步进式加热炉设计计算_模板

合集下载

【精品】步进式燃气加热炉结构及控制系统设计毕业论文设计

【精品】步进式燃气加热炉结构及控制系统设计毕业论文设计

河北工业大学毕业设计说明书题目:步进式燃气加热炉结构及控制系统设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:步进式燃气加热炉结构及控制系统设计摘要:工业炉的设计的目的是参考现有炉型,以热工理论为指导,设计出结构更完善的炉体结构。

本设计充分考虑了工业炉系统的各个方面。

对于炉膛,采用一般的平顶结构,使整体成本造价和安装费用大幅度降低。

对于烟道,由于加热圆形工件时,工件下方尚有一定空间且工作间距固定可在装料侧墙下部排烟。

对于天然气的预热,采用烟气加热天然气。

对于燃烧器,采用半喷射式烧嘴,与喷射式烧嘴相比,不仅缩短了烧嘴长度,而且通过调节一、二次空气量,从而在一定范围内可调节火焰长度。

对加热炉自动控制系统的设计,使加热炉更易于使用。

关键词:步进式燃气加热炉控制系统the design of walking-beam gas furnace structure and control systemAbstractthe design purpose of Industrial furnace is to reference existing furnace, With thermodynamic theory as the guide,designed structure more perfect furnace construction.This design is considered with the fully industrial furnace system.For furnace,The roof structure,make the whole cost and installation cost significantly reduced.For flue,when heated circular workpiece due,below are some workpiece and work in feeding fixed spacing of the lateral wall smoke.For gas preheating,Using the natural gas to heating.For burner,using half a jet burner,compared with the jet burner, not only shorten the length of burner,and through adjusting the first and the second air quantity,thus, adjustable flame length within a certain range.For the design of automatic control system of reheating furnace, make more easy to use.Keywords: walking-beam furnaces Gas furnace The control system目次1 引言 (4)2 设计任务书 (5)3 工业炉设计概论 (5)3.1 工业炉概念 (5)3.2 工业炉性能参数介绍 (6)3.3 工业炉基本分类 (8)3.4 设计内容 (8)3.5 工业炉设计原则 (9)3.6 本课题设计思路 (9)3.7 设计时间规划 (11)4 加热炉系统的具体设计 (11)4.1 燃料燃烧的计算 (11)4.2 炉体基本结构的设计 (14)5 热平衡计算 (18)5.1 加热段的热平衡 (18)5.2 预热段的热平衡 (20)6 预热器的设计计算 (23)6.1 预热器的选用 (23)6.2 空气预热器的设计计算 (24)6.3 天然气预热器的设计计算 (29)7 燃烧装置的设计 (35)7.1 烧嘴的选择 (35)7.2 空气管道的设计 (36)7.3 天然气管道的设计 (37)8 排烟系统的设计计算 (37)9 自动控制系统的设计 (40)9.1 坯料的侧长称重与入炉定位 (40)9.2 坯料的装卸 (40)9.3 炉内步进机构的传动 (40)9.4 炉内燃烧状况的检测 (40)9.5 炉温炉压控制 (40)9.6 炉膛含氧量检测 (40)10 加热炉系统的其它细节介绍 (41)10.1 进料工具的设计 (41)10.2 传动装置的设计 (41)10.3 钢件出口及炉门的设计 (41)10.4 炉底的设计 (41)10.5 炉子启动时注意事项 (42)10.6 对于环境的影响 (42)10.7 燃烧系统程序控制 (42)10.8 步进机械运行过程原理 (42)10.9 出渣系统 (43)结论 (43)参考文献 (43)致谢 (44)附录1-1.......................................... CAD附图-加热炉系统图附录1-2.......................................... CAD附图-加热炉系统图附录2................................................. CAD附图-炉膛简图附录3............................................... CAD附图-预热器简图附录4............................................... CAD附图-烧嘴形式图附录5......................................... CAD附图-自动控制系统简图1 引言作为一种重要的热工设备,工业炉广泛应用于物料的焙烧、干燥、熔化、熔炼、加热和热处理等各种生产过程中,不仅数量众多,而且种类繁多。

步进式加热炉设计计算模板

步进式加热炉设计计算模板

210步进式加热炉设计计算2.1 热工计算原始数据(1) 炉子生产率:p=245t/h (2) 被加热金属:1) 种类:优质碳素结构钢(20#钢)2) 尺寸:250 >2200 >3600 (mm )(板坯) 3) 金属开始加热(入炉)温度:t 始=20r 4) 金属加热终了(出炉)表面温度:t 终=1200C 5) 金属加热终了(出炉)断面温差:t < 15C (3) 燃料1) 种类:焦炉煤气2) 焦炉煤气低发热值:Q 低温=17000kJ/标m 3 3) 煤气不预热:t 煤气=20 °C表1-1焦炉煤气干成分(%)⑷ 出炉膛烟气温度:t 废膛=800C⑸空气预热温度(烧嘴前):t空=350 C2.2燃烧计算2.2.3 计算理论空气需要量L c1 1m L o 4.76 —CO -H 2 (n —)C n H m2 24把表2-1中焦炉煤气湿成分代入1 1333-H 2S O 2 2233)10 (m /m )L0 4.76 8.7939 険5741 2 24・8184 3 2・8336。

碍210 =4.3045m3/m3V n V CO 2 V H 2O V N 2 V O 2224计算实际空气需要量Ln查《燃料及燃烧》,取n=1.1代入L nnL o1.1 4.3045 4.7317 标 m 3/标 m 3实际湿空气消耗量L n 湿(10.00124g) nL o=(1 0.00124 18.9) 4.7317=6.0999 标 m 3/标 m 32.2.5计算燃烧产物成分及生成量V c°2(COnC n H m CO 2) 1001791.2702 丄 79 4.7317100 100=3.7507标m 3/标m 3V 02(L nL 0)标 m /标 m100 214.7317 4.3045 100=0.0897 标 m 3/标 m 3 燃烧产物生成总量(56.5741 2 1 24.8184 2 2.8336 2.2899) 1000.00124 18.9 4.7317标m 3/标m 3标m 3/标m 3(24.8184 8.7939 2 2.83363.0290)1 100=0.4231 标 m 3/标 m 3V H 2O (H 2m C Hn m2H 2S H 2O)1 1000.00124gL n 标 m 3/标 m 3V N 2N 2100 100 Ln 标说标m=1.25260.4231 1.2526 3.7507 0.0897 5.5161 标 m 3/标 m 3燃烧产物成分V Co i100% 6.145%V n 5.5161V H O 1 2526 上上空6100% 19.132% V n 5.5161 皿 37507100% 72.977% V n5.5161O 2 纟 00897100% 1.746%V n 5.5161100%将燃烧产物生成量及成分列于下表表2-2焦炉煤气燃烧产物生成量(标 m 3/标m 3)及成分(%)成 4名称7^CO 2 H 2O N 2 O 2 合计生成量(标m 3) 0.4231 1.2526 3.7507 0.0897 5.5161体积含量(%)7.6703 22.7081 67.99551.6261100按燃烧产物质量计算把表2-2中燃烧产物体积百分含量代入44CO 2 64SO 218H 2O 28N 232O 2100 22.444 7.6703 18 22.7081 28 67.9955 32 1.6261100 22.4=1.2063Kg/m 32.2.7计算燃料理论燃烧温度由t 空=350 C ,查《燃料与燃烧》表得 C 空=1.30kJ/标m 3,由《燃料与燃烧》P as ,Kg/m 3V n C 产Q 低L n C 空t 空C 燃 t 燃Q 分得燃烧室(或炉膛)内的气体平衡压力接近1个大气压(大多数工业炉如此),那么式中各组分的分压将在数值上与各组分的成分相等)即P CO2 CO2 %P CO CO %所以P CO2 7.6703% ,P H2O 22.7081%由《燃料与燃烧》附表8,附表9,得f co219.81% , f H2o 4.938%所以Q分12600 f co2(V co2)未10800 f H2o(V H2o)未10800 4.938% 0.227081 12600 0.076703% 0.1981140.2487KJ / Kg Kt 17790.4993 2152.9335 140.2487 所以理 5.5161 1.672149.7413 C2150误差% 2150 2100 100% 2.38% 5%2100在误差范围内,故不必再假设。

