受扭构件承载力计算
07+钢筋混凝土受扭构件承载力计算
7.4.4 在弯、剪、扭共同作用下的承载力计算 《混凝土结构设计规范》规定,构件在弯矩、剪力和扭 矩共同作用下的承载力可按以下方法进行计算: ① 按受弯构件计算在弯矩作用下所需的纵向钢筋的截 面面积。 ② 按剪扭构件计算承受剪力所需的箍筋截面面积,以 及计算承受扭矩所需的纵向钢筋截面面积和箍筋截面面积。 ③ 叠加上述计算所得的纵向钢筋截面面积和箍筋截面 面积,即得最后所需的纵向钢筋截面面积和箍筋截面面积。 当剪力V≤0.35ftbh0或V≤0.875ftbh0/(λ+1)时, 可忽略剪力 的影响,仅按受弯构件的正截面受弯承载力和纯扭构件的受 扭承载力分别进行计算;当扭矩T≤0.175ftWt时, 可忽略扭 矩的影响, 仅按受弯构件的正截面受弯承载力和斜截面受剪 承载力分别进行计算。
混凝土强度影响系数, 当混凝土强度不超过C50时取βc=1, 当混 凝土强度等级为C80时取βc=0.8, 其间按线性内插法取用。
7.4 弯剪扭构件的承载力计算 纯扭构件在工程中几乎是没有的。工程中构件往 往要同时承受轴力、弯矩、剪力和扭矩。对于钢筋 混凝土弯扭构件,轴力对配筋的影响很小,可以忽 略不计。为简化计算,设计中可分别计算在弯扭和 剪扭共同作用下的配筋,然后再进行叠加。
等内力共同作用下的复杂受力状态。
吊车的横向水平制动力及吊车竖向轮压偏心都可使吊 车梁受扭,屋面板偏心也可导致屋架受扭。
偏 心 轮 压 制动力 制动力
轮 压
螺旋楼梯中扭矩也较大
偏心轮压和吊车横向水平制动力都会产生扭矩 T 在静定结构中,扭矩是由荷载产生的,可根据平 衡条件求得,称为平衡扭转。
边梁
在剪扭共同作用下,为避免主压应力方向混凝土的抗 力被重复利用, 用系数βt来考虑在剪扭双重作用下混凝土 的承载力降低; 剪力单独作用时混
《工程结构》第六章:钢筋混凝土受扭构件承载力计算结构师、建造师考试
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
塑性状态下能抵抗的扭矩为:
TU ftWt
…6-1
式中: Wt ––– 截面抗扭塑性抵抗矩;对于矩形截面
Wt
b2 6
3h
b
…6-2
h为截面长边边长;b为截面短边边长。
2. 素混凝土纯扭构件 T 0.7 ftWt
…6-3
主页 目录
上一章 下一章 帮助
混凝土结构
z fy Astl s
f A u yv st1 cor
…6-5
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
式中: Astl ––– 全部抗扭纵筋截面面积; ucor ––– 截面核心部分周长, ucor = 2(bcor + hcor)。
主页
为了保证抗扭纵筋和抗扭箍筋都能充分被利用,要求: 目录
主页 目录
上一章 下一章 帮助
混凝土结构
第6章
规范将其简化为三段折线,简化后的结果为 : (1)当Tc/Tco≤ 0.5时,即T≤ 0.175ftWt时,可忽略扭
矩影响,按纯剪构件设计; (2)当Vc/Vco ≤ 0.5时,即V≤ 0.35ftbh0时,可忽略剪
力影响,按纯扭构件设计; (3)当T>0.175ftWt和V> 0.35ftbh0时,要考虑剪扭的相
混凝土结构 ➢ 扭矩分配:
腹板
受压翼缘
第6章
Tw
Wtw Wt
T
T' f
W' tf
Wt
T
…6-12 …6-13
受拉翼缘
Tf
Wtf Wt
T
…6-14
受扭构件承载力计算
(1)腹板
(6-8)
(2)受压翼缘
(6-9)
(3)受拉翼缘
(6-10)
上一页 下一页 返回
第一节纯扭构件承载力计算
四、箱形截面纯扭构件承载力计算
箱形截面纯扭构件承载力按下式计算:
