则n a =_________. 【答案】1231n -⋅- 【解析】试题分析:因为3212()3432n n a f x x x a x -=-+-+,所以()21'23n n f x x a x a -=-+-,()1'1230n n f a a -∴=-+-=,()1132,131n n n n a a a a --=++=+,{}1n a +是以112a +=为首项, 以3为公比的等比数列11123,231n n n n a a --+=⨯=⨯-,故答案为1231n --. 考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.6.若正数t 满足()2ln 1a e t t -=(e 为自然对数的底数),则实数a 的取值范围为___________.【答案】1a e≥.【解析】试题分析:设()(2)ln f t e t t =-,2'()ln e t f t t t -=-+2ln 1et t=--,显然'()0f e =,又221"()e f t t t=--,当0t >时,"()0f t <,故'()f t 是减函数,所以当0t e <<时,'()0f t >,()f t 递增,当t e >时,'()0f t <,()f t 递减,所以x e =时,()f t 取极大值也是最大值()(2)ln f e e e e e =-=,当t →+∞(或0t →)时,()f t →-∞,因此()f t e ≤,所以10a<或10e a <≤,所以0a <中1a e≥. 考点: 导数与函数的单调性、极值、最值.7. 【2017届河北正定中学高三上学期第一次月考数学试卷,文22】已知函数()()2x f x x ax e =+的两个极值点为12,x x ,且1212,2x x x x <+=--. (1)求12,x x 的值;(2)若()f x 在()1,c c -(其中1c <-)上是单调函数,求c 的取值范围;(3)当m e ≤-时,求证:()()32214x xx f x e x e m e ⎡⎤⎡⎤+--+>⎣⎦⎣⎦.【答案】(1)125515,22x x ---==;(2)5535,,122⎛⎤⎡⎫-----∞- ⎪⎥⎢ ⎪⎝⎦⎣⎭;(3)证明见解析. 【解析】试题解析:(1)∵()()22xf x x a x a e '⎡⎤=+++⎣⎦,∴由()0f x '=得()220x a x a +++=,∴12225x x a +=--=--,∴5a = ∴由()22550x x +++=得2532x --±=, ∵12x x <,∴125515,22x x ---==, (2)由(1)知,()f x 在()12,x x 上递减,在()1,x -∞上递增,其中1255151,122x x ---=<-=>-,当()f x 在()1,c c -上递减时, 121c x c x -≥⎧⎨≤⎩,又1c <-,∴3512c --≤<-,当()f x 在()1,c c -上递增时, 1c x ≤,综上,c 的取值范围为5535,,122⎛⎤⎡⎫-----∞- ⎪⎥⎢ ⎪⎝⎦⎣⎭考点:1.导数在函数研究中的应用;2.单调性;3.极值.8. 【2017届河北武邑中学高三周考8.28数学试卷,理22】已知函数()()21ln 0f x ax x a x=-+>.(1)若()f x 是定义域上不单调的函数,求a 的取值范围;(2)若()f x 在定义域上有两个极值点12x x 、,证明:()()1232ln 2f x f x +>-. 【答案】(1)108a <<;(2)详见解析 【解析】试题分析:(1)()()2221ln ,ax x f x x ax x f x x -+'=--+=-,令18a ∆=-,当18a ≥时,()()0,0,f x f x '∆≤≤在()0,+∞单调递减,当108a <<时,0∆>,方程2210ax x -+=有两个不相等的正根12,x x ,不妨设12x x <,则当()()120,x x x ∈+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>,这时()f x 不是单调函数.综上,a 的取值范围是108a <<.(2)由(1)知,当且仅当10,8a ⎛⎫∈ ⎪⎝⎭时,()f x 有极小值点1x 和极大值2x ,且121211,22x x x x a a +==, ()()2212111222ln ln f x f x x ax x x ax x +=--+--+()()()121211ln 1ln 2124x x x x a a=-+++=++令()()11ln 21,0,48g a a a a ⎛⎤=++∈ ⎥⎝⎦,则当10,8a ⎛⎫∈ ⎪⎝⎭时,()221141044a g x a a a -'=-=<,()g a 在10,8⎛⎫⎪⎝⎭单调递减,所以()132ln 28g a g ⎛⎫>=- ⎪⎝⎭,即()()1232ln 2f x f x +>-.(2)由(1)知,当且仅当10,8a ⎛⎫∈ ⎪⎝⎭时,()f x 有极小值点1x 和极大值2x ,且121211,22x x x x a a+==, ()()2212111222ln ln f x f x x ax x x ax x +=--+--+,()()()()12121211ln ln 1122x x x x x x =-+----++ ()()()121211ln 1ln 2124x x x x a a =-+++=++.令()()11ln 21,0,48g a a a a ⎛⎤=++∈ ⎥⎝⎦, 则当10,8a ⎛⎫∈ ⎪⎝⎭时,()221141044a g x a a a -'=-=<,()g a 在10,8⎛⎫⎪⎝⎭单调递减, 所以()132ln 28g a g ⎛⎫>=- ⎪⎝⎭,即()()1232ln 2f x f x +>-.考点:1.导数在函数单调性中的应用;2.函数的极值.9. 