认识二元一次方程组(公开课)
(完整版)二元一次方程组优秀课件PPT
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。
认识二元一次方程组ppt课件
找设出他等们量 中关有系x个成人,y个儿童,由此你能得到怎样的方程?
议一议
x-y=2 x+1=2(y-1)
x+y=8 5x + 3y = 34
思考1 上述方程有什么共同特点?
思考2 它们与你学过的一元一次方程比较有什么区别?
思考3 你能给它们起个名字吗?
含有两个未知数,并且所含未知数的项的次数都 是1的整式方程叫做二元一次方程.
A.2xxy3y4 7
D.
x x
y8 2 y 4
B. 52ba
3b 4c
11 6
E.
x y
1 2
C.
x y
2 9 2x
F.
1 x
2
6
x y 8
请你找出符合下列二元一次方程实际意义的值填入表格:
x+y=8
x123456 y865432
5x + 3y = 34
x
2
5
y
8
3
二元一次方程的解:适合一个二元一次方程的一组未知数
的值,叫做这个二元一次方程的一个解.
分析:你能找到一组x,y值,同时适合方程x+y=8 和5x+ 3y =34吗?
x+y=8
x123456 y865432
5x + 3y = 34
x
2
5
y
8
3
二元一次方程组的解:二元一次方程组中各个方程的公共解.
x y 8 5x 3 y 34
x-y=2 老牛说:哼!我从你背上拿来1个,我的包裹数就是你的2倍!
x+1=2(y-1)
情景探究二:
昨天,我们8个人去 红山公园玩,买门 票花了34元.
5.1 认识二元一次方程组 公开课获奖课件
x=2
x=2
A.y=-4 B.y=4
x=-2 x=-2 C.y=4 D.y=-4
7.(3 分)在下列三对数中:①xy==22;,②xy==--91;, ③xy==-3,1, __①__③____是方程 3x+y=8 的解,___②__③___是方程 2x-y=7 的解,方
(2)由(1)得
方程为-4x+6y=6,当 x=21时,y=43
17.(12 分)根据下列语句,分别设适当的未知数,列二元一次方 程或二元一次方程组(不必求解).
(1)某旅游团一行 13 人分别入住海滨酒店双人间和三人间,刚好 住满,问入住的双人间和三人间各多少间?
(2)小明和小颖在河边放羊,小明说:“把你的羊给我 3 只,那我 的羊就是你的 2 倍了,怎么样?”小颖说:“不,还是把你的羊分 3 只给我,那么我们的羊就一样多了,多好呀!”问小明和小颖各有多 少只羊?
将xy==--13, 代入②,得 b=10,将xy==45,代入①,得 a=-1, 所以 a2 017+b=(-1)2 017+10=9
把x=2,代入方程组,得 y=-1
3×2-2×(-1)=8,5×2-1=9.∴被
污染的“■”是 8,被污染的“▲”是 9
一、选择题(每小题 4 分,共 12 分)
11.小亮的妈妈用 28 元钱买了甲、乙两种水果,甲种水果每千克
4 元,乙种水果每千克 6 元,且乙种水果比甲种水果少买了 2 千克,
xy=1 A.x+y=2
5x-2y=3 B.1x+y=3
2x+z=0 x=5 C.3x-y=1 D.x+y=7
3.(3 分)方程 3xm+1-2yn+2=4 是二元一次方程,则 m=___0_____,
n=__-__1____.
认识二元一次方程组 公开课获奖教案 公开课获奖教案
5.1 认识二元一次方程组1.了解二元一次方程(组)及其解的定义;(重点)2.会列二元一次方程组,并检验一组数是不是某个二元一次方程组的解.(难点)一、情境导入小红到邮局寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种票额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x 张,需要票额为8角的邮票y 张,你能列出方程吗?二、合作探究探究点一:二元一次方程及其解的定义【类型一】 利用二元一次方程的定义求字母的值已知|m -1|x |m|+y 2n -1=3是二元一次方程,则m +n =________.解析:根据题意得|m|=1且|m -1|≠0,2n -1=1,解得m =-1,n =1.所以m +n =0,故填0.方法总结:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数为一次;(3)方程是整式方程.【类型二】 二元一次方程的解已知⎩⎪⎨⎪⎧x =1,y =-1是方程2x -ay =3的一个解,那么a 的值是( )A .1B .3C .-3D .-1解析:将⎩⎪⎨⎪⎧x =1,y =-1代入方程2x -ay =3,得2+a =3,所以a =1.故选A.方法总结:根据方程的解的定义知,将x ,y 的值代入方程中,方程左右两边相等,即可求解.探究点二:二元一次方程组及其解的定义 【类型一】 识别二元一次方程组有下列方程组:①⎩⎪⎨⎪⎧xy =1,x +y =2;②⎩⎪⎨⎪⎧x -y =3,1x+y =1;③⎩⎪⎨⎪⎧2x +z =0,3x -y =15;④⎩⎪⎨⎪⎧x =5,x 2+y3=7;⑤⎩⎪⎨⎪⎧x +π=3,x -y =1,其中二元一次方程组有( ) A .1个 B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤中的π是常数,不是未知数.故选B. 方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是共含两个未知数;三看含未知数的项的次数是不是都为1.【类型二】 二元一次方程组的解甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15;①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2015+(-110b)2016的值.解析:由方程组解的定义知:甲看错了方程①中的a 得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1,说明⎩⎪⎨⎪⎧x =-3,y =-1是方程②的解;同样⎩⎪⎨⎪⎧x =5,y =4是方程①的解. 解:把⎩⎪⎨⎪⎧x =-3,y =-1代入②,得-12+b =-2,所以b =10;把⎩⎪⎨⎪⎧x =5,y =4代入①,得5a +20=15,所以a =-1;所以a2015+(-110b)2016=(-1)2015+(-110×10)2016=0.