解直角三角形(仰角、俯角)[(精选)
解直角三角形——仰角俯角
为
.(结果不作近似计算。)
E
D
A
B
C
合作与探究
变题1:如图,直升飞机在长400米的跨江大桥 AB的上方P点处,且A、B、O三点在一条直线 上,在大桥的两端测得飞机的仰角分别为30° 和45 °,求飞机的高度PO .
P
答案: (200 3 200) 米
O
45°
30°
B 400米 A
思想与方法
1、凡是求高(求线段的长)的问题往往可 以借助解直角三角形来解决,如果没有直角 三角形可以设法去构造。
P
C
30° A
45°
200米
O
B
合作与探究
变式题:如图,直升飞机在高为200米的大楼
AB左侧P点处,测得大楼的顶部仰角为45°,测
得大楼底部俯角为30°,求飞机与大楼之间的
水平距离.
A
答案: (300 100 3) 米
P 45°
30°
200米 D
O
B
当堂反馈
1.一气球在离地面55米的上空,此时它的仰角为 300 ,则观测器与气球间 的距离是 ( 110米 )
=200米,求塔高AB? 2.有一块三形场地ABC,测得其中AB边长为60米, AC边长50米,∠ABC=30°,试求出这个三角形场 地的面积.
A
4.(孝感中考)如图,两座建筑的水平距离BC为 18米,从A点测得D点的俯角a=300,测得C点的
仰 角 β = 600, 则 建 筑 物 CD 的 高 度
条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方
向前进10米后, 又在点B处测得条幅顶端D的仰角为45°,已知测点A、B
和C离地面高度都为2米,求条幅顶端D点距离地面的高度.(计算结果保
解直角三角形--仰角俯角.仰角俯角问题---解直角三角形
观察下图,判断哪些是仰视哪些是俯视; 哪个是俯角,哪个是仰角.
从A看B的仰角是:
∠BAC
从B看A的俯角是: ∠FBA 从B看D的俯角是: ∠FBD 从D看B的仰角是: ∠BDE 注意:从哪个点看就从哪个点作水平线,俯角就 是水平线与向下看视线的夹角,仰角就是水平线 与向上看视线的夹角。
例1: 如图一学生要测量校园内一棵水杉树高度, 他站在距水杉树8米的E处,测得树顶的仰角 ∠ACD=30°,已知测角仪的架高CE=1.6米, 求树高AB(精确到0.1米) A
问题探究
• 1、仰角、俯角 • 阅读教材:当我们进行测量时,在视线与水平 线所成的角中,视线在水平线上方的角叫做仰角, 在水平线下方的角叫做俯角. • 学生仰视日光灯或俯视桌面 • (以体会仰角与俯角的意义.)
归纳、总结
• 如图,在进行测量时,从下向上看,视线与水平 线的夹角叫做仰角;从上往下看,视线与水平线 的夹角叫做俯角
把问题转化为解直角三角形的问题;
(3)根据直角三角形元素(边、角)之间的关系解有关的直角三角形.
A
D1 D
30 °
C1 50
C
45°
B1 B
2、(2011安徽中考)如图,某高速公路建设中 需要确定隧道AB的长度.已知在离地面1500m高 度C处的飞机,测量人员测得正前方A、B两点处 的俯角分别为60°和45°,求隧道AB的长.
甲、乙两楼相距78米,从乙楼底 望甲楼顶的仰角为45º ,从甲楼顶 望乙楼顶的俯角为30º ,则甲楼和 A 乙楼高为? 30º
D
甲 B
?
45º
?乙
78 C
7.(2006,哈尔滨市)如图,在电线杆上的C处 引位线CE、CF固定电线杆,拉线CE和地面成 60°角,在离电线杆6米的B处安置测角仪,在A 处测得电线杆C处的仰角为30°,已知测角仪AB 高为1.5米,求拉线CE的长.(结果保留根号)
解直角三角形(仰角和俯角)讲义
解直角三角形(仰角和俯角)一、知识点讲解1、仰角和俯角的定义:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
二、典例分析利用解直角三角形解决仰角、俯角问题例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)变式练习:1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A、50B、51C、50+1D、101第1题第2题第3题2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点A、D、B在同一直线上,则AB两点间距离是米。
3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)反馈练习 基础夯实1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1200m D 、 2400m第1题 第2题 第3题 第4题2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。
九年级数学解直角三角形(仰角与俯角)
六、变式提升、走近中考1学校操场上有一 根旗杆,上面有一根开旗用的绳子(绳子 足够长),王同学拿了一把卷尺,并且向 数学老师借了一把含300的三角板去度量旗 杆的高度。 (2)若王同学分别在点C、点D处将 (1)若王同学将旗杆上绳子拉成仰角 (3)此时他的数学老师来了一看,建 旗杆上绳子分别拉成仰角为600、300, 为600,如图用卷尺量得BC=4米,则 议王同学只准用卷尺去量,你能给王 如图量出CD=8米,你能求出旗杆AB的 旗杆AB的高多少? 同学设计方案完成任务吗? 长吗?
2 (1)
(1)2
八、布置作业 P92习题28.2 第3,4题
.
.
谢谢大家
. .
关适 是 何知 ( 找示 先 系出意 将) 角 当 直 图角 求 来与图 实解 三 的 角 形、 直 角 辅 三 ,边 角 求已, 物决 形 助 角 如时 三 解线 形 果 模 实 知尽 型 来 角可, 际 问 求 , 时 示 转角 、能先形 解画,意化 题 出 添 图画 中 边直 为时 直 加 不出 未 的接 几,
分析:从飞船上能最远直接
看到的地球上的点,应是视 线与地球相切时的切点.
①题中有哪些已知条件,所求结论是什么? ②如何把实际问题抽象成数学问题,建立数学模型的?图形中有 符合解直角三角形的图形吗? ③要求的边与已知的边和已知的角有什么关系?应该选择哪一种 三角函数?
• 1、P87例题
如图,⊙O表示地球,点F是 飞船的位置,FQ是⊙O的切线, 切点Q是从飞船观测地球时的 ⌒ 最远点.PQ的长就是地面上P, Q两点间的距离,为计算PQ 的 ⌒ 长需先求出∠POQ(即a)
45
30
解得 x 100 3 100
所以河宽为 (100 3 100)米.
解直角三角形的应用仰角与俯角问题公开课省名师优质课赛课获奖课件市赛课一等奖课件
D xF
30°
C
Ex B
P α β
归纳与提升
P
450
O P
O
45°
B
30°
A C
30°
B
450
45°
O
A
30°60° A
45° 22000米 45°
B
P 45°°
3300°°
202000米
D
O
B
3 450)m.
B
A
4. 两座建筑AB及CD,其地面距离AC为50米,
从AB旳顶点B测得CD旳顶部D旳仰角β=300,
测得其底部C旳俯角a=600, 求两座建筑物AB 及CD旳高.
30° 60°
50米
(第 2 题)
合作与探究
变题2:如图,直升飞机在高为200米旳大楼AB
左侧P点处,测得大楼旳顶部仰角为45°,测得
大楼底部俯角为30°,求飞机与大楼之间旳水
平距离.
A
答案: (300 100 3) 米
P 45°
30°
O
200米 D
B
合作与探究
例2:如图,直升飞机在高为200米旳大楼AB上 方P点处,从大楼旳顶部和底部测得飞机旳仰 角为30°和45°,求飞机旳高度PO .