步进式加热炉设计计算-模板

步进式加热炉设计计算-模板

步进式加热炉设计计算2.1 热工计算原始数据(1)炉子生产率:p=245t/h (2)被加热金属:1)种类:优质碳素结构钢(20#钢) 2)尺寸:250×2200×3600 (mm)(板坯) 3)金属开始加热(入炉)温度:t 始=20℃4)金属加热终了(出炉)表面温度:t 终=1200℃ 5)金属加热终了(出炉)断面温差:t ≤15℃ (3)燃料1)种类:焦炉煤气2)焦炉煤气低发热值:Q 低温=17000kJ/标m 33)煤气不预热:t 煤气=20℃表1-1 焦炉煤气干成分(%)废膛(5)空气预热温度(烧嘴前):t 空=350℃2.2 燃烧计算2.2.3 计算理论空气需要量L 0)3322220/(1023)4(212176.4m m O S H H C m n H CO L m n -⨯⎥⎦⎤⎢⎣⎡-++++=∑把表2-1中焦炉煤气湿成分代入20103909.08336.238184.2425741.56217939.82176.4-⨯⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯+⨯=L =33/3045.4m m2.2.4 计算实际空气需要量Ln查《燃料及燃烧》,取n=1.1代入7317.43045.41.10=⨯==nL L n 标m 3/标m 3实际湿空气消耗量0)00124.01nL g L n ⨯+=(湿 =7317.4)9.1800124.01(⨯⨯+=6.0999 标m 3/标m 32.2.5 计算燃烧产物成分及生成量1001)(22⨯++=∑CO H nC CO V m n CO 标m 3/标m 3 1001)0290.38336.227939.88184.24(⨯+⨯++= =0.4231 标m 3/标m 3n m n O H gL O H S H H C m H V 00124.01001)2(2222+⨯+++=∑ 标m 3/标m 3 7317.49.1800124.01001)2899.28336.228184.2425741.56(⨯⨯+⨯+⨯+⨯+== 1.2526 标m 3/标m 3 n N L N V 10079100122+⨯= 标m 3/标m 3 7317.41007910012702.1⨯+⨯= =3.7507 标m 3/标m 3)(1002102L L V n O -= 标m 3/标m 3 ()3045.47317.410021-==0.0897标m 3/标m 3燃烧产物生成总量2222O N O H CO n V V V V V +++=0897.07507.32526.14231.0+++=5161.5= 标m 3/标m 3 燃烧产物成分 %145.6%1005161.54231.022=⨯=='n CO V V CO %132.19%1005161.52526.122=⨯=='n O H V V O H %977.72%1005161.57507.322=⨯=='nN V V N %746.1%1005161.50897.022=⨯=='nO V V O ∑%100 将燃烧产物生成量及成分列于下表表2-2 焦炉煤气燃烧产物生成量(标m 3/标m 3)及成分(%)2.2.6 按燃烧产物质量计算把表2-2中燃烧产物体积百分含量代入 4.22100322818644422222⨯'++'+'+'=O N O H SO CO 烟ρ Kg/m 3 4.221006261.1329955.67287081.22186703.744⨯⨯+⨯+⨯+⨯==1.2063Kg/m 32.2.7 计算燃料理论燃烧温度产燃燃空空低产分燃空低理分C V Q t C t C L Q C V Q Q Q Q t n n n -++=-++=由t 空=350℃,查《燃料与燃烧》表得C 空=1.30kJ/标m 3,由《燃料与燃烧》P 38,得燃烧室(或炉膛)内的气体平衡压力接近1个大气压(大多数工业炉如此),那么式中各组分的分压将在数值上与各组分的成分相等)即%22'=CO P CO %O C P CO '= . .所以%6703.72=CO P , %7081.222=O H P由《燃料与燃烧》附表8, 附表9,得%81.192=CO f ,%938.42=O H f所以 未未分)(10800)(126002222O H O H CO CO V f V f Q +=1981.0%076703.012600227081.0%938.410800⨯⨯+⨯⨯= K Kg KJ ⋅=/2487.140所以 Ct 7413.214967.15161.52487.1409335.21524993.17790=⨯-+=理2150≈误差%5%38.2%100210021002150%<=⨯-=在误差范围内,故不必再假设。

步进式加热炉炉温控制系统设计

步进式加热炉炉温控制系统设计

加热炉炉温过程控制系统设计加热炉作为钢铁工业轧钢生产线的关键设备和能耗设备,其自动化控制水平直接影响到能耗、烧损率、废钢率、产量、质量等指标。

随着自动化技术的迅猛发展,如何采用先进的自动化控制技术与设备,提高基础自动化控制效果与水平,确保钢坯的加热质量、实现高效节能、减少污染是本文研究的意义所在。

随着工业自动化技术的不断发展,现代化的轧钢厂应该配置大型化的、高度自动化的步进梁式加热炉,其生产应符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求,以提高其产品的质量,增强产品的市场竞争力。

本文主要研究的内容是炉膛温度控制系统,采用串级控制系统通过控制空燃比来达到控制温度的效果。

关键词:步进式加热炉;炉膛温度控制;控制方法第一章加热炉控制系统概述 ............................... 错误!未定义书签。

1.1步进式加热炉的发展和国内概况 ............. 错误!未定义书签。

1.2炉温控制基本原理 ..................................... 错误!未定义书签。

1.3 计算飞剪运行时间T ................................. 错误!未定义书签。

第二章控制系统具体方案设计 ........................... 错误!未定义书签。

2.1 飞剪的控制目标 ........................................ 错误!未定义书签。

2.2 飞剪计算 .................................................... 错误!未定义书签。

2.3 剪切过程存在问题 .................................... 错误!未定义书签。

第三章步进式加热炉过程控制方案的设计过程错误!未定义书签。

3.1 系统结构 .................................................... 错误!未定义书签。

毕业设计任务书(步进式加热炉)

毕业设计任务书(步进式加热炉)
年月日
院长(系主任)(签字):
年月日
注:此页装订在学生毕业设计说明书(论文)首页。
13-15周:撰写设计说明书并修改、打印、装订等,准备毕业答辩。
4、主要工作:
(1)写出设计说明书1份并完成整个炉子的主视、俯视、侧视图三视图的绘制。
(2)查阅1篇加热炉方面的英文文献,译成中文,累计0.3万汉字左右。并将论文摘要翻译成英文。
(3)参考文献至少7篇,其中1~2篇为外文文献。
指导教师(签字):
毕业设计(论文)任务书
课题名称
轧钢厂220t/h步进式加热炉设计
课题类别
设计类
论文类
课题来源
生产实际
科研实际
社会实际
其它来源


