算法分析与设计(线下作业二)

合集下载

算法设计与分析第2版 王红梅 胡明 习题答案

算法设计与分析第2版 王红梅 胡明 习题答案

精品文档习题胡明-版)-王红梅-算法设计与分析(第2答案1习题)—1783Leonhard Euler,17071.图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(提出并解决了该问题。

七桥问题是这样描述的:北区一个人是否能在一次步行中穿越哥尼斯堡(现东区在叫加里宁格勒,在波罗的海南岸)城中全部岛区的七座桥后回到起点,且每座桥只经过一次,南区是这条河以及河上的两个岛和七座桥的图1.7 1.7 七桥问题图草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点一次步行1,经过七座桥,且每次只经历过一次2,回到起点3,该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

)用的不是除法而是减最初的欧几里德算法2.在欧几里德提出的欧几里德算法中(即法。

请用伪代码描述这个版本的欧几里德算法1.r=m-nr=0 循环直到2.m=n 2.1n=r 2.2r=m-n 2.3m输出3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代3++描述。

C码和采用分治法// //对数组先进行快速排序在依次比较相邻的差//精品文档.精品文档#include <iostream>using namespace std;int partions(int b[],int low,int high){int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';精品文档.精品文档cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

算法分析与设计(线下作业二)

算法分析与设计(线下作业二)

算法分析与设计(线下作业⼆)《算法分析与设计》学习中⼼:专业:学号:姓名:作业练习⼆⼀、名词解释1、MST性质2、⼦问题的重叠性质递归算法求解问题时,每次产⽣的⼦问题并不总是新问题,有些⼦问题被反复计算多次,这种性质称为⼦问题的重叠性质。

⼆、简答题1、简述动态规划算法求解的基本要素。

答:动态规划算法求解的基本要素包括:1)最优⼦结构是问题能⽤动态规划算法求解的前提;2)动态规划算法,对每⼀个⼦问题只解⼀次,⽽后将其解保存在⼀个表格中,当再次需要解此⼦问题时,只是简单地⽤常数时间查看⼀下结果,即重叠⼦问题。

2、备忘录⽅法和动态规划算法相⽐有何异同简述之。

答:备忘录⽅法是动态规划算法的变形。

与动态规划算法⼀样,备忘录⽅法⽤表格保存已解决的⼦问题的答案,在下次需要解此问题时,只要简单地查看该⼦问题的解答,⽽不必重新计算。

备忘录⽅法与动态规划算法不同的是,备忘录⽅法的递归⽅式是⾃顶向下的,⽽动态规划算法则是⾃底向上递归的。

因此,备忘录⽅法的控制结构与直接递归⽅法的控制结构相同,区别在于备忘录⽅法为每个解过的⼦问题建⽴了备忘录以备需要时查看,避免了相同的⼦问题的重复求解,⽽直接递归⽅法没有此功能。

3、贪⼼算法求解的问题主要具有哪些性质简述之。

答:贪⼼算法求解的问题⼀般具有⼆个重要的性质:⼀是贪⼼选择性质,这是贪⼼算法可⾏的第⼀个基本要素;另⼀个是最优⼦结构性质,问题的最优⼦结构性质是该问题可⽤贪⼼算法求解的关键特征。

三、算法编写及算法应⽤分析题1、设计求解如下最⼤⼦段和问题的动态规划算法。

只需给出其递推计算公式即可。

最⼤⼦段和问题:给定由n 个整数(可能为负整数)组成的序列a1a2 … an,求该序列形如Σi≤k≤j ak的⼦段和的最⼤值。

当所有整数均为负整数时定义其最⼤⼦段和为0。

依次定义,所求的最优值为max{0, max1≤i≤j≤n Σi≤k≤j ak }。

2、关于多段图问题。

设G =(V ,E)是⼀个赋权有向图,其顶点集V 被划分成k>2个不相交的⼦集V i :1i k ≤≤,其中,V 1和V k 分别只有⼀个顶点s (称为源)和⼀个顶点t (称为汇),图中所有的边(u,v ),i u V ∈,1i v V +∈。