(6-11) (6-12)
(6-13)
上一页 返回
第二节弯剪扭构件承载力计算
一、弯剪扭构件截面限制条件 (1)在弯矩、剪力和扭矩共同作用下,对hw/b毛6的矩形、T形、I形截面和 hw/tw ≤ 6的箱形截面构件(图6-2 ),其截面应符合下列条件: (6-14) (6-15)
试验表明,对于钢筋混凝土矩形截面受扭构件,其破坏形态与配置 钢筋的数量多少有关,可以分为三类: (1)少筋破坏。 (2)适筋破坏。 (3)超筋破坏。
上一页 下一页 返回
第一节纯扭构件承载力计算
二、矩形截面纯扭构件承载力计算
矩形截面纯扭构件承载力按下式计算:
(6-2) (6-3)
三、T形和I形截面纯扭构件承载力计算
(3)在轴向压力、弯矩、剪力和扭矩共同作用下的钢筋混凝土矩形截面框架 柱,其纵向钢筋截面面积应分别按偏心受压构件的正截面受压承载力和 剪扭构件的受扭承载力计算确定,并应配置在相应的位置;箍筋截面面积 应分别按剪扭构件的受剪承载力和受扭承载力计算确定,并应配置在相 应的位置。
上一页 下一页 返回
第二节弯剪扭构件承载力计算
上一页 返回
图6-1工程中常见的受扭构件
返回
图6-2受扭构件截面
返回
图6-2受扭构件截面
返回
表6-2受扭构件纵筋的构浩要求
返回
(6-4) (6-5) (6-6)
上一页 下一页 返回
第一节纯扭构件承载力计算
第8章-受扭构件承载力的计算-自学笔记汇总
第8章受扭构件承载力的计算§8.1 概述实际工程中哪些构件属于受扭构件?工程结构中,结构或构件处于受扭的情况很多,但处于纯扭矩作用的情况很少,大多数都是处于弯矩、剪力、扭矩共同作用下的复合受扭情况,比如吊车梁、框架边梁、雨棚梁等,如图8-1所示。
图8-1 受扭构件实例受扭的两种情况:平衡扭转和协调扭转。
静定的受扭构件,由荷载产生的扭矩是由构件的静力平衡条件确定的,与受扭构件的扭转刚度无关,此时称为平衡扭转。
如图8-1(a )所示的吊车梁,在竖向轮压和吊车横向刹车力的共同作用下,对吊车梁截面产生扭矩T 的情形即为平衡扭转问题。
对于超静定结构体系,构件上产生的扭矩除了静力平衡条件以外,还必须由相邻构件的变形协调条件才能确定,此时称为协调扭转。
如图8-1(b )所示的框架楼面梁体系,框架的边梁和楼面梁的刚度比对边梁的扭转影响显著,当边梁刚度较大时,对楼面梁的约束就大,则楼面梁的支座弯矩就大,此支座弯矩作用在边梁上即是其承受的扭矩,该扭矩由楼面梁支承点处的转角与该处框架边梁扭转角的变形协调条件所决定,所以这种受扭情况为协调扭转。
§8.2 纯扭构件的试验研究8.2.1 破坏形态钢筋混凝土纯扭构件的最终破坏形态为:三面螺旋形受拉裂缝和一面(截面长边)的斜压破坏面,如图8-3所示。
试验研究表明,钢筋混凝土构件截面的极限扭矩比相应的素混凝土构件增大很多,但开裂扭矩增大不多。
图8-2 未开裂混凝土构件受扭图8-3 开裂混凝土构件的受力状态 8.2.2 纵筋和箍筋配置对纯扭构件破坏性态的影响受扭构件的四种破坏形态受扭构件的破坏形态与受扭纵筋和受扭箍筋配筋率的大小有关,大致可分为适筋破坏、部分超筋破坏、完全超筋破坏和少筋破坏四类。
对于正常配筋条件下的钢筋混凝土构件,在扭矩作用下,纵筋和箍筋先到达屈服强度,然后混凝土被压碎而破坏。
这种破坏与受弯构件适筋梁类似,属延性破坏。
此类受扭构件称为适筋受扭构件。
第五章-受扭构件承载力计算
第五章 受扭构件承载力计算
基础 知识
➢ 材料特性 ➢ 设计方法
构件 设计
学习内容
➢ 受弯构件 ➢ 受剪构件 ➢ 受扭构件 ➢ 偏压、偏拉构件 ➢轴拉构件 ➢轴压构件 ➢变形、裂缝 ➢预应力混凝土结构
结构设计, 后续课程
➢ 桥梁工程
弯梁桥的截面上除有弯矩M剪力V外,还存在扭矩T。由