一、毕业设计(论文)要求、设计参数、各阶段实践安排、应完成的主要工作等
1.要求:
以鞍钢厚板厂步进梁式连续加热炉为背景,进行工艺参数的计算;,结合实际生产工艺要求设计步进式加热炉;按照设计参数的要求进行炉型、燃料种类、燃烧装置等诸多设计方案的选择和论证,对燃料燃烧、炉膛热交换、金属加热、炉子主要尺寸、炉子热平衡等项目依次进行计算。在设计计算的基础上,对加热炉炉型、供热装置、供风系统等进行了合理布局。
2.设计参数:
(1)炉子生产率G=220t/h;(2)被加热金属钢种:低碳钢;
(3)料坯尺寸:230×1150×10000mm;
(4)金属加热参数:金属加热开始时的表面温度t始=20℃,金属加热终了时的表面温度t终=1250℃,金属加热终了时的断面温差∆t≤30℃;
(5)燃料:高焦炉混合煤气,低发热量:Q=1800 kal/Nm3。
高炉煤气与焦炉煤气成份表
成份
CO
CO2

步进梁式加热炉-机械工程系毕业设计说明书.doc

步进梁式加热炉-机械工程系毕业设计说明书.doc

目录第一章概述 (2)1.1 步进梁式加热炉的简单介绍 (2)1.2设计的目的及意义 (2)第二章设计原始资料 (3)2.1 加热炉的产量 (3)2.2 钢坯尺寸 (3)2.3 燃烧原料成分 (3)第三章不锈钢步进梁式加热炉的计算 (4)3.1燃烧计算 (4)3.2炉内各段综合辐射系数 (7)3.3炉子尺寸的确定 (11)3.4热平衡计算 (18)设计体会 (22)参考文献 (24)第一章概述加热炉是将物料或工件加热的设备。

在冶金工业中加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉,包括有连续加热炉和室式加热炉等。

连续加热炉广义来说,包括推钢式炉、步进式炉、转底式炉、分室式炉等连续加热炉。

连续加热炉按炉温分布,炉膛沿长度方向分为预热段、加热段和均热段;进料端炉温较低为预热段,其作用在于利用炉气热量,以提高炉子的热效率。

加热段为主要供热段,炉气温度较高,以利于实现快速加热。

均热段位于出料端,炉气温度与金属料温度差别很小,保证出炉料坯的断面温度均匀。

由于本设计的内容是关于步进梁式加热炉,所以要对其做一些简单的介绍。

1.1 步进梁式加热炉的简单介绍步进式连续加热炉靠炉底或水冷金属梁的上升、前进、下降、后退的动作把料坯一步一步地移送前进的连续加热炉。

炉子有固定炉底和步进炉底,或者有固定梁和步进梁。

前者叫做步进底式炉,后者叫做步进梁式炉。

轧钢用加热炉的步进梁通常由水冷管组成。

步进梁式炉可对料坯实现上下双面加热。

70年代以来,由于轧机的大型化,步进梁式炉得到了广泛应用。

同推钢式炉相比,它的优点是:运料灵活,必要时可将炉料全部排出炉外;料坯在炉底或梁上有间隔地摆开,可较快地均匀加热;完全消除了推钢式炉的拱钢和粘钢故障,因而使炉的长度不受这些因素的限制。

1.2 设计的目的及意义通过课程设计,系统地总结巩固运用所学的加热炉及热工基础知识,掌握加热炉设计的基本方法、加热炉的基本结构。

培养理论联系实际,训练分析和解决问题的能力。

开工加热炉热工计算

开工加热炉热工计算

加热炉负荷工艺计算一:加热炉温度操作条件:1:被加热介质流量:工况1: Q=102632 Nm3/h=39000Kg/h工况2: Q=53947 Nm3/h=20500Kg/h工况3: Q=53947 Nm3/h=17100 Kg/h2:被加热介质进出口压力:工况1:入炉温度:t1=60℃出炉温度:t2=184℃工况2:入炉温度:t1=195℃出炉温度:t2=427℃工况3:入炉温度:t1=224℃出炉温度:t2=500℃3:被加热价值爱进出炉压力:工况1:入炉压力:P1=9.26MPa(A)出炉压力:P2=9.0MPa(A)工况2:入炉压力:P1=9.103MPa(A)出炉压力:P2=9.0MPa(A)工况3:入炉压力:P1=10.07MPa(A)出炉压力:P2=10.0MPa(A)炉管内介质组成计算:合成气气体组成合成气气体综合焓值:负荷计算: 工况一:()1846039000(149.5548.575)3938025Kcal/h =4.58MWm Q q H H =-=⨯-=℃℃ 工况二:()19520500(349.22158.53)3909065Kcal/h =4.55MWm Q q H H =-=⨯-=427℃℃ 工况三:()22417100(410.66182.28)3905345Kcal/h =4.54MWm Q q H H =-=⨯-=500℃℃综上所述计算可取加热流体工艺所需热负荷为4.6MW 4.6MW=3.96×106Kcal/h 炉管表面平均热强度:22,27075/23300/.R ave q W m Kcal h m == 燃料气组成:烟气组成2220.5H O H O +=耗氧量计算:332()0.375/()n O Nm Nm =合成气 理论空气消耗量计算:330.3751.1 1.96/()0.21Nm Nm ⨯=合成气 生成烟气量:332()0.75/()n H O Nm Nm =合成气332()0.25+0.79 1.96=1.80/()n N Nm Nm =⨯合成气 332()0.10.21 1.96=0.042/()n O Nm Nm =⨯⨯合成气33()0.75+1.80+0.042=2.592/()n Nm Nm =烟气合成气燃料气总的生成烟气量:33()4116 2.592=10670/()n Nm Nm =⨯烟气合成气烟气各温度下的焓值:加热合成气所需总的烟气量:633.961014734/1.123(2488.68)Q Nm h ⨯==⨯-燃料低热值为1924Kcal/Nm 3 所需燃料消耗量:632 3.9610/19244116/Q Nm h =⨯⨯=感谢阅读!。

过程控制系统课程设计---步进式加热炉系统控制

过程控制系统课程设计---步进式加热炉系统控制

课程设计课程设计名称:步进式加热炉系统控制 2013 年 12 月至2014 年 1 月目录一、实验任务二、实验要求三、步进式加热炉简介四、过程控制中仪表的选择五、步进式加热炉控制方案1、煤气/空气流量控制方案2、炉温控制方案3、炉压控制方案六、加热炉控制系统的硬件设计七、加热炉控制系统的PLC软件设计八、实验感受附录1(PLC梯形图)附录2(力控监控组态软件)我的任务:综合步进式加热炉的炉温、炉压控制系统的控制方案,以及PLC的编程和力控监控组态界面的设计。

正文一、实验任务以钢铁企业常见的“步进梁式加热炉”为对象,采用PLC为控制系统硬件,围绕工艺要求,完成控制系统方案设计。

二、实验要求(1)通过查阅文献,了解步进式加热炉工艺流程。

(2)了解对步进式加热炉的炉温控制、煤气/空气流量控制、炉压控制等功能,完成控制方案设计。

(3)了解常见的PLC系统的功能、系统软件及应用,完成加热炉自动控制系统架构设计、硬件选择设计及组态画面设计。

三、步进式加热炉简介1、步进式加热炉概述加热炉作为轧钢生产线上的主要能耗设备,其出炉钢坯的温度是钢铁生产工艺的首要指标,温度控制的好坏直接影响到下层产品的质量,并逐步影响到钢材的质量,还有可能会影响到生产线的其他相关行业,严重情况下可能会破坏整个轧钢生产线的正常运行。