算法设计与分析习题答案

算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。

以下是一些典型的算法设计与分析习题及其答案。

习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。

答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。

这个过程会不断重复,直到找到目标值或搜索范围为空。

```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。

答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。

```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。

算法分析与设计作业参考答案

算法分析与设计作业参考答案

算法分析与设计作业参考答案《算法分析与设计》作业参考答案作业⼀⼀、名词解释:1.递归算法:直接或间接地调⽤⾃⾝的算法称为递归算法。

2.程序:程序是算法⽤某种程序设计语⾔的具体实现。

⼆、简答题:1.算法需要满⾜哪些性质?简述之。

答:算法是若⼲指令的有穷序列,满⾜性质:(1)输⼊:有零个或多个外部量作为算法的输⼊。

(2)输出:算法产⽣⾄少⼀个量作为输出。

(3)确定性:组成算法的每条指令清晰、⽆歧义。

(4)有限性:算法中每条指令的执⾏次数有限,执⾏每条指令的时间也有限。

2.简要分析分治法能解决的问题具有的特征。

答:分析分治法能解决的问题主要具有如下特征:(1)该问题的规模缩⼩到⼀定的程度就可以容易地解决;(2)该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质;(3)利⽤该问题分解出的⼦问题的解可以合并为该问题的解;(4)该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦问题。

3.简要分析在递归算法中消除递归调⽤,将递归算法转化为⾮递归算法的⽅法。

答:将递归算法转化为⾮递归算法的⽅法主要有:(1)采⽤⼀个⽤户定义的栈来模拟系统的递归调⽤⼯作栈。

该⽅法通⽤性强,但本质上还是递归,只不过⼈⼯做了本来由编译器做的事情,优化效果不明显。

(2)⽤递推来实现递归函数。

(3)通过Cooper 变换、反演变换能将⼀些递归转化为尾递归,从⽽迭代求出结果。

后两种⽅法在时空复杂度上均有较⼤改善,但其适⽤范围有限。

三、算法编写及算法应⽤分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 dofor j ←1 to n-i do if a[j]交换a[j]、a[j+1];分析该算法的时间复杂性。

答:排序算法的基本运算步为元素⽐较,冒泡排序算法的时间复杂性就是求⽐较次数与n 的关系。

(1)设⽐较⼀次花时间1;(2)内循环次数为:n-i 次,(i=1,…n ),花时间为:∑-=-=in j i n 1)(1(3)外循环次数为:n-1,花时间为:2.设计⼀个分治算法计算⼀棵⼆叉树的⾼度。

算法分析与设计作业及参考答案样本

算法分析与设计作业及参考答案样本

《算法分析与设计》作业( 一)本课程作业由两部分组成。

第一部分为”客观题部分”, 由15个选择题组成, 每题1分, 共15分。

第二部分为”主观题部分”,由简答题和论述题组成, 共15分。

作业总分30分, 将作为平时成绩记入课程总成绩。

客观题部分:一、选择题( 每题1分, 共15题)1、递归算法: ( C )A、直接调用自身B、间接调用自身C、直接或间接调用自身 D、不调用自身2、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的字问题, 这些子问题: ( D )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同3、备忘录方法的递归方式是:( C )A、自顶向下B、自底向上C、和动态规划算法相同D、非递归的4、回溯法的求解目标是找出解空间中满足约束条件的:( A )A、所有解B、一些解C、极大解D、极小解5、贪心算法和动态规划算法共有特点是: ( A )A、最优子结构B、重叠子问题C、贪心选择D、形函数6、哈夫曼编码是: ( B)A、定长编码B、变长编码C、随机编码D、定长或变长编码7、多机调度的贪心策略是: ( A)A、最长处理时间作业优先B、最短处理时间作业优先C、随机调度D、最优调度8、程序能够不满足如下性质: ( D )A、零个或多个外部输入B、至少一个输出C、指令的确定性D、指令的有限性9、用分治法设计出的程序一般是: ( A )A、递归算法B、动态规划算法C、贪心算法D、回溯法10、采用动态规划算法分解得到的子问题:( C )A、相互独立B、与原问题相同C、相互依赖D、相互独立且与原问题相同11、回溯法搜索解空间的方法是: ( A )A、深度优先B、广度优先C、最小耗费优先D、随机搜索12、拉斯维加斯算法的一个显著特征是它所做的随机选性决策有可能导致算法: ( C )A、所需时间变化B、一定找到解C、找不到所需的解D、性能变差13、贪心算法能得到: ( C )A、全局最优解B、 0-1背包问题的解C、背包问题的解 D、无解14、能求解单源最短路径问题的算法是: ( A )A、分支限界法B、动态规划C、线形规划D、蒙特卡罗算法15、快速排序算法和线性时间选择算法的随机化版本是:( A )A、舍伍德算法B、蒙特卡罗算法C、拉斯维加斯算法D、数值随机化算法主观题部分:二、写出下列程序的答案( 每题2.5分, 共2题)1、请写出批处理作业调度的回溯算法。

