奥数周期问题
小学奥数周期问题
周期问题典型例解[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?●●○●●○●●○…【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。
再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。
解答 90÷3=30,正好有30个周期。
101÷3=33……2,有33个周期还多2个。
所以,第90颗棋是白棋,第101颗棋是黑棋。
答:第90颗是白棋,第101颗是黑棋[举一反三1]①有一列数:5、6、2、4、5、6、2、4…第129个数是多少?②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠?③△△○△△○△△○…其中第99个是什么图形?[例2]720277777⨯⨯⨯⨯⨯⨯积的个位数字是几?相乘为1个周期。
202个7相乘中含有多少个这样的周期?余数是几?如果余数是1,那么积的个位数字是7;如果余数是2,那么积的个位数字是9;如果余数是3,那么积的个位数字是3;如果没有余数,那么积的个位数字是1。
[解答]202÷4=50(周)……2(个)答:202个7连乘,积的个位数字是9。
[举一反三2]①2100122222个⨯⨯⨯⨯的积的个位数字是几?②42003444个⨯⨯⨯积的个位数字是几?③9201199999个⨯⨯⨯⨯⨯的积的个位数字是几?[例3]25÷74的商的小数点后面第80位是几?小数点后面前80个数字之和是多少?[分析]先找出25÷74的商,25÷74=0.3378378378…,从小数点后第二个数字开始,3,7,8这三个数字依次重复不断地出现,即循环节有三个数字组成:3,7,8,即25÷74=0.3378,显然这道题的周期是3(3,7,8)。
小学数学奥数题小升初常考题型解析—周期问题
例1 小兔和小松鼠做游戏,他们把黑白两色小球按下面的规律排列:●●○●●○●●○……你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?一找,二算,三要看周期为:3第90个小球是:90÷3=30(组)第100个小球是:100÷3=33(组)……1(个)答:第90个是白球,第100个是黑球。
练习1、校园联谊会前夕,做了一些“预祝会议成功”的条幅,这些条幅连起来就成了“预祝会议成功预祝会议成功预祝会议成功......”依次排列。
那么第37个字是什么字?2、你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么?(1)□☆□☆□☆□☆……(2)□◇△□◇△□◇△……例2 把气球按照5个红色,4个蓝色,1个黄色的规律挂在屋子里,请你算一算,第150个应该挂什么颜色的气球?前207个气球中有多少个蓝色的?周期为:5+4+1=10(个)(1)150÷10=15(组)(2)207÷10=20(组)……7(个)4×20+2=82(个)答:第150个气球是黄色的,前207个气球中有82个蓝色的。
总数=组内个数×组数+组外个数练习1、为了招待客人,把橘子、苹果、梨子按照先3个橘子,后2个苹果,再1个梨的规律排成一排放在盘子里,请你算一算,第50个水果的时候应该放什么?前50个水果中有多少个橘子?2、节日的街道很漂亮,街上的彩旗按照5面红旗、3面蓝旗、1面黄旗排列。
如果一直这样排列下去,那么第100面旗是什么颜色?前180面彩旗中有多少面红旗?例 3 准备好水果,装饰好屋子,又为小伙伴儿们想出了一个好玩的“填字”游戏,游戏规则如下:请大家往下接着写……请问按这样写下去,第81个数是多少?这81个数相加的和是多少?81÷5=16(组)……1(个)先算出一个周期的和,再乘以组数,最后加上周期外的数。
一个周期的和:7+0+2+5+3=17(个)81个数的和:17×16+7=279答:第81个数是数字“7”;这81个数相加的和是279。
小学三年级奥数第13讲 周期问题(含答案分析)
第13讲周期问题一、知识要点在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等。
像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。
这类问题一般要利用余数的知识来解答。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。
二、精讲精练【例题1】小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?练习1:1、如图,算出第20个图形是什么?○△△□□□○△△□□□○△△……2、“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?【例题2】2001年10月1日是星期一,问:10月25日是星期几?练习2:1、2001年5月3日是星期四,5月20日是星期几?2、2001年8月1日是星期三,8月28日是星期几?【例题3】100个3相乘,积的个位数字是几?练习3:1、23个3相乘,积的个位数字是几?2、100个2相乘,积的个位数字是几?【例题4】有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?练习4:1、一列数按“294736294736294……”排列,那么前40个数字之和是多少?2、有一列数按“9453672945367294……”排列,那么前50个数字之和是多少?【例题5】小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。