因此,加热炉作为轧钢生产线上的重要环节,担负着为轧制工序提供质量合格钢坯的任务。

加热炉的作用是将钢坯加热后送往轧机进行轧制,其中加热炉能耗占冶金能耗的25%,因此,提高加热炉的热效率,对整个冶金行业的节能降耗具有重要意义。

为了保证钢坯在加热炉中均匀受热,必须调节钢坯的入炉参数、工艺指标及生产状况,因此要求的方面有:炉温、空气流量及压力、煤气流量及压力、空燃比、炉膛压力等。

通过控制上述量从而达到减少氧化损耗、降低能源损失。

步进式加热炉通过步进梁的“步进”运动,将钢坯从装料侧移至出料侧,通过钢坯在炉内的“步进”运动,从而完成从低温段到高温段,最后进入均热段的加热过程,从而达到轧钢所要求的轧制温度。

步进式加热炉自动控制系统的设计

步进式加热炉自动控制系统的设计

步进炉自动控制系统的设计摘要:目前,工业控制自动化技术正朝着智能化、网络化和集成化的方向发展。

通过步进梁式加热炉系统的设计,体现了当今自动化技术的发展方向。

同时介绍了软件设计思想、脉冲燃烧控制技术的特点及其在该系统中的应用。

1导言加热炉是轧钢行业必备的热处理设备。

随着工业自动化技术的不断发展,现代轧机应配备大型化、高度自动化的步进梁式加热炉,其生产应满足高产、优质、低耗、节能、无污染和生产操作自动化的工艺要求,以提高产品质量,增强市场竞争力。

中国轧钢行业的加热炉有两种:推钢炉和步进梁式炉。

然而,推钢炉长度短,产量低,烧损高。

操作不当会导致生产出现问题,难以实现管理自动化。

由于推钢炉有不可克服的缺点,步进梁炉依靠一种特殊的步进机构,使钢管在炉内做直角运动,钢管之间留有间隙,钢管与步进梁之间没有摩擦。

出炉的钢管通过提升装置卸出,完全消除了滑痕。

钢管加热段温差小,加热均匀,炉长不受限制,产量高,生产操作灵活。

其生产符合高产、优质、低耗、节能的特点。

全连续全自动步进梁式加热炉。

这种生产线具有以下特点: ①生产能耗大大降低。

②产量大幅增加。

③生产自动化水平很高。

原加热炉的控制系统多为单回路仪表和继电器逻辑控制系统,传动系统多为模拟量控制的电源装置。

现在加热炉的控制系统都是PLC或者DCS系统,大部分还有二级过程控制系统和三级生产管理系统。

传输系统都是数字DC或交流电源设备。

本项目是某钢铁集团新建的φ180小直径无缝连续钢管生产线热处理线上的一台步进梁式加热炉。

2流程描述该系统的工艺流程图如图1所示。

图1步进梁式加热炉工艺流程图淬火炉和回火炉都是步进梁式加热炉。

装载方式:侧进侧出;炉布:单排。

活动梁和固定梁由耐热铸钢制成,顶面有齿形面,钢管直径小于141.3毫米,每个齿槽内放置一根钢管。

每隔一颗牙放一根直径153.7mm的钢管。

活动横梁升降180mm,上下90mm,节距190mm,间隔145mm。

因此,每走一步,钢管都可以旋转一个角度,使钢管受热均匀,防止炉内弯曲变形。

(完整版)加热炉设计毕业设计

(完整版)加热炉设计毕业设计

毕业设计(论文)说明书课题名称:加热炉设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期: -指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

步进式加热炉控制系统设计

步进式加热炉控制系统设计

步进式加热炉控制系统设计目录第一部分:步进式加热炉1. 步进式加热炉简介.................................................................................3. 步进式加热炉结构 (4)3. 步进式加热炉工艺流程 (5)第二部分:DCS系统的选型⒈DCS选型注意事项 (7)⒉本设计DCS选型 (7)⒊DCS系统硬件选型 (8)⒋组态设计 (8)⒌设备安装 (9)⒍调试 (9)第三部分:步进式加热炉控制系统设计方案⒈步进式加热炉的主要性能参数 (9)⒉步进式加热炉具体控制方案设计 (9)第四部分:DCS组态图⒈JX-300组态 (13)⒉加热炉控制系统演示工程 (14)⒊温度报警显示 (15)⒋温度和炉膛压力监控 (16)第五部分:心得体会第六部分:参考资料一、步进式加热炉工艺流程⒈步进式加热炉简介⑴步进式加热炉步进式加热炉是一种靠炉底或水冷金属梁的上升、前进、下降、后退的动作把料坯一步一步地移送前进的连续加热炉。

炉子有固定炉底和步进炉底,或者有固定梁和步进梁。

前者叫做步进底式炉,后者叫做步进梁式炉。

轧钢用加热炉的步进梁通常由水冷管组成。

步进梁式炉可对料坯实现上下双面加热。

⑵步进式加热炉特点⒉步进式加热炉的结构⑴步进式加热炉结构图图(1)⒊步进式加热炉工艺流程一般情况下,加热炉沿炉膛长度方向分为预热段、加热段和均热段。

进料端为预热段,炉气温度较低,其作用在于充分利用炉气热量,给进炉板坯预热到一定温度,以提高炉子的热效率。

加热段为主要供热段,炉气温度较高,以利于实现板坯的快速加热,保证板坯加热到要求的目标温度。

均热段位于出料端,炉气温度与金属料温度差别很小,保证出炉料坯的断面温度均匀。

一般用于加热小断面料坯的炉子只有预热段和加热段。

钢坯加热是热轧生产工艺过程中的重要工序。

其生产过程如下:对于步进式加热炉,钢坯的移动是通过固定梁和移动梁的周期运动来实现的。

步进式加热炉程序设计及三维立体制图

步进式加热炉程序设计及三维立体制图

步进式加热炉程序设计摘要随着我国钢铁行业的迅猛发展,钢产量的逐年增加,轧钢工艺的不断提高,推钢式加热炉已经难以满足要求,而步进式加热炉在生产实践中证明了其良好的使用效果。

因此,在国内外步进式加热炉的使用得到很快的推广。

本设计主要利用Visual Studio 2010编程软件对步进式加热炉进行设计计算,计算内容包括燃料燃烧计算,炉膛热交换计算,金属加热时间计算,炉子的主要尺寸计算,炉子热平衡计算,换热器计算,排烟系统和供风系统的流体力学计算,炉底水管的校核共九部分组成。

借助于VB编程技术开发出加热炉设计计算软件,不仅可以缩短设计周期,还极大地提高工作效率和设计质量,同时,设计中还运用三维建模软件Solid Works绘制蓄热烧嘴立体图。