方法总结:利用方程组的解确定字母参数的方法是将方程组的解代入它适合的方程中,得到关于字母参数的新方程,从而求解.探究点三:列二元一次方程组小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x 张,2元的贺卡为y 张,那么x ,y 所适合的一个方程组是( )A.⎩⎪⎨⎪⎧x +y 2=10,x +y =8B.⎩⎪⎨⎪⎧x 2+y 10=8,x +2y =10C.⎩⎪⎨⎪⎧x +y =10,x +2y =8D.⎩⎪⎨⎪⎧x +y =8,x +2y =10 解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x 张,2元的贺卡为y 张,可列方程组为⎩⎪⎨⎪⎧x +y =8,x +2y =10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组⎩⎪⎨⎪⎧二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -13(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 216+0.83 24+1.24 32+1.65 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
认识二元一次方程组【公开课教案】
第五章二元一次方程组5.1 认识二元一次方程组第一环节:情境引入内容:(一)情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程2-=,若x y老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:()+=-.x y121(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程8+=x y和5334+=.x y在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.第二环节:新课讲解,练习提高内容:(一)二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:①含有两个未知数;②所含未知数的项的最高次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习:1.下列方程有哪些是二元一次方程:(1)093=-+y x ,(2)012232=+-y x ,(3)743=-b a ,(4)113=-y x ,(5)()523=-y x x ,(6)152=-n m . 2.如果方程13221=-+-n m m y x 是二元一次方程,那么m = ,n = .(二)二元一次方程组概念的概括师提请学生思考:上面的方程2121()x y x y -=+=-, 中的x 含义相同吗?y 呢?(两个方程中x 的表示老牛驮的包裹数,y 表示小马的包裹数,x 、y 的含义分别相同.)由于x 、y 的含义分别相同,因而必同时满足2x y -=和()121x y +=-,我们把这两个方程用大括号联立起来,写成()⎩⎨⎧-=+=-.121,2y x y x ,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如:⎩⎨⎧=-=+;03,332y x y x ⎩⎨⎧=+=+.8,835y x y x 注意:在方程组中的各方程中的同一个字母必须表示同一个对象.再呈现一些辨析题,让学生进行巩固练习:判断下列方程组是否是二元一次方程组:(1)⎩⎨⎧=+=-;1253,12y x y x (2)⎩⎨⎧=-=+;53,12y x y x (3)⎩⎨⎧=+=-;153,37z y y x (4)⎩⎨⎧==;2,1y x (5)⎪⎩⎪⎨⎧=+=-;1283,52y x y x (6)⎩⎨⎧=+=-.325,132b ab b a (三)因承上面的情境,得出有关方程的解的概念1.6,2x y ==适合方程8x y +=吗?5,3x y ==呢?4,4x y ==呢?你还能找到其他x ,y 值适合8x y +=方程吗?2. 5,3x y ==适合方程5334x y +=吗?2,8x y ==呢?3.你能找到一组值x ,y 同时适合方程8x y +=和5334x y +=吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x =6, y =2是方程x + y =8的一个解,记作⎩⎨⎧==2,6y x ;同样,⎩⎨⎧==3,5y x 也是方程8x y +=的一个解,同时⎩⎨⎧==3,5y x 又是方程5334x y +=的一个解. 二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.例如,⎩⎨⎧==3,5y x 就是二元一次方程组⎩⎨⎧=+=+3435,8y x y x 的解. 然后,同样呈现一些辨析性练习:(投影)1.下列四组数值中,哪些是二元一次方程13=-y x 的解?(A )⎩⎨⎧==;3,2y x (B )⎩⎨⎧==;1,4y x (C )⎩⎨⎧==;3,10y x (D )⎩⎨⎧-=-=.2,5y x 2.二元一次方程2832=+y x 的解有:⎩⎨⎧==._____,5y x ⎩⎨⎧-==.2_____,y x ⎩⎨⎧=-=._______,5.2y x ⎪⎩⎪⎨⎧==.37_____,y x …… 3.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 4.以⎩⎨⎧==2,1y x 为解的二元一次方程组是( ) (A )⎩⎨⎧=-=-;13,3y x y x (B )⎩⎨⎧-=+-=-;53,1y x y x (C )⎩⎨⎧-=+-=-;553,32y x y x (D )⎩⎨⎧=+-=-.53,1y x y x 5.二元一次方程6=+y x 的正整数解为 .6.如果⎩⎨⎧==2,1y x 是⎩⎨⎧=-=+n y x m y x 3,2的解,那么m = ,n = . 7.写出一个以⎩⎨⎧-==3,2y x 为解的二元一次方程组为 . (答案不唯一)目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.