期中考试有理数整式的加减一元一次方程

合集下载

人教版九年级数学上册期中考试卷及答案(含知识点)

人教版九年级数学上册期中考试卷及答案(含知识点)

初三数学上学期期中试卷附参考答案 (答题时间:100分钟,满分:120分)一、选择题:(每题4分,共32分)1.计算()23-的结果是 ( )A.3B.3-C.3±D.9 2.下列各式中与2是同类二次根式的是 ( ) A. 12 B. 24 C. 32 D. 233.下列运算中正确的是 ( )A .523=+B .82)8()2(-⨯-=-⨯-C .322944=D =4.一元二次方程0422=-+x x 的根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个相等的实数根D .没有实数根 5.用配方法解一元二次方程0782=++x x ,则方程可变形为 ( )A .9)4(2=-xB .57)8(2=+xC .16)8(2=-xD .9)4(2=+x 6.在某次同学聚会上,每两人都互赠了一件礼物,所有人共送了210份礼物,设 有x 人参加这次聚会,则列出方程正确的是 ( )A.210)1(=-x xB.2102)1(=-x x C. 210)1(=+x x D. 2102)1(=+x x7的结果是 ( )A .B .10C ..20 8.已知a 为实数,下列式子一定有意义的是 ( )A C 二、填空题:(每题3分,共24分)9.2-x 在实数范围内有意义,则x 的取值范围是.10.一元二次方程0132=--x x 的解是.12. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0,则m= . 13.实数a 在数轴上的位置如图所示,化简|1|a -= .14.a 是实数,且a -4+︱a 2-2a -8︱=0,则a 的值是__________. 15. 把a ab (b >0)中根号外的因式移入根号内得__________.16. 要使式子x3-x 有意义,则x 的取值范围是__________. 三、解答题:(共64分) 17.计算:(每题5分,共10分)(1)()22832264÷+- (2)253230÷⨯18.(本题6分)已知关于x 的方程0102=-+kx x 的一个解与分式方程5252=-+x x 的解相等. (1)求k 的值; (2)求方程0102=-+kx x 的另一个解.19.(本题6分)先化简,再求值:)2(24422x x x x x +÷+++,其中3=x20.(本题6分)已知a 、b 、c 在数轴上的位置如图所示,化简:a 2-︱a +b ︱+(c -a )2+(b +c )2.-112a 第13题21.(本题7分)大众电影院为吸引学生观看电影,推出如下的收费标准:江南中学组织初三学生观看电影,共支付给电影院3750元,请问共组织了多少学生观看电影?22.(9分)已知322,322x y =+=-,求22x y xy +的值.23.(10分)用适当方法解下列方程:(1)(2-3x )(x +4)=(3x -2)(1-5x ); (2)14x 2+52x -6=0.24.(10分)先化简,再求值:x 2(3-x )+x (x 2-2x )+1,其中x = 3一、选择题:(每题3分,共24分)1.A 2.C 3.D 4.B 5.D 6.A 7. 8. 二、填空题:(每题2分,共16分) 9.2≥x 10.2133,213321-=+=x x 11.13或14 12.2 13.1 14.22- 15.40° 16.2三、解答题:(共60分)17.(1)()22832264÷+- =232+化简83正确得1分,832264+-计算正确得2分,得出正确答案得2分,共5分 (2)253230÷⨯=22 乘法计算正确得2分,除法计算正确得2分,得出正确答案得1分,共5分18.(1)k= -3 计算出x=5得2分,计算出k=-3得2分,共4分. (2)另一个解为 -2 计算正确得2分. 19. )2(24422x x x x x +÷+++=xx x x x 1)2(12)2(2=+⋅++当3=x 时,原式=33以下不需要可以删除人教版初中数学知识点总结必备必记目 录七年级数学(上)知识点 (1)第一章 有理数 (1)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

(完整)初一数学复习资料

(完整)初一数学复习资料

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

中考数学要点难点分析

中考数学要点难点分析

中考数学要点难点分析初一上册有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

考察内容:①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式发和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

考察内容:①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础初一下册相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式出现。

分值为3-4分,难易度为易。

考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

考察主要内容:①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

北京市第二中学2022-2023学年七年级上学期数学期中考试试卷

北京市第二中学2022-2023学年七年级上学期数学期中考试试卷

北京二中教育集团2022-2023学年度第一学期初一数学期中考试试卷考查目标:1.知识:人教版七年级上册《有理数》、《整式的加减》全部内容,《一元一次方程》部分内容。