较之AutoCAD,Solid Works三维建模更具有直观性,更易体现设计者的设计意图。

最后以专题的形式对加热炉的蓄热燃烧技术作深入的研究。

关键词:步进式加热炉;Visual Studio 2010;计算软件;蓄热式燃烧Walking Beam Heating Furnace Program DesigningAbstractWith the rapid development of China's steel industry, the production of steel has been increasing annually, and rolling technology continues to improve, Push generally the steel type heating furnace has been difficult to meet the increasingly request, but walking-beam reheating furnace is already proved to have good use of effects in the production practice. Therefore, it is spread fast in the production of the heating furnace at home and abroad. This design mainly use Visual Studio 2010 programming software to design calculation, calculation including calculation of fuel-borne, furnace heat exchange calculations, calculation of metal heating time, the main furnace size calculation, the balance of furnace heat calculation, calculation of heat exchanger , exhaust system and air system for computational fluid dynamics, water pipe check under the furnace nine . And so on VB programming technology developed by means of furnace design software can not only shorten the design cycle, but also greatly improve the efficiency and design quality, At the same time, in this design Solid Works, the three-dimensional modeling software, is also used to draw maps for heating furnace. Compared with AutoCAD, Solid Works three-dimensional modeling is much more intuitive, and much easier to reflect the designer's intent. Finally Regenerative Combustion Technique as a special for in-depth study.Key words:Walking Beam Heating Furnace;Visual Studio 2010; Software for calculation; Regenerative Combustion目录摘要 (I)Abstract (II)目录.............................................................................................................................................. I II 第一章绪论 .. (1)1.1加热炉的基本构成 (1)1.2步进式加热炉的特点 (1)1.3步进式加热炉的发展趋势 (2)1.4设计的主要内容 (2)第二章基于VB的步进式加热炉设计计算软件 (3)2.1软件开发背景 (3)2.2加热炉计算软件设计过程的实现 (3)2.2.1加热炉设计基本参数输入 (3)2.2.2燃料燃烧设计计算 (4)2.2.3炉膛热交换计算 (4)2.2.4金属加热的设计计算 (4)2.2.5炉子热平衡计算 (5)2.2.6换热器计算 (5)2.2.7排烟系统阻力损失计算 (5)2.2.8送风系统及炉底水管校核计算 (6)2.2.9炉底水管强度校核 (6)2.3加热炉设计计算软件的运行 (6)2.3.1程序登录 (6)2.3.2加热炉设计基本参数输入 (7)2.3.3燃料燃烧计算操作 (8)2.3.4炉膛热交换计算操作 (9)2.3.5金属加热时间计算操作 (12)2.3.6炉子热平衡计算操作 (13)2.3.7换热器计算操作 (13)2.3.8排烟系统计算操作 (15)2.3.9送风系统计算操作 (16)2.3.10炉底水管校核计算操作 (16)结论 (18)致谢 (24)附录A (25)参考文献 (45)第三章专题蓄热燃烧技术及蓄热烧嘴三维制图 (46)3.1引言 (46)3.1.1蓄热燃烧技术历史发展概况 (46)3.3.2我国蓄热燃烧技术展望 (46)3.2蓄热燃烧技术 (47)3.2.1蓄热燃烧技术原理 (47)3.2.2蓄热燃烧的工作过程 (47)3.2.3对蓄热体的要求和使用条件 (47)3.2.4蓄热燃烧技术的应用 (48)3.3三维制图 (49)3.4总结 (52)1 绪论1.1 加热炉的基本构成加热炉是一个复杂的热工设备,它由以下几个基本部分构:炉膛、燃料系统、供风系统、排烟系统、冷却系统、余热利用装置、装出料设备、检测及调节装置、电子计算机控制系统等。

步进式加热炉自动控制系统的设计

步进式加热炉自动控制系统的设计

步进式加热炉自动控制系统的设计1 引言加热炉是轧钢工业必须配备的热处理设备。

随着工业自动化技术的不断发展,现代化的轧钢厂应该配置大型化的、高度自动化的步进梁式加热炉,其生产应符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求,以提高其产品的质量,增强产品的市场竞争力。

我国轧钢工业的加热炉型有推钢式炉和步进式炉两种,但推钢式炉有长度短、产量低,烧损大,操作不当时会粘钢造成生产上的问题,难以实现管理自动化。

由于推钢式炉有难以克服的缺点,而步进梁式炉是靠专用的步进机构,在炉内做矩形运动来移送钢管,钢管之间可以留出空隙,钢管和步进梁之间没有摩擦,出炉钢管通过托出装置出炉,完全消除了滑轨擦痕,钢管加热断面温差小、加热均匀,炉长不受限制,产量高,生产操作灵活等特点,其生产符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求。

全连续、全自动化步进式加热炉。

这种生产线都具有以下特点:①生产能耗大幅度降低。

②产量大幅度提高。

③生产自动化水平非常高,原加热炉的控制系统大多是单回路仪表和继电逻辑控制系统,传动系统也大多是模拟量控制式的供电装置,现在的加热炉的控制系统都是PLC或DCS系统,而且大多还具有二级过程控制系统和三级生产管理系统。

传动系统都是全数字化的直流或交流供电装置。

本工程是某钢铁集团新建的φ180小口径无缝连轧钢管生产线中的热处理线部分的步进式加热炉设备。

2工艺描述本系统的工艺流程图见图1。

图1步进式加热炉工艺流程图淬火炉和回火炉均为步进梁式加热炉。

装出料方式:侧进,侧出;炉子布料:单排。

活动梁和固定梁均为耐热铸钢,顶面带齿形面,直径小于141.3mm钢管,每个齿槽内放一根钢管。

直径大于153.7mm的钢管每隔一齿放一根钢管。

活动梁升程180mm,上、下各90mm,齿距为190mm,步距为145mm。

因此每次步进时,钢管都能转动一角度,使钢管加热均匀,并防止在炉内弯曲变形。

步进梁能进行正循环,送循环、单动、点动各种动作,升降时对钢管轻托轻放,前进时缓起缓停,无振动冲击和失控现象。

120t步进梁式加热炉项的设计

120t步进梁式加热炉项的设计

目录1 设计依据 (1)2 燃料燃烧计算 (1)2.1煤气干湿成分的换算 (1)2.2煤气低发热值 (2)2.3煤气重度 (2)2.4空气需要量 (2)2.5燃烧产物生成量及成分 (3)2.6燃烧产物重度 (4)3 炉膛热交换计算 (4)3.1确定炉膛有关尺寸 (4)3.2求炉气黑度 (5)3.3炉壁对金属的角度系数 (7)3.4求导来辐射系数C (7)4 金属加热计算 (8)4.1金属均热段末(界面4)各有关参数 (8)4.2金属一加热段末(界面3)各有关参数 (9)4.3金属二加热段末(界面2)各有关参数 (11)4.4金属预热段末(界面1)各有关参数 (11)4.5金属预热段开始(界面0)各有关参数 (14)4.6各段平均热流及加热时间 (14)5 确定炉子的主要尺寸 (15)5.1炉子有效长度 (15)5.2有效炉底强度 (16)6 炉子热平衡计算 (17)6.1热收入项计算 (17)6.2热支出项计算 (18)7 换热器计算 (30)7.1计算依据 (30)7.2设计计算 (31).8 排烟系统流体力学计算 (36)8.1计算依据 (36)8.2阻力计算 (36)8.3烟囱计算 (40)9 供风系统流体力学计算 (42)9.1.空气管道内径 (42)9.2.空气管道阻力损失 (43)10 炉底水管的校核 (46)11 烧嘴计算 (47)12 风机选择 (49)13 选用装料机和出钢机 (50)3.13.1推钢机的选用 (50)3.13.2出钢机的选用 (50)参考文献 (57)项目设计3.1 设计依据1、炉子生产率:G=120t/h2、加热钢种:普碳钢,钢坯尺寸:230mm×1600 mm×4000 mm 的标准坯。

3、燃料:(1)种类: 高焦炉混合煤气(2)低发热量:2133×41.8=8916kJ/Nm 34、加热参数:(1)板坯加热初始温度t=20℃ (2)板坯加热终了温度t=1180 ℃ (3)板坯加热终了断面温差Δt ≤30℃ (4)空气预热温度t=400 ℃ (5)出炉烟气温度t=900 ℃3.2 燃料燃烧计算按以上设计依据和设计方案进行如下热工计算。