如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?练习5:1、校门口摆了一排花,每两盆菊花之间摆3盆月季,共摆了112盆花。
如果第一盆花是菊花,那么共摆了多少盆月季花?2、同学们做早操,36个同学排成一列,每两个女生中间是两个男生,第一个是女生,这列队伍中男生有多少人?三、课后作业1、把38面小三角旗按下图排列,其中有多少面白旗?2、2001年6月1日是星期五,9月1日是星期几?3、50个7相乘,积的个位数字是几?4、有一列数“7231652316523165……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?5、一个圆形花辅周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗。
小学四年级奥数-周期问题
周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。
在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。
解答这类题目只有找到规律,才能获得正确的方法。
例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。
第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。
三种颜色的弹子各有多少个? 例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。
(2)□○△□○△…… 第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢? 3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。
“72”是谁报的?“190”呢? 4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。
黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ), 第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几? 例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。
四年级奥数-教师版-第四讲周期问题
第四讲周期问题知识导航解决周期问题时,关键在于找到周期的长度.只要能找到周期的长度,再用总数除以周期长度,得到的商就是完整的周期的个数,余数就是除去完整周期的部分后剩下的个数.例1:2001年10月1日是星期一,问10月25日是星期几?解析:我们知道,每个星期有7天,也就是说以7天为一个周期不断地重复。
那么从10月1日到10月25日经过了25—1=24(天)。
因此用除法算式解答。
解:(1)从10月1日到10月25日有:25—1=24(天)(2)24天里有多少个星期余多少天?24÷7=3(个星期)……3(天)(说明24天中包含3个星期还多3天,最后一天起,再过3天就应是星期四)答:10月25日是星期四。
(注:在计算日期的过程中,日期一般“算头不算尾”数星期的时候也要从当天的后面数起。
本题中的当天是星期一,应该从星期二数起。
)【巩固1】2001年5月3日是星期四,问5月20日是星期几?解析:天数比较少,容易计算,而且出现在同一个月内。
解:20-3=17天17÷7=2 (3)从星期五数起,第三天是星期日。
【巩固2】公历2000年1月1日是星期六,公历2008年1月1日是星期几?解析:先求出从公历2000年1月1日到公历2008年1月1日一共经过的天数,其中平年有6年,闰年有2年,最后还有2008年1月1日这一天。
+⨯+⨯(天)365=2612923366=÷2923Λ44177从星期六开始数4天得星期二,所以公历2008年1月1日是星期二。
例2:100个3相乘,积的个位数字是几?解析:我们只需考虑积的个位数的排列规律就可以了。
解:(1)1×3=3……1个3相乘积的个位数字是:3(2)3×3=9……2个3相乘积的个位数字是:9(3)3×3×3=27……3个3相乘积的个位数字是:7(4)3×3×3×3=81……4个3相乘积的个位数字是:1(5)3×3×3×3×3=243……5个3相乘积的个位数字是:3(已经重复出现)规律:可以发现积的个位数分别以3、9、7、1不断出重复出现的。
奥数四年级—周期问题(课堂PPT)
在日常生活中,有一些现象会按照一定的规 律不断重复出现。例如人的生肖:鼠、牛、虎、 兔、龙、蛇、马、羊、猴、鸡、狗、猪就是按一 定的顺序不断重复出现的;每周有七天,从星期 一开始到星期日结束,总是以七天为一个循环, 不断重复出现。
在数学中,一些数和图形的变化也是周而复 始地循环出现的。我们把这种特殊的规律性问题 称为周期问题。解答这类题目必须找到规律。
解:136÷5=27...1 (我)
136÷4=34
(D)
答:第136组是(我,D)。
6
小结
解周期问题的关键是发现规律,找出周期。找规律时 一定要仔细观察,认真比较,也可以用列表的方法帮 助发现规律。确定周期后,再用总量除以周期, 如果正好有整数个周期,结果为周期里的最后一个; 如果有余数,那就是下个周期里的第几个。
解 +12-9+6-4=5 一个循环增加了5 1984-1949=35 刚好是7个循环 7×4=28步 2014-1949=65 刚好是13个循环13×4=52步
12
答:
10
练 7、有100朵花,按红花4朵、绿花3朵、黄花5朵、紫花2 习 朵的顺序排列,最后一朵是什么颜色?四种花各有几朵?