2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力。

考生须知:1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共12页;其中第I 卷2页,第Ⅱ卷4页,答题卡6页。

全卷共三大题,28道小题。

2.本试卷满分100分,考试时间100分钟。

3.在第I 卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。

4.考试结束,将答题卡交回。

第I 卷(选择题共16分)一、选择题(以下每题只有一个....正确的选项,每小题2分,共16分) 1.5的相反数为( )A .5-B .15C .15- D .5 2.2022年4月28日,京杭大运河实现全线通水,京杭大运河是中国古代捞动人民创造的一项伟大工程,它南起余杭(今杭州),北到涿郡(今北京),全长约1800000m .将1800000用科学记数法表示应为( )A .70.1810⨯B .61.810⨯C .51810⨯D .71.810⨯3.若1x =是关于x 的方程25x a +=的解,则a 的值为( )A .7B .3C .3-D .7-4.如果a b =,那么下列等式一定成立的是( ) A .1122a b +=- B .a b =- C .55a b = D .1ab = 5.头实数a ,b ,c 在数轴上对应点的位置如图所示,若||||a c =,则下列结论中正确的是( )A .0a c +>B .0a b ->C .0ab >D .||a b >6.如图①,从一个边长为a 的正方形纸片中剪去两个小长方形,得到一个“S ”形图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为( )A .410a b -B .23a b -C .24a b -D .48a b -7.某月的月历表如图所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )A .24B .42C .50D .698.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:15;丁:8;戊:17,则甲同学手里拿的卡片的数字是( )A .2和9B .3和8C .4和7D .5和6第Ⅱ卷(非选择题共84分)二、填空题(共16分,每小题2分)9.请写出一个比5-大的负有理数:___________.(写出一个即可)10.月球表面的白天平均温度为零上126℃,夜间平均温度为零下150℃.如果零上126℃记作126+℃,那么零下150℃应该记作___________℃.11.已知237a b -=,则246a b +-=___________.12.如果数轴上的点A 对应的数为1-,那么数轴上与A 点相距3个单位长度的点所对应的有理数为___________.13.如果21313m x y -与557n x y -是同类项,那么3m n -的值是___________. 14.下列各数:15⎛⎫-- ⎪⎝⎭,0,23-,|2|--,π,2022(1)-,其中正整数有___________个. 15.若|2|b +与2(3)a -互为相反数,则ab 的值为___________.16.对于两个不相等的有理数a ,b ,我们规定符号max{,}a b 表示a ,b 两数中较大的数,例如max{2,4}2-=.按照这个规定,方程max{,}21x x x -=+的解为___________. 三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17.计算:5(6)(9)-+---.18.计算:851389⎛⎫⎛⎫-⨯-÷⎪ ⎪⎝⎭⎝⎭. 19.计算:12524236⎛⎫-⨯+-⎪⎝⎭. 20.计算:3413(2)(4)3⎛⎫-⨯+-÷- ⎪⎝⎭. 21.先化简,再求值:()2222322mn m n mn m n +--,其中1,2m n ==-.22.解方程:321x x -=+.23.解方程:5(1)333x x -+=-.24.关于x 的一元一次方程3152x m -+=,其中m 是正整数.... (1)当3m =时,求方程的解;(2)若方程有正整数解....,求m 的值. 25.某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在44⨯的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i 行,第j 列表示的数字记为ij a (其中,1,2,3,4i j =),如图1中第2行第1列的数字210a =;对第i 行使用公式1234842i i i i i A a a a a =+++进行计算,所得结果1A 表示所在年级,2A 表示所在班级,3A 表示学号的十位数字,4A 表示学号的个位数字.如图1中,第二行280412015A =⨯+⨯+⨯+=,说明这个学生在5班.(1)图1代表的学生所在年级是___________年级,他的学号是___________;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.26.为响应国家节能减排政策,某班开展了节电竞赛活动.通过随手关灯、提高夏季空调温度、及时关闭电源等行为,小明和小玲两位同学半年共节电55度.据统计,节约1度电相当于节约0.4千克“标准煤”,在节电55度产生的节煤量中,小明“节煤量”的2倍比小玲多8千克.设小明半年节电x 度.请回答下面的问题:(1)用含x 的代数式表示小玲半年节电量为___________度,用含x 的代数式表示这半年小明节电产生的“节煤量”为___________千克,用含x 的代数式表示这半年小玲节电产生的“节煤量”为___________千克;(不需要化简)(2)请列方程求出小明半年节电的度数.27.己知a ,b 在数轴上的位置如图所示:(1)用“>”、“<”或“=”填空:____0a ,____0a b +,____0b a -;(2)化简:||||2||a b a a b +--+;(3)若21a b =-=,,x 为数轴上任意一点所对应的数,则代数式||||x a x b -+-的最小值是___________;此时x 的取值范围是___________.28.我们规定:对于数轴上不同的三个点M ,N ,P ,当点M 在点N 左侧时,若点P 到点M 的距离恰好为点P 到点N 的距离的k 倍,且k 为正整数,(即PM kPN =),则称点P 是“[]M N ,整k 关联点”如图,已知在数轴上,原点为O ,点A ,点B 表示的数分别为24A B x x =-=,.(1)原点O ___________(填“是”或“不是”)“[]A B ,整k 关联点”;(2)若点C 是“[]A B ,整2关联点”,则点C 所表示的数C x =___________;(3)若点A 沿数轴向左运动,每秒运动2个单位长度,点B 沿数轴向右运动,每秒运动1个单位长度,则运动时间为___________秒时,原点O 恰好是“[]A B ,整k 关联点”,此时k 的值为___________.(4)点Q 在A ,B 之间运动,且不与A ,B 两点重合,作“[]A Q ,整2关联点”,记为A ',作“[]Q B ,整3关联点”,记为B ',且满足A ',B '分别在线段AQ 和BQ 上.当点Q 运动时,若存在整数m ,n ,使得式子mOA nQB ''+为定值,求出m ,n 满足的数量关系.。