P
答案: (100 3 300) 米
O
=300 1.20
图3019.4.4
2、建筑物BC上有一旗杆AB,由距BC 40m旳D 处观察旗杆顶部A旳仰角为60°,观察底部B旳仰 角为45°,求旗杆旳高度
A
B
D 40 C
1、在山脚C处测得山顶A旳仰角为45°。问 题如下: 1)沿着水平地面对前300米到达D点,在D点 测得山顶A旳仰角为600 , 求山高AB。
24.4.3 解直角三角形的应用—仰角、俯角(课件)九年级数学上册(华东师大版)
即该建筑物 CD 的高度约为 42 m.
第24章 解直角三角形
知识回顾
仰角、俯角问题: 1.在进行测量时,从下向上看,视线与水平线 的夹角叫做仰角;从上往下看,视线与水平 线的夹角叫做俯角.
2.梯形通常分解成矩形和直角三角形来处理.
3.实际问题转化为几何问题.把四边形问题转化为特殊四边形与三角形来 解决.
DC
tan54o 40 1.3840 55.2m,
∴AB = AC-BC ≈ 55.2-40 = 15.2 (m).
第24章 解直角三角形
第24章 解直角三角形
仰角、俯角问题
| 24.4 解直角三角形 第3课时 |
华师版(2012)九年级上册数学
知识回顾
在解直角三角形的过程中,重要关系式: (1)三边之间的关系 a2 + b2 = c(2 勾股定理) (2)两锐角之间的关系 ∠A+∠B=90° (3)边角之间的关系
第24章 解直角三角形
第24章 解直角三角形
解:如题图,延长 AE 交 CD 于点 G.设 CG=x m.
在 Rt△ECG 中,∠CEG=45°,则 EG=CG=x m.
在 Rt△ACG 中,
∵∠CAG=30°,tan∠CAG=CAGG,
∴AG= tan
C∠GCAG=
3x m.
∵AG-EG=AE,∴ 3x-x=30,
解得 x=15( 3+1).故 CD=15( 3+1)+1.5≈42(m).
2
部分的面积为 2 cm2(根号保留).
图3
图4
第24章 解直角三角形
5.建筑物 BC 上有一旗杆 AB,由距 BC 40 m 的 D 处观察旗杆顶部 A 的仰 角为 54°,观察底部 B 的仰角为 45°,求旗杆的高度(精确到 0.1 m). 解:在等腰 Rt△BCD 中,∠ACD = 90°, BC = DC = 40 m, ∴AC tan ADC DC. 在 Rt△ACD 中 tan ADC AC ,
解直角三角形的应用(仰角和俯角问题)
计算角度证结果:检 查计算结果是 否满足三角形 内角和为180
度的条件
添加标题
确定已知条件:已知三角形的边长和角度
添加标题
利用正弦定理:sin/ = sinB/b = sinC/c
添加标题
利用余弦定理:cos = (b^2 + c^2 - ^2) / (2bc)
正弦定理:在直角三角形中 任意一边的长度等于其对角 的正弦值乘以斜边的长度
余弦定理:在直角三角形中 任意两边长度的平方和等于 斜边的平方
正切定理:在直角三角形中 任意一边的长度等于其对角 的正切值乘以斜边的长度
余切定理:在直角三角形中 任意两边长度的平方差等于 斜边的平方
正割定理:在直角三角形中 任意一边的长度等于其对角 的正割值乘以斜边的长度
确保测量工具的 准确性和稳定性
避免在危险区域 进行测量如高空、
高压电等
遵守操作规程确 保人身安全
做好防护措施如 佩戴安全帽、手
套等
及时清理现场避 免杂物影响测量
结果
遇到突发情况及 时停止操作并寻
求帮助
仰角和俯角为0度:此时三角形退化为直线无法求解
仰角和俯角为90度:此时三角形退化为直角三角形可以直接求解
全站仪等
测量误差:注 意测量误差对 仰角和俯角测 量结果的影响
测量环境:注 意测量环境的 影响如温度、 湿度、风速等
测量方法:注 意测量方法的 选择如直接测 量、间接测量
等
测量误差:测量工具的精度、测量人员的操作水平等
计算误差:计算过程中的舍入误差、公式使用错误等
环境误差:温度、湿度、光照等环境因素对测量结果的影响
添加文档副标题
目录
01.
02.
人教版数学九年级下册28.2解直角三角形-仰角、俯角问题教案
另外,小组讨论和实践活动环节,学生的参与度很高,他们积极讨论,热烈交流,这让我很欣慰。但我也观察到,有些小组在分享成果时表达不够清晰,这可能是他们在整理思路和语言表达上还存在不足。在以后的教学中,我需要加强对学生表达能力的训练,鼓励他们更加自信、条理清晰地表达自己的观点。
(1)通过实际情境引入仰角、俯角的概念;
(2)掌握正切函数的定义,并应用于仰角、俯角问题的求解;
(3)通过例题讲解和练习,让学生熟练运用解直角三角形的方法解决实际生活中的仰角、俯角问题。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提高数学建模素养;
2.通过对正切函数的运用,增强学生的数学运算和数据分析能力;
五、教学反思
在今天的课程中,我们探讨了解直角三角形中的仰角、俯角问题。我发现学生们在理解仰角、俯角概念上并没有太大困难,他们对于这些新知识充满了好奇。但在实际应用上,特别是在构建直角三角形模型和运用正切函数时,部分学生遇到了一些挑战。
首先,我注意到在案例分析环节,有些学生在确定直角三角形的边长和角度时显得犹豫不决。这说明他们对于如何将实际问题转化为数学模型还不够熟练。在未来的教学中,我需要提供更多的实际例子,让学生有更多的机会去练习和体会这一过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解仰角与俯角的基本概念。仰角是我们从水平线向上看时,视线与水平线所形成的角;俯角则是我们从水平线向下看时,视线与水平线所形成的角。它们在测量、建筑等领域有着广泛的应用。
解直角三角形的典型例题
一、知识概述1、仰角、俯角仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图所示.说明:仰角、俯角一定是水平线与视线的夹角,即从观察点引出的水平线与视线所夹的锐角.2、坡角和坡度坡角:坡面与水平面的夹角叫做坡角,用字母α表示.坡度(坡比):坡面的铅直高度h和水平宽度l的比叫做坡度,用字母i表示.则.如图所示说明:(1)坡角的正切等于坡度,坡角越大,坡度也越大,坡面越陡.(2)在解决实际问题时,遇到坡度、坡角的问题,常构造如图所示的直角三角形.3、象限角象限角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫象限角,如图中的目标方向线OA、OB、OC、OD的方向角分别表示北偏东30°,南偏东45°,北偏西60°,南偏西80°,如:东南方向,指的是南偏东45°角的方向上.如图所示.二、重点难点疑点突破1、怎样运用解直角三角形的方法解决实际问题在解决实际问题时,解直角三角形有着广泛的应用.我们要学会将千变万化的实际问题转化为数学问题来解决,具体地说,要求我们善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,这样就可运用解直角三角形的方法了.一般有以下三个步骤:(1)审题,通过图形(题目没画出图形的,可自己画出示意图),弄清已知和未知;(2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角形,把问题转化为解直角三角形的问题;(3)根据直角三角形元素(边、角)之间关系解有关的直角三角形.其中,找出有关的直角三角形是关键,具体方法是:(1)将实际问题转化为直角三角形中的数学问题;(2)作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.2、在学习中应注意两个转化(1)把实际问题转化成数学问题这个转化分两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图,并赋予字母;二是将已知条件转化成示意图中的边或角.(2)把数学问题转化成解直角三角形问题.如果示意图形不是直角三角形,可添加适当的辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为解直角三角形问题,把可解的直角三角形纳入基本类型,确定合适的边角关系,细心推理,按要求精确度作近似计算,最后写出答案并注明单位.