算法设计与分析作业

算法设计与分析作业

算法设计与分析作业姓名:学号:专业:习题一1-1函数的渐进表达式3n2+10n=O(n2);n2/10+2n=O(2n);21+1/n=O(1);logn3=O(logn);10log3n=O(n)1-2O(1)和O(2)的区别分析与解答:根据符号O的定义可知O(1)=O(2).用O(1)和O(2)表示同一个函数时,差别仅在于其中的常数因子。

1-3按渐进阶排列表达式分析与解答:按渐进阶从低到高,函数排列顺序如下:O(2)<O(logn)<O(n2/3)<O(20n)<O(4n2)<O(3n)<O(n!)习题二算法分析题2-2 7个二分搜索算法分析与解答:(1)与主教材中的算法BinarySearch相比,数组段左、右游标left和right的调整不正确,导致陷入死循环。

(2)数组段左、右游标left和right的调整不正确,导致当x=a[n-1]时返回错误。

(3)数组段左、右游标left和right的调整不正确,导致当x=a[n-1]时返回错误。

(4)数组段左、右游标left和right的调整不正确,导致陷入死循环。

(5)算法正确,且当数组中有重复元素时,返回满足条件的最右元素。

(6)数组段左、右游标left和right的调整不正确,导致当x=a[n-1]时返回错误。

(7)数组段左、右游标left和right的调整不正确,导致当x=a[0]时陷入死循环。

2-26修改快速排序算法,使它在最坏情况下的计算时间为O(nlogn).分析与解答:从一个无序的序列中随机取出一个值q做为支点,然后把大于q的放到一边,小于q的放到q的另一边,然后再以q为分界点,分别对q的两边进行排序(快排时直接再对q两边重新取支点,整理,再取支点,...直到支点两旁都有序。

也就是支点两旁只有一个数时)#include <stdio.h>#include <stdlib.h>int Qsort(int p[],int beg,int end){if(beg+1>=end)return 0;//退出递归int low,hight,q;low=beg;hight=end;q=p[low];//q为支点,其实q可以为随机数。

算法设计与分析课后习题

算法设计与分析课后习题

1、实验内容递归求n的二次方各项的系数。

2、程序设计代码如下:#include"stdio.h"void coeff(int a[],int n)if(n==1)a[1]=1;a[2]=1;elsecoeff(a,n-1);a[n+1]=1;for(int i=n;i>=2;i=i-1)a[i]=a[i]+a[i-1];a[1]=1;void main()int a[100],i,n;printf("输入n的值:");scanf("%d",&n);coeff(a,n);for(i=1;i<=n+1;i++)printf(" %d ",a[i]);printf("\n");1、实验内容写出计算ackerman函数ack(m,n)的递归计算函数。

2、程序设计代码如下:#include "stdio.h"int ack(int m,int n)if(m==0)return n+1;else if(n==0)return ack(m-1,1);elsereturn ack(m-1,ack(m,m-1));void main()int m,n,z;printf("input m and n:");scanf("%d %d",&m,&n);if(m<0 && n<0)printf("error input!");elsez=ack(m,n);printf("%d\n",z);第四章例15 求数列的最大子段和给定n个元素的整数列(可能为负整数)a1,a2,…..,an。