2024年数学七年级教案全册七年级上册数学教学教案

2024年数学七年级教案全册七年级上册数学教学教案

2024年数学七年级教案全册七年级上册数学教学教案一、教学目标1.让学生掌握基本的数学概念、公式和定理。

2.培养学生的数学思维能力,提高解决问题的能力。

二、教学内容1.第一单元:有理数2.第二单元:整式的加减3.第三单元:一元一次方程4.第四单元:几何图形初步5.第五单元:数据的收集、整理与描述三、教学重点与难点重点:1.掌握有理数的概念、性质及运算。

2.掌握整式的加减运算。

3.学会解一元一次方程。

4.理解几何图形的基本概念和性质。

5.学会收集、整理和描述数据。

难点:1.有理数的乘除法运算。

2.整式的乘法运算。

3.一元一次方程的解法。

4.几何图形的证明。

四、教学进度安排第一周:有理数的基本概念及加减法运算第二周:有理数的乘除法运算第三周:整式的加减运算第四周:一元一次方程第五周:几何图形初步第六周:数据的收集、整理与描述第七周:期中考试复习第八周:期中考试第九周:期中考试试卷分析第十周:一元一次方程的应用第十一周:几何图形的证明第十二周:数据的收集、整理与描述(续)第十三周:期末考试复习第十四周:期末考试五、教学过程第一单元:有理数第1课时:有理数的基本概念1.引导学生了解有理数的定义、性质。

2.通过实例让学生掌握有理数的加减法运算。

3.课堂练习:完成课后练习题。

第2课时:有理数的乘除法运算1.讲解有理数的乘除法运算规则。

2.通过实例让学生掌握有理数的乘除法运算。

3.课堂练习:完成课后练习题。

第二单元:整式的加减第3课时:整式的概念及加减运算1.讲解整式的概念及加减运算规则。

2.通过实例让学生掌握整式的加减运算。

3.课堂练习:完成课后练习题。

第三单元:一元一次方程第4课时:一元一次方程的概念及解法1.讲解一元一次方程的概念及解法。

2.通过实例让学生学会解一元一次方程。

3.课堂练习:完成课后练习题。

第四单元:几何图形初步第5课时:几何图形的基本概念1.讲解几何图形的基本概念。

2.通过实例让学生理解几何图形的性质。

初一数学期中考试复习学习计划

初一数学期中考试复习学习计划

初一数学期中考试复习学习计划初一数学期中考试复习学习计划初一数学新授课教学任务已经结束,接下来就到了系统、完善、深化所学内容的关键环节----复习。

这一阶段教师能否引导好不仅有利于学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且是对学习基础较差学生达到查缺补漏,掌握教材内容的再学习。