三、典型例题讲解1、测量河宽例1、如图,河边有一条笔直的公路l,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B点到公路的距离,请你设计一个测量方案.要求:(1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B点到公路的距离.分析:这是一个实际问题,要求B到CD的距离,可转化为直角三角形,然后在两个直角三角形中,可分别用含有AB的式子表示AC和AD,而AC+AD=m,可运用解方程的方法求出AB即可.解:(1)测角器、尺子;(2)测量示意图如下图所示;测量步骤:①在公路上取两点C,D,使∠BCD,∠BDC为锐角;②用测角器测出∠BCD=α,∠BDC=β;③用尺子测得CD的长,记为m米;④计算求值.(3)解:设B到CD的距离为x米,作BA⊥CD于点A,在△CAB中,x=CAtanα,点评:运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).2、仰角、俯角问题例2、为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心、半径与AB等长的圆形危险区.现在某工人站在离B点3米远的D处测得树的顶端A点的仰角为60°,树的底部B的俯角为30°(如图).问距离B点8米远的保护物是否在危险区内?分析:解决测量问题要明确仰角、俯角、视角、坡度、坡角等名词术语.要考查距离B点8米远的保护物是否在危险区内,关键的一点是要测算树AB的高度.解:过点C作CE⊥AB,垂足为E.在Rt△CBE中,在Rt△CAE中,故AB=AE+BE=≈4×1.73=6.92(米)<8(米).因此可判断该保护物不在危险区内.3、坡角、坡度(坡比)例3、如图,一水坝横断面为等腰梯形ABCD,斜坡AB的坡度为,坡面AB的水平宽度为上底宽AD为4m,求坡角B,坝高AE和坝底宽BC各是多少?分析:首先将实际问题转化为数学问题,如图所示,实际上已知求∠B、AE、BC.此题实质转化为解直角三角形的问题.点评:(1)解应用题时,解题过程中可以不写各数量的单位,但最后作答时务必写清单位名称.(2)应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形,梯形也是通过作底边的高线来构造直角三角形.(3)本题主要应用坡度是坡角的正切函数而求出坡角,运用坡度的概念求出梯形高,运用等腰梯形性质求出底边.4、象限角例4、如图,一轮船自西向东航行,在A处测得某岛C,在北偏东60°的方向上,船前进8海里后到达B,再测C岛,在北偏东30°的方向上,问船再前进多少海里与C岛最近?最近距离是多少?分析:将实际问题转化为数学问题,并构造出与实际问题有关的直角三角形,如图所示.船沿AB方向继续前进至D处与C岛最近,此问题实质就是已知∠CAB=90°-60°=30°,∠ABC=90°+30°=120°,AB=8海里,求BD和CD的解直角三角形问题.解:根据题设可知△ABC中,∠CAB=30°,∠ABC=120°,∴∠ACB=180°-30°-120°=30°,AB=BC=8,作CD⊥AB于D.∴最近距离即为C到AB所在直线的垂线段CD的长度.在Rt△CBD中,BC=8,∠CBD=60°,点评:根据题意准确画出示意图是解这类题的前提和保障.5、开放探究题例5、(荆州市)某海滨浴场的沿岸可以看作直线,如图,1号救生员在岸边A点看到海中的B点有人求救,便立即向前跑300米到离B点最近的D点,再跳入海中游到B点救助;若每位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.(1)请问1号救生员的做法是否合理?(2)若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=65°,请问谁先到达点B?(所有数据精确到0.1,sin65°≈0.9,cos65°≈0.4,)分析:(1)比较1号救生员从点A直接游到点B所用时间与从点A跑到点D再游到点B的时间即可作出判断.(2)分别计算出1号救生员、2号救生员所用时间,再作判断.点评:掌握探究题的探究方法非常重要,本题中救生员赶到点B的时间是我们探究的核心问题,如何准确求出救生员赶到点B所用时间是解决本题的关键.。
解直角三角形的仰角俯角问题
解直角三角形的仰角俯角问题
仰角和俯角是解直角三角形问题中常见的概念。
在直角三角形中,仰角是锐角的补角,而俯角是锐角的余角。
1.仰角:在直角三角形中,与直角的锐角相邻的角叫做仰角。
仰角是锐角的
补角,即仰角= 90° - 锐角。
2.俯角:与直角的锐角相对的角叫做俯角。
俯角是锐角的余角,即俯角= 锐
角。
解这类问题时,通常需要利用三角函数的性质和关系,如正切、正弦、余弦等,以及直角三角形的边和角的关系,如勾股定理等。
以下是一个简单的例子:
题目:一个塔的高度是30米,从塔顶测得某建筑物顶部的仰角为24°,从地面测得该建筑物顶部的俯角为66°,求这个建筑物的高度。
解:设建筑物的高度为h 米。
根据三角函数的性质和关系,我们有:
塔顶到建筑物顶部的距离= 塔的高度× 正切(仰角) = 30 × tan(24°)。
建筑物顶部到底部的距离= 建筑物的高度× 正切(俯角) = h × tan(66°)。
由于直角三角形中的勾股定理,我们有:
塔顶到建筑物顶部的距离^2 + 建筑物顶部到底部的距离^2 = 塔高度的^2。
代入已知数值,我们可以得到一个关于h 的方程,并解出h 的值。
解直角三角形的应用:俯角仰角问题 (解析版)
【浙教版】2022年九年级(上)期末复习培优提分专项训练:解直角三角形的应用(俯角仰角问题)1.(2022·浙江绍兴·二模)如图,广场上空有一个热气球,热气球的探测器显示,离这栋楼底部水平距离为BD=30m,从热气球底部A处看这栋高楼底部B的俯角为60°.(1)求热气球A离地面的高度(精确到1m);(2)当热气球沿着与BD平行的路线飘移20s后到达点C,这时探测器显示,从热气球底部C 处看这栋高楼底部B的俯角为45°,求热气球漂移的平均速度.(精确到0.1m/s,√2≈1.414,√3≈1.732)【答案】(1)52m(2)1.1m/s【分析】(1)根据题意可得∠DBA=60°,再解Rt△ABD即可;(2)过点C作CE⊥BD于点E,则四边形ADEC是矩形,可得CE=52m,再证明BE=CE,从而求出AC=DE,进一步可得出结论.(1)⊥从热气球底部A处看这栋高楼底部B的俯角为60°.⊥∠DBA=60°,在Rt△ABD中,∠DBA=60°,BD=30m,=tan∠DBA,⊥ADBD⊥AD=BD·tan∠DBA=30×√3≈30×1.732≈52(m),所以,求热气球A离地面的高度约为52m;(2)过点C作CE⊥BD于点E,如图,则四边形ADEC是矩形,⊥CE=AD=52,AC=DE⊥∠ACB=45°,⊥∠EBC=∠ECB=45°,⊥△BCE是等腰直角三角形,⊥BE=CE=52(m),⊥BD=30m,⊥DE=BE−BD=52−30=22(m)⊥AC=22(m)⊥热气球漂移的平均速度为22÷20=1.1m/s.【点睛】本题考查了解直角三角形的应用,解答本题的关键是利用三角函数的知识求解直角三角形.2.(2022·浙江·金华市婺城区教育局教研室模拟预测)大跳台滑雪比赛的某段赛道如图所示,中国选手谷爱凌从离水平地面100米高的A点出发(AB=100米),沿俯角为30°的方向先滑行一定距离到达D点,然后再沿俯角为60°的方向滑行到地面的C处,求:(1)若AD=140米,则她滑行的水平距离BC为多少米?(2)若她滑行的两段路线AD与CD的长度比为4:√3,求路线AD的长.【答案】(1)80√3米(2)AD=800米7【分析】(1)过点D作DE⊥BC于E,过A作AF⊥ED交延长线于F,在Rt⊥ADF中,根据三角函数求出DF,AF,在Rt⊥CDE中,根据三角函数求出CE,即可得到BC;(2)设CD=√3x,AD=4x,分别求出DF、DE,由DF+DE=EF=100,求出x即可得到AD 的长.