求形如:ai,ai+1,……aj i,j=1,…..,n,i<=j的子段,使其和为最大。

中科大算法设计与分析分布式算法部分作业部分答案

中科大算法设计与分析分布式算法部分作业部分答案

7. 证明异步环系统中不存在匿名的Leader选举 证明异步环系统中不存在匿名的Leader选举 算法。 算法。 解: 每个处理器的初始状态相同,状态机相同,接收的消 息序列也相同(只有接收消息的时间可能不同),故 最终处理器的状态一致。由于处理一条消息的至多需 要1时间单位,若某时刻某个处理器宣布自己是Leader 时间单位,若某时刻某个处理器宣布自己是Leader (接收到m条消息),则在有限时间内(m (接收到m条消息),则在有限时间内(m时间单位) 其他处理器也会宣布自己是Leader。 其他处理器也会宣布自己是Leader。 所以。。。 Note:每个处理器陆续宣布自己是Leader! Note:每个处理器陆续宣布自己是Leader!
解:考虑运行在环上的分布式算法的1 time时间复杂性和时 解:考虑运行在环上的分布式算法的1-time时间复杂性和时 间复杂性。 <1> 1-time时间复杂性: 1-time时间复杂性: 满足条件O2:发送和接收一个msg之间的时间恰好是一个时 满足条件O2:发送和接收一个msg之间的时间恰好是一个时 间单位,每个阶段节点转发消息都是同步进行,从而1 间单位,每个阶段节点转发消息都是同步进行,从而1-time 时间复杂度仅与环直径相关,为O(D)。 时间复杂度仅与环直径相关,为O(D)。 <2> 时间复杂度: 满足条件T2:一个msg的发送和接收之间的时间至多为一个 满足条件T2:一个msg的发送和接收之间的时间至多为一个 时间单位,即为O(1)。节点转发消息并非同步进行,消息转 时间单位,即为O(1)。节点转发消息并非同步进行,消息转 发轨迹可能呈链状结构,时间复杂性与环节点个数相关,为 O(n)。 O(n)。
5. 修改Alg2.3,使其时间复杂度为O(n)。 修改Alg2.3,使其时间复杂度为O(n)。 解:两种考虑方式: <1> 在每个处理器中维护一本地变量,同时添加一 消息类型,在处理器Pi转发M时,发送消息N 消息类型,在处理器Pi转发M时,发送消息N通知 其余的未访问过的邻居,这样其邻居在转发M 其余的未访问过的邻居,这样其邻居在转发M时 便不会向Pi转发。 便不会向Pi转发。 <2> 在消息M和<parent>中维护一发送数组,记录 在消息M <parent>中维护一发送数组,记录 已经转发过M 已经转发过M的处理器名称。 两种方式都是避免向已转发过M 两种方式都是避免向已转发过M的处理器发送消息 M,这样DFS树外的边不再耗时,时间复杂度也降 ,这样DFS树外的边不再耗时,时间复杂度也降 为O(n)。 O(n)。

算法分析与设计作业及参考答案

算法分析与设计作业及参考答案

算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。

2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。

3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。

参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。

在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。

在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。

平均情况下,时间复杂度也为 O(n^2)。

空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。

应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。

例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。

2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。

算法设计与分析复习题目及答案_2

算法设计与分析复习题目及答案_2

一。

选择题1、二分搜索算法是利用( A )实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。

A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。

A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( B )。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。

A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。

A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。

A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。

A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。

A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。

A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。

( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。

A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。

A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。

A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。

解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。

算法分析与设计(答案)

算法分析与设计(答案)