解:4+3+5+2=14 100÷14=7...2 红
红 4×7+2=30
绿 3×7=21
黄 5×7=35
紫 2×7=14
8、如下表,每列上下为一组,第1组是(小,A),第二 组是(学,B),问:第70组是什么?
小 学 生 爱 数 学 小 学 生 爱 数 学 ...
AB
C
D
E
A
B
C
D
E
A
小学奥数教程:周期问题_全国通用(含答案)
1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。
知识点说明: 周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类:1.图形中的周期问题; 2.数列中的周期问题;3.年月日中的周期问题. 周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个; 例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829¸=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351¸=×××,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-¸=×××,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列: ●●○●●○●●○… 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330¸=,正好有30个周期,第90个是白球.100333¸=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球【巩固】 美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的: 例题精讲知识精讲教学目标 周期问题○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题 【难度】2星 【题型】解答【解析】 观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425¸=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】 黑珠、白珠共101颗,穿成一串,排列如下图。
奥数讲座2--周期问题
二、混循环周期问题 开始不循环,后面循环的周期问题叫纯循环周期问题。 例5在1989后面写一串数字。从第5个数字开始,每个数字都是它前
面两个数字乘积的个位数字。这样得到19892868842…….那么,这串数 字中前2016个数字的和是多少?
例6 2001个学生按下列方法编号排成五列: 一二三 四 五
123 4 5
987 6
10 11 12 13
17 16 15 14
18 19 20 21 22 … 问最后一个学生应该在第几列? 三、隐循环周期问题 循环信息隐藏较深,需要一定的逻辑推理才能看出循环的周期问题 称为隐循环周期问题。 例7下面是一个11位数,每3个相邻数字之和都是17,你知 道“?”表示的数字是几吗?
例10有11个小朋友分别标号为1到11,按标号顺时针围成一圈,从1 号开始发书,每次发一本,按顺时针方向,依次隔2人、再隔3人;再隔 2人、再隔3人……这样的顺序发下去,共有2004本书,问最后一本书发 给几号小朋友?
例11 2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号为 1,2,……,2006.将编号为2的倍数的灯的拉线各拉一下;再将编号为 3的倍数的灯的拉线各拉一下,最后将编号为5的倍数的灯的拉线各拉一 下。拉完后亮着的灯有多少盏?
周期问题
一、纯循环周期问题 从一开始就循环的周期问题叫纯循环周期问题。 例1 2011年2月4日是星期五,那么再过10年的2月4日是星期几?
例2一列数1、2、4、7、11、16、22、29、37、46、……,这列数左 起第2016个数除以5的余数是几?