(1)解:如图,过点D作DE⊥BC于E,过A作AF⊥ED交延长线于F,则四边形ABEF是矩形,⊥AF=BE,EF=AB,在Rt⊥ADF中,AD=140,⊥F AD=30°,AD=70,AF=AD⋅cos30°=70√3,⊥DF=12在Rt⊥CDE中,⊥DCE=60°,DE=EF-DF=100-70=30,=10√3,⊥CE=DEtan60°⊥BC=BE+CE=80√3(米);(2)设CD=√3x,AD=4x,在Rt⊥ADF中,⊥F AD=30°,AD=2x,⊥DF=12在Rt⊥CDE中,⊥DCE=60°,x,⊥DE=CD⋅sin60°=32⊥DF+DE=EF=100,,解得x=2007⊥AD=4x=800(米).7【点睛】此题考查了解直角三角形的实际应用,正确理解题意构造合适的直角三角形是解题的关键.3.(2022·浙江台州·二模)“测温门”用于检测体温.某测温门截面如图所示,小明站在地面M处时测温门开始显示额头温度,此时在离地1.6米的B处测得门顶A的仰角为30°;当他向前走到N处时,测温门停止显示额头温度,此时在同样高度的点C处测得门顶A的仰角为45°.已知测温门顶部A处距地面的高度AD为2.6米,对小明来说,有效测温区间MN 的长度约为多少米?(结果保留一位小数).【答案】0.7米【分析】延长BC交AD于点E,则AE=AD-DE=1(米),再求出BE、CE的长,进而可得结果.【详解】解:如图,延长BC交AD于点E,则AE=AD-DE=2.6-1.6=1(米),在Rt⊥ABE中,⊥ABE=30°,⊥BE=√3AE=√3,在Rt⊥ACE中,⊥ACE=45°,=1,∴CE=AEtan45°∴MN=BC=BE−CE=√3−1≈1.73−1≈0.7(米),答:对小明来说,有效测温区间MN的长度约为0.7米.【点睛】本题考查了解直角三角形的应用--仰角俯角问题,能借助仰角构造直角三角形是解题的关键.4.(2022·浙江台州·二模)2022年2月4日晚,当我国运动员迪妮格尔·衣拉木江和赵嘉文将最后一棒火炬嵌入主火炬“大雪花”中央时,第24届北京冬奥会向世界展示了低碳环保的“点火”仪式,小华有幸在现场目睹这一过程,在“大雪花”竖直升起的某一刻,从小华的位置(点O)观测“大雪花”的顶部A的仰角α为12.8°,底部B的俯角β为15.3°,已知“大雪花”高AB约14.89 m,求小华的位置离“大雪花”的水平距离OC.(结果精确到0.l m,参考数据:tan12.8°≈0.23,sin12.8°≈0.22,tan15.3°≈0.27,sin15.3°≈0.26)【答案】小华的位置离“大雪花”的水平距离OC约为29. 8 m【分析】通过解RtΔAOC和RtΔBOC得AC=OC tan12.8°,BC=OC tan15.3°,再根据AC+BC= AB求出OC的长即可.【详解】解:∵OC⊥AB,∴tanα=ACOC ,tanβ=BCOC,⊥AC=OC tanα,BC=OC tanβ.又AB=14.89 m,且AC+BC=AB∴OC(tanα+tanβ)=14.89,即(0.23+0.27)OC≈14.89,解得OC≈29. 8 m.【点睛】本题考查仰角和俯角的定义,要求学生能借助仰角和俯角构造直角三角形并解直角三角形.5.(2022·浙江宁波·九年级期末)某校数学兴趣小组借助无人机测量一条河流的宽度BC.如图所示,一架水平飞行的无人机在A处测得正前方河流的点B处的俯角∠FAB=α,点C处的俯角∠FAC=37°,线段AD的长为无人机距地面的高度,点D、B、C在同一条水平直线上,tanα=3,BD=25米.(1)求无人机的飞行高度AD.(2)求河流的宽度BC.(参考数据;sin37°≈0.60,cossin37°≈0.80,tan37°≈0.75)【答案】(1)75米(2)75米【分析】(1)在Rt⊥ABD中,由锐角三角函数定义求出AD的长即可;(2)在Rt⊥ADC中,由锐角三角函数定义求出CD的长,即可解决问题.(1)由题意得:AF⊥CD,⊥⊥F AB=⊥ABD=α,⊥F AC=⊥ACD=37°,在Rt⊥ABD中,tan⊥ABD=ADBD,⊥tanα=3,BD=25米,⊥AD=BD•tanα=25×3=75(米),答:无人机的飞行高度AD为75米(2)在Rt⊥ACD中,tan⊥ACD=ADCD,⊥CD=ADtan∠ACD =75tan37°≈750.75=100(米),∴BC=CD−BD=100−25=75(米),答:河流的宽度BC为75米.【点睛】本题考查了解直角三角形的应用—仰角俯角问题,熟练掌握俯角的定义,熟记锐角三角函数定义是解题的关键.6.(2022·浙江宁波·模拟预测)如图,小刚想测量学校的旗杆AB的高度,他先站在C点处观察旗杆顶端A点,测得此时仰角为45°.然后他爬上三楼站在D处观察旗杆顶端A,此时的仰角为30°.已知三楼的高度即CD=10米.请帮小刚计算求出旗杆AB的高度.(小刚的身高不作考虑,最后结果保留根号.)【答案】旗杆AB的高度为(15+5√3)米【分析】过点D作DE⊥AB于点E,证明四边形DCBE是矩形,得BE=CD=10米, 设BC=BA=x,则AE=AB=BE=x-10,通过解直角三角形ADE即可得到结论.【详解】解:过点D作DE⊥AB于点E,如图,⊥∠DEB=90°又∠DCB=∠CBE=90°⊥四边形DCBE是矩形⊥BE=CD=10米,ED=BC⊥∠ACB=45°⊥∠CAB=45°⊥BA=BC设BC=BA=x,则AE=AB=BE=x-10在Rt⊥ADE中,tan∠ADE=AEDE⊥x−10x =tan30°,即x−10x=√33解得,x=15+5√3即AB=15+5√3答:旗杆AB的高度为(15+5√3)米【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.7.(2022·浙江金华·九年级期中)某数学兴趣小组通过调查研究把“如何测量嵩岳寺塔的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间实地测量.请你根据表中信息结合示意图帮助该数学兴趣小组求嵩岳寺塔AB的高度.(精确到0.1米,参考数据:sin32°≈0.52,cos32°≈0.84,tan32°≈0.62)【答案】37.2米【分析】过点D作DH⊥AB,交AB于点H,则四边形HBCD是矩形,设AH=x,在Rt△AHF =tan32°≈0.62,列出方程,解方程求解可得AH,根据AB=AH+HB 中,tan∠AFH=AHHF即可求解.【详解】解:如图,过点D作DH⊥AB,交AB于点H,则四边形HBCD是矩形,设AH=x,∵∠ADH=45°,=AH,∴HD=AHtan∠ADH根据题意可得四边形CDFE是矩形,则CE=DF=22,CD=EF=HB=1.3,=tan32°≈0.62,在Rt△AHF中,tan∠AFH=AHHF≈0.62,∴xx+22解得x≈35.9,∵AB=AH+HB=35.9+1.3=37.2(米)答:嵩岳寺塔AB的高度为37.2米.【点睛】本题考查了解直角三角形的应用,正确的使用三角函数是解题的关键.8.(2022·浙江台州·一模)大跳台滑雪比赛的某段赛道如图所示,中国选手谷爱凌从离水平地面100米高的A点出发(AB=100米),沿俯角为30°的方向先滑行140米到达D点,然后再沿俯角为60°的方向滑行到地面的C处,求她滑行的水平距离BC约为多少米.(结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)【答案】138.6米【分析】作DE⊥AB于E于F,DF⊥BC,在Rt△ADE中,根据含30°角的直角三角形的性质求出AE和DE的长,再根据线段的和差关系求出BE长,再证明四边形EBFD为矩形,求出DF 和BF长,然后在Rt△CDF中计算出CF长,最后求BF和CF长之和即可.【详解】解:如图,作DE⊥AB于E,DF⊥BC于F,在Rt△ADE中,⊥∠DAE=90°−30°=60°,⊥∠ADE=90°−∠DAE=30°,AD=70米,AE=12DE=√3AE=70√3米,⊥BE=AB−AE=100−70=30米,∵DE⊥AB于E,DF⊥BC于F,∠ABC=90°,⊥四边形EBFD为矩形,⊥BE=DF,DE=BF,⊥DF=30米,BF=70√3米,在Rt△CDF中,⊥∠CDF=90°−60°=30°,DF=10√3米,⊥CF=√33∴BC=80√3≈80×1.732=138.56≈138.6米.