设计效果:通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.第三环节:课堂小结内容:1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.目的:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.设计效果:本环节虽然用时不多,却是必不可少的教学环节,对学生回顾与整理本节课的知识效果明显.第四环节:布置作业习题5.1教学设计反思1.本节课充分体现了从问题情景中抽象数学问题、使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能的有意义的这一变化学习过程.在教学中力求体现“问题情景——建立数学模型——解释、应用与拓展”的模式,使学生在自主探索和合作交流的过程中建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较全面的体验和理解.2.通过情境引入,让同学们体会到了生活中的数学无处不在,激发了学生强烈的求知欲望,学生的反应非常积极踊跃,丰富了学生们的情感与态度.充分利用小组合作交流,让同学们自己找出方程中的等量关系,启发同学们自己说出各个定义的理解.在同学们合作做题的时候,老师进一步强调小组合作交流、合理分配时间会取得更好的效果.教学过程各环节紧紧相扣,整个教学过程逻辑思维清晰,问题与问题之间衔接紧密,每一步都为下一步做了很好的铺垫.3.这个案例主要针对中等生而设计,教师可根据学生学习能力再进行设计上的侧重.比如,学生学习能力较强,可在实际问题中抽象二元一次方程组的模型环节、课后的拓展环节增加适当的深层次的内容,以满足学生的学习需要.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式 正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 18+0.4 216+0.8 324+1.2 432+1.6 540+2.0 … …解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算 计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
【精品课件】北师大版八年级数学上1 认识二元一次方程组公开课
(6)10m 5n 65
(10)3x xy 20
是二元一次方程
x y 5 2x y 4 mn8 10m 5n 65
不是二元一次方程
2x 1 (5 x) 4 10m 5(5 m) 65 3x 2y z 3 5x 1 7
y 2x2 5 y 10 3x xy 20
尝试归纳二元一次方程的定义。
含有两个未知数,并且所含未 知数的项的次数都是1的方程叫
二元一次方程。
尝试把下面几个方程进行分类,并说明理由。
(1) x+y+z = 9 (2) 2x+6y =14 (4) x = 6 (5) x2+y = 6
尝试把下面方程进行分类,并说明分类的依据。
(1)2x 1 (5 x) 4 (7)3x 2 y z 3
(2)x y 5 (3)2x y 4
(8)5x 1 7 y
(4)10m 5(5 m) 65 (9)2x2 5 y 10
(5)m n 8
欢迎各位领导老师莅临指导
学校:开发区实验学校 授课人:杨春雪
问题一
篮球联赛中,每场比赛都要分出胜负,每队胜 一场得2分,负一场扣1分。
四班打了5场比赛,共积了4分, 问我班赢了几场,输了几场?
问题二
星期天,我们8个人去香山公园玩,有大人和 儿童,买门票一共花了65元。每张成人票10元, 每张儿童票5元,你知道我们到底去了几个大人, 几个儿童吗?
x+2y=10
y=2x
的解是___C___.
x=4
A
y=3
x=3
B
y=6
D
认识二元一次方程组(公开课)ppt课件
它们各驮了多少包裹呢?
设老牛驮了x个包裹 , 小马驮了y个包裹. 老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程 呢?
老牛的包裹数-小马的包裹数=2个 x-y=2
若老牛从小马的背上拿来1个包裹,这时它们各有几个包裹?由 此你又能得到怎样的方程呢?
老牛的包裹+1=(小马驮的包裹数-1)×2
x+1=2(y-1)
昨天,我们8个人 去红山公园玩,买门 票花了34元.
每张成人票5元,每 张儿童票3元.他们 到底去了几个成人、
几个儿童呢?
设他们中有x个成人,y个儿童.由此你能得到 怎样的方程?
x y 8 和 5x 3y 34
想一想 P104
x-y=2
x+y=8
x+1=2(y-1) 5x+ 3y=34
上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1 含有两个未知数,并且所含未知数的项的次数都是 1 的
(二元一次方程有无数个解) 二元一次方程组中各个方程的公共解,叫做这个 二元一次方程组的解.(二元一次方程组有唯一解)
作业
• 习题5.1 第2题、第三题
可编辑课件PPT
18
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
二元一次方程组有无数组解
试一试
在下列四组数值中,哪些是二元一次方程 x3y1的
解?
x 2,
(A)
y
3;
x 4,
(B)
y
1;
x 10 ,
(C)
y
3;
x 5,
(D)
y
2.
答案:B,C,D
可编辑课件PPT
北师大版_认识二元一次方程组(公开课)
练一练:
判断下列方程组是否是二元一次方程组:
x 2 y 1, x 2 y 1, 是 (2) 否 (1) 3x 5 y 12; x 3 y 5;
x 1, x 7 y 3, 是 (3) 否 (4) 3 y 5 z 1; y 2;
x y 9 注意:单位的一致性 0.5x 0.8 y 6.3
(1) x 6, y 2 适合方程 x y 8 吗?
做一做
x 5, y 3呢? x 4, y 4 呢?你还能找到
其他 x, y 的值适合方程 x y 8 吗? (2) x 5, y 3 适合方程 5 x 3 y 34吗?
哼,我从你背上 拿来 1个,我的 包裹数就是你的 2 倍!
真的?!
它们各驮了多 少包裹呢? 我从你背上拿 来 1个,我的 包裹数就是你 的 2 倍! 你还累?这么 大的个,才比 我多驮了2个 .