开裂后的箱形截面受扭构件的受力可比拟成空间桁架:
纵筋为受拉弦杆, 箍筋为受拉腹杆, 斜裂缝间的混凝土为受压腹杆。
裂缝 箍筋
纵筋
T T
F4+F4=Ast4st
F1+F1=Ast1st
s F3+F3=Ast3st
F2+F2=Ast2st
箱形截面的剪应力分布,可采用薄壁管理论
T
rqds
2q
1 2
rds
纵筋的拉力
对隔离体ABCD
F1 F2 qhcorctg
相应其它三个面的隔离体
F1' F4 ' qbcorctg F4 F3 qhcorctg F3' F2 ' qbcorctg
裂缝 箍筋
纵筋
T T
F4+F4=Ast4fy
C
D
F1+F1=Ast1fy
B
F3+F3=Ast3fy
As
F2+F2=Ast2fy
纯扭构件在工程中几乎是没有的。工程中构件往往要同时 承受轴力、弯矩、剪力和扭矩。对于钢筋混凝土弯扭构件, 轴力对配筋的影响很小,可以忽略不计。为简化计算,设计 中可分别计算在弯扭和剪扭共同作用下的配筋,然后再进行 叠加。
5受扭构件承载力计算-1
= 1 f tW t 2
A st1 f yv s
A cor
1 = 0.35
2 = 1.2
避免少筋
公式的适用条件: 避免完全超筋
5.2 在弯、剪、扭共同作用下的矩形构件承载力的计算 5.2.1 剪扭构件承载力的计算
外部荷载 条件
扭弯比ψ =T/M
扭剪比χ =T/Vb 构件截面形状、尺寸、 配筋和材料强度
0
(2)剪扭构件抗扭承载力计算公式
V T 0.35 f W 1.2
0 d u t td t
fA A
sv sv 1
cor
S
v
2)抗剪扭配筋的上下限 (1)抗剪扭配筋的上限 v T 0 . 51 10 bh W (2)抗剪扭配筋的下限
0 d 0 d 0 t
3
箱形截面具有抗扭刚度大、能承担异号弯矩 且平整美观。
国内抗扭研究时间短,成果少; 美国砼学会(ACI)的实验研究表明,箱形梁的
抗扭承载力与实心矩形梁相近。
5.5 构造要求
u cor A st1 f yv s
符号规定见教材
实验表明: 当0.5 2 一般两者可以发挥作用 《规范》规定: 0.6 1.7
当 = 1~1.2, 纵筋和箍筋的用量比最佳
5.1.3 纯扭构件的承载力计算理论 以变角空间桁架模型为理论基础,确定有关基 本变量,根据大量实测数据回归分折的经验公式:
W t W tw W tf W tf
Ⅰ型截面总的受扭塑性抵抗矩为:
'
W t W tw W tf W tf
W tw
W tf
混凝土结构设计原理之受扭构件承载力计算
剪力——抗剪箍筋(按一定间距沿构件轴线方向布置) 扭矩——抗扭纵筋(沿构件截面周边均匀对称布置) 抗扭箍筋(按一定间距沿构件轴线方向布置)
由前所知: 纯扭构件受扭钢筋计算:P133公式(5.9) 受剪箍筋计算:P98公式(4.6)、(4.7) 试验结果表明: 构件的受剪承载力随扭矩的增加面减小,而构件的受扭承载力则随剪力的增大而减小,反之亦然。我们把构件抵抗某种内力的能力,受其它同时作用的内力影响的这种性质,称为构件承受各种内力的能力之间的相关性。
、按式(5.9)计算所需受扭箍筋,选用箍筋直径和间距并按 式(5.13)验算配箍率。
02
、 将所选箍筋用量带入式(5.4)计算所需受扭纵筋;
03
、 选择纵筋直径和根数,并按式(5.12)验算配筋率;
04
、 画构件截面配筋图。
05
五、纯扭构件受扭钢筋计算步骤
5.3 、弯扭构件和剪扭构件承载力计算
、矩形截面剪扭构件承载力计算
1
抗扭箍筋:按一定间距沿构件轴线方向布置。
2
抗扭纵筋:沿构件截面周边均匀对称的布置。
3
二、抗扭钢筋
纯扭构件破坏形态
凝土压碎; 纵筋或箍筋过多(部分超筋):纵筋或箍筋不能受拉
配置受扭钢筋后,可能出现四种破坏形态: 纵筋和箍筋合适(适筋):钢筋先受拉屈服,然后混