因此特制订本计划,以便实施教学总复习有计划、有步骤。

一、紧扣大纲,精心复习初一这部分内容多而杂,是初中数学中的基础知识和基本技能的集中体现,内容多且函数章节较为抽象,学生往往学了新的,忘了旧的。

因此,计划的编写必须切合学生实际。

可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,多结合平常测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定复习的重点。

学校为我们定制了一www.本复习资料,这让我们老师在复习的时候能有很全面的借鉴价值,首先感谢领导,我们会精心选好例题习题,绝不当了资料的傀儡,让学生更好的复习。

二、追本求源,系统掌握基础知识我们按章节复习,引导学生对概念及定理性质的再次理解掌握,做好例题的变式,围绕历年考题特点做找有针对的复习训练。

首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。

对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;②对配备的练习题必须逐题过关;③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。

三、系统整理,提高学生复习效率四、集中练习,争取提高应试速度复习是巩固已学知识,拓展新知识的必要手段,做好期末复习工作能使学生全面系统掌握基础知识,提高基本技能,开展学生的智力。

复习阶段做到有条不紊复习,按部就班地推进,知识在学生头脑中更系统化、完整化,从而更好地应用知识,提高学习质量。

做好全面复习工作要有周密的计划,这样才能在最短时间内,更好更多地掌握知识,提高能力。

为此,在复习之前做出本学期的期末复习计划。

七年级期中考试备考计划

七年级期中考试备考计划

七年级期中考试备考计划一、考试科目分析。

七年级期中考试一般包括语文、数学、英语、道德与法治、历史、地理、生物这几门学科。

不同学科有不同的特点和学习方法。

(一)语文。

1. 基础知识。

- 字词积累:复习课本后的字词表,重点关注易错字、多音字、形似字。

可以通过默写、听写等方式加强记忆。

- 古诗文背诵:熟练背诵课本要求的古诗词和文言文,并且能够准确默写,注意通假字、古今异义词等特殊字词的写法。

2. 阅读理解。

- 现代文阅读:掌握记叙文、说明文、议论文的基本阅读方法。

如记叙文要理解文章的主旨、人物形象、情节发展等;说明文要明确说明对象、说明顺序和说明方法;议论文要把握论点、论据和论证方法。

可以通过做一些阅读练习,总结答题技巧。

- 文言文阅读:除了背诵课文,还要理解文言文的实词、虚词的含义,能够准确翻译句子。

复习课本中的文言文注释,多做一些文言文阅读练习。

3. 作文。

- 回顾平时写过的作文,总结自己擅长的作文类型和写作风格。

- 积累一些好词好句、名人名言、事例素材等,以便在作文中灵活运用。

(二)数学。

1. 知识点梳理。

- 有理数的运算:包括有理数的加减乘除、乘方运算,要熟练掌握运算法则,提高运算的准确性和速度。

- 整式的加减:理解单项式、多项式的概念,掌握合并同类项的方法。

- 一元一次方程:会列一元一次方程解决实际问题,掌握解方程的步骤。

2. 做练习题。

- 课本后的练习题要重新做一遍,尤其是做错的题目。

- 可以选择一些课外辅导资料上的练习题,进行有针对性的强化训练,如针对自己薄弱的知识点进行专项练习。

(三)英语。

1. 单词和短语。

- 背诵课本后的单词表,包括单词的拼写、发音和词义。

可以使用单词记忆软件辅助记忆,如百词斩等。

- 掌握课本中的重点短语,能够准确运用到句子中。

2. 语法。

- 复习一般现在时、现在进行时、名词的单复数、形容词的比较级和最高级等语法知识。

通过做语法练习题来巩固语法知识。

3. 听力和口语。

2020-2021学年江苏省苏州市常熟市七年级(上)期中数学试卷(附答案详解)

2020-2021学年江苏省苏州市常熟市七年级(上)期中数学试卷(附答案详解)