老牛的包裹数=小马的包裹数+2个
老牛的包裹+1=(小马驮的包裹数-1)×2
设老牛驮了x个包裹 , 小马驮了y个包裹
含有两个未知数,并且所含未知 数的项的次数都是 1 的方程叫做 二元一次方程. 3x + 4xy + 7y2
1
2 2
项的次数就是指这一项所有字母 (未知数)的指数和
考点1:
1.请判断下列各方程中,哪些是二元 一次 方程,哪些不是?并说明理由.
2-2y+12=0; (2) 3 x (1)x+3y-9=0;
2 2a 3b 1, 否 x 5, y 否 (6) (5) 5ab 2b 3. 3 x 8 y 12;
只列二元一次方程组: 小明从邮局买了面值50分和80分的邮票共9枚, 花了6.3元。小明买了两种邮票个多少枚?
二元一次方程公开课教案【优秀8篇】
二元一次方程公开课教案【优秀8篇】教学建议这次帅气的为您整理了8篇《二元一次方程公开课教案》,希望可以启发、帮助到大朋友、小朋友们。
元一次方程教学设计篇一一、教材分析《·》本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。
学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程(1)复习引入在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。
接着完成配套的3个习题,强化训练。
认识二元一次方程组 公开课教案 教案
5.1 认识二元一次方程组1.了解二元一次方程(组)及其解的定义;(重点)2.会列二元一次方程组,并检验一组数是不是某个二元一次方程组的解.(难点)一、情境导入小红到邮局寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种票额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x 张,需要票额为8角的邮票y 张,你能列出方程吗?二、合作探究探究点一:二元一次方程及其解的定义【类型一】 利用二元一次方程的定义求字母的值已知|m -1|x |m|+y 2n -1=3是二元一次方程,则m +n =________.解析:根据题意得|m|=1且|m -1|≠0,2n -1=1,解得m =-1,n =1.所以m +n =0,故填0.方法总结:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数为一次;(3)方程是整式方程.【类型二】 二元一次方程的解已知⎩⎪⎨⎪⎧x =1,y =-1是方程2x -ay =3的一个解,那么a 的值是( )A .1B .3C .-3D .-1解析:将⎩⎪⎨⎪⎧x =1,y =-1代入方程2x -ay =3,得2+a =3,所以a =1.故选A.方法总结:根据方程的解的定义知,将x ,y 的值代入方程中,方程左右两边相等,即可求解.探究点二:二元一次方程组及其解的定义 【类型一】 识别二元一次方程组有下列方程组:①⎩⎪⎨⎪⎧xy =1,x +y =2;②⎩⎪⎨⎪⎧x -y =3,1x+y =1;③⎩⎪⎨⎪⎧2x +z =0,3x -y =15;④⎩⎪⎨⎪⎧x =5,x 2+y3=7;⑤⎩⎪⎨⎪⎧x +π=3,x -y =1,其中二元一次方程组有( ) A .1个 B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤中的π是常数,不是未知数.故选B. 方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是共含两个未知数;三看含未知数的项的次数是不是都为1.【类型二】 二元一次方程组的解甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15;①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2015+(-110b)2016的值.解析:由方程组解的定义知:甲看错了方程①中的a 得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1,说明⎩⎪⎨⎪⎧x =-3,y =-1是方程②的解;同样⎩⎪⎨⎪⎧x =5,y =4是方程①的解. 解:把⎩⎪⎨⎪⎧x =-3,y =-1代入②,得-12+b =-2,所以b =10;把⎩⎪⎨⎪⎧x =5,y =4代入①,得5a +20=15,所以a =-1;所以a2015+(-110b)2016=(-1)2015+(-110×10)2016=0.方法总结:利用方程组的解确定字母参数的方法是将方程组的解代入它适合的方程中,得到关于字母参数的新方程,从而求解.探究点三:列二元一次方程组小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x 张,2元的贺卡为y 张,那么x ,y 所适合的一个方程组是( )A.⎩⎪⎨⎪⎧x +y 2=10,x +y =8B.⎩⎪⎨⎪⎧x 2+y 10=8,x +2y =10C.⎩⎪⎨⎪⎧x +y =10,x +2y =8D.⎩⎪⎨⎪⎧x +y =8,x +2y =10 解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x 张,2元的贺卡为y 张,可列方程组为⎩⎪⎨⎪⎧x +y =8,x +2y =10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组⎩⎪⎨⎪⎧二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -13(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 216+0.83 24+1.24 32+1.65 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
《认识二元一次方程组》二元一次方程组PPT课件
+ = , … … ①
.由于甲看错了方程①
− = −. … … ②
中的a,得到方程组的解为
= −,
乙看错了方程②中的b,得到方程组的
= −.
= ,
解为
试计算a+(-b) 的值.
= . = −,
解:把
代入②,得-12+b=-2,所以b=10;
x+1=2(y-1)
__________________.
新知学习
x-y=2
x+1=2(y-1)
1
这两个方程各含有___个未知数,含未知数的项的次数是___.
两
含有两个未知数,并且所含未知数的项的次数
都是 1 的方程叫做二元一次方程.
典例训练
【例1】已知|m-1|x|m|+y2n-1=3是二元一次方程,则m+n=____.
= −.