【2017届黑龙江虎林一中高三上月考一数学试卷,理22】已知函数2()(1)ln f x a x x =--. (1)若()y f x =在2x =处取得极小值,求a 的值; (2)若()0f x ≥在[1,)+∞上恒成立,求a 的取值范围;(3)求证:当2n ≥时,2211132ln 2ln 3ln 22n n n n n--+++>+…. 【答案】(1)81;(2)21≥a ;(3)证明见解析.【解析】②当0a >时,221'()ax f x x -=,令'()0f x >,得12x a >'()0f x <,得102x a<< (i )112a >,即102a <<时,12x a ∈时,'()0f x <,即()f x 递减,∴()(1)0f x f <=矛盾.(ii 112a ≤,即12a ≥时,[1,)x ∈+∞时,'()0f x >,即()f x 递增,∴()(1)0f x f ≥=满足题意.综上: 12a ≥. (3)证明:由(2)知令12a =,当[1,)x ∈+∞时,21(1)ln 02x x --≥(当且仅当1x =时取“=”) ∴当1x =时,212ln 1x x >-. 即当2,3,4,,x n =…,有2221111112()ln 2ln 3ln 21311n n +++>+++---…… 11112()132435(1)(1)n n =++++⨯⨯⨯-+… 1111111(1)()()()3243511n n =-+-+-++--+…223222n n n n --=+. 考点:1.导数的综合应用;2.不等式恒成立问题;3.不等式的证明及裂项求和的方法.10. 【2017届云南曲靖一中高三上月考二数学试卷,理22】已知函数13)(3-+=ax x x f 的导函数为)(x f ',3)()(--'=ax x f x g .(1)当2-=a 时,求函数)(x f 的单调区间;(2)若对满足11≤≤-a 的一切a 的值,都有0)(<x g ,求实数x 的取值范围;(3)若0ln )(>+'x x g x 对一切2≥x 恒成立,求实数a 的取值范围.【答案】(1)函数)(x f 的单调递增区间为),2[],2,(+∞--∞,单调递减区间为)2,2(-;(2)310<<x ;(3)ln 2122a <+. 【解析】试题解析:(1)当2-=a 时,63)(2-='x x f ,令0)(='x f 得2±=x ,故当2-<x 或2>x 时,0)(>'x f ,)(x f 单调递增, 当22<<-x 时,0)(<'x f ,)(x f 单调递减,所以函数)(x f 的单调递增区间为),2[],2,(+∞--∞,单调递减区间为)2,2(-.(2)因为a x x f 33)(2+=',故333)(2-+-=a ax x x g ,令33)3()()(2-+-==x x a a h x g ,要使0)(<a h 对满足11≤≤-a 的一切a 成立,则⎩⎨⎧<-=<-+=-,03)1(,03)1(22x x h a x x h 解得310<<x . (3)因为a x x g -='6)(,所以0ln )6(>+-x a x x ,即)(ln 6x h xx x a =+<对一切2≥x 恒成立, 222ln 16ln 16)(xx x x x x h -+=-+=',令)(ln 162x x x ϕ=-+,则x x x 112)(-='ϕ,因为2≥x ,所以0)(>'x ϕ,故)(x ϕ在),2[+∞单调递增, 有02ln 25)2()(>-=≥ϕϕx ,因此0)(>'x h ,从而22ln 12)2()(+=≥h x h , 所以min ()a h x <ln 2(2)122h ==+. 考点:1、利用导数研究函数的单调性进而求最值;2、不等式恒成立问题.11. 【2016届河北南宫一中学高三仿真模拟数学试卷,理22】若函数()f x 的反函数记为()1f x -,已知函数()x f x e =.(1)设函数()()()1F x f x f x -=-,试判断函数()F x 的极值点个数;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin f x x kx ≥,求实数k 的取值范围. 【答案】(1)1个;(2)(],1-∞.【解析】试题解析:(1)()1x F x e x '=-,当()0,x ∈+∞时,1x 是减函数,x e -也是减函数, ∴()1x F x e x '=-在()0,+∞上是减函数,当1x =时,()10F x e '=-<, 当12x =时,()20F x e '=>,∴()F x '在()0,+∞上有且只有一个变号零点, ∴()F x 在定义域()0,+∞上有且只有一个极值点..(2)令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需0,2x π⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,对()g x 求导得()()sinx cosx x g x e k '=+-,令()()sin cos x h x e x x =+,则()2cos 0x h x e x '=>,0,2x π⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭ ∴()h x 在0,2π⎡⎤⎢⎥⎣⎦上为增函数,∴()21,h x e π⎡⎤∈⎢⎥⎣⎦.考点:1.函数的极值点;2.含参讨论函数的单调性与最值.12. 【2017届安徽蚌埠二中等四校高三10月联考数学试卷,理22】设函数()ln(1)1x f x a x x=-++,()ln(1)g x x bx =+-. (1)若函数()f x 在0x =处有极值,求函数()f x 的最大值;(2)①是否存在实数b ,使得关于x 的不等式()0g x <在(0,)+∞上恒成立?若存在,求出b 的取值范围;若不存在,说明理由;②证明:不等式2111ln (1,2,)12nk k n n k =-<-≤=+∑. 【答案】(1)(0)0f =;(2)①1≥b ;②证明见解析.