2020-2021学年江苏省苏州市常熟市七年级(上)期中数学试卷1. −2020的相反数是( )A. 2020B. −12020C. 12020D. −20202. 2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为( )A. 65×105 B. 6.5×105C. 6.5×106D. 0.65×1063. 下列各数0,−447,−3.14,π2,0.56⋅,−2.010010001…(相邻两个1之间的0的个数逐次增加),其中有理数的个数是( )A. 3B. 4C. 5D. 64. 下列计算正确的是( )A. 3a −2a =1B. 2a +3b =5abC. 2x 2+2x 2=4x 4 D. 5a 2b −6ba 2=−a 2b5. 若方程5x −1=12m +4的解是x =2,则m 的值为( )A. 26B. 10C. 52D. 656. 下列关于多项式−2x 3y3+2xy −1的说法中,正确的是( )A. 是三次三项式B. 最高次项系数是−2C. 常数项是1D. 二次项是2xy7. 已知|a|=5,b 2=64,且ab >0,则a −b 的值为( )A. 13B. −3C. 3D. 3或−38. 如果多项式x 2−kxy +2y 2与5x 2−xy 的和不含xy 项,则k 的值为( )A. 0B. 1C. −1D. 29. 如图,圆环中内圆的半径为a 米,外圆半径比内圆半径长1米,那么外圆周长比内圆周长长( )A. 2π米B. (2π+a)米C. (2π+2a)米D. π米10.有一个数字游戏,第一步:取一个自然数n1=4,计算n1⋅(3n1+1)得a1,第二步:算出a1的各位数字之和得n2,计算n2⋅(3n2+1)得a2,第三步算出a2的各位数字之和得n3,计算n3⋅(3n3+1)得a3;…以此类推,则a2020的值为()A. 7B. 52C. 154D. 31011.化简:−|−3|=______.12.比较大小:−23______−34。

语文教师期中考试质量分析总结

语文教师期中考试质量分析总结

语文教师期中考试质量分析总结语文教师期中考试质量分析总结「篇一」(一)整体情况1.试卷情况:试卷分为“积累与运用”、“阅读与鉴赏”、和“作文”三大板块,共150分。

试卷结构、命题方向、题型及题量上基本与中考保持一致。

本次试卷难度适中,符合7:2:1,语料的选择是一段优美、有文化内涵的文字,体现了字不离句的特点。

名句的默写加深了难度,倒逼学生对名句进行理解与识记。

名著阅读着眼于学生是否真阅读、深阅读。

课外阅读的选择也是培养了学生引领思维的深度,符合初三学生学情特点且对中考有很好的导向作用。

2.答题情况:从成绩数据可以看出,得分率比较高的是基础知识中的字词、古诗文默写、文言字词解释和课内句子翻译等基础识记类题,因这些题目设置的门槛较低,学生容易答对且容易得分,而修改病句、名著阅读、课外文言文、现代文阅读、作文等着重考查学生是否真的阅读且有一定的阅读感悟、考查学生语文素养和运用能力类的考题得分普遍不高。

3.成绩情况:最高校平分103.04,最低校平分56.27。

全县最高分131分,最低0分(其他学科有分数)。

(二)存在问题1. 书写不工整。

部分考生在答题过程中仍然出现字迹潦草不清的现象。

在基础知识音调标注不清、字迹不规范的学生占比较大,阅读和作文的书写中不整洁的现象也普遍存在。

2.基础知识掌握不扎实。

字音、字形、古诗文默写识记不准,名著阅读题失分也较多:如审题不清,易把“野胡”特点错写为形象。

对文本没有深入研读。

古诗赏析题感觉学生答题还靠死记硬背,不能灵活变通。

不理解诗句意思,诗歌情感分析不全面。

3.阅读能力明显欠缺。

一是不能全面踩点。

如15题:结构上的作用普遍只答对了两点,内容上的作用叙述不完整,也有学生分不清结构和内容。

如16题:表达心情的词语不准确,与场景不吻合。

环境描写作用归纳不全面。

要点不全,理解不透彻。

二是没有思路。

常规的阅读表达的`思路没有形成,学生存在乱答题现象;三是不会表达。

表述不清、词不达意和语言干瘪等问题较为突出。

2018年七年级数学上学期期中考试质量分析 (1)

2018年七年级数学上学期期中考试质量分析 (1)

2018-2019-1七年级数学卷面分析唐山市第二十八中学张红梅这次期中考试我班优秀人数2人,他们是牟丽阳和蒋铭。

及格人数13人,差生4人,平均55.25分。

不是很理想。

具体分析如下:一、试卷分析本次期中考试考查的主要是这一阶段所学的基础知识,主要考的知识点有:有理数的相关概念和加减乘除乘方运算,整式的相关概念和整式的加减运算。

一元一次方程以及解法。

从总体上看,大多数学生对基础知识掌握较好,并且掌握了一定的技能,但在综合运用知识解决问题方面,学生能力明显不足,不能把新旧知识结合起来,因此,在这方面学生丢分较多。