例3有a,b,c三条射线,从a线开始,从1起依次在三条射线上写数 (如图),22、59、2016各在哪一条线上? 1 b c a 2 3 4 5 6 1 b c a 2 3 4 5 6
五年级奥数:周期问题
五年级奥数:周期问题专题简析:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。
我们把这种特殊的规律性问题称为周期问题。
解答周期问题的关键是找规律,找出周期。
确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。
例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。
(1)□△□△□△□△……(2)□△△□△△□△△……分析与解答:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。
第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。
例2:有一列数,按5、6、2、4、5、6、2、4…排列。
(1)第129个数是多少?(2)这129个数相加的和是多少?分析与解答:(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2”还剩一个。
所以第129个数是5。
(2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是17×32+5=549。
例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…分析与解答:从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以根据这些数除以4所得的余数来分析。
39÷4=9…3 88÷4=22所以,39应排在第10个循环的第三个字母C下面,88应排在第22个循环的第四个字母D下面。
(完整版)三年级奥数-周期问题
周期问题1.2003年3月19日是星期三,问8月1日是星期几?2.1989年12月5日是星期二,那么再过10年的12月5日是星期几?3.1996年8月1日是星期四,问1996年的元旦是星期几?4.如果公元3年是猪年,那么公元2000年是什么年?5.如果公元2001年是蛇年,那么公元2年是什么年?6.如果公元6年是虎年,那么公元21世纪的第一个虎年是哪一年?7.有一列数,1、4、2、8、5、7、1、4、2、8、5、7 (58)数是多少?这58个数相加的和是多少?8.有一列数,5、6、2、4、5、6、2、4 ……第128个数是多少?这128个数相加的和是多少?9. A B C A B C A B C A B ……万事如意万事如意万事如……上表中每一列两个符号组成一组,如第一组“A万”,第二组“B事”……问第二十组是什么?10.课外活动上,有4个同学在进行报数游戏,他们围成一圈,甲报“1”、乙报“2”、丙报“3”、丁报“4”,每人报的数总比前一个人多1,问45是谁报的?11.小红买了一本童话书,每两页之间有3页插图,也就是说3页前后各有1页文字,如果这本书有128页,而第一页是文字,这本书共有插图多少页?12.校门口摆了一排花,每两排菊花之间摆了3盆月季花。
共摆了112盆花,如果第一盆是菊花,那么共摆了多少盆月季花?13.同学们做早操,36个同学排成一列,每两个女生中间是两个男生,如果第一个是女生,这列队伍共有多少男生?14.一个圆形花圃周围长30米,沿周围每隔3米插一面红旗,每两面红旗之间插两面黄旗。
花圃周围共插了多少面黄旗?15.河岸上种了1000棵树,第一棵是蟠桃,再后面两棵是水蜜桃,再后面三棵是大青桃。
接下来总是一棵蟠桃,两棵水蜜桃,三棵大青桃这样种下去。
问第100棵是什么桃树?三种树各有多少棵?16.一个两位数,个位上的数字是十位上的数字的2倍。
如果把十位上的数字与个位上的数字对调,那么所得的两位数比原来的两位数大36,求原来的两位数?17.某年的二月份有五个星期日,这年六月一日是星期几?18.1989年12月5日是星期二,那么再过十年的12月5日是星期几?19.节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是什么颜色的灯?20.7⨯7⨯7⨯……⨯7所得积末位数是几?50个21.校门口摆了一排花,每两盆菊花之间摆3盆月季,共摆了112盆花。
小学奥数专题周期问题
日一二三四五六日一二三四五六 日一二三四五六
7×7×…... ×7,50个7 相乘,积的末位数字是几?
100个2相乘,积的末位数 字是几?
求 3×3×……×3(89个3相乘) 的个位数字?
3 3× 3 3× 3 × 3 3× 3 × 3 × 3
积个位上的数字
假设所有的自然数排列起来,如图 所示,1998应该在哪一个字母的下 面? A B C D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 ``` ``` ``` ```
将偶数2、4、6、8……按下图依次排列, 2014出现在 哪一列? A B C D E 8 6 4 2 10 12 14 16 24 22 20 18 26 28 30 32
其实泰勒斯就是从之前的日食记录中找到了 日食发生的周期,根据周期做出的预言
在日常生活中,有一些现象 是按照一定的规律周而复始,不断 重复出现。比如:一年有12个月, 从一月开始到十二月;一星期 有7天,从星期日开始到星期 六结束等等。我们把这种特殊的 规律问题称为周期问题。
那么,亲爱的同学 们,你们还能找到生 活中其它的周期问题 吗?
森林里,有一个小仙 女叫做叮咚,她要准备 一个晚宴。于是在小屋 的周围挂上了彩色的灯 笼。先挂5只红的,再4 只绿的,再3只黄的顺 序排列着。最后数了一 数一共150只。那么, 第125只灯笼是什么颜 色的?
叮咚把梨、苹果、橘子按照 先1个梨,后2个苹果,再4个 橘子的规律排成一排放在盘子 里,请你算一算,叮咚在放 100个水果的时候应该放什么?