答:她滑行的水平距离BC约为138.6米.【点睛】本题考查了解直角三角形的应用-仰角和俯角问题:解题的关键是要了解角之间的关系,找到与已知量和未知量相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.9.(2022·浙江台州·一模)如图,为了建设一条贯穿山峰的东西方向隧道AB,在规划中首先需要测量A,B之间的距离.无人机保持离水平道路240m的竖直高度,从点A的正上方点C出发,沿正东方向飞行600m到达点D,测得点B的俯角为37°.求AB的长度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】280m【分析】过点B作BE⊥CD于E,则由矩形性质可得BE的长,在Rt△BDE中,由正切可得出DE的长,即可求得.【详解】解:过点B作BE⊥CD于E,⊥四边形ABEC是矩形,⊥BE=AC=240m,AB=CE,,在Rt△BDE中,tan∠BDE=BEDE≈0.75,即:240DE∴DE≈320m,∴CE=CD−DE≈280m,∴AB=CE≈280m.【点睛】本题考查了解直角三角形的应用,掌握锐角三角形函数以及添加辅助线构造直角三角形是解题的关键.10.(2022·浙江舟山·九年级专题练习)如图1,是一电动门,当它水平下落时,可以抽象成如图2所示的矩形ABCD,其中AB=3m,AD=1m,此时它与出入口OM等宽,与地面的距离AO=0.2m;当它抬起时,变为平行四边形AB′C′D,如图3所示,此时,A′B′与水平方向的夹角为60°.(1)求点B′到地面的距离;(2)在电动门抬起的过程中,求点C所经过的路径长;(3)一辆高1.6m,宽1.5m的汽车从该入口进入时,汽车需要与BC保持0.4m的安全距离,此时,汽车能否安全通过,若能,请通过计算说明;若不能,说明理由.(参考数据:√3≈1.73,π≈3.14,所有结果精确到0.1)【答案】(1)2.8m(2)3.1m(3)汽车能安全通过,理由见解析【分析】(1)过点B′作B′N⊥OM于点N,交AB于点E,根据解直角三角形、锐角三角函数进行解答即可;(2)根据弧长公式解答即可;(3)根据解直角三角形、锐角三角函数进行解答即可.(1)解:如图,过点B′作B′N⊥OM于点N,交AB于点E,∵AB′=AB=3,∠BAB′=60°,∴B′E=AB′sin60°=3×√32=3√32≈2.6m,∴B′N=B′E+EN=2.6+0.2=2.8m;(2)∵点C′是点C绕点D旋转60°得到,∴点C经过的路径长为60×π×3180=π≈3.1m;(3)在OM上取MK=0.4m,KF=1.5m,作FG⊥OM于点F,交AB于点H,交AB′于点G,当汽车与BC保持安全距离0.4m时,∵汽车高度为1.6m,∴OF=3−1.5−0.4=1.1m,∵AB//OM,AO⊥OM,∴AH=OF=1.1m,∠AHG=90°,HF=OA=0.2m,∴GH=1.1×tan60°=1.1×√3≈1.903m,∵GH+HF=1.903+0.2≈2.1m>1.6m,∴汽车能安全通过.【点睛】本题考查了解直角三角形的应用,锐角三角函数,弧长的计算等知识,添加辅助线构造直角三角形是解题的关键.11.(2022·浙江嘉兴·九年级专题练习)为了监控危险路段的车辆行驶情况,通常会设置电子眼进行区间测速.如图电子眼位于点P处,离地面的铅垂高度PQ为11米;离坡AB的最短距离是11.2米,坡AB的坡比为3:4;电子眼照射在A处时,电子眼的俯角为30°,电子眼照射在坡角点B处时,电子眼的俯角为70°.(A、B、P、Q在同一平面内)(1)求路段BQ的长;(sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)(2)求路段AB的长;(√3≈1.7,结果保留整数)(3)如图的这辆车看成矩形KLNM,车高2米,当P A过M点时开始测速,PB过M点时结束测速,若在这个测速路段车辆所用的时间是1.5秒.该路段限速5米/秒,计算说明该车是否超速?【答案】(1)4米(2)8米(3)不超速,计算过程见详解【分析】(1)先求出∠PBQ的度数,再利用三角函数求BQ的长;(2)通过做辅助线构造直角三角形P AE,结合所给坡度用勾股定理列方程,即可求出路段AB的长;(3)通过做辅助线,构造出Rt△PBQ和Rt△PDB,利用勾股定理求出PB、BD和AD的长,结合题意,再利用三角函数求出测速距离,进而求出车的平均速度,即可判断出是否超速.(1)解:∵电子眼照射在坡角点B处时的俯角为70°,∴∠QPB=90∘−70∘=20∘,∵∠PQB=90∘,∴∠PBQ=70∘,∵PQBQ=tan∠PBQ=tan70∘,∴BQ=PQtan70∘≈112.75=4即路段BQ的长为4米.(2)如图,过点A作AE⊥PQ,垂足为E,过点A作QB的垂线段,交QB的延长线于点G,∵坡AB的坡比为3:4设BG=4x,AG=3x,在Rt△ABG中,根据勾股定理,AB=√AG2+BG2=5x,∵AE=QG=4x+4,EQ=AG=3x,∴PE=PQ−EQ=11−3x,∵电子眼照射在A处时俯角为30°,∠APE=60∘在Rt△PBQ中,四边形ABCD为矩形,AB长3米,AD长1米,点D距地面为0.2米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图2,当道闸打开至⊥ADC=45°时,边CD上一点P到地面的距离PE为1.2米,求点P到MN的距离PF的长.(2)一辆轿车过道闸,已知轿车宽1.8米,高1.6米.当道闸打开至⊥ADC=36°时,轿车能否驶入小区?请说明理由.(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)【答案】(1)PF=2米(2)轿车能驶入小区;理由见解析【分析】(1)在Rt⊥PDQ中,由⊥PDQ=45°,DQ=PQ=1,进而求出FP即可;(2)当⊥ADC=36°,PE=1.6米时,求出PF,与1.8米比较即可得出答案.(1)解:(1)过点D作DQ⊥PE,垂足为Q,如图所示:由题意可知,⊥ADC=45°,PE=1.2米,QE=0.2米,在Rt⊥PDQ中,⊥PDQ=45°,PQ=1.2−0.2=1米,∴∠DPQ=90−45°=45°,∴∠PDQ=∠DPQ=45°,⊥DQ=PQ=1(米),⊥PF=EN=AB−DQ=3−1=2(米).(2)当⊥ADC=36°,PE=1.6米时,则⊥DPQ=36°,PQ=1.6−0.2=1.4(米),⊥DQ=PQ•tan36°≈1.4×0.73=1.022(米),⊥PF=3−1.022≈1.98(米),⊥1.98>1.8,⊥能通过.【点睛】本题主要考查了解直角三角形的应用,熟练掌握直角三角形的边角关系是解题的关键.13.(2022·浙江宁波·模拟预测)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,该河旁有一座小山,山高BC=100m,坡面AB的坡比为1:0.7(注:坡比是指坡面的铅垂高度与水平宽度的比),点C,A与河岸E,F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角∠DBE,∠DBF分别为45∘,28∘.(1)求山脚A到河岸E的距离;(2)若在此处建桥,试求河宽EF的长度.(结果精确到0.1m)(参考数据:sin28∘≈0.47,cos28∘≈0.88,tan28∘≈0.53)【答案】(1)山脚A到河岸 E 的距离为30m(2)河宽EF的长为88.7m【分析】(1)由坡比可求AC的长,由平行线的性质可知∠BEC=∠DBE=45°,∠CBE=∠BEC=45°,可知CE=BC,根据AE=CE−AC计算求解即可;(2)由题意知∠BFC=∠DBF=28°,由CF=BCtan28°求出CF的值,根据EF=CF−CE计算求解即可.(1)解:⊥坡面AB的坡比为1:0.7,BC=100m,⊥AC=70m,⊥∠BEC=∠DBE=45°,⊥∠CBE=∠BEC=45°,⊥CE=BC=100m,⊥AE=CE−AC=30m,⊥山脚A到河岸E的距离为30m.