【解析】试题分析:(1)由0)(='x f 的解,即可得出极值点,得出a 值后,再利用导函数求单调区间;(2)①本题为恒成立问题,利用函数的增减性和端点值来求解,而函数的单调性由导函数的正负来决定;②运用不等式的放缩与基本不等式的性质,证明右边项时采用了数列的增减性的基本定义来证明,通过说明数列时单调递减来证明不等式,在证明右侧时,采用将n ln 裂项的方法,将详见得到的每一项放缩,最后利用裂项相消111)1(1+-=+n n n n 来证得不等式成立. (2)①由已知得:'1()1g x b x=-+ (ⅰ)若1b ≥,则[0,)x ∈+∞时,'1()01g x b x =-≤+ ∴()ln(1)g x x bx =+-在[0,)+∞上为减函数,∴()ln(1)(0)0g x x bx g =+-<=在(0,)+∞上恒成立;(ⅱ)若0b ≤,则[0,)x ∈+∞时,'1()01g x b x=->+ ∴()ln(1)g x x bx =+-在[0,)+∞上为增函数,∴()ln(1)(0)0g x x bx g =+->=,不能使()0g x <在(0,)+∞上恒成立;(ⅲ)若01b <<,则'1()01g x b x =-=+时,11x b=-, 当1[0,1)x b ∈-时,'()0g x ≥,∴()ln(1)g x x bx =+-在1[0,1)b -上为增函数, 此时()ln(1)(0)0g x x bx g =+->=,∴不能使()0g x <在(0,)+∞上恒成立;综上所述,b 的取值范围是[1,)x ∈+∞.故11222 11111ln(1)[ln(1)]111 n n nnk k kk k n xk k k k n--====-+=-+++++∑∑∑111221111111 ()11 1(1)(1)n n nk k kkk k k k k k n---===>-=-≥=-+>-+++∑∑∑.考点:1.函数的极值;2.恒成立问题;3.导数证明不等式.。

高中数学导数与函数的极值、最值 (含解析)

高中数学导数与函数的极值、最值 (含解析)

限时规范训练(限时练·夯基练·提能练)A级基础夯实练1.(2018·聊城二模)下列函数中,既是奇函数又存在极值的是()A.y=x3B.y=ln(-x)C.y=x e-x D.y=x+2 x解析:选D.由题可知,B,C选项中的函数不是奇函数;A选项中,函数y=x3单调递增(无极值);D选项中的函数既为奇函数又存在极值.2.函数f(x)=x2-5x+2e x的极值点所在的区间为()A.(0,1) B.(-1,0)C.(1,2) D.(-2,-1)解析:选A.∵f′(x)=2x-5+2e x为增函数,f′(0)=-3<0,f′(1)=2e-3>0,∵f′(x)=2x-5+2e x的零点在区间(0,1)上,∴f(x)=x2-5x+2e x 的极值点在区间(0,1)上.3.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值解析:选C.当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x +e x -2), 显然f ′(1)=0,且在x =1附近的左侧f ′(x )<0, 当x >1时,f ′(x )>0,∴f (x )在x =1处取得极小值.故选C.4.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R).若x =-1为函数f (x )e x的一个极值点,则下列图象不可能为y =f (x )图象的是( )解析:选D.因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0.5.(2018·山东临沂模拟)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =( )A.14 B .13C.12D .1解析:选D.因为f (x )是奇函数,所以f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0,得x =1a ,又a >12,所以0<1a <2.当x <1a 时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增;当x >1a 时,f ′(x )<0,f (x )在⎝⎛⎭⎪⎫1a ,2上单调递减,所以f (x )max =f ⎝ ⎛⎭⎪⎫1a=ln 1a -a ·1a=-1,解得a =1.6.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为________. 解析:因为f ′(x )=2f ′(1)x -1,所以f ′(1)=2f ′(1)-1,所以f ′(1)=1,故f (x )=2ln x -x ,f ′(x )=2x -1=2-x x ,则f (x )在(0,2)上为增函数,在(2,+∞)上为减函数,所以当x =2时f (x )取得极大值,且f (x )极大值=f (2)=2ln 2-2.答案:2ln 2-27.(2018·大同模拟)f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________.解析:f (x )=x 3-2cx 2+c 2x ,f ′(x )=3x 2-4cx +c 2,f ′(2)=0⇒c =2或c =6,若c =2,f ′(x )=3x 2-8x +4,令f ′(x )>0⇒x <23或x >2,f ′(x )<0⇒23<x <2,故函数在⎝ ⎛⎭⎪⎫-∞,23及(2,+∞)上单调递增,在⎝ ⎛⎭⎪⎫23,2上单调递减,所以x =2是极小值点,故c =2(不合题意,舍去),c =6.答案:68.不等式e x ≥kx 对任意实数x 恒成立,则实数k 的最大值为________.