屈服,混凝土压碎;
C.纵筋和箍筋均过多(完全超筋):纵筋和箍筋均不能
侧边所需纵向钢筋为: ,据此选直径和根数;
8
规范考虑:
箍筋:按公式(5.16)-(5.18)分别计算抗剪箍筋ASV/S 和
抗扭箍筋ASt1/S,然后再叠加配筋,即按ASV/S+ASt1/S
选择箍筋直径和间距。
第6章钢筋混凝土受扭构件承载力计算-文档资料
式中β 值为与截面长边和短边h/b比值有关的系数,当比 值h/b=1~10时,β =0.208~0.313。 若将混凝土视为理想的弹塑性材料,当截面上最大 切应力值达到材料强度时,结构材料进人塑性阶段 由于 材料的塑性截面上切应力重新分布,如图5-3b。当截面 上切应力全截面达到混凝上抗拉强度时,结构达到混凝 上即将出现裂缝极限状态.根据塑性力学理论,可将截 面上切应力划分为四个部分,各部分切应力的合力,如 图5-3c。
根据极限平衡条件,结构受扭开裂扭矩值为
(6-3)
实际上,混凝上既非弹性材料 又非理想的塑性材 料。而是介于二者之间的弹塑性材料、对于低强度等 级混凝土。具有一定的塑性性质;对于高强度等级混 凝土,其脆性显著增大,截面上混凝土切应力不会象 理想塑性材料那样完全的应力重分布,而且混凝土应 力也不会全截面达到抗拉强度ft因此投式(6-2)计算的受 扭开裂扭矩值比试验值低,按式(6-3)计算的受扭开裂 扭矩值比试验值偏高。 为实用计算方便,纯扭构件受扭开裂扭矩设计时 采用理想塑性材料截面的应力分布计算模式,但结构 受扭开裂扭矩值要适当降低。试验表明,对于低强度 等级混凝上降低系数为0.8,对于高强度等级混凝上降 低系数近似为0.8。为统一开裂扭矩值的计算公式,并 满足一定的可靠度要求其计算公式为
考虑到设计应用上的方便《规范》采用一根略为偏低 的直线表达式,即与图中直线A′C′相应的表达式。在式(67)。取α1=0.35,α2=1.2。如进一步写成极限状态表达式, 则矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式为
(6-8)
式中 T——扭矩设计值; ft——混凝土的抗拉强度设计值; Wt——截面的抗扭塑性抵抗矩; fyv——箍筋的抗拉强度设计值;
Tcr=0. 7ftWt
桥梁受扭构件破坏特征及承载力计算
桥梁受扭构件破坏特征及承载力计算桥梁是连接两个地理位置的重要交通设施,它承载着车辆和行人的重量。
桥梁的承载力是指其能够支撑的最大荷载,而桥梁受扭构件是桥梁中的重要组成部分。
本文将介绍桥梁受扭构件的破坏特征和承载力计算方法。
一、桥梁受扭构件的破坏特征1.剪切破坏:扭转会产生剪应力,当剪应力大于材料的抗剪强度时,受扭构件会发生剪切破坏。
2.扭转破坏:在受扭构件上,扭转力作用会使其发生相对旋转,当达到一定角度时,受扭构件会失去承载能力,发生扭转破坏。
3.弯曲破坏:受扭构件在受到扭矩力矩作用时,由于材料的抗弯刚度有限,会发生弯曲破坏。
4.龙骨翻转:龙骨是支撑桥面板的主要构件,受到扭矩作用时,龙骨可能会翻转,导致桥面板的破坏。
1.线性弹性理论法:在这种计算方法中,假设受扭构件材料的应力-应变关系服从线性弹性的规律,利用弹性力学理论进行力学计算,得到受扭构件的最大承载力。
2.极限强度理论法:这种计算方法基于构件材料的极限强度,假设受扭构件在超过一定弯曲角度后失去承载能力,利用建筑结构力学知识和试验数据,根据构件的几何形状、材料性能和边界条件等因素,确定承载力。
无论采用何种计算方法,桥梁受扭构件的承载力计算都需要考虑以下因素:1.受扭构件的几何形状和材料性能。
2.受扭构件所受的荷载类型和大小。
3.受扭构件所处的边界条件和约束。
4.受扭构件的安全系数。