解为
= ,
试计算a+(-b) 的值.
= .
【总结】利用方程组的解确定字母参数的方法是将方程组的解代入
它适合的方程中,得到关于字母参数的新方程,从而求解.
新知学习
判断x,y值是否适合下面的二元一次方程.
x-y=2
x+1=2(y-1)
x=3,y=1
x=5,y=4
x=3,y=1是方程x-y=2的
x=5,y=4是方程x+1=2(y-1)
= ,
一个解,记作
.
=
的一个解,记作
= ,
.
=
适合一个二元一次方程的一组未知数的值,叫做
这个二元一次方程的一个解.
(“相同”或“不相同”)
因此x,y必须同时满足方程x-y=2,x+1=2(y-1),联立两者,得
《认识二元一次方程组》示范公开课教学PPT课件【青岛版七年级数学下册】
应用新知
例2.有下列方程组:
①
xy 1 x y
2
;②
x 1 x
y y
3
;③
1
2x z 0
3x
y
1 5
;④
x 5
x 2
y 3
7
;⑤
x x
y
3 1
.
其中二元一次方程组有( B )
A.1个 B.2个 C.3个 D.4个
解析:①方程组中第一个方程含未知数的项x、y的次数不是1;
②方程组中第二个方程不是整式方程;③方程组中共有3个 未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.
在本章“情境导航”给出的题目中: 1.哪些量是已知的?哪些是未知的? 2.有哪些等量关系? 3.你能用方程的知识解决这个问题吗?
探究新知
议一议 1.如果设长城东段的长为x千米,西段的长为y千米. 试用上述等量关系列方程:
x+y=7300①; y-x=6100②. 2.上面列出的两个方程还是一元一次方程吗?它们与一元 一次方程有哪些相同点和不同点?
挑战自我
方程组
x y 7300 x 600
是二元一次方程组吗?为什么?
是,因为是含有两个未知数,并且都是一次方程.
典型例题
应用新知
例1.已知|m-1|x|m|+y2n-1=3是关于x、y的二元一次方程, 则m+n=___0___.
解析:根据二元一次方程满足的条件,即只含2个未知数,未知数的 项的次数均为1的整式方程,即可求得m、n的值.根据题意得|m|=1 且|m-1|≠0,2n-1=1,解得m=-1,n=1,所以m+n=0.故填0.
应用新知
课堂练习
1.下列属于二元一次方程组的是( A )
北师大版初中数学八年级上册1 认识二元一次方程组公开课优质课课件教案
北师大版初中数学八年级上册1 认识二元一次方程组公开课优质课课件教案北师大版初中数学八年级上册1 认识二元一次方程组公开课优质课课件教案视频 -5.1 认识二元一次方程组●教学目标(一)教学知识点1.体会方程是刻画现实世界的有效数学模型.2.二元一次方程、二元一次方程组及其解的概念.(二)能力训练要求1.通过分析实际问题,使学生进一步体会方程是刻画现实世界的数学模型.2.了解二元一次方程、二元一次方程组及其解的概念,并会判断一组数是不是某个二元一次方程组的解.(三)情感与价值观要求1.体会方程的模型思想,培养学生良好的数学应用意识.2.通过对学生熟悉的传统内容(如鸡兔同笼)的讨论,激发学生学习数学的兴趣.●教学重点1.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效模型.2.了解二元一次方程、二元一次方程组及其解等概念,并会判断一组数是不是某个二元一次方程组的解.●教学难点1.探索实际问题中的等量关系,列出二元一次方程组.2.判断一组数是不是二元一次方程组的解.●教学方法学生自主探索——教师引导的方法.学生已具备了列一元二次方程解决实际问题的经验基础.在教学中,教师可引导学生思考列二元一次方程时,如何寻求等量关系,放手让学生经过自主探索列出二元一次方程组.●教具准备投影片三张:第一张:老牛和小马的对话(记作§5.1 A);第二张:“希望工程”义演(记作§5.1 B);第三张:做一做(记作§5.1 C).●教学过程Ⅰ.创设情境,引入新课[师]小学时,我们就解答过著名的“鸡兔同笼”的问题,如“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”谁能用我们学过的知识来解答一下呢?[生]解:设鸡有x只,则兔有(35-x)只,根据题意,可得:2x+4(35-x)=94解得x=23∵35-x=35-23=12答:鸡有23只,兔有12只.[生]不用方程也可以解答:如果让每只鸡都抬起一条腿,让每只兔子都抬起两条腿,即让它们表演“优美动人”的“金鸡独立”和“玉兔拜月”,这样它们一共抬起了94÷2=47条腿,并且只有47条腿着地了.接着让鸡飞上蓝天,让兔练习“金鸡独立”,也就是每只兔子只有一只腿着地,这样着地的腿数又减少了35条,而只有47-35=12条腿着地了,并且有一条腿着地,就有一只兔子,所以应该有12只兔子,35-12=23只鸡.[师]这两位同学解答“鸡兔同笼”的问题都非常精彩,特别是第二位同学.我们用掌声鼓励他们.接下来,老师说一种新的思路.在上面“鸡兔同笼”的问题中,我们会发现它有两个等量关系:鸡的只数+兔子的只数=35;鸡的腿数+兔子的腿数=94.如果我设鸡有x只,兔子有y只,这时我们就得到了方程x+y=35和2x+4y=94.这节课我们就来学习这样的方程及由它们组成的方程组.Ⅱ.讲授新课出示投影片(§5.1 A),并讨论回答下列问题.有这么一段对话:老牛和小马驮着包裹走在路上.老牛:累死我了!