(2)解:⊥∠BFC=∠DBF=28°,⊥CF=BCtan28°=1000.53≈188.67m⊥EF=CF−CE≈88.7m.⊥河宽EF的长为88.7m.【点睛】本题考查了平行线的性质,解直角三角形的应用.解题的关键在于明确线段的数量关系.14.(上海市闵行区2022-2023学年九年级上期中学期数学试卷)如图,在电线杆上的C处引拉线CE和CF固定电线杆.在离电线杆6米的B处安置测角仪(点B、E、D在同一直线上),在点A处测得电线杆上C处的仰角为30°.已知测角仪的高AB为√3米,拉线CE的长为6米,求测角仪底端(点B)与拉线固定点(E)之间的距离.【答案】3米【分析】过A 作AM 垂直于CD ,垂足为M ,根据含有30°的直角三角形直角边与斜边的关系和勾股定理求出CM ,根据勾股定理得到DE 的长,由BD 的长减去DE 的长即可求出BE 的长. 【详解】解:如图:过A 作AM 垂直于CD ,垂足为点M ,则AM =BD =6米,MD =AB =√3米,∠AMC =90°, ∵∠CAM =30°, ∴CM =12AC ,∵AC 2−CM 2=AM 2, ∴3CM 2=36, ∴CM =2√3(米), ∴CD =3√3(米), ∵CE =6米,利用勾股定理得DE =√CE 2−CD 2=√62−(3√3)2=√9=3(米), ∴BE =6−3=3(米).答:测角仪底端(点B )与拉线固定点(E )之间的距离是3米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,含有30°的直角三角形直角边与斜边的关系和勾股定理知识点,掌握仰角俯角的概念及30°的直角三角形直角边与斜边的关系是解题的关键.15.(2022·福建·晋江市第一中学九年级期中)八仙阁是八仙山公园里的一个主景区,八仙阁也是晋江的一个标志性建筑.在阁楼上可以看到整个八仙山公园全景,甚至周围景观都能尽收眼底.小明想知道它的高度.于是走到点C处,测得此时塔尖A的仰角是37°,向前走了15.5米至点F处,测得此时塔尖A的仰角是45°,已知小明的眼睛离地面高度是1.5米,请聪明的你帮他求出八仙阁AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34)【答案】八仙阁AB的高度为48米.【分析】证明四边形DCFE,FEGB,DCBG均为矩形.在Rt△AGE和Rt△AGD中,根据三角函数的定义列式计算即可解答.【详解】解:由题意得∠DCB=∠EFB=∠GBF=∠BGD=90°,CD∥EF∥AB,则四边形DCFE,FEGB,DCBG均为矩形.所以BG=EF=CD=1.5米,DE=CF=15.5米,在Rt△AGE中,∠AEFG=∠EAG=45°,则AG=EG.设AG=EG=x米,在Rt△AGD中,tan∠ADG=AGDG,则tan37°=xx+15.5,即3(x+15.5)=4x,解得:x=46.5,所以AG=46.5米,则AB=46.5+1.5=48(米).答:八仙阁AB的高度为48米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.(2022·重庆南开中学九年级期中)如图,小开家所在居民楼AC,楼底C点的左侧30米处有一个山坡DE,坡角为30°,E点处有一个图书馆,山坡坡底到图书馆的距离DE为40米,在图书馆E点处测得小开家的窗户B点的仰角为45°,居民楼AC与山坡DE的剖面在同一平面内.(1)求BC的高度;(结果精确到个位,参考数据:√3≈1.73)(2)某天,小开到家后发现有资料落在图书馆,此时离图书馆闭馆仅剩5分钟,若小开在平地的速度为6m/s,上坡速度为4m/s,电梯速度为1.25m/s,等候电梯及上、下乘客所耽误时间共3分钟,请问小开能否在闭馆前赶到图书馆?【答案】(1)BC的高度约为85米(2)小开能在闭馆前赶到图书馆【分析】(1)如图,作EF⊥AC于F,作EG⊥CD,解直角三角形即可;(2)根据题意,列算式计算出小开到图书馆所用时间即可.【详解】(1)如图,作EF⊥AC于F,作EG⊥CD,交CD延长线于点G,得矩形EFCG,⊥EF=CG,EG=FC,根据题意可知:CD=30米,∠BEF=45°,DE=40米,∠EDG=30°,DE=20米,⊥EG=12⊥DG=√3EG=20√3(米),⊥EF=GC=GD+CD=(20√3+30)米,⊥BF=EF=(20√3+30)米,⊥BC=BF+FC=BF+EG=20√3+30+20=20√3+50=85(米),答:BC的高度约为85米;(2)根据题意得:30÷6+40÷4+85÷1.25+3×60=263(秒),⊥263<300,⊥小开能在闭馆前赶到图书馆.【点睛】本题考查解直角三角形的应用,通过添加辅助线,构造直角三角形是解题的关键.17.(2021·山东·淄博市淄川第二中学九年级期中)为践行“绿水青山就是金山银山"的重要思想,我省森林保护区开展了寻找古树活动.如图,发现古树AB是直立于水平面,为测量古树AB的高度,小明从古树底端B出发,沿水平方向行走了26米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC,在点D处放置测角仪,测角仪支架DE高度为0.8米,在E 点处测得古树顶端A点的仰角∠AEF为15°(点A、B、C、D在同一平面内),斜坡CD的坡度(或坡比)i=1:2.4.(1)求斜坡CD的高;(2)求古树AB的高?(已知sin15°≈0.26,cos15°≈0.97,tan15≈0.27°)【答案】(1)10米(2)24.3米【分析】(1)过点E作EM⊥AB与点M,延长ED交BC于G,根据斜坡CD的坡度(或坡比)i= 1:2.4可设DG=x,则CG=2.4x,利用勾股定理求出x的值,进而即可求解;(2)由CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐角三角函数的定义求出AM的长,进而可得出结论.【详解】(1)解:过点E作EM⊥AB与点M,延长ED交BC于G,⊥斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=26米,⊥DG=x,则CG=2.4x.在Rt△CDG中,⊥DG2+CG2=DC2,即x2+(2.4x)2=262,解得x=10,⊥DG=10米,即:斜坡CD的高为10米;(2)⊥DG=10米,⊥CG=24米,⊥EG=10+0.8=10.8米,BG=26+24=50米.⊥EM⊥AB,AB⊥BG,EG⊥BG,⊥四边形EGBM是矩形,⊥EM=BG=50米,BM=EG=10.8米.在Rt△AEM中,⊥∠AEM=15°,⊥AM=EM⋅tan15°≈50×0.27=13.5米,⊥AB=AM+BM=13.5+10.8≈24.3(米).答:建筑物AB的高度约为24.3米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.(2022·陕西·西安市铁一中学九年级期中)如图,某学习小组在学习了“利用三角函数测高后”,选定测量小河对面一幢建筑物BC的高度.他们先在斜坡的D处,测得建筑物顶端B 的仰角为30°,且D离地面的高度DE为9米,坡底的长度EA=21米,然后在A处测得建筑物顶端B的仰角为45°,点E,A,C在同一水平线上,求建筑物BC的高度.(结果精确到1米,参考数据:√3≈1.73)⊥DE⊥EC,BC⊥EC,DH⊥BC,学校每日都在学生进校前进行体温检测.某学校大门AB高6.5米,学生DF身高1.5米,当学生准备进入体温检测有效识别区域时,在点D处测得摄像头A的仰角为30°,当学生刚好离开体温检测有效识别区域CD段时,在点C处测得摄像头A的仰角为60°,求体温检测有效识别区域CD段的长(结果保留根号)了如下方案(如图):⊥在点A处安置测倾仪,测得小山顶M的仰角∠MCE的度数;⊥在点A 与小山之间的B处安置测倾仪,测得小山顶M的仰角∠MDE的度数(点A,B与N在同一水平直线上);⊥量出测点A,B之间的距离.已知测倾仪的高度AC=BD=1.5米,为减小误差,他们按方案测量了两次,测量数据如下表(不完整):(1)写出∠MCE的度数的平均值.