通过对以上因素的综合考虑和计算,可以得到桥梁受扭构件的承载力。
在实际设计和施工中,为了保证桥梁的安全性和稳定性,通常会采用一定的安全系数,并结合实际情况进行合理的调整。
总之,桥梁受扭构件的破坏特征和承载力计算是保证桥梁安全可靠运行的重要内容。
通过合理的设计和计算,可以确保桥梁受扭构件具备足够的承载能力,满足实际的使用需求。
钢筋混凝土受扭构件承载力设计计算
钢筋混凝土受扭构件承载力设计计算摘要:结合桥梁设计工作实践经验论述了受扭构件承载力的计算方法和计算公式,结合具体实例,提出了钢筋混凝土受扭构件设计及承载力的计算方法及适用范围,以供设计者参考借鉴。
关键词:桥梁工程桥梁构件混凝土受扭构件承载力设计内力计算桥梁工程中扭转构件其受力的基本形式之一,钢筋混凝土结构中常见的构件形式,例如现浇框架边梁或折梁等结构构件都是受扭构件。
受扭构件根据截面上存在的内力情况可分为纯扭、剪扭、弯扭、弯剪扭等多种受力情况。
在实际工程中,纯扭、剪扭、弯扭的受力情况较少,弯剪扭的受力情况则较普遍。
因此,在桥梁结构设计工作中构件的内力计算至关重要。
1 钢筋混凝土矩形截面纯扭构件的设计与计算(1)开裂扭矩的计算:纯扭构件的扭曲截面承载力计算中,首先需要计算构件的开裂扭矩。
如果扭矩大于构件的开裂扭矩,则还要按计算配置受扭纵筋和箍筋,以满足构件的承载力要求。
否则,应按构造要求配置受扭钢筋。
在《公路钢筋混凝土及应力混凝土桥涵设计规范》(JTG D62-2004)中规定,钢筋混凝土矩形截面纯扭构件的开裂扭矩可用公式计算:2 钢筋混凝土弯、剪、扭构件的配筋设计与计算在《公路钢筋混凝土及应力混凝土桥涵设计规范》(JTG D62-2004)中规定,弯、剪、扭构件的配筋计算,也采取叠加计算的截面设计简化方法。
(1)受剪扭的构件承载力计算:现行设计规范中规定,钢筋混凝土剪扭构件的承载能力,一般按受扭和受剪构件分别计算承载能力,然后再它们叠加起来。
但是,剪、扭共同作用的构件,剪力和扭矩对混凝土和箍筋的承载能力均有一定影响。
如果采取简单地叠加,对箍筋和混凝土尤其是混凝土是偏于不安全的。
构件在剪扭的共同作用下,其截面的某一受压区内承受剪切和扭转应力的双重作用,这不仅会降低构件内混凝土的抗剪和抗扭能力,而且分别小于单独受剪和受扭时相应的承载能力。
由于受扭钢筋混凝土构件的受力情况比较复杂,所以对箍筋所承担的承载能力采取简单叠加,混凝土的抗扭和抗剪承载能力考虑其相互影响,在混凝土的抗扭承载能力计算式中,应引入剪扭构件混凝土承载能力的降低系数。
第七章受扭构件承载力计算
第七章 受扭构件承载力计算7.1 概述工程中的钢筋砼受扭构件有两类:● 一类是 —— 平衡扭矩:是静定结构由于荷载的直接作用所产生的扭矩,这种构件所承受的扭矩可由静力平衡条件求得,与构件的抗扭刚度无关。
如:教材图7·1a 、b 所示受檐口竖向荷载作用的挑檐梁,及受水平制动力作用的吊车梁以及平面曲梁、折线梁、螺旋楼梯等。
● 另一类是 —— 协调扭矩:是超静定结构中由于变形协调条件使截面产生的扭矩,构件所承受的扭矩与其抗扭刚度有关。
如:教材图7·2 所示现浇框架的边梁。
由于次梁在支座(边梁)处的转角产生的扭转,边梁开裂后其抗扭刚度降低,对次梁转角的约束作用减小,相应地边梁的扭矩也减小。
● 本章只讨论平衡扭转情况下的受扭构件承载力计算。
在工程结构中,直接承受扭矩、弯矩、剪力和轴向力复合作用的构件是常遇的。
但规范对弯扭、剪扭和弯剪扭构件的设计计算,是以抗弯、抗剪能力计算理论和纯扭构件的承载力计算理论为基础,采用分别计算和叠加配筋的方法进行的,故有必要先了解纯扭构件的受力性能和承载力的计算方法。
7.2 纯扭构件的受力性能7.2.1 素砼纯扭构件的受力性能素砼构件也能承受一定的扭矩。