小马:你还累?这么大的个儿,才比我多驮2个.老牛:哼,我从你背上拿来1个,我的包裹数就是你的2倍!小马:真的?!请问:老牛和小马各驮了多少包裹呢?[师生共析]设老牛驮了x个包裹,小马驮了y个包裹.从老牛和小马的对话中,我们可以探索到其中的等量关系:①老牛驮的包裹-小马驮的包裹数=2,②老牛驮的包裹数+1=(小马驮的包裹数-1)×2.由此我们就可得到方程x-y=2和x+1=2(y -1).出示投影片(§5.1 B)[生]在上述问题中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可得方程x+y=8和5x+3y=34.[师]在上面的两个问题中,我们得到了四个方程:x-y=2和x+1=2(y-1),x+y=8和5x+3y=34.在这四个方程中,它们有何共同的特点.下面请同学们分组讨论.(此时,老师可参与到学生的讨论中,引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?)[生]上面我们所列的四个方程都含有两个未知数,未知数的次数和含有未知数的项的次数都是一次.老师,我们能不能把它们叫二元一次方程.因为我国古代就把未知数叫做元,并且它们的未知数的次数是一次.[师]很好.它们的确都是二元一次方程.但我有一个问题和大家共讨论.我这儿有一个方程6xy-3=2.它也含有两个未知数,且未知数的次数x,y都是一次,它和上面的四个方程一样吗?[生]不一样.它虽然含有两个未知数,未知数x,y也都是一次的,但6xy这一项即含未知数的项却是二次的.[师]你真棒.正象这位同学说的,6xy-3=2不是二元一次方程.x-y=2和x+1=2(y-1),x+y=8和5x+3y=34它们才是二元一次方程.能用自己的语言归纳什么叫二元一次方程吗?[生]含有两个未知数,并且含有两个未知数的项的次数都是1的方程叫做二元一次方程.[师]接下来,我们讨论下面的问题:在上面的方程x-y=2和x+1=2(y-1)中,x,y的含义相同吗?[生]应该相同.在两个二元一次方程中,x都表示老牛驮的包裹数,y都表示小马驮的包裹数,因此x,y的含义是相同的.[师]也就是说,x、y既满足第一个方程x-y=2,又满足第二个方程x+1=2(y-1).于是我们把它们联立起来,得像这样的含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.如、都是二元一次方程组.注意在一个方程组中x、y应代表同一个量.出示投影片(§5.1 C)(请同学们分组讨论完成,教师深入学生当中,随时发现同学们讨论问题时的闪光点)[师生共析](1)把x=6,y=2代入方程x+y=8的左边得x+y=6+2=8,左边=右边,所以x=6,y=2是适合方程x+y=8.我们把适合二元一次方程的一组未知数的值,叫做这个二元一次方程的解.因此x=6,y=2即为x+y=8的一组解.我们会发现x=5,y=3也适合方程x+y=8,因此x=5,y=3也是方程x+y=8的一组解.还有没有其他的x,y的值适合方程x+y=8呢?[生]有.如x=1,y=7;x=4,y=4;x=8,y=0;……[生]我发现,只要给出x的一个值,代入x+y=8中,便可得到y的一个值.例如我们设x=-1,则代入x+y=8中,得-1+y=8,解得y=9.所以x=-1,y=9适合方程,是方程的一个解.也因此而得到x+y=8的解有无数多个.[师生共析](2)把x=5,y=3代入方程5x+3y=34的左边=5x+3y=5×5+3×3=34.所以x=5、y=3是方程5x+3y=34的一个解.同样x=2,y=8也是方程5x+3y=34的一个解.我们把x=2,y=8是方程5x+3y=34的一个解记作也是方程5x+3y=34的一个解.(3)由(1)、(2)我们可以发现既是方程x+y=8的一个解,也是5x+3y=34的一个解.我们把这两个二元一次方程的公共解,叫做由这两个二元一次方程组成的方程组的解.例如就是二元一次方程组的解.Ⅲ.例题精析[例1](1)已知方程2xm+2+3y1-2n=17是一个二元一次方程,则m=________,n=________.(2)方程①y=3x2+x;②3x+y=1;③2x+4z=5z;④xy=2;⑤+y=0;⑥x+y+z=1;,是二元一次方程的有_________.解:(1)由二元一次方程的定义,得m+2=1,1-2n=1∴m=-1,n=0(2)根据二元一次方程的定义.可知②③⑤是二元一次方程.评注:二元一次方程必须要同时符合下列条件的整式方程:①方程中含有两个未知数;②方程中含有未知数的项的次数都是1.评注:二元一次方程组的解必须同时适合方程组中的每个方程.Ⅳ.随堂练习课本练习的答案1.解:设小明买了面值50分的邮票x枚和面值80分的邮票y枚,则可列出方程组.Ⅴ.课时小结这节课通过对实际问题的分析,使学生进一步体会到了方程是刻画现实世界的有效模型.在此基础上,我们了解了二元一次方程.二元一次方程组及其解等概念,并学会了判断一组数是不是某个二元一次方程组的解.Ⅵ.课后作业(一)习题5.1(二)预习课本,体会二元一次方程组是如何转化为一元一次方程问题的.Ⅶ.活动与探究求二元一次方程2x+y=7的正整数解.过程:我们知道求二元一次方程2x+y=7的正整数解,就是求适合2x+y=7的一组未知数的正整数的值.2x+y=7的解有无数多个,而正整数解只有九个.由等式的性质可由方程2x+y=7得到y=7-2x,由于x,y只能取正整数,所以x=1,2或3.