毕业设计320th步进梁式加热炉设计

毕业设计320th步进梁式加热炉设计
• 1.4.5不同钢号,不同尺寸的钢坯允许在炉内混装,容易更换被加热的 钢坯品种
1.2炉子设计方案的选择
• 1.炉形选择:四段式步进式连续加热炉; • 2.燃料的选择:气体燃料,高焦炉混合煤气 • 3.换热器选择:直管式预热器(直管式
预热器,材质为Cr18Ni9 Ti); • 4.燃烧装置选择及烧嘴布置:上加热全
1.4步进加热炉的以下优越性被公认
• 1.4.1.炉子的生产能力不受推料长度、厚度的限制,为建造加热能力 300吨/时,给400吨/时甚至更高产量的炉子创造了条件。
• 1.4.2钢坯在步进炉内产生的水管黑印比推料炉减轻。据资料介绍,同 样一种钢种,带钢在精轧机前入口处的温度差(包括水管黑印)经步进 炉加热的为30℃以下,经推料炉加热的在40^-60℃之间。温差越大, 带钢成品尺寸(厚和宽)波动愈大。
2. 设计依据
• 1炉子生产率:1320000kg/h; • 2被加热金属材质:碳素钢
尺寸: 230×1150×10000 mm; • 3金属加热参数:
金属加热开始时的温度t=20℃ 金属加热终了时的表面温度t=1200℃ 金属加热终了时的断面温差△t=30℃ • 4燃料:高焦炉混合煤气: 低发热量: Q=8000kJ/Nm3; • 5空气预热温度:500℃; • 6炉尾烟气温度: 850 ℃。
• 1.4.3步进炉是间隔装料,间隔出料,钢坯之间有间隙,在炉内高温条 件下不会粘结,底面不会因摩擦而产生划痕,也不会因出炉撞辊道挡 板而碰伤。这就保证了钢坯加热的表面质量。
• 1.4.4可根据操作需要由机械及时退空炉内钢坯,这种能力带来的好处 很多,可以减少钢坯的氧化损失;能降低燃料消耗;便于在炉内维修操 作;能提高炉子的作业率。
__
N2 57.7 6.5

步进式加热炉液压系统设计

步进式加热炉液压系统设计

摘要步进式加热炉是一种靠炉底或水冷金属梁的上升、前进、下降、后退的动作把料坯一步一步地移送前进的连续加热炉。

广泛应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。

本次设计任务是设计步进梁加热炉的液压系统,采用普通液压阀,由于在以一个运动周期中,要求能适应不同的负载变化和钢坯运动速度,要通过控制系统的流量来满足这些要求。

为了防止步进梁前移时产生的惯性,本系统采用了缓冲阀组成压力补偿回路,起到了缓冲作用。

为了保证步进梁下降时平稳下降,在回路上采用了平衡阀,保证了其平稳下降。

为了实现钢坯在出现故障的时候能够在任意位置停止,系统加入了液压锁紧装置,以免出现系统失控。

关键字:步进式加热炉;普通液压阀;锁紧AbstractWalking beam type furnace use the beam at the bottom of the furnace of the cool steel beam to rise,to go ahead,to come down,to go back.It is widely used in the petroleum,chemical,metalllurgy,machinery,heat treatment,surface treatment,building materials,electronic,materials,light industry,chemical,pharmaceutical and other industries.The design in mainly to design the hydraulic proportioning system for the walking beam type furnace.,In this design,the normal hydraulic valve will be used.As we know the speed of the beam will change at the reason of the change of the load in a circle,so we must change the flow of hydraulic actuating cylinder.In order to avoid the inertia generated when the walking beam goes ahead,the buffering valve is been used.In order to ensure an steady decline when the walking beam goes down.,the balance valve is been used to ensure its steady decline.As the same time,we use locking acuipement to fasting the beam at any location in case of malfunction.Key word: Walking beam type furnace; The normal hydraulic valve; Locking acuipement目录1 绪论 (5)1.1 背景及工艺 (5)1.2 设计任务 (5)1.2.1 设计题目 (5)1.2.2 主要技术参数及要求 (5)1.3 设计方案 (6)2 液压系统的计算与选型 (6)2.1 系统工作压力的确定 (6)2.2 执行元件的计算与选型 (6)2.2.1 升降液压缸 (7)2.2.2 水平液压缸 (8)2.3 执行元件速度的计算 (9)2.4 执行元件流量的计算 (9)2.4.1 升降液压缸 (9)2.4.2 水平液压缸 (10)2.5 绘制液压系统工况图 (10)2.5.1 流量循环图 (10)2.5.2 压力循环图 (10)2.5.2.1 升降缸实际工作压力计算 (10)2.5.2.2 水平缸的实际工作压力计算 (11)2.5.3 功率循环图 (11)2.6 液压元件的选择和专用件设计 (12)2.6.1 液压泵的选择 (12)2.6.1.1 确定液压泵的最大工作压力P P (12)2.6.1.2 确定液压泵的流量Q P (12)2.6.1.3 确定液压泵的驱动功率 (13)2.6.2 液压阀的选择 (13)2.6.2.1 升降液压缸 (13)2.6.2.2 水平液压缸 (14)2.6.3 蓄能器的选择 (14)3 液压系统的计算与选型 (16)3.1 油箱的选择 (16)3.2 滤油器的选择 (17)3.3 冷却器的选择 (18)3.4 加热器的选择 (20)3.5 管道的选择 (20)3.5.1 管道内径计算 (21)3.5.1.1 吸油管路 (21)3.5.1.2 压力管路 (21)3.5.1.3 吸油管路 (22)4 液压系统性能验算 (22)4.1 液压系统压力损失 (22)4.1.1 升降缸回路压力损失 (23)4.1.1.1 延程压力损失 (23)4.1.1.2 局部压力损失 (23)4.1.2 水平缸回路压力损失 (24)4.1.2.1 延程压力损失 (24)4.1.2.2 局部压力损失 (24)5 液压站的设计 (25)5.1 液压站的结构设计 (25)5.2 液压叠加回路设计 (25)5.3 液压系统的安装 (26)5.4 管路的安装和清洗 (27)5.5 液压系统的维护 (27)6 结束语 (28)参考文献 (28)1 绪论1.1 背景及工艺步进式加热炉是一种靠炉底或水冷金属梁的上升、前进、下降、后退的动作把料坯一步一步地移送前进的连续加热炉。

步进梁式再加热炉的设计

步进梁式再加热炉的设计

序言毕业设计,它是一次深入的综合性的总复习,也是一种理论联系实际的训练踏实我们完成本专业教学计划的最后一个极为重要的实践性教学环节,是我们综合运用所学过的基本理论基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练,它在我们四年的大学生活中占有重要的地位。