(2)根据表中的平均值,求小山的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(3)该小组没有利用物体在阳光下的影子来测量小山的高度,你认为原因可能是什么?(写出一条即可)【答案】(1)22°(2)101.5米(3)小山的影子长度无法测量【分析】(1)根据平均数公式,用两次测量得的∠MCE的度数和除以2即可求解;(2)在Rt⊥MDE中,利用仰角⊥MDE的45°,即可求得ME=DE,在Rt⊥MCE中,利用仰角⊥MCE的正切值,可得ME=CE⋅tan⊥MCE,进而由CE=CD+DE=CD+ME,易知四边形CANE、四边形ABDC是矩形,可得EN=AC=1.5米,CD=AB=150米,代入即可求出ME的值,然后由MN=ME+NE求解;(3)可根据小山的影子长度无法测量解答即可.(1)=22°,解⊥ ∠MCE的度数的平均值=22.3°+21.7°2答:∠MCE的度数的平均值为22°;(2)解:在Rt⊥MDE中,⊥⊥MDE=45°,⊥⊥DME=⊥MDE=45°,⊥ME=DE,在Rt⊥MCE中,⊥tan∠MCE=ME,CE⊥ME=CE⋅tan⊥MCE,由题意知四边形CANE、四边形ABDC是矩形,可得EN=AC=1.5米,CD=AB=150米,⊥ME=(CD+DE)⋅tan22°=(150+ME)×0.40,⊥ME=100(米),⊥MN=ME+NE=100+1.5=101.5(米),答:小山的高度约为101.5米.(3)答:因为利用物体在阳光下的影子来测量小山的高度,由于小山的内部无法到达,则小山的影子长度无法测量,所以没有用物体在阳光下的影子来测量小山的高度的原因是小山的影子长度无法测量.【点睛】本题考查仰角,要求学生能借助仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.(2022·甘肃·西和县汉源镇初级中学九年级期末)广场上有一个充满氢气的气球P,被广告条拽着悬在空中,甲乙二人分别站在E、F处,他们看气球的仰角分别是30度、45度,E点与F点的高度差AB为1米,水平距离CD为5米,FD的高度为0.5米,请问此气球有多高?(结果保留到0.1米).【答案】此气球有9.7米高【分析】由于气球的高度为P A+AB+FD,而AB=1米,FD=0.5米,可设AP=h,根据题意列出关于h的方程即可解答.【详解】解:设AP=h,⊥∠PFB=45°,⊥BF=PB= h+1,⊥EA= h+6,在Rt△PEA中,P A=AE·tan30°,⊥h=(h+6)tan30°,⊥3ℎ=(ℎ+6)√3,≈8.2米,⊥h=6(√3+1)2⊥气球的高度为P A+AB+FD=9.7米.【点睛】本题考查了一元一次方程的实际应用,解决本题的关键是正确的运用三角函数知识解答.22.(2022·江苏·扬州中学教育集团树人学校九年级期末)如图,为了测量山坡上一棵树PQ 的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进100m到达B点处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.(1)求⊥BPQ的度数;(2)求树PQ的高度.√3√3测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα= 4.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,5D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:√3≈1.7)∵在Rt△DCE中,cosα=4,CD=15m,筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(B、C、D、E均在同一平面内).已知斜坡CD的坡度(或坡比)i=4:3,且点C到水平面的距离CF为8米,在E处测得建筑物顶端A的仰角为24°,求建筑物AB的高度.(参考数据:sin24°=0.41,cos24°=0.91,tan24°=0.45)【答案】建筑物AB的高度为21.7米.【分析】延长AB交直线DE于M,则BM⊥ED,则四边形BMFC是矩形,首先解直角三角形Rt⊥CDF,求出DF,再根据tan24°=AMEM,构建方程即可解决问题.【详解】解:延长AB交直线DE于M,则BM⊥ED,如图所示:则四边形BMFC是矩形,⊥CF⊥DE,在Rt⊥CDF中,⊥CFDF =43,CF=8,⊥DF=6,⊥CD=√62+82=10,⊥四边形BMFC是矩形,⊥BM=CF=8,BC=MF=20,EM=MF+DF+DE=20+6+40=66,在Rt⊥AEM中,tan24°=AMEM,⊥0.45=8+AB66,解得:AB=21.7(米),答:建筑物AB的高度为21.7米.【点睛】本题考查的是矩形的性质、解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25.(2022·吉林·长春市第八十七中学八年级阶段练习)“太阳鸟”是某市文化广场的标志性雕塑.某“数学综合与实践”小组为了测量“太阳鸟”的高度,利用双休日通过实地测量(如示意图)和查阅资料,得到了以下信息:信息一:在H处用高1.5米的测角仪BH,测得最高点A的仰角为30°.信息二:在F处用同一测角仪测得最高点A的仰角为45°.信息三:测得FH=25米,点D、F、H在同一条直线上.请根据以上信息,回答下列问题:(1)在Rt△ACB中,ACCB =________(填sin30°、cos30或tan30°),⊥ACCB=________.(2)设AC=x米,则CE=________米(用含x的代数式表示)米,BC=________米(用含x 的代数式表示).(3)“太阳鸟”的高度AD约为多少米?(精确到0.1,√3=1.73)【答案】(1)tan30°,√33;(2)x,(x+25);(3)“太阳鸟”的高度AD约为35.6米.【分析】(1)根据锐角三角函数定义及特殊角三角函数值求解即可;(2)易证⊥ACE是等腰直角三角形,四边形EFHB是矩形,可得CE=AC=x米,EB=FH =25米,进而可表示出BC的长;(3)根据(1)(2)列式求出AC,然后证明四边形BCDH是矩形,可得CD=BH=1.5米,进而可得答案.(1)解:由题意得:在Rt△ACB中,ACCB=tan∠ABC=tan30°,⊥AC CB =√33,故答案为:tan30°,√33;(2)解:设AC=x米,由Rt△ACB可得⊥ACB=90°,⊥⊥AEC=45°,⊥⊥ACE是等腰直角三角形,⊥CE=AC=x米,由题意得:BH=EF,BH∥EF,⊥四边形EFHB是平行四边形,又⊥BH⊥FH,即⊥H=90°,⊥平行四边形EFHB是矩形,⊥EB=FH=25米,⊥BC=CE+EB=(x+25)米,故答案为:x,(x+25);(3)解:由(1)(2)可得:xx+25=√33,解得:x=25√3+252,经检验,x=25√3+252是分式方程的解,⊥AC=25√3+252米,⊥⊥ACB=90°,⊥⊥DCB=90°,又⊥⊥D=⊥H=90°,⊥四边形BCDH是矩形,⊥CD=BH=1.5米,⊥AD=AC+CD=25√3+252+1.5≈35.6米,答:“太阳鸟”的高度AD约为35.6米.【点睛】本题主要考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解题的关键.26.(2022·山东聊城·中考真题)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图⊥).数学兴趣小组利用无人机测量古槐的高度,如图⊥所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正。
解直角三角形(仰角俯角坡度问题)