当x=1时,y=7-2×1=5;当x=2时,y=7-2×2=3;当x=3时,y=7-2×3=1.结果:二元一次方程2x+y=7的正整数解为●板书设计●备课资料一、参考例题[例1]已知方程8x=y+4.(1)用x的代数式表示y.(2)求当x为何值时,y=12?分析:第(1)小题中,关键是把x看作是已知数,把y看作是未知数,然后按解一元一次方程的解法解;第(2)小题中把y=12代入方程8x=y+4实际就是含未知数x的一元一次方程.解:(1)去分母,得24x=y+12移项,得y=24x-12(2)若y=12,即24x-12=12∴24x=24,x=1评注:将二元一次方程中的一个未知数用另一未知数的代数式表示出来,这个过程实质是方程的一个变形,这种变形的方法是,把二元一次方程看做一元一次方程,其中把要表示的未知数仍看作是未知数,把另一个未知数看作已知数,然后解一元一次方程即可.二、参考练习1.填空题(1)已知方程2x2n-1-3y3m-n+1=0是二元一次方程,则m=_________,n=_________.。
5.5.1《认识二元一次方程组》公开课-北师大教学设计精品
第五章二元一次方程组5.1认识二元一次方程组一、学生起点分析在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,具备了进一步学习二元一次方程及二元一次方程组的基本能力.二、学习任务分析《认识二元一次方程组》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元一次方程组》的第一节,本节内容安排1个课时完成.具体内容是:让学生通过对实际问题的分析,体会方程是刻画现实世界的一个有效数学模型;同时了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.二元一次方程是继一元一次方程后,又一个体现符号表示思想的内容,它是刻画现实世界的一个有效数学模型,在数学上有着广泛的应用,同时也是学习物理、化学等其他学科知识的一个重要基础.它既是一元一次方程知识的延伸和拓广,又是今后学习一般线性方程组及平面解析几何等知识的基础,具有承上启下的作用.基于学生对一元一次方程理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,类比一元一次方程学习二元一次方程、二元一次方程组及其解等基本概念.在学习过程中,要突出强调建模思想,展现方程是刻画现实世界的有效数学模型.三、学习目标分析1.学习目标知识与技能:了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.过程与方法:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型。
情感态度价值观:⑴培养学生良好的数学应用意识。
⑵通过古代数学名题,展示我国古代数学的杰出成就,激发学生的学习兴趣。
2.教学重点理解二元一次方程、二元一次方程组等有关概念。
3.教学难点让学生体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识. 四、学习过程设计(一)创设情境,引入新课导语:•法国数学家笛卡尔说过:一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程。
认识二元一次方程组课件
方程组的解;若不满足其中任何一个方程,则这
对数值就不是这个方程组的解.
随堂练习
1.根据题意列方程组:
小明从邮局买了面值50分和80分的有票共9枚,花
了6.3元.小明买了两种邮票各多少枚?
解:设面值50分的邮票x枚,面值80分的邮票y枚.
x+y=9,
由题意,得
两个方程的公共解
成的一组方程叫做二元一次方程组.
做一做
(1)x=6,y=2合适方程x+y=8吗?x=5,y=3呢?
x=4,y=4呢?你还能找到其他x,y值合适方程
x+y=8吗?
(2)x=5,y=3合适方程5x+3y=34吗?x=2,y=8呢?
(3)你能找到一组x,y的值,同时合适方程x+y=8
和5x+3y=34吗?
-2
|a|-1=1,且a-2≠0
a=-2
易错警示:“含有两个未知数”意味着含有未知
数的项的系数都不为零,即对关于 x,y 的二元一
次方程 ax+by=c,切记 a≠0,b≠0.本题不要忽略
a-2≠0 这一隐每人每天
可完成 900 件,第二道工序每人每天可完成 1 200 件.
园玩,买门票
花了34元.
每张成人票5元,
每张儿童票3
元.你们到底
去了几个成人、
几个儿童呢?
设他们中有x个成人,y个儿童,由此你
能得到怎样的方程?
新知探究
上面两个问题中,我们分别得到x-y=2,x+1=2(y-1)
和x+y=8,5x+3y=34.这些方程各含有几个未知数?
含未知数项的次数是多少?
2021年北师大版八年级数学上册《 5.1 认识二元一次方程组》公开课课件
累死我了!
你还累?这么大 的个,才比我多 驮了2个.
哼,我从你背上拿来 1个, 我的包裹数就是你的 2 倍!
真的?!
我从你背上拿来 1 个,我的包裹数就
是你的 2 倍!
你还累?这么 大的个,才比我 多驮了2个
它们各驮了多少包裹呢?
设老牛驮了x个包裹 , 小马驮了y个包裹. 老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程 呢?