算法分析与设计(答案)一:二分查找的递归实现算法import java.util.Arrays;import java.util.Scanner;public class BinSearch {public static int binsearch(int[]a,int start,int stop,int b){if(start>stop)return -1;int i=(start+stop)/2;if(a[i]==b)return i;if(a[i]>b)return binsearch(a,start,i-1,b);return binsearch(a,i+1,stop,b);}/***@param args*/public static void main(String[] args) {// TODO Auto-generated method stubScanner sc=new Scanner(System.in);int n=sc.nextInt();int a[]=new int [n];System.out.println("输入数组元素");for(int i=0;i<n;i++){a[i]=sc.nextInt();}Arrays.sort(a);System.out.println("排序后的数组为");for(int i=0;i<a.length;i++){System.out.print(a[i]+" ");}System.out.println();System.out.println("输入要查找的数");int b=sc.nextInt();int x=binsearch(a,0,n-1,b);if(x==-1){System.out.println(b+"不在数组中,请输入另一个数");b=sc.nextInt();x=binsearch(a,0,n-1,b);}System.out.println(b+"在数组中的第"+(x+1)+"个位置");}}二:Ackerman函数的递归实现算法import java.util.Scanner;public class Test2 {private static int akm(int n, int m) {// 递归设计int r, g;if (n == 1 && m == 0)r = 2;else if (n == 0 && m >= 0)r = 1;else if (m == 1)r = n * 2;else if (m == 2)r = (int) Math.pow(2, n);else if (m == 0 && n >= 2)r = n + 2;else {g = akm(n-1, m);r = akm(g, m-1);// 两次连着递归}return r;}public static void main(String[] args) {try {System.out.println("请输入1个大于等于0的整数:");Scanner sc = new Scanner(System.in);int n = sc.nextInt();System.out.println("请再输入1个大于等于0的整数:");int m = sc.nextInt();System.out.println(akm(n, m));} catch (Exception e) {}}}三:全排列的递归实现算法import java.util.Scanner;public class AllSort{//全排列public static void main(String[] args) {Scanner sc=new Scanner(System.in);System.out.println("输入需要全排列的元素个数");int n=(char) sc.nextInt();int buf[]=new int [n];System.out.println("请依次输入每一个元素");for(int i=0;i<n;i++){buf[i]=sc.nextInt();}perm(buf,0,buf.length-1);}public static void perm(int[] buf,int start,int end){ if(start==end){//当只要求对数组中一个元素进行全排列时,只要就按该数组输出即可(特殊情况)for(int i=0;i<=end;i++){System.out.print(buf[i]);}System.out.println();}else{//多个字母全排列(普遍情况)for(int i=start;i<=end;i++){//(让指针start分别指向每一个数)int temp=buf[start];//交换数组第一个元素与后续的元素buf[start]=buf[i];buf[i]=temp;perm(buf,start+1,end);//后续元素递归全排列temp=buf[start];//将交换后的数组还原buf[start]=buf[i];buf[i]=temp;}}}}四:快速排序的递归实现算法import java.util.Scanner;public class QuickSort {public static int []a;public static void quicksort(int p,int r){if(p<r){int q=partition(p,r);quicksort(p,q-1);quicksort(q+1,r);}}public static int partition(int p,int r){int i=p,j=r+1;int x=a[p];while(true){while(a[++i]<x&&i<r);while(a[--j]>x);if(i>=j)break;int temp=a[i];a[i]=a[j];a[j]=temp;}a[p]=a[j];a[j]=x;return j;}/***@param args*/public static void main(String[] args) {// TODO Auto-generated method stubScanner sc=new Scanner(System.in);System.out.println("输入要排序的数组长度");int n=sc.nextInt();a=new int[n];System.out.println("输入"+n+"个元素");for(int i=0;i<n;i++)a[i]=sc.nextInt();quicksort(0,n-1);System.out.println("排序后的数组为");for(int j=0;j<a.length;j++)System.out.print(a[j]+" ");}}五:整数划分的递归实现算法import java.io.IOException;import java.util.*;public class ZhengshuHuafen {public static int a=0 ;public static int Devide(int input, int base, int []pData, int index){if(input<1||base<1)return 0;if(input==1||base==1){if(input==1){pData[index] = input;print(pData, index+1);}else{for(int k=0; k<input; k++){pData[index++] = base;}print(pData,index);}return 1;}if(input==base){pData[index] = base;print(pData,index+1);int temp = Devide(input,base-1,pData,index);return 1 + temp;}if(input<base){int temp = Devide(input,input,pData,index);return temp;}else{pData[index] = base;int temp1 = Devide(input-base,base,pData,index+1); int temp2 = Devide(input,base-1,pData,index);return temp1 + temp2;}}public static void print(int []pData ,int index){String s = new String();for(int i = 0 ; i < index - 1 ; i++){System.out.print(pData[i]+"+");s += String.valueOf(pData[i]);s += "+"; }System.out.println(pData[index-1]);s += String.valueOf(pData[index-1]) +"\r\n";}public static void main(String[] args) {int n ;Scanner in = new Scanner(System.in) ;System.out.print("请输入一个整数") ;n = in.nextInt() ;System.out.println("你刚才输入的数为"+n) ;int []pdata = new int[n] ;a=Devide(n, n, pdata, 0) ;System.out.println(""+a) ;}}六:合并排序的递归实现算法import java.util.Scanner;public class mergeSort {public static int []b;public static void mergeSort1(int []a,int left,int right) {if(left<right){int i=(left+right)/2;mergeSort1(a,left,i);mergeSort1(a,i+1,right);merge(a,b,left,i,right);copy(a,b,left,right);}}public static void merge(int []c,int []d,int l,int m,int r) {int i=l;int j=m+1;int k=l;while((i<=m)&&(j<=r))if(c[i]<=c[j])d[k++]=c[i++];else d[k++]=c[j++];if(i>m)for(int q=j;q<=r;q++)d[k++]=c[q];elsefor(int q=i;q<=m;q++)d[k++]=c[q];}public static void copy (int[]c,int[]b,int left,int right) {for(int i=left;i<=right;i++){c[i]=b[i];}}public static void main(String[]args){Scanner sc=new Scanner(System.in);int n=sc.nextInt();b=new int[n];int []a;a=new int [n];for(int i=0;i<n;i++){a[i]=sc.nextInt();}mergeSort.mergeSort1(a,0,n-1);for(int j=0;j<=n-1;j++)System.out.print(a[j]+" ");}}。