第一大题的第6、9、11、12小题,主要考查学生对概念的理解和掌握情况以及对一些规律的寻找情况,这几题失分较多。

特别是第6题考查等式性质只有个别学生答对。

第二大题的第17、18、19、20小题主要考查学生以对知识和公式的灵活运用情况,部分学生分析能力较差,因此失分。

特别是第20题列方程只有2个答对。

第三大题主要考查学生有理数的加减乘除及乘方运算和整式的加减运算能力以及一元一次方程的解法。

考查学生对知识的灵活运用,对公式的掌握和运用等,多数学生的分析能力很差,不能理解题意,因此失分较多。

22题多项式化简求值,由于不理解题意,导致失分。

23题的解方程第二个去分母的方程失分较多。

部分学生法则掌握不好,计算不准确失分第24、25、26三道大题,主要考查学生对知识的综合运用能力,由于学生普遍分析能力差,综合运用知识的能力就更差,因此失分很多。

二、反思及今后设想1、通过本次考试,可以看出基础知识和基本技能所占的比例较大,因此,“双基”仍然是教学的重点,教学中仍以“双基”为主,加强基础知识和基本技能的训练,要充分利用课堂教学,调动学生学习的积极性。

2、从本次考试情况可以看出,学生对基础知识掌握不牢固,对概念掌握和理解情况差,平时刚学完时,学生掌握和运用还可以,但过一段时间后就忘了,因此,应经常督促学生温习旧知。

初一数学复习资料

初一数学复习资料

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1 a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初一数学复习资料

初一数学复习资料

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

期中考试复习试卷

期中考试复习试卷

期中考试复习1、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( ) A 、-60米 B 、-80米 C 、-40米 D 、40米2、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米, 张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )A . 在家 B. 在学校 C . 在书店 D. 不在上述地方 3、下列说法正确的是( )①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A 、①②B 、①③C 、①②③D 、①②③④ 4、大于﹣2.5而小于3.5的整数共有( )A .6个B .5个C .4个D .3个5、江门市某粮店出售的面粉袋上标有质量为(25±0.1)kg 的字样,这表示的意思是 。

6、某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,6),(﹣3,2),(1,﹣7),则车上还有 _________ 人.7、如果0<a <1,那么2a ,a ,a1之间的大小关系是 A 、a <2a <a 1 B 、2a <a <a 1 C 、a1<a <2aD 、a1<2a <a 8、我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为( )A 、5.4 ×102人B 、0.54×104 人C 、5.4 ×106人D 、5.4×107人9、用四舍五入得到的近似数6.80×106有 _________ 个有效数字,精确到 _________ 位.10、已知:A 和B 都在同一条数轴上,点A 表示-2,又知点B 和点A 相距5个单位长度,则点B 表示的数一定是( )A 、 3B 、-7C 、 7或-3D 、-7或311、()()20142013502.-⨯-= .12、若|a ﹣4|+(b +1)2=0,那么a +b = _________ . 13、5049654321-++-+-+- =( ) A.0 B.20 C.25- D.2514、观察下列算式:31=3,32=9, 33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32013的个位数字是( )A 、3B 、9C 、7D 、1 15、a 是不为1的有理数,我们把称为a 的差倒数.如:2的差倒数是,﹣1的差倒数是,已知,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,则a 2012=( ) A .43B .4C . ﹣31D .无法确定 16、若1-a 与()22+b 互为相反数,求(a +b )2012的值。