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/2/52021/2/5Friday, February 05, 2021
• 本章将学习二元一次方程组及其解法,并利用二元一次 方程组解决一些有趣的现实问题。
• 你————
作好准备了吗?
1.学习目标
(1)了解二元一次方程、二元一次方程组的概念. (2)了解方程解的概念 ,会判断一组数是不是某个二 元一次方程(组)的解. (3)理解二元一次方程组的含义.
2.学习重点
了解二元一次方程(组)及其解等概念.
方程组各方程中同一字母必须代表同一个量.
• 例: x-y=2 x+y=8, x+1=2(y-1) 5x+3y=34
都是二元一次方程组
• 你知道了吗?
完成P105做一做 以下问题
并思考
• (1)适合方程x+y=8的x、y的值是唯一的 吗?
• 不是,有很多组。
• (2)适合方程5x+3y=34的x、y的值是唯一 的吗?
3.学习难点
探索实际问题中的等量关系,列出二元一次方程组.
累死我了!
你还累?这么 大的个,才比 我多驮了2个.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
x+y=8
5x+3y=34
像这样,共含有两个未知数的两个一次方程所组成的一组方程, 叫做二元一次方程组.
方程组各方程中同一字母必须代表同一个量.
例
(1)
判断下列方程组是否是二元一次方程组:
x 2 y 1, 是 3x 5 y 12;
(2)
x 2 y 1, 否 x 3 y 5;
是
(3)
x 7 y 3, 否 3 y 5 z 1;
2 x 5, 否 y 3x 8 y 12;
(4)
x 1, y 2;
(5)
(6)
2a 3b 1, 否 5ab 2b 3.
1的
( A)
x 2, y 3;
(B)
(C)
x 10, y 3;
( D)
x 4, y 1; x 5, y 2.
答案:B,C,D
x=5 ,y =3 是否为方程 x+y =8
的一个解?
x=5 , y =3 是否为方程 5x +3y =34 的一个解?
它们各驮了多少包裹呢?
设老牛驮了x个包裹 , 小马驮了y个包裹.
老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程 呢? 老牛的包裹数-小马的包裹数=2个 x-y=2 若老牛从小马的背上拿来1个包裹,这时它们各有几个包裹?由 此你又能得到怎样的方程呢? 老牛的包裹+1=(小马驮的包裹数-1)×2 x+1=2(y-1)
昨天,我们8个人 去红山公园玩,买门 票花了34元.
每张成人票5元,每 张儿童票3元.他们 到底去了几个成人、 几个儿童呢?
设他们中有 x个成人, y个儿童.由此你能得到 怎样的方程?
x y 8
和
5 x 3 y 34
想一想 P104
x-y=2 x+y=8
x+1=2(y-1)
5x+ 3y=34
作业
• 习题5.1 第2题、第三题
第五章
二元一次方程
1 认识二元一次方程组
金厂镇中心校
何文虎
忆一忆
• 什么是一元一次方程? • 含有一个未知数,并且未知数的最 高次数是一次的整式方程
1.学习目标
(1)了解二元一次方程、二元一次方程组的概念.
(2)了解方程解的概念 ,会判断一组数是不是某个二 元一次方程(组)的解. (3)理解二元一次方程组的含义.
做一做 P105
(1) x=6 , y =2 适合方程 x+y =8 吗 ? x=5 , y =3 呢? x=4, y=4 呢? 你还能找到其他x , y的值
适合方程 x+y=8 吗 ? 都适合;
例:x=1,y=7
二元一次方程组有多少组解?
二元一次方程组有无数组解
试一试
在下列四组数值中,哪些是二元一次方程 x 3 y 解?
(B)
(C)
x 10, y 3;
答案:D
( D)
x 4, y 1; x 5, y 2.
小
方程叫做二元一次方程.
结
含有两个未知数,并含有未知数的项的次数都是1的
像这样含有两个未知数的两个一次方程所组成的一组
方程叫做二元一次方程组. 适合一个二元一次方程的一组未知数的值,叫做这个 二元一次方程的一个解. (二元一次方程有无数个解) 二元一次方程组中各个方程的公共解,叫做这个 (二元一次方程组有唯一解) 二元一次方程组的解.
2.学习重点
了解二元一次方程(组)及其解等概念.
3.学习难点
探索实际问题中的等量关系,列出二元一次方程组.
累死我了!
你还累?这么大 的个,才比我多 驮了2个.
哼,我从你背上拿来 1个, 我的包裹数就是你的 2 倍!
真的?!
我从你背上拿来 1 个,我的包裹数就 是你的 2 倍!
你还累?这么 大的个,才比我 多驮了2个
上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1
含有两个未知数,并且所含未知数的项的次数都是 1 的 方程叫做二元一次方程.
议一议 P104 方程 x+y=8 和 5x+3y=34中,x的含义相同吗?y呢?
x,y的含义分别相同,因而x,y必须同时满足方程 x+y=8 和
二元方程组中各个方程的公共解,叫做这个二元一次 方程组的解.
例如
{
x=5 就是二元一次方程组 y=3
{
x+y=8 的解 5x+3y=34
二元方程组有多少个解?
唯一一个
小试牛刀
x y 7, 在下列四组数值中,哪个是二元一次方程组 的解? x y 3;
( A)
x 2, y 3;