算法分析与设计(习题答案)

算法分析与设计(习题答案)

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。

田翠华著《算法设计与分析》课后习题参考答案

田翠华著《算法设计与分析》课后习题参考答案

参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。

2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。

这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。

(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。

(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。

(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易2 算法设计与分析纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。

《算法设计与分析》试卷及答案

《算法设计与分析》试卷及答案

《算法设计与分析》试卷及答案算法设计与分析考试复习试卷《算法设计与分析》试卷1一、多项选择题(每空2分,共20分):1、以下关于算法设计问题的叙述中正确的是__________。

A、计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B、利用计算机无法解决非数值问题C、计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中,主要进行的是判断、比较,而不是算术运算D、算法设计与分析主要研究对象是非数值问题,当然也包含某些数值问题2、算法的特征包括_________。

A、有穷性B、确定性C、输入和输出D、能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制,应与其它环节交织在一起其中正确的顺序是__________。

A、①②③④⑤⑥B、①③⑤②④⑥C、②④①③⑤⑥D、⑥①③⑤②④4、以下说法正确的是__________。

A、数学归纳法可以证明算法终止性B、良序原则是证明算法的正确性的有力工具C、x = 小于或等于x的最大整数(x的低限)D、x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C 上所用的次数,则递归方程为__________,其初始条件为__________,将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数,则有递归方程为__________,其中F1=F2=__________。

A、Fn=Fn-1+Fn-2B、h(n)= 2h(n-1)+1C、1D、h(1)= 1E、h(n)=2n-1F、06、在一个有向连通图中(如下图所示),找出点A到点B的一条最短路为____ ______。

A、最短路:1→3→5→8→10,耗费:20B、最短路:1→4→6→9→10,耗费:16。

算法分析与设计作业

算法分析与设计作业

算法分析与设计作业
一、冒泡排序
1.1冒泡排序算法
冒泡排序(Bubble Sort)也称为沉底排序,算法的特点是从数组头
部到尾部进行多次遍历,当遍历到一些数时,如果比它前面的数大就交换。