素砼构件在扭矩T 的作用下,在构件截面中产生剪应力τ及相应的主拉应力tp σ 和主压应力cp σ(教材图7·3)。
根据微元体平衡条件可知:τστσ==cp tp ,由于砼的抗拉强度远低于它的抗压程度,因此当主拉应力达到砼的抗拉强度时,即t tp f ≥=τσ时,砼就会沿垂直于主拉应力方向裂开(教材图7·3)。
所以在纯扭矩作用下的砼构件的裂缝方向总是与构件轴线成45o的角度。
并且砼开裂时的扭矩T 也就是相当于t f =τ时的扭矩,即砼纯扭构件的受扭承载力co T 。
为了求得co T ,需要建立扭矩和剪应力之间的关系,然后根据强度条件,即砼纯扭构件的破坏条件求出受扭承载力co T 。
7.2.2 素砼纯扭构件的承载力计算(一) 、弹性分析法:用弹性分析方法计算砼纯扭构件承载力时,认为砼构件为单一匀质弹性材料。
混凝土结构设计原理 第五章 受扭构件承载力计算
fy Astl s z Ast1 ucor f yv
试验表明,当0.5≤z ≤2.0范围时,受扭破坏时纵筋和箍 筋基本上都能达到屈服强度。 《规范》建议取0.6≤z ≤1.7, 当z >1.7时,取z =1.7 设计中通常取z =1.~1.2。
《规范》矩形受扭承载力计算公式
Tu 0.35 f tWt 1.2 z
对于矩形截面一般剪扭构件,
Tu 0.35 t f tWt 1.2 z f yv
Ast1 Acor s
nAsv1 Vu 0.7(1.5 t ) ft bh0 1.25 f yv h0 s
1.5 t V Wt 1 0.5 T bh0
称为剪扭构件混凝土强度 降低系数,小于0.5时取 0.5;大于1时取1。
ft
Tcr , p
b f t (3h b) f tWt 6
2
◆
混凝土材料为弹塑性材料。
◆ 达到开裂极限状态时开裂扭矩介于Tcr,e和Tcr,p之间。 ◆ 引入修正降低系数考虑应力非完全塑性分布的影响。
◆ 根据实验结果,修正系数在0.87~0.97之间,《规范》 为偏于安全起见,取 0.7。开裂扭矩的计算公式为
A's + Astl /3
+
As 4
Astl /3
=
Astl /3
Astl /3
As+ Astl /3
Asv1 s
Ast 1 s
2
Asv1 s
+
=
Asv1 Ast 1 + s s
对于弯剪扭构件,为防止少筋破坏 ★按面积计算的箍筋配筋率
Asv ft sv sv,min 0.28 bs f yv
5_受扭构件承载力计算
与受弯超筋梁类似
(4)部分超筋破坏 ——箍筋和受扭纵筋两部分配置不协调
第5章 受扭构件承载力计算
5.1.2 矩形截面纯扭构件的破坏特征
第5章 受扭构件承载力计算
抗扭纵筋与箍筋的配筋强度比
Ast Sv f sd
Asv1 U cor f sv
Ast —受扭计算中对称布置在截面周边的全部抗扭纵筋的截面面积; f sd ——受扭纵筋的抗拉强度设计值;
5.1.3 纯扭构件的承载力理论
(1)变角度空间桁 架模型
第5章 受扭构件承载力计算
5.1 纯扭构件的破坏特征和承载力计算
5.1.3 纯扭构件的承载力理论
变角度空间桁架模型——基本假定
(1)混凝土只承受压力,具有螺旋形裂缝的混凝土外 壳组成桁架的斜压杆,倾角α; (2)纵筋和箍筋只承受拉力,分别形成桁架的弦杆和 腹杆; (3)忽略核心混凝土的抗扭作用和钢筋的销栓作用。
5.1 纯扭构件的破坏特征和承载力 Nhomakorabea算5.1.2 矩形截面纯扭构件的破坏特征
抗扭钢筋的配置对 矩形截面的抗扭能力 有很大影响,实际工 程中,采用箍筋和纵 向钢筋组成的骨架来 承担扭矩: 1)箍筋直接抵抗主 拉应力
2)纵向钢筋抵抗纵 向分力并抑制斜裂缝 的展开
第5章 受扭构件承载力计算
5.1.2 矩形截面纯扭构件的破坏特征 ◆ 开裂情况、破坏面及受扭钢筋形式