解析:(1)不等式e x ≥kx 对任意实数x 恒成立,即为f (x )=e x -kx ≥0恒成立,即有f (x )min ≥0,由f (x )的导数为f ′(x )=e x -k ,当k ≤0时,e x >0,可得f ′(x )>0恒成立,f (x )递增,无最值; 当k >0时,x >ln k 时f ′(x )>0,f (x )递增;x <ln k 时f ′(x )<0,f (x )递减.即在x =ln k 处取得最小值,且为k -k ln k , 由k -k ln k ≥0,解得k ≤e ,即k 的最大值为e. 答案:e9.已知函数f (x )=ax 2+bx +c e x(a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间.(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -c e x ,令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以-3<x <0时, g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧9a -3b +c e-3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5, 所以f (x )=x 2+5x +5e x.因为f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞),所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者.而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5. 10.已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 解:(1)由已知得f (x )的定义域为x ∈(0,+∞), f ′(x )=ax +2=a +2x x .当a =-4时,f ′(x )=2x -4x .∴当0<x <2时,f ′(x )<0,即f (x )单调递减; 当x >2时,f ′(x )>0,即f (x )单调递增.∴f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2,无极大值.(2)∵f ′(x )=a +2x x,∴当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在x ∈(0,+∞)上单调递增,没有最小值; 当a <0时,由f ′(x )>0得,x >-a2,∴f (x )在⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增;由f ′(x )<0得,0<x <-a2,∴f (x )在⎝ ⎛⎭⎪⎫0,-a 2上单调递减.∴当a <0时,f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2+2×⎝ ⎛⎭⎪⎫-a 2.根据题意得f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2+2×⎝ ⎛⎭⎪⎫-a 2≥-a ,即a [ln(-a )-ln 2]≥0.∵a <0,∴ln(-a )-ln 2≤0,解得-2≤a <0, ∴实数a 的取值范围是[-2,0).B 级 能力提升练11.设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点解析:选D.函数f (x )的极大值f (x 0)不一定是最大值,故A 错误;f (x )与-f (-x )关于原点对称,故x 0(x 0≠0)是f (x )的极大值点时,-x 0是-f (-x )的极小值点,故选D.12.函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎭⎪⎫1,32C .[1,2)D .⎣⎢⎡⎭⎪⎫32,2 解析:选B.因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.13.(2018·江苏卷)若函数f (x )=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:f ′(x )=6x 2-2ax =2x (3x -a )(x >0). ①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上递增, 又f (0)=1,∴f (x )在(0,+∞)上无零点. ②当a >0时,由f ′(x )>0解得x >a3,由f ′(x )<0解得0<x <a3,∴f (x )在⎝⎛⎭⎪⎫0,a 3上递减,在⎝⎛⎭⎪⎫a 3,+∞上递增.又f (x )只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,∴a =3.此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上递增,在[0,1]上递减. 又f (1)=0,f (-1)=-4,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 答案:-314.(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围.解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.15.(2017·浙江卷)已知函数f (x )=(x -2x -1)·e -x⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围.解:(1)因为(x -2x -1)′=1-12x -1, (e -x )′=-e -x ,所以f ′(x )=⎝⎛⎭⎪⎪⎫1-12x -1e -x-(x -2x -1)e -x=(1-x )(2x -1-2)e -x 2x -1⎝⎛⎭⎪⎫x >12.