解直角三角形(仰角俯角坡度问题)1、(德阳市2013年)如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为300,看这栋高楼底部C 的俯角为600,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为A. 40D. 1602、(2013•衢州)如图,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4m ,测得仰角为60°,已知小敏同学身高(AB )为1.6m ,则这棵树的高度为( )(结果精确到0.1m ,≈1.73).3、(2013聊城)河堤横断面如图所示,堤高BC=6米,迎水坡AB 的坡比为1:,则AB的长为( ) A .12 B .4米 C .5米 D .6米4、(2013•宁夏)如图是某水库大坝横断面示意图.其中AB 、CD 分别表示水库上下底面的水平线,∠ABC=120°,BC 的长是50m ,则水库大坝的高度h 是( )m∠= ,则该山坡的高5、(2013成都市)如图,某山坡的坡面AB=200米,坡角BAC30BC的长为_____米。
6、(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.7、(2013山西,10,2分)如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则BC两地之间的距离为()A.m B.m C.m D m8、(2013•牡丹江)如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC=米.9、(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)10、(13年安徽省10分、19)如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=600,汛期来临前对其进行了加固,改造后的背水面坡角β=450,若原坡长AB=20m,求改造后的坡长AE(结果保留根号)11、(2013•白银)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF (如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B 点的仰角分别是60°和45°,求路况警示牌宽BC的值.12、(2013•衡阳)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)13、(2013甘肃兰州24)如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)14、(2013•毕节地区)如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)15、(2013•六盘水)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosasinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan15°=tan(45°﹣30°)===根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据,)16、(2013•遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).17、(2013•恩施州)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N 的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:,).18、(2013•黄冈)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,≈1.73,≈1.41)19、(2013•孝感)如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).20、(2013•郴州)我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).21、(2013•张家界)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)22、(2013•泰州)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)23、(2013•徐州)如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73)24、(2013鞍山)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)25、(2013•铁岭)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)26、(2013聊城)如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C 处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F 点的俯角为53°,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?27、(2013•广安)如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?28、(2013•泸州)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).29、(2013•眉山)如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:.(1)求加固后坝底增加的宽度AF ;(2)求完成这项工程需要土石多少立方米?(结果保留根号)30、(2013•内江)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为1:(即AB :BC=1:),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).31、(2013河南省)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角68BAE ︒∠=,新坝体的高为DE ,背水坡坡角60DCE ∠=︒。
1.5 解直角三角形(仰角、俯角)[
D 30°
C E
x x
F B
3、在山顶上处D有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已 知塔高BD=30米,求山高CD。 B α
D
β
C
A
1.如图,某飞机于空中 A处探测到目标C,此 时飞行高度AC=1200米, 从飞机上看地平面控制 点B的俯角α=16031`,求 飞机A到控制点B的距 离.(精确到1米)
α
2. 两座建筑AB及CD,其 地面距离AC为50.4米,从 AB的顶点B测得CD的顶 部D的仰角β =250,测得 其 底 部 C 的 俯 角 a = 500, 求两座建筑物AB及CD的 高.(精确到0.1米)
A
C
B
课本P92 例4
(第 2 题)
3.国外船只,除特许外,不得进入我国海洋100海里 以内的区域,如图,设A、B是我们的观察站,A和B 之间的距离为157.73海里,海岸线是过A、B的一条 直线,一外国船只在P点,在A点测得∠BAP=450,同 时在B点测得∠ABP=600,问此时是否要向外国船只 发出警告,令其退出我国海域.
10m
F
4 3m
1.5m
A
0.9m
E D C
1、解直角三角形的关键是找到与已知和未知相关联
的直角三角形,当图形中没有直角三角形时,要通过 作辅助线构筑直角三角形(作某边上的高是常用的辅 助线);当问题以一个实际问题的形式给出时,要善 于读懂题意,把实际问题化归为直角三角形中的边角 关系。 2、一些解直角三角形的问题往往与其他知识联系, 所以在复习时要形成知识结构,要把解直角三角形作 为一种工具,能在解决各种数学问题时合理运用。
P
A