第二行周期:4
(1)460÷3=153(组) 小 ……1(个) 460÷4=115(组) 动
三年级奥数简单的周期问题
周期问题练习题
姓名:
1、小明问小刚:“今天是星期五,再过31天是星期几?”
2、一个星期7天,小朋友上学5天,星期六、日都休息。
而每年1月都是31天。
如果这个月的5号是星期天,问1月31号是上学还是在家休息?
3、有一堆棋子按二黑三白的规律往下排,第47个是什么颜色的棋子?
4、按下面的方法摆60个三角形,最后一个三角形是什么颜色?
5、小明放学回家准备开灯做作业,他拉了开关,灯没有亮,连续拉了10次,灯都没有亮。
原来电线被刮断了。
你知道电线修好时,小明家的电灯亮不亮?
6、有同样大小的红白黑珠共96个,按先5个红,再4个白,再3个黑的顺序排列着,问黑珠共有多少个?
7、刘老师把54张牌依次发给甲、乙、丙、丁4个同学,最后一张牌发给了谁?
8、国庆期间,公园挂彩灯按“红、黄、白、绿”的顺序,挂了32盏彩灯,第32盏是什么颜色?有几盏黄色彩灯?。
小学奥数周期性问题
小学奥数——周期性问题例1. 某年的二月份有五个星期日,这年六月一日是星期_____【解析】因为7X4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为93¸7=13…2,所以这年6月1日是星期二.本题是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.例2 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.【解析】分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991 X 24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.小贴士在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.仔细观察题中数表. 1 2 3 4 5 (奇数排)第一组 9 8 7 6 (偶数排)10 11 12 13 14 (奇数排)第二组 18 17 16 15 (偶数排)19 20 21 22 23 (奇数排)第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)10÷9=1…1,10在1+1组,第1列19÷9=2…1,19在2+1组,第1列因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.例4 在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?【解析】因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5X5-6X4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2X[(100-10)÷30]+1=2X3+1=7(段)例5 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8X9=72,在9后面写2,9X2=18,在2后面写8,……得到一串数字:1 9 8 9 2 8 6……这串数字从1开始往右数,第1989个数字是什么?【解析】依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.。
小学六年级奥数:周期问题
周期问题【走进来】事物在运动变化的发展过程中按一定的规律多次重复出现,其中的一组叫做。
生活中很多事物呈周期性变化,如一个星期有7天,第8天后又是新的一个周期的开始。
又如分数=0.142 857 142 857 …可以写成无限循环小数,循环节有六位,也就是说将在此后142 857六个数字反复无穷的出现,这也是一种周期现象。
在具有周期性现象的问题中,如果能发现周期,常能使看来复杂的问题轻易获得解决。
【竞技1】巧算数列1、努力学习竞赛数学努力学习竞赛数学…照这样排列的话第2010个字是()。
2、有一列数:5、6、2、4、5、6、2、4、…问第129个数是(),这129个数相加的和是()。
3、自然数1、2、3、4、…、9、10、11、…顺次排列成123456789101112…第2010个数位上的数是()。
4、一列数1、2、4、7、11、16、22、29…这列数左起第1992个数除以5的余数是多少?【竞技2】神奇的岁月1、已知某年的4月11日是星期四,那么这一年的7月9日是星期()。