(2)由f ′(x )=(1-x )(2x -1-2)e -x 2x -1=0,解得x =1或x =52.因为又f (x )=12(2x -1-1)2e -x ≥0,所以f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12.C 级 素养加强练16.已知函数f (x )=2ln x +x 2-2ax (a >0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),且f (x 1)-f (x 2)≥32-2ln 2恒成立,求a 的取值范围.解:(1)由题意知,函数f (x )的定义域是(0,+∞),f ′(x )=2(x 2-ax +1)x,令x 2-ax +1=0,则Δ=a 2-4, ①当0<a ≤2时,Δ≤0,f ′(x )≥0恒成立,函数f (x )在(0,+∞)上单调递增;②当a >2时,Δ>0,方程x 2-ax +1=0有两个不同的实根,分别设为x 3,x 4,不妨令x 3<x 4,则x 3=a -a 2-42,x 4=a +a 2-42,此时0<x 3<x 4, 因为当x ∈(0,x 3)时,f ′(x )>0,当x ∈(x 3,x 4)时,f ′(x )<0,当x ∈(x 4,+∞)时,f ′(x )>0,所以函数f (x )在⎝ ⎛⎭⎪⎪⎫0,a -a 2-42上单调递增,在⎝ ⎛⎭⎪⎪⎫a -a 2-42,a +a 2-42上单调递减,在(a +a 2-42,+∞)上单调递增.(2)由(1)得f (x )在(x 1,x 2)上单调递减,x 1+x 2=a ,x 1·x 2=1,则f (x 1)-f (x 2)=2ln x 1x 2+(x 1-x 2)(x 1+x 2-2a )=2ln x 1x 2+x 22-x 21x 1x 2=2ln x 1x 2+x 2x 1-x 1x 2, 令t =x 1x 2,则0<t <1,f (x 1)-f (x 2)=2ln t +1t -t , 令g (t )=2ln t +1t -t (0<t <1),则g ′(t )=-(t -1)2t 2<0, 故g (t )在(0,1)上单调递减且g ⎝ ⎛⎭⎪⎫12=32-2ln 2, 故g (t )=f (x 1)-f (x 2)≥32-2ln 2=g ⎝ ⎛⎭⎪⎫12,即0<t ≤12, 而a 2=(x 1+x 2)2=x 1x 2+x 2x 1+2=t +1t +2,其中0<t ≤12,令h (t )=t +1t +2,t ∈⎝ ⎛⎦⎥⎤0,12, 所以h ′(t )=1-1t 2<0在t ∈⎝ ⎛⎦⎥⎤0,12上恒成立, 故h (t )=t +1t +2在⎝ ⎛⎦⎥⎤0,12上单调递减,从而a 2≥92, 故a 的取值范围是⎣⎢⎡⎭⎪⎫322,+∞.。

《导数与极值、最值关系》能力练习题

《导数与极值、最值关系》能力练习题

《导数与极值、最值关系》能力练习题一、单选题1.若1x =是函数()xf x e ax =-的极值点,则方程()f x a =在()2,+∞的不同实根个数为( )A .1B .2C .3D .02.函数32()422f x x ax bx =--+在1x =处有极大值3-,则+a b 的值等于( )A .9B .6C .3D .23.已知函数()ln f x x ax =-的图象在1x =处的切线方程为0x y b ++=,则()f x 的极大值为( )A .ln21--B .ln21-+C .1-D .14.已知1x =是函数32()3f x ax x =-的极小值点,则函数()f x 的极小值为( )A .0B .1-C .2D .45.已知函数()2()xf x x a e =-,则“1a ≥-”是“()f x 有极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.函数f (x )=x 3+3ax 2+3[(a +2)x +1]既有极大值又有极小值,则a 的取值范围是( )A .(-1,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-∞,-1)∪(2,+∞)7.已知32()f x x px qx =++的图像与x 轴相切于非原点的一点,且f (x )极小值=-4,那么p ,q 值分别为( )A .8,6B .9,6C .4,2D .6,98.若函数321()13f x x x =+-在区间(,3)m m +上存在最小值,则实数m 的取值范围是( ) A .[5,0)-B .(5,0)-C .[3,0)-D .(3,0)-9.已知函数2(1)1ax y x x =>-有最大值4-,则a 的值为( )A .1B .1-C .4D .4-10.若函数322312y x x x m =--+在[0,3]上的最大值为5,则m =( )A .3B .4C .5D .811.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于( ) A .0 B .1 C .2 D .5212.已知函数2()(0)x f x a x a =>+在[1,)+∞上的最大值为3,则a 的值为( )A .31-B .34C .43D .31+13.已知函数()2()xf x x a e =+有最小值,则函数()y f x '=的零点个数为( )A .0B .1C .2D .不确定14.已知定义在[,]m n 上的函数()f x ,其导函数()'f x 的大致图象如图所示,则下列叙述正确的个数为( )①函数()f x 的值域为[(),()]f d f n ;②函数()f x 在[,]a b 上递增,在[,]b d 上递减; ③()f x 的极大值点为x c =,极小值点为x e =;④()f x 有两个零点. A .0B .1C .2D .315.已知函数()()211x f x x ax e-=+-在(),2x ∈-∞-单调递增,在()2,1x ∈-单调递减,则函数()f x 在[]2,2x ∈-的值域是( ) A .