这对学生即将从事的有关技术工作和未来事业的开拓有一定意义。

毕业设计的主要目的:1 培养我们综合分析和解决本专业的一般工程技术问题的独立工作能力,拓宽和深化学过的知识。

2培养我们树立正确的设计思想,设计构思和创新思维。

掌握工程设计的一般程序,规范和方法。

3 培养我们正确使用技术资料,国家标准,有关手册,图册等工具书进行设计计算,数据处理。

编写技术文件等方面的工作能力。

4 培养我们进行调查研究,面向实际,面向生产,向工人和工程技术人员学习的基本工作态度,工作作风和工作方法。

5 就我个人而言,我希望通过这次毕业设计对自己未来将从事的工作进行一次适应性训练。

丛中锻炼自己分析问题、解决问题的能力。

为今后参加祖国的“四化”建设打下一个良好的基础。

由于个人能力有限,设计尚有许多不足之处。

恳切各位老师给予指导。

课题简介摘要:步进梁式再加热炉是为连轧生产线提供钢管再加热在线常化(一种热处理方式)所用。

它是依靠专用的步进机械使工件在炉内移动的一种机械化炉。

步进炉底的结构和传动方式要根据出料的频率和炉子的生产能力决定,它不仅要考虑炉内的温度、还要考虑被加工工件的尺寸参数和工地方面的实用性。

所以必须严格计算其内部参数,保证炉子的生产和安全。

炉底机械采用双轮斜轨式机构。

步进梁的升降和平移动作采用液压缸驱动。

步进梁支柱穿炉底的孔洞采用干式“拖板”密封。

装出料端社、设有拨料机,固定梁最末一个料位检测有料后,出料拨料机上升将钢管拖起后,出料拨杆立即下降将钢管拨送到出料悬臂轨道上,使钢管能够马上出炉,出料周期最快20s,可以满足125根/h的操作频率。

关键词:步进梁式再加热炉步进梁双轮斜轨式机构有效炉底长度梁距齿距在生产中,利用燃料产生的热量,或者将电能转化成热量对工件或物料进行加热的设备,称为工业炉。

某步进梁式加热炉工程设计分析

某步进梁式加热炉工程设计分析

温度 50 0 ℃。换热器插件采用螺旋状插件。 这 种 结构换 热器 传热系 数 高 , 同样 预热温 在 度 下 ,换 热面 积小 、管壁温 度 低 ,施 工安装 方 便 ,使用寿 命长 ,不 易积 灰 。
3 2加热 炉供 热方式 .
供热 。 热段 和 加热段 上 部炉 顶采 用平 焰烧 均 嘴, 使炉顶形成温度均匀 的辐射面 , 提高辐 射 能力 ,使钢 坯 均匀 受热 。 均热 段 下部 采用
坯料 由剔 除装 置剔 除 。加 热炉 P C 根据 预 L 定 的布料 图 , 入炉 钢坯 在 炉 内定位 。 料 将 坯 在 装料 悬 臂辊 道上 定位 后 , 料端 的推 钢机 装 将 坯料 推 到 固定梁 上 , 并通 过 步进 梁 的步进
3 主要技 术特 点分析
3 1 型结 构 .炉
良。 底采 用 复合砌 筑 结构 ,步进 梁孔 洞 为 炉 整 体 浇 注 成 型 ,烧 嘴 砖采 用 重 质 浇注 料 预 制 , 臂辊轴 颈 砖采 用浇 注料 和高 温 耐火纤 悬
维预制。
图1
加热炉 水梁 和立 柱是 炉 内主要 承重件 ,
降低 钢 坯 的水 管黑 印 。( 图 2 见 )
动 作实 现坯 料在 炉 内 的运 送 。 步进 机构 除 了 可 以步进外 , 具备 反 向步进 、 步和 持平 还 踏 功 能 ,以满足 返 料和 待轧 的要 求 。步进 机构 由液 系统 驱 动 ,具有轻 抬 轻放 功 能 。 当坯料 到达 出料 区 时 , 进梁 将坯 料送 步
图2
。 I 1 嚏 l . 三 . 。 . 一 瞻
自 一
q刊 : = . E

鲁 嚏 _ 幸
在 炉 尾 烟 道 处 设置 一 个 高效 空 气 换热 器 , 用烟气 余热 预热 空气 , 高空气 预热 利 最
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 步进式加热炉设计计算2.1 热工计算原始数据(1)炉子生产率:p=245t/h (2)被加热金属:1)种类:优质碳素结构钢(20#钢) 2)尺寸:250×2200×3600 (mm)(板坯) 3)金属开始加热(入炉)温度:t 始=20℃4)金属加热终了(出炉)表面温度:t 终=1200℃ 5)金属加热终了(出炉)断面温差:t ≤15℃ (3)燃料1)种类:焦炉煤气2)焦炉煤气低发热值:Q 低温=17000kJ/标m 33)煤气不预热:t 煤气=20℃表1-1 焦炉煤气干成分(%)废膛(5)空气预热温度(烧嘴前):t 空=350℃2.2 热工计算2.2.1 焦炉煤气干湿成分换算查燃料燃烧附表5,3/9.18m g g =10000124.0100124.0222⨯+=干干湿OHOHg g O H100100%%2湿干湿O H X X -⨯=由上式得 %2899.22=湿O H000025741.561002899.21009.57%H =-⨯=湿000048184.241002899.21004.25%CH =-⨯=湿00007939.81002899.21009%CO =-=湿0000428336.21002899.21009.2%H C =-⨯=湿000022702.11002899.21003.1%N =-⨯=湿000023909.01002899.21004.0%O =-⨯=湿000020290.31002899.21001.3%CO =-⨯=湿代入表2—1中,得表2-1 焦炉煤气湿成分(%)2.2.2 计算焦炉煤气低发热值)(低 +⨯+⨯+⨯+⨯⨯=424214100%8550%2580%3046187.4H C CH H CO Q=()0000008336.2141008184.2485505741.5625807939.83046187.4⨯+⨯+⨯+⨯⨯=17094.6830 KJ/m ³误差%557.0%10017000170006830.17094%=⨯-=计算值与设计值相差很小,可忽略不计。

2.2.3 计算理论空气需要量L 0)3322220/(1023)4(212176.4m m O S H H C m n H CO L m n -⨯⎥⎦⎤⎢⎣⎡-++++=∑把表2-1中焦炉煤气湿成分代入20103909.08336.238184.2425741.56217939.82176.4-⨯⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯+⨯=L=33/3045.4m m2.2.4 计算实际空气需要量Ln查《燃料及燃烧》,取n=1.1代入7317.43045.41.10=⨯==nL L n 标m 3/标m 3实际湿空气消耗量0)00124.01nL g L n ⨯+=(湿=7317.4)9.1800124.01(⨯⨯+=6.0999 标m 3/标m 32.2.5 计算燃烧产物成分及生成量1001)(22⨯++=∑CO H nC CO V m n CO 标m 3/标m 3 1001)0290.38336.227939.88184.24(⨯+⨯++= =0.4231 标m 3/标m 3n m n O H gL O H S H H C m H V 00124.01001)2(2222+⨯+++=∑ 标m 3/标m 3 7317.49.1800124.01001)2899.28336.228184.2425741.56(⨯⨯+⨯+⨯+⨯+== 1.2526 标m 3/标m 3 n N L N V 10079100122+⨯= 标m 3/标m 3 7317.41007910012702.1⨯+⨯= =3.7507 标m 3/标m 3)(1002102L L V n O -=标m 3/标m 3 ()3045.47317.410021-==0.0897标m 3/标m 3燃烧产物生成总量2222O N O H CO n V V V V V +++=0897.07507.32526.14231.0+++=5161.5= 标m 3/标m 3 燃烧产物成分%145.6%1005161.54231.022=⨯=='n CO V V CO %132.19%1005161.52526.122=⨯=='nO H V V O H %977.72%1005161.57507.322=⨯=='n N V V N %746.1%1005161.50897.022=⨯=='nO V V O ∑%100 将燃烧产物生成量及成分列于下表表2-2 焦炉煤气燃烧产物生成量(标m 3/标m 3)及成分(%)2.2.6 计算煤气燃烧产物重度按燃烧产物质量计算把表2-2中燃烧产物体积百分含量代入 4.22100322818644422222⨯'++'+'+'=O N O H SO CO 烟ρ Kg/m 3 4.221006261.1329955.67287081.22186703.744⨯⨯+⨯+⨯+⨯==1.2063Kg/m 32.2.7 计算燃料理论燃烧温度产燃燃空空低产分燃空低理分C V Q t C t C L Q C V Q Q Q Q t n n n -++=-++=由t 空=350℃,查《燃料与燃烧》表得C 空=1.30kJ/标m 3,由《燃料与燃烧》P 38,得燃烧室(或炉膛)内的气体平衡压力接近1个大气压(大多数工业炉如此),那么式中各组分的分压将在数值上与各组分的成分相等)即%22'=CO P CO %O C P CO '= . .所以%6703.72=CO P ,%7081.222=O H P由《燃料与燃烧》附表8, 附表9,得%81.192=CO f ,%938.42=O H f所以 未未分)(10800)(126002222O H O H CO CO V f V f Q +=1981.0%076703.012600227081.0%938.410800⨯⨯+⨯⨯= K Kg KJ ⋅=/2487.140所以 Ct 7413.214967.15161.52487.1409335.21524993.17790=⨯-+=理 2150≈误差%5%38.2%100210021002150%<=⨯-=在误差范围内,故不必再假设。