2、你知道中国举办的奥运会是那一年么,那么中国举办的奥运会开幕式是星期()3、如果某一年的2月份有5个星期六,那么下一年的元旦是星期()4、在中国,每个人出生时都有自己的生肖相伴,我国的生肖按顺序排列有鼠、共12种动物,按照顺序轮流代表各年的年号,如果2010年是虎年,那么2088年是()年。
5、今天是星期六,那么在过9999天是星期()。
【竞技3】小数的周期1、32÷37商的小数点后面125个数码是()。
2、把化成小数后,小数点后面的前100位是()。
3、中,到小数点后第()个数字时,这之前的小数部分各个数字之和是1987。
4、把小数0.123456789化成循环小数,如果把表示循环节的“.”加在3和9上面,则此循环小数第200位上的数字是();如果要第100位上的数是5,那么应该把表示循环节的“.”加在()和()上。
六年级周期工程问题奥数题目
六年级周期工程问题奥数题目六年级周期工程问题奥数题目 11、一件工程,甲队单独做要15天完成,乙队单独做要20天完成。
两队合做要多少天完成?2、一件工作,甲单独做要6小时完成,乙单独做要4小时完成,丙单独做要3小时完成。
三人合做要几小时完成?3、一个水池,装有甲、乙、丙三个水管,甲乙为进水管,丙为出水管。
单开甲管2小时可将空水池注满,单开乙管3小时可将空水池注满,单开丙管4小时将满池水放完。
三管齐开,多少时间才能把空池注满?4、一项工程,甲独做8天可以完成,乙独做8天只能完成这项工程的4/5,如果甲、乙合做,多少时间才能完成这项工程?5、一批零件,甲独做12天完成,乙独做8天完成。
甲、乙先合作3天,余下的由乙独做,还要几天完成?6、文教印刷厂装订一批复习资料。
师傅9天可装订3/4,徒弟20天可装订5/6。
师徒两人合作,几天可以装订完?7、有—项工程。
甲、乙两队合做12天完成,丙、乙两队合做20天完成,甲、丙两队合做15天完成。
甲、乙、丙三队合做需多少天完成?8、一条公路,如果由甲队独修需30天完成,由乙队独修5天完成这条公路的1/4。
甲、乙两队合修3天后,余下的由乙独做,还需要几天才能修完?9、一项工程,甲独做9天完成,乙独做6天完成。
甲独做4天后,乙与甲合做。
还要多少天才能完成?10、一项工程,甲、乙合做10天可完成,甲、乙合做8天后,乙又单独做了5天才完成。
若由乙单独做这项工程,需要多少天?六年级周期工程问题奥数题目 21、甲、乙二人骑自行乐从环形公路上同一地点同时出发背向而行。
现在已知甲走一圈用的时间是70分钟,如果在出发后第45分钟,甲、乙二人相遇,那么己走一圈的时间是多少分钟?2、一项工程,甲、乙两人合作8天可以完成乙、丙两人合作6天可以完成;丙、丁两人合作12天可以完成;那么甲、乙合作多少天可以完成?3、一项工程,甲独做20天完成,乙独做30天完成,若此项工程甲先干若干天后,由乙接着做,共用了25天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
182÷7=26 因为上个星期四到下个星期 三为一个周期,所以七月一日是 星期三。
假设所有自然数排列起来,如图所 示,27应该排在哪个字母下面?76又 应该排在哪个字母下面呢?
ABCD 1 234 5678 9 10 11 12 13 14 15 ``` ``` ```
143 ÷4 =35(组) …… 3(个) △:35× 2+1 = 71(个) 答:其中一共有_7_1_个△。
……
12个图形里有几个白色圆片?
12÷6=2 2×3=6
……
100个图形里有几个白色圆片? 有几个三角形?有几个红色圆 片?
100÷6=16……4
……
100个图形里有几个白色圆片? 有几个三角形?有几个红色圆 片?
亲爱的宝贝:
欢迎你的到来!
成功从这里起航!
我们的目标——
家长积极配合, 老师倾心教育, 孩子努力进步!
成为一名优秀学生很简单
心理上: 坚持不懈、积极向上 行动上: 按时上课,认真完成作业
如何学好奥数呢?
??善有难于度观的数察学
什么是奥数?
? 有好方法解决的数学
?善于分析 ? 用来选拔人才的数学
⑸今年教师节(2011/9/10 )是星期六,在 没有日历的情况下,利用今天学习的知识算一 算今年的最后一天(2011/12/31 )是星期几? *从今天到年底还有多少个休息日?
从9月11日算起 星期日 一二三四五六 日一二三四五六 ……
30-10+31+30+31= 112(天)
112÷7=16(组)
100÷6=16……4
……
100个图形里有几个白色圆片? 有几个三角形?有几个红色圆 片?
100÷6=16……4 3×16+3=51(个) 2×16+1=33(个) 1×16=16(个)
0.428571428571……的第 545位上的数字是几?
0.428571 428571……的 第545位上的数字是几?
2006年元旦是星期日。问:(1)该月 的22号是星期几?(2)2008年1月1日
是星期几?