[]1,e - B .31,5e -⎡⎤-⎣⎦C .11,e ---⎡⎤⎣⎦D .35,e e -⎡⎤⎣⎦二、填空题 16.若函数321()53f x x ax x =-+-无极值点,则实数a 的取值范围是_________. 17.若函数2()2(0)x f x m e x x m =⋅-+<在(0,1)上有极值点,则m 的取值范围为___________. 18.已知函数在()3223(,)f x x mx nx m m n R =+++∈,1x =-时取得极小值0,则m n +=__________. 19.已知函数()()321233f x x ax a x =++++在(),-∞+∞上存在极值点,则实数a 的取值范围是_____________.20.已知()3222f x x cx c x =-+在2x =处有极小值,则常数c 的值为___________.21.已知32()263f x x x =-+,对任意的2][2x ∈-,都有()f x a ≤,则a 的取值范围为_______.22.已知函数()1ln x f x x =+在区间1,2a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在最大值,则实数a 的取值范围是_______.23.若函数()33f x x x =-在区间()25,a a -上有最大值,则实数a 的取值范围是______.24.若函数()3213f x x x =-在区间(),4a a +内存在最大值,则实数a 的取值范围是________. 三、解答题 25.已知.函数.e 为自然对数的底.(1)当时取得最小值,求的值;(2)令,求函数在点P 处的切线方程.26.已知函数32()3()f x x ax x a =-+∈R 在1x =处有极值.(1)求a 的值;(2)求函数()f x 的单调区间.27.已知函数e 1()ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭,其中k 为常数, 2.71828e =…为自然对数的底数. (1)若2e k =,求函数()f x 的极值;(2)若函数()f x 在区间(1,2)上单调,求k 的取值范围.28.已知32()1f x x ax bx =+++在1x =与1=3x -时取得极值. (1)求,a b 的值;(2)求()f x 的极大值和极小值;(3)求()f x 在[]1,2-上的最大值与最小值.29.已知函数()2ln f x a x bx =-,a 、b R ∈,若()f x 在1x =处与直线12y相切. (1)求a ,b 的值;(2)求()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的极值.30.设函数3()65,f x x x x R =-+∈.(1)求(2)f '的值;(2)求()f x 的单调区间和极值;(3)若关于x 的方程()f x a =有3个不同实根,求实数a 的取值范围.《导数与极值、最值关系》能力练习题参考答案1.A 【解析】由()'x f x e a =-,得()10'=-=f e a ,则a e =,()xf x e ex =-,函数()f x 在()2,+∞,()()'0,f x f x >单调递增,()222f e e e =-<,函数()y f x =与y a =的交点个数为1个.故选A .2.B 【解析】由题意得2()1222f x x ax b '=--,因为()f x 在1x =处有极大值3-,所以(1)12220(1)4223f a b f a b =--=⎧⎨=--+=-'⎩,解得3,3a b ==,所以6a b +=,故选:B 3.A 【解析】因为()ln f x x ax =-,所以1()f x a x'=-,又因为函数()f x 在图象在1x =处的切线方程为0x y b ++=,所以(1)1f a b =-=--,(1)11f a ='-=-,解得2a =,1b =.由112()2x f x x x-'=-=,102x <<,()0f x '>,12x >,()0f x '<,知()f x 在12x =处取得极大值,11ln 1ln 2122f ⎛⎫=-=--⎪⎝⎭.故选:A. 4.B 【解析】由题意,函数32()3f x ax x =-,可得2()363(2)f x ax x x ax '=-=-,因为1x =是函数32()3f x ax x =-的极小值点,则()01f '=,即31(2)0a ⨯⨯-=,解得2a =,可得()6(1)f x x x '=-,当0x <或1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,所以当1x =是函数32()3f x ax x =-的极小值点,所以函数的极小值为32(1)21311f =⨯-=-⨯.故选:B.5.B 【解析】()2()20xf x x x a e '=-=+,220x x a +-=,44a .若440a ∆=+≤,1a ≤-则()2()20x f x x x a e '=+-≥恒成立,()f x 为增函数,无极值;若440a ∆=+>,即1a >-,则()f x 有两个极值.所以“1a ≥-”是“()f x 有极值”的必要不充分条件.故选:B6.D 【解析】因为32()33[(2)1]f x x ax a x =++++,所以2()363(2)f x x ax a '=+++,函数()f x 有极大值又有极小值,()0f x ∴'=有两个不相等是实数根,∴23636(2)0a a ∆=-+>,化为220a a -->,解得2a >或1a <-.则a 的取值范围是(-∞,1)(2-,)+∞.