对于弯、扭共同 作用的构件,当扭 弯比较小时,弯矩 起主导作用。
第5章 受扭构件承载力计算
5.2.1、弯、剪、扭的破坏类型
2)第II类型(弯扭 型) 受压区在构件 的一个侧面
扭矩和剪力起控制 作用,特别是扭剪 比较大时。
第5章 受扭构件承载力计算
07--水工钢筋砼--钢筋混凝土受扭构件承载力计算 2012
后为弯、剪、扭作用下的承载力计算。 2、作用荷载:
包括:弯曲和剪切作用,实质上是弯、剪、扭 (有时还有压)的复合受力问题。 3、受扭构件分类:
根据截面上存在的内力情况分为纯扭、弯扭、剪 扭、弯剪扭。工程中的受扭构件一般都是弯、剪、扭 构件,纯扭极为少见。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
二、矩形截面构件在弯、剪、扭共同作用下破坏形态 2、扭型破坏 (2)发生条件: a. 扭矩T / 弯矩M 的比值较大,剪力很小 b. 上部纵筋较少时的情况 (3)原因:
扭矩T引起。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
二、矩形截面构件在弯、剪、扭共同作用下破坏形态
《规范》取混凝土抗拉强度ft降低系数为0.7,因此, 开裂扭矩Tcr的计算公式为:
Tcr 0.7 ftWt (7 4)
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
四、带翼缘截面纯扭构件的开裂扭矩 1、考虑因素
破坏时构件截面的扭转角较 大。破坏前有预兆,属于塑性破 坏,这类破坏称为适筋破坏。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
一、矩形截面纯扭构件的破坏形态
3、破坏形态 (3)抗扭钢筋配得适量时--适筋破坏: c. 意义
该类破坏模型是设计的试验依据。
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
7.1 钢筋混凝土受扭构件的破坏形态及开裂扭矩
三、矩形截面纯扭构件的开裂扭矩 2、基于弹性理论的开裂扭矩
在扭矩作用下,矩形截面受扭构件最大剪应力τmax
发生在截面长边中点。当主拉应力σtp达到砼抗拉强度
ft时,出现沿450方向的斜裂缝。
钢筋混凝土受扭构件承载力计算_OK
T
M V
剪应力大的一侧先受拉开裂,
最后破坏, T很小时,仅发生剪
切破坏
23
5.3.3弯剪扭构件实用计算公式
1. 均布荷载下的矩形截面及T形、I形截面构件
弯和扭分开计算
抗弯钢筋布置在构件的受拉区,抗 扭纵筋沿截面均匀布置
剪和扭考虑混凝土部分的相关关系
Vc0 0.7 ftbh0,Tc0 0.35Wt ft
F4+F4=Ast4fy
C
D
F1+F1=Ast1fy
B
F3+F3=Ast3fy
As
F2+F2=Ast2fy
q = Tte
F1 D
C
te
Acor
h
b
qhcor
Nd d F2 A
Nsvt
s hcor ctg
q B
11
2. 承载力计算分析
纵筋的拉力
裂缝 箍筋
纵筋
T T
F1 F2 qhcorctg F1' F4 ' qbcorctg F4 F3 qhcorctg F3' F2 ' qbcorctg
ft fy
,不考虑纵筋的作用;若svt min
0.28
ft f yv
,不考虑箍筋的作用
31
5.4 受扭构件配筋构造要求
1. 抗扭纵筋
a. 最小配筋率
tl ,min
Atl ,min bh
0.6
T Vb
ft fy
其中,当 T 2时,取 T 2
Vb
Vb
b. 受扭纵筋应对称设置于截面的周边,间距不大于200mm且不大 于截面短边长度;
h'f 2 (b' b) 2f