七年级数学上册期中试卷及答案

七年级数学上册期中试卷及答案

七年级数学上册期中试卷及答案知识的宽度、厚度和精度决定人的成熟度。

每一个人比别人成功,只不过是多学了一点知识,多用了一点心而已。

下面给大家分享一些关于七年级数学上册期中试卷及答案,希望对大家有所帮助。

一、选择题(共10小题,每小题2分,满分20分)1.在下列数:﹣(﹣ ),﹣42,﹣|﹣9|,,(﹣1)2004,0中,正数有( )A. 1个B. 2个C. 3个D. 4个考点:正数和负数.分析:根据相反数的定义,绝对值的性质和有理数的乘方化简,再根据正、负数的定义进行判断即可.解答:解:﹣(﹣ )= 是正数,﹣42是负数,﹣|﹣9|=﹣9是负数,是正数,(﹣1)2004=1是正数,0既不是正数也不是负数,综上所述,正数有3个.故选C.点评:本题考查了正数和负数,主要利用了相反数的定义,绝对值的性质和有理数的乘方,熟记概念是解题的关键.2.下列各式计算正确的是( )A. ﹣32=﹣6B. (﹣3)2=﹣9C. ﹣32=﹣9D. ﹣(﹣3)2=9考点:有理数的乘方.分析:根据负数的奇数次幂是负数,负数的偶数次幂是正数进行判断.解答:解:因为﹣32=﹣9;(﹣3)2=9;﹣32=﹣9;﹣(﹣3)2=﹣9,所以A、B、D都错误,正确的是C.故选C.点评:主要考查了乘方里平方的意义.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;解题还要掌握乘方的运算法则.3.数a、b在数轴上的位置如图所示,则下列判断中,正确的是( )A.a>1B. b>1C. a<﹣1D. b<0考点:有理数大小比较;数轴.分析:首先根据数轴上的数左边的数总是小于右边的数,即可确定各个数的大小关系,即可判断.解答:解:根据数轴可以得到:a<﹣1<0<b<1,< p="">A、a>1,选项错误;B、b>1,选项错误;C、a<﹣1,故选项正确;D、b<0,故选项错误.故选:C.点评:此题考查数轴上点的坐标特点,注意数形结合思想的渗透.4.在,π,0,﹣0.010010001…四个数中,有理数的个数为( )A. 1B. 2C. 3D. 4考点:实数.分析:先根据整数和分数统称有理数,找出有理数,再计算个数.解答:解:根据题意,﹣,0,是有理数,共2个.故选B.点评:本题考查有理数的概念. 如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.本题中π是无限不循环小数,故不是有理数.5.若(m﹣2)x|m|﹣1=5是一元一次方程,则m的值为( )A. ±2B. ﹣2C. 2D. 4考点:一元一次方程的定义.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:根据题意,得,解得:m=﹣2.故选B.点评:本题主要考查了一元一次方程的定义.解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.6.如果关于x的方程6n+4x=7x﹣3m的解是x=1,则m和n满足的关系式是( )A. m+2n=﹣1B. m+2n=1C. m﹣2n=1D. 3m+6n=11考点:一元一次方程的解.专题:计算题.分析:虽然是关于x的方程,但是含有三个未知数,主要把x的值代进去,化出m,n的关系即可.解答:解:把x=1代入方程6n+4x=7x﹣3m中移项、合并同类项得:m+2n=1.故选B.点评:本题考查式子的变形,知道一个未知数的值,然后代入化出另外两数的关系.7.下列关于单项式一的说法中,正确的是( )A. 系数是﹣,次数是4B. 系数是﹣,次数是3C. 系数是﹣5,次数是4D. 系数是﹣5,次数是3考点:单项式.专题:推理填空题.分析:根据单项式系数及次数的定义进行解答即可.解答:解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣ ;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.故选A.点评:本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.下列每组中的两个代数式,属于同类项的是( )A. B. 0.5a2b与0.5a2cC. 3abc与3abD.考点:同类项;单项式.专题:探究型.分析:根据同类项的定义对四个选项进行逐一解答即可.解答:解:A、中,所含字母相同,相同字母的指数不相等,∴这两个单项式不是同类项,故本选项错误;B、∵0.5a2b与0.5a2c中,所含字母不相同,∴这两个单项式不是同类项,故本选项错误;C、∵3abc与3ab中,所含字母不相同,∴这两个单项式不是同类项,故本选项错误;D、∵ 中所含字母相同,相同字母的指数相等,∴这两个单项式是同类项,故本选项正确.故选D.点评:本题考查的是同类项的定义,即所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.9.一批电脑进价为a元,加上25%的利润后优惠10%出售,则售价为( )A. a(1+25%)B. a(1+25%)10%C. a(1+25%)(1﹣10%)D. 10%a考点:列代数式.分析:用进价乘以加上利润后的百分比,再乘以优惠后的百分比列式即可.解答:解:售价为:a(1+25%)(1﹣10%).故选C.点评:本题考查了列代数式,比较简单,理解售价与进价之间的百分比的关系是解题的关键.10.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A. m+3B. m+6C. 2m+3D. 2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是 =2m+3.故选:C.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.二、填空题(共8小题,每小题2分,满分16分)11.﹣5的相反数是 5 ,的倒数为﹣.考点:倒数;相反数.分析:根据相反数及倒数的定义,即可得出答案.解答:解:﹣5的相反数是5,﹣的倒数是﹣ .故答案为:5,﹣ .点评:本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键.12.太阳光的速度是300 000 000米/秒,用科学记数法表示为3×108米/秒.