故选:D .7.D 【解析】设切点为()(),00a a ≠,()2()f x x x px q =++,由题意得:20x px q ++=有两个相等实根,所以()2223()2f x x x a x ax a x =--+=,()()2233()4f x x ax a x a x a '-+-=-=,令()0f x '=,得3ax =或x a =,因为f (x )极小值=-4,而()04f a =≠-,所以()43a f =-,即2433a a a ⎛⎫-- ⎪⎝⎭,解得3a =-,所以32()69f x x x x =++,所以6,9p q ==.故选:D 8.D 【解析】函数321()13f x x x =+-的导函数为2()2f x x x =+',令()0f x '=,得2x =-或0x =,故()f x 在(,2),(0,)-∞-+∞上单调递增,在(2,0)-上单调递减,则0x =为极小值点,2x =-为极大值点.由()f x 在区间(,3)m m +上存在最小值,可得03m m <<+,解得30m -<<,此时32211()1(3)11(0)33f m m m m m f =+-=+->-=,因此实数m 的取值范围是(3,0)-,故选:D.9.B 【解析】因为函数2(1)1ax y x x =>-,所以2222222(1)2111(1)(1)(1)ax ax x ax ax ax y a x x x x '⎛⎫⎡⎤---====- ⎪⎢⎥----⎣'⎦⎝⎭,令0y '=,解得2x =或0x =(舍去).若函数在区间(1,)+∞上有最大值4-,则最大值必然在2x =处取得,所以441a=-,解得1a =-,此时2(2)(1)x x y x '--=-,当12x <<时,0y '>,当2x >时,0y '<,所以当2x =时y 取得最大值4-,故选:B.10.C 【解析】()()26612612y x x x x '=--=+-,当[]0,2x ∈时,0y '<,函数单调递减,当[]2,3x ∈时,0y '>,函数单调递增,当0x =时,y m =,当3x =时,9y m =-,则函数在[]0,3上的最大值为m ,则5m =.故选:C.11.C 【解析】'2333(1)y x x x x =+=+,易知,当10x -<<时,'0y <,当21x -<<-或01x <<时,'0y >,所以函数y =x 3+32x 2+m 在(2,1)--,(0,1)上单调递增,在(1,0)-上单调递减,又当1x =-时,12y m =+,当1x =时,52y m =+,所以最大值为5922m +=,解得2m =.故选:C 12.A 【解析】由2()x f x x a =+,得()222()a x f x x a '-=+,当1a >时,若x >()0,()f x f x '<单调递减,若1x <<()0,()f x f x '>单调递增,故当x =()f x 有最大值=,解得314a =<,不符合题意.当1a =时,函数()f x 在[1,)+∞上单调递减,最大值为1(1)2f =,不符合题意.当01a <<时,函数()f x 在[1,)+∞上单调递减.此时最大值为1(1)1f a ==+,解得31a ,符合题意.故a 1.故选:A .13.C 【解析】由题意,()2()2xf x x a e x +'=+,因为函数()f x 有最小值,且0x e >,所以函数存在单调递减区间,即()0f x '<有解,所以220x x a ++=有两个不等实根,所以函数()y f x '=的零点个数为2.故选:C.14.B 【解析】根据导函数()'f x 的图象可知,当[,)x m c ∈时,()0f x '>,所以函数()f x 在[,]m c 上单调递增,当(,)x c e ∈时,()0f x '<,所以函数()f x 在[,]c e 上单调递减,当(,]x e n ∈时,()0f x '>,所以函数()f x 在(,]e n 上单调递增,故②错误,③正确,根据单调性可知,函数的最小值为()f m 或()f e ,最大值为()f c 或()f n ,故①错误,当()0>f m 且()0f e >时,函数无零点,故④错误.故选:B.15.A 【解析】由()()2121x x a x a ef x -⎡⎤=+++-⎣⎦',由已知可得()201f a '-=⇒=-,则()()211x f x x x e -=--,()()212x f x x x e -'=+-,当[]2,1x ∈-,()()0f x f x '<⇒单调递减,当(]1,2x ∈,()()0f x f x '>⇒单调递增,则()()min 11f x f ==-,()325f e --=,()2f e =,()()max 2f x f e ==,综上:()[]1,f x e ∈-.故选:A16.[]1,1-【解析】因为321()53f x x ax x =-+-,所以2()21f x x ax '=-+,因为函数321()53f x x ax x =-+-无极值点,所以2240a,解得11a -≤≤,实数a 的取值范围是[]1,1-,17.(2,0)-【解析】因为2()2(0)x f x m e x x m =⋅-+<,所以()22(0)x f x m e x m '=⋅-+<,因为函数2()2(0)x f x m e x x m =⋅-+<在(0,1)上有极值点,所以()22(0)xf x m e x m '=⋅-+<在(0,1)上有零点,因为(0),22x y m e m x y =⋅-=<+在(0,1)上都递减,所以()'f x 在(0,1)上为减函数,所以(0)20(1)0f m f me =+>⎧⎨=<''⎩,解得20m -<<.18.11【解析】322()3f x x mx nx m =+++,2()36f x x mx n ∴'=++,依题意可得(1)0(1)0f f -=⎧⎨'-=⎩即2130360m n m m n ⎧-+-+=⎨-+=⎩,解得29m n =⎧⎨=⎩或13m n =⎧⎨=⎩,当1m =,3n =时函数32()331f x x x x =+++,22()3633(1)0f x x x x '=++=+,函数在R 上单调递增,函数无极值,故舍去;所以29m n =⎧⎨=⎩,所以11+=m n .19.