分析:由于每个星期共七天,成循环状态,因此只需判 断2006年元旦到所求的那一天之间共经过多少天,然 后被7除,用所得余数就可判定了。
解 : (1)22÷7=3……1 (星期日) (2)(365+365+1 )
已知循环小数3.4650725072……, 它的第100位小数是几?
(100-2)÷4=24……2
诀窍:
研究周期问题要算准周期 (循环的固定数),然后利用除 法算式求出余数,最后根据余数 是几找出处于循环节里面第几位 上的数据或图形。
第二课时
有同样大小的红、黄、黑弹子共190个,先 按4个红的,再2个黄的,再3个黑的顺序排列。 三种颜色的弹子各有多少个?
答:第25盆花是_蓝__色的。
⑵从左边起,彩灯照这样排下去,第 48盏灯是什么颜色?
……
48 ÷ 3 = 16(组)
答:第48盏灯是_绿__色的。
⑶从左边起,彩旗照这样排下去,第 67面旗是什么颜色?
67 ÷ 4 = 16(组)……3(面)
…… 答:第67面彩旗是_红__色的。
树立的彩旗,照这样排下去,第 67面彩旗是什么颜色?
假设所有的自然数列起来,如图所示, 200应该排在哪个字母的下面?
在这67面彩旗中,红旗和黄旗分别有几面?
……
67 ÷ 4 = 16(组) ……3(面) 红旗:16× 3 + 3 = 51(面) 黄旗:16× 1= 16(面)
答:这67面彩旗中,红旗有 51面,黄旗有 16面。
有143 个图形,按照下面的规律排列:
●△○△●△○△●△○△……
其中一共有多少个△?
190 / (4+2+3)=21(个周期)……1(个) 4*21+1=85(个)……红弹子 2*21=42(个)……黄弹子 3*21=63(个)……黑弹子 答:红弹子85个,黄弹子42个,黑弹子63个。
? 围棋有黑白两种,黑棋和白棋共 500 颗,按照下面的规律排列,第 500颗 棋子是()色。
……
杆子上有三种颜色的气球,按一定的规律挂起来。
第14 个气球是什么颜色? 第85 个气球是什么颜色?
杆子上还是这三种颜色的气球,按另一种规律挂起来。
第 23个气球是什么颜色? 第125 个气球是什么颜色?
⑴从左边起,盆花照这样摆下去,第 25盆是什么颜色?
……
25 ÷ 学好奥数呢?
?善于观察 ?善于分析 ?善于总结
……
夏春秋冬
春夏秋冬
冬春夏秋 ……
…… ……
你还知道哪些“周期现象”?
鼠牛虎兔龙蛇马羊猴鸡狗猪
星期一 星期二 星期三 星期四 星期五 星期六 星期日
那么,亲爱的同学 们,你们还能找到生 活中其它的周期问题 吗?
在日常生活中,有一些现象 是按照一定的规律周而复始,不断 重复出现。比如:一年有12个月, 从一月开始到十二月;一星期 有7天,从星期日开始到星期 六结束等等。我们把这种特殊的 规律问题称为周期问题。
假设所有自然数排列起来,如图所示, 1998应该排在哪个字母下面?
A BCDE 1 2 34 5 6 7 8 9 10 11 12 13 14 15 ``` ``` ``` ``` ```
从排列的情况可以知道,这些自然数是按照从 小到大的顺序5个数一循环的。
1998 / 5=399……3 答:1998应该排在c下面。
从9月10日算起 星期六 日一二三四五 六日一二三四五 ……
30-9 +31+30+31= 113(天) 113÷7=16(组)…… 1(天)
1998年元旦是星期四?到 这一年的七月一日有多少天? 七月一日是星期几?
31+28+31+30+31+30
1998年元旦是星期四?到 这一年的七月一日有多少天? 七月一日是星期几?
0.428571 428571 …… 的 第545 位上的数字是几?
545÷6=90……5
已知循环小数3.4650725072……, 它的第100位小数是几?
已知循环小数3.4650725072……, 它的第100位小数是几?
已知循环小数3.4650725072……, 它的第100位小数是几?