因此,可满足步进式加热炉加热工艺要求2.3 炉膛热交换计算2.3.1 预确定炉膛主要尺寸①炉膛宽度a n nl B )1(++=式中 l ——料坯长度 mm ;a ——料坯之间和料坯端头与炉墙内表面的距离,一般取200=a ~300mm ; n ——炉内物料摆放排数,这里取双排; mm B 8100300)12(36002=⨯++⨯=对于砌砖炉体结构,为砌筑施工方便,炉体宽度应为耐火砖宽度(0.116m )的整数倍,经计算8.691168100=÷,为满足耐火砖的宽度整数倍的要求,所以取mm B 812011670=⨯=②炉膛高度:由经验考虑,参照《钢铁厂工业炉设计参考资料》,对燃气中型加热炉,取炉膛高度分别为mm H 1200=均上,mm H 1800=加上,mm H 1000=预上。

③炉膛长度:设加热段长度为L 加,预热段长度为L 预,均热段长度为L 均; ④炉顶结构:内宽B>4m,用平顶; ⑤出料方式:端出料;2.3.2 计算炉膛相关尺寸①各段炉底面积F 加底=BL 加=6.96L 加m 2 F 预底=BL 预=6.96L 预m 2 F 均底=BL 均=6.96L 均m 2②各段炉墙(侧墙)和炉顶(平顶)内表面积F 加表=2H 加上L 加+ BL 加=加加L L ⨯+⨯12.88.12 =11.52 L 加m 2预预预预预上预预表L L L BL H L 12.1012.8122F =+⨯=+= 均均均均预均上均均表L L L L B H L 52.1012.82.122F =+⨯=+=③各段包围炉气内表面积F 加围=8.12L 加+11.72L 加=19.84L 加m 2F 预围=8.12L 预+10.12L 预=18.24 L 预m 2=加均F 8.12均L +10.52均L =18.64均L m 2④各段充满炉气的空腔体积V 加=加加均L BH ≈8.12⨯1.8⨯L 加=14.616L 加 m 3V 预=预预均L BH ≈预预L L 12.8112.8=⨯⨯ m 3 3744.92.112.8V m L L L BH 均均均均均均=⨯⨯≈=2.3.3 计算各段平均有效射线行程查《钢铁厂工业炉设计参考资料》,各种形状的气层中,沿不同方向的射线行程的长度并不都相等,计算辐射时要采用平均射线行程LFVS 4⨯=η m 式中:η—气体辐射有效系数,一般与气体黑度,几何形状有关,取η=0.85~0.9 F —围绕气体的容积表面积 m 2 V —气体所充满的容积 m 36521.284.19616.1449.0=⨯⨯=加加加L L S m6026.124.1812.849.0=⨯⨯=预预预L L S m8819.164.18744.949.0=⨯⨯=均均均L L S m2.3.4 计算炉气中二氧化碳和水汽分压由燃料燃烧计算,见表2-2,得 P CO 2=6.145/100=0.076703大气压 P H2O =19.132/100=0.227081大气压2.3.5 计算各段炉气温度由《工业炉设计手册》知,炉温与钢材表面温度之差为温度位差,对于一般加热炉,一般不超过 50~100℃,①这里取均热段炉气温度比加热终了时金属表面温度高50℃,即C t t g 125050120050=+=+=表终均②查《火焰炉》153P ,取加热段炉气温度 1300=加g t ℃③预热段炉气温度变化规律近似为线性变化,即C t t t g g 1050280013002=+=+=废膛加预均2.3.6 计算各段炉气黑度(1)查《钢铁厂工业炉设计参考资料》256P ,① 均热段大气压大气压均均4273.08819.1227081.01443.08819.1076703.022=⨯=⨯=⨯=⨯S P S P O H CO② 加热段大气压大气压加加6022.06521.2227081.02034.06521.2076703.022=⨯=⨯=⨯=⨯S P S P O H CO③ 预热段大气压大气压预预3639.06026.1227081.01229.06026.1076703.022=⨯=⨯=⨯=⨯S P S P O H CO(2)求炉气黑度 ①预热段(1050ºC)查表得,128.02=CO ε , 16.02='O Hε 17344.016.0084.122=⨯='⨯=O HO H εβε 求ε∆因为计算同时含有2CO 和O H 2的燃烧生成物的黑度时,由于O H CO 22和的辐射光带和吸收光带有一部分重合,因而混合气体的总辐射要比混合气体中所含O H CO 22和单独辐射的总和小一些,既εεεε∆-+=O H CO 22式中:ε∆—黑度的修正值7475.0076703.0227081.0227081.0222=+=+CO O H O H P P P大气压)(预m S P P CO O H 4868.06026.1076703.0227081.0)(22=⨯+=⨯+ 查手册图7-66,04.0=∆ε 1所以 04.017344.0128.022-+=∆-+=εεεεO H CO 1 26044.0=预ε ②加热段(1300ºC )128.02=CO εO HO H 22εβε'⨯= 1881.0175.0075.1=⨯=同理:7475.0222=+CO O H O H P P P大气压加m S P P CO O H 8057.06521.2303784.0)(22=⨯=⨯+ 查图7-66得,05.0=∆ε εεεε∆-+=O H CO 22加266125.005.0188125.0128.0=-+=③均热段(1250ºC )118.02=CO εO HO H 22εβε'⨯= 16416.0152.008.1=⨯=求ε∆7475.0222=+CO O H O H P P P大气压)(均m S P P CO O H 5717.08819.1303784.022=⨯=⨯+查图7-66得,045.0=∆ε εεεε∆-+=O H CO 22均23716.0045.016416.0118.0=-+=综上所述:26125.0=加ε,26044.0=预ε,23716.0=均ε2.3.7 计算各段炉墙和炉顶对金属的角度系数导来辐射系数 C[][])1()1()1(143.20M g M g KM g g KM M g gKMεεεεϕεεϕεε-+-+-+=式中: g ε,M ε—炉气、炉料的黑度23A A ϕ=,炉壁对炉料的角度系数,2A ,3A 为炉料与炉壁的面积, 对于平顶,双排料: ①加KM ϕ=5119.012.88.1232B 22=+⨯⨯=+H L M加上②预KM ϕ=5929.012.81232B 22=+⨯⨯=+H L M加上③预KM ϕ=5703.012.82.1232B 22=+⨯⨯=+H L M 加上2.3.8 计算各段导来辐射系数对于钢铁,8.0~75.0=M ε。

相关文档
最新文档