比较 n 个数大小,可以进行 n-1 次交换。

冒泡排序的时间复杂度为
O(n^2),空间复杂度为O(1)。

算法步骤如下:
(1)比较相邻的元素,如果第一个比第二个大,就交换他们两个的
位置;
(2)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后
一对,这样在最后循环结束时,最大的数会移动到最后;
(3)重复第一步,直到所有元素排序完成。

1.2冒泡排序算法的优化
冒泡排序的时间复杂度为O(n^2),为提高算法的速度,可以对冒泡
排序算法进行优化。

算法在每一轮排序后会判断是否有可以交换的数据,如果没有就表明
已经全部排序完成,此时可以终止排序。

相比传统的算法,优化后的算法可以大大减少不必要的循环,提高排
序的速度。

二、快速排序
2.1快速排序算法
快速排序(Quick Sort)是一种分治策略,将大问题分解为小问题,同时在排序过程中不断的拆分问题,最终完成排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn)。

算法步骤如下:。

算法设计与分析习题解答(第2版)

算法设计与分析习题解答(第2版)

第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。

算法设计与分析课后习题

算法设计与分析课后习题

算法设计与分析课后习题(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章1. 算法分析题算法分析题1-1 求下列函数的渐进表达式(1). 3n^2 + 10n < 3n^2 + 10n^2 = 13n^2 = O(n^2)(2). n^2 / 10 + 2^n当n>5是,n^2 < 2 ^n所以,当n >= 1时,n^2/10 < 2 ^n故: n^2/10 + 2^n < 2 ^n + 2^n = 2*2^n = O(2^n)(3). 21 + 1/n < 21 + 1 = 22 = O(1)(4). log(n^3)=3log(n)=O(log(n))(5). 10log(3^n) = (10log3)n = O(n)算法分析题1-6(1)因为:f(n)=log(n^2) = 2log(n); g(n) = log(n) + 5所以:f(n)=Θ(log(n)+5) =Θ(g(n))(2)因为:log(n) < √n ; f(n) = 2log(n); g(n)= √n所以:f(n) = O(g(n))(3)因为:log(n) < n; f(n) = n; g(n) = log(n^2) = 2log(n)所以;f(n) = Ω(g(n))(4)因为:f(n) = nlogn +n; g(n) = logn所以:f(n) =Ω(g(n))(5)因为: f(n) = 10; g(n) = log(10)所以:f(n) =Θ(g(n))(6)因为: f(n)=log^2(n); g(n) = log(n)所以: f(n) ==Ω(g(n))(7)因为: f(n) = 2^n < 100*2^n; g(n)=100n^2; 2^n > n ^2所以: f(n) = Ω(g(n))(8)因为:f(n) = 2^n; g(n) = 3 ^n; 2 ^n < 3 ^n所以: f(n) = O(g(n))习题1-9 证明:如果一个算法在平均情况下的计算时间复杂性为Θ(f(n)),该算法在最坏情况下所需的计算时间为Ω(f(n)).分析与解答:因此,Tmax(N) = Ω(Tavg(N)) = Ω(Θ(f(n)))=Ω(f(n)).第二章算法分析题2-3 设a[0:n-1]是已经排好序的数组。