{|1a a <-或}2a >【解析】由题可知:()222f x x ax a '=+++,因为函数()f x 在(),-∞+∞上存在极值点,所以()0f x '=有解,所以()244120a a ∆=-⨯⨯+≥,则1a ≤-或2a ≥,当1a =-或2a =时,函数()y f x ='与x 轴只有一个交点,即()0f x '≥,所以函数()f x 在(),-∞+∞单调递增,没有极值点,故舍去,所以1a <-或2a >,即{|1a a <-或}2a >20.2【解析】由()3222f x x cx c x =-+知,()2234f x x cx c '=-+,因为()f x 在2x =处取极小值,所以()221280f c c '=-+=,解得2c =或6c =,当2c =时,2()384(32)(2)f x x x x x ==-'-+-,()f x 在2x =处取极小值,符合题意,当6c =时,2()324363(2)(6)f x x x x x '=-+=--,()f x 在2x =处取极大值,不符合题意,综上知,2c =.21.[3)+∞,【解析】由2()6120f x x x '=-=得0x =或2x =,在区间[-2,0)上()'0f x >,()f x 单调递增;在(0,2)内时()()'0,f x f x <单调递减.又(2)37f -=-,(0)3f =,(2)5f =-,∴max ()3f x =,又()f x a ≤对于任意的x ∈[-2,2]恒成立,∴3a ≥,即a 的取值范围是[)3,+∞ 22.112a <<【解析】因为()1ln x f x x +=,0x >,所以()2ln x f x x '=-.当01x <<时,()0f x '>;当1x >时,()0f x '<.所以()f x 在区间()0,1上单调递增,在区间()1,+∞上单调递减,所以函数()f x 在1x =处取得极大值.因为函数()f x 在区间1,2a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在最大值,所以1112a a <⎧⎪⎨+>⎪⎩,解得112a <<. 23.()1,2-【解析】由题意得:233fxx ,令()0f x '<解得11x -<<;令()0f x '>解得1x <-或1x >,所以函数在(),1-∞-上是增函数,在()1,1-上是减函数,在()1,+∞上是增函数,故函数在1x =-处取到极大值2,所以极大值必是区间()25,a a -上的最大值,∴251a a -<-<,解得-1a 2<<.检验满足题意24.(]4,1--【解析】由题可知:()22f x x x '=-.令()00'>⇒<f x x 或2x >,令()002'<⇒<<f x x ,所以函数()f x 在()0,2单调递减,在()(),0,2,-∞+∞单调递增,故函数的极大值为()00f =,所以在开区间(),4a a +内的最大值一定是()00f =,又()()300f f ==,所以0443a a a <<+⎧⎨+≤⎩,得实数a 的取值范围是(]4,1--.25.【解析】(1),由得,由得,(2),26.【解析】(1)∵2()361f x x ax '=-+,函数32()3f x x ax x =-+在1x =处有极值,∴()10f '=,解得23a =(经检验,符合题意). (2)由(1)知32()2=-+f x x x x ,则2()341(1)(31)f x x x x x '=-+=--,令()0f x '=,得11x =,213x =. 当x 变化时,()f x ',()f x 的变化情况如下表:1,3⎛⎫-∞ ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭1(1,)+∞()'f x+-+()f x极大值极小值∴函数()f x 的单调增区间为1,3⎛⎫-∞ ⎪⎝⎭,(1,)+∞,单调减区间为1,13⎛⎫ ⎪⎝⎭.27.【解析】(1)2222(1)e 11(1)e 1()x x x x x f x k k x x x x x ---⎛⎫'=--+=- ⎪⎝⎭,即()2(1)()x x e k f x x--'= 当2e k =时()22(1)()x x e e f x x--'=,0x >。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极值最值与导数习题附答

The Standardization Office was revised on the afternoon of December 13, 2020
极值、最值与导数
1.若函数f (x )=2x 3-3x 2+c 的极大值为6,那么c 的值为( )
2.设函数2()ln f x x x =+,则( )
A .12x =为f (x )的极大值点
B .12
x =为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点
3.函数f (x )=(x -3)e x 的单调递增区间是________.
4.如图是函数y =f (x )的导函数y =f ′(x )的图象,给出下列命题: ①-2是函数y =f (x )的极值点; ②1是函数y =f (x )的极值点;
③y =f (x )在x =0处切线的斜率小于零; ④y =f (x )在区间(-2,2)上单调递增. 则正确命题的序号是________.(写出所有正确命题的序号)
5.已知函数f (x )=-x 3+3x 2+9x -2.
(Ⅰ)求f (x )的单调递减区间; (Ⅱ)求f (x )在区间[-2,2]上的最大值与最小值.
答案:
3.(2,+∞)
4.①④
5. (Ⅰ)函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(Ⅱ)函数f(x)在闭区间[-2,2]上的最大值为f(2)=20,最小值为f(-1)=-7.。

相关文档
最新文档