算法设计与分析2

算法设计与分析2

由复此杂可度T得分(:n析) TC(CCn7112)T11=1(OnCC(/n12O2223))A(1)1O1没AAB12(11有n121改)AA122进2nnBBA12221112
B12
B22
B21
C12 A11 B12 A12 B22
C21 A21 B11 A22 B21
C22 A21 B12 A22 B22
M 4 A22 (B21 B11 )
M 5 ( A11 A22 )( B11 B22 )
M 6 ( A12 A22 )( B21 B22 )
M 7 ( A11 A21 )( B11 B12 )
A12 B11 B12
A22 B21
B22
C11 M 5 M 4 M 2 M 6 C12 M1 M 2 C21 M 3 M 4 C22 M 5 M1 M 3 M 7
分治法解决问题的步骤
➢ 利用分治法求解问题的算法通常包含如下几个步骤:
✓ ① 分解(Divide) 将原问题分解为若干个相互独立、规模较小且与原问题形式相同 的一系列子问题。
原问题应该分为多少个子问题才较适宜?各个子问题的规模应该怎样 才为适当? 这些问题很难存在一个统一的答案。 实践证明,在用分治法设计算法时,最好使各子问题的规模大致相同。
若依此定义来计算A和B的乘积矩阵C,则每计算C的一 个元素C[i][j],需要做n次乘法和n-1次加法。因此, 算出矩阵C的个元素所需的计算时间为O(n3)
Strassen矩阵乘法
➢ 算法实现:
✓ 传统方法:算法的时间复杂度 T N O N3
✓ 分治法:
将矩阵A,B和C中每一矩阵都分块成4个大小相等的子矩阵。 由此可将方程C=AB重写为:
a11 a12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《算法分析与设计》
学习中心:
专业:
学号:
姓名:
作业练习二
一、名词解释
1、MST性质
2、子问题的重叠性质
递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次,这种性质称为子问题的重叠性质。

二、简答题
1、简述动态规划算法求解的基本要素。

答:动态规划算法求解的基本要素包括:
1)最优子结构是问题能用动态规划算法求解的前提;
2)动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果,即重叠子问题。

2、备忘录方法和动态规划算法相比有何异同简述之。

答:备忘录方法是动态规划算法的变形。

与动态规划算法一样,备忘录方法用表格保存已解决的子问题的答案,在下次需要解此问题时,只要简单地查看该子问题的解答,而不必重新计算。

备忘录方法与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。

因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同的子问题的重复求解,而直接递归方法没有此功能。

3、贪心算法求解的问题主要具有哪些性质简述之。

答:贪心算法求解的问题一般具有二个重要的性质:
一是贪心选择性质,这是贪心算法可行的第一个基本要素;
另一个是最优子结构性质,问题的最优子结构性质是该问题可用贪心算法求解的关键特征。

三、算法编写及算法应用分析题
1、设计求解如下最大子段和问题的动态规划算法。

只需给出其递推计算公式即可。

最大子段和问题:给定由n 个整数(可能为负整数)组成的序列a1a2 … an,求该序列形如Σi≤k≤j ak的子段和的最大值。

当所有整数均为负整数时定义其最大子段和为0。

依次定义,所求的最优值为max{0, max1≤i≤j≤n Σi≤k≤j ak }。

2、关于多段图问题。

设G =(V ,E)是一个赋权有向图,其顶点集V 被划分成k>2个不相交的子集V i :1i k ≤≤,其中,V 1和V k 分别只有一个顶点s (称为源)和一个顶点t (称为汇),图中所有的边(u,v ),i u V ∈,1i v V +∈。

求由s 到t 的最小成本路径。

① 给出使用动态规划算法求解多段图问题的基本思想。

② 使用上述方法求解如下多段图问题。

s t
V1V2V3V4V5
3、最优二元归并问题:已知将两个分别包含a 个和b 个记录的已分类文件归并在一起得到一个分类文件需作a+b 次记录移动。

现有n 个已分类文件F1,F1,⋯,Fn,它们的记录个数分别为l1, l2,⋯, ln。

现在考虑使用二元归并模式将这n 个文件归并成一个分类文件,要求记录移动次数最少。

设计一个贪心算法来求解一种最优的二元归并(即记录移动次数最少的二元归并)。

4、带限期的作业调度问题:n 个作业需要在一台机器上处理,每个作业可在单位时间内完
成。

每个作业i 都有一个截止期限di>0(di 为整数),当且仅当作业i 在它的截止期限之前被完成,获得pi>0 的效益。

一种可行的调度方案为n 个作业的一个子集J,其中J 中的每个作业都能在各自的截止期限内完成。

该可行调度方案的效益是J 中作业的效益之和。

试设计贪心算法求效益最大的可行调度方案(即最优调度方案)。

相关文档
最新文档