考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 000 000用科学记数法表示为3×108.故答案为:3×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n的值.13.比较大小:﹣5 < 2,﹣> ﹣ .考点:有理数大小比较.分析:根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.解答:解:﹣5<2,∵ < ,∴﹣ >﹣ .故答案为:<,>.点评:此题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.14.若3a2﹣a﹣2=0,则5+2a﹣6a2= 1 .考点:代数式求值.专题:整体思想.分析:先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.解答:解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.点评:主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.15.若|a|=8,|b|=5,且a+b>0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.16.如果把每千克x元的糖果3千克和每千克y元的糖果5千克混合在一起,那么混合后糖果的售价是每千克元.考点:列代数式;加权平均数.分析:根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量.解答:解:依题意,得= .故答案是: .点评:本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求x、y这两个数的平均数.17.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+ = 0 (直接写出答案).考点:有理数的加减混合运算.专题:新定义.分析:根据题中的新定义化简,计算即可得到结果.解答:解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.点评:此题考查了有理数的加减混合运算,弄清题中的新定义是解本题的关键.18.在数轴上,若点A与表示﹣2的点的距离为3,则点A表示的数为1或﹣5 .考点:数轴.分析:根据数轴上到一点距离相等的点有两个,可得答案.解答:解:|1﹣(﹣2)|=3|﹣5﹣(﹣2)|=3,故答案为:1或﹣5.点评:本题考查了数轴,数轴上到一点距离相等的点有两个,以防漏掉.三、解答题(共9小题,满分64分)19.计算题:(1)﹣3﹣(﹣9)+5(2)(1﹣+ )×(﹣48)(3)16÷(﹣2)3﹣(﹣)×(﹣4)(4)﹣12﹣(﹣10)÷ ×2+(﹣4)2.考点:有理数的混合运算.分析: (1)先把减法改为加法,再计算;(2)利用乘法分配律简算;(3)先算乘方和和乘法,再算除法,最后算减法;(4)先算乘方和乘除,再算加减.解答:解:(1)原式=﹣3+9+5=11;(2)原式=1×(﹣48)﹣×(﹣48)+ ×(﹣48)=﹣48+8﹣36=﹣76;(3)原式=16÷(﹣8)﹣=﹣2﹣=﹣2 ;(4)原式=﹣1﹣(﹣40)+16=﹣1+40+16=55.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.20.计算:(1)3b+5a﹣(2a﹣4b);(2)4a3﹣(7ab﹣1)+2(3ab﹣2a3).考点:整式的加减.专题:计算题.分析:各式去括号合并即可得到结果.解答:解:(1)原式=3b+5a﹣2a+4b=3a+7b;(2)原式=4a3﹣7ab+1+6ab﹣4a3=1﹣ab.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y= .考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y= 时,原式=51.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.解方程:(1)3x﹣4(2x+5)=x+4(2)2﹣ =x﹣ .考点:解一元一次方程.专题:计算题.分析: (1)方程去括号,移项合并,将x系数化为1 ,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4;(2)方程去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项合并得:5x=5,解得:x=1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.23.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:(1)当黑砖n=1时,白砖有 6 块,当黑砖n=2时,白砖有10 块,当黑砖n=3时,白砖有14 块.(2)第n个图案中,白色地砖共4n+2 块.考点:规律型:图形的变化类.专题:应用题.分析: (1)第1个图里有白色地砖6+4(1﹣1)=6,第2个图里有白色地砖6+4(2﹣1)=10,第3个图里有白色地砖6+4(3﹣1)=14;(2)第n个图里有白色地砖6+4(n﹣1)=4n+2.解答:解:(1)观察图形得:当黑砖n=1时,白砖有6块,当黑砖n=2时,白砖有10块,当黑砖n=3时,白砖有14块;(2)根据题意得:∵每个图形都比其前一个图形多4个白色地砖,∴可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2块.故答案为6,10,14,4n+2.点评:本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力,难度适中.24.便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?考点:整式的加减.专题:计算题.分析:(1)便民超市中午过后一共卖出的食用油=原有的食用油﹣上午卖出的+中午休息时又购进的食用油﹣剩下的5桶,据此列式化简计算即可;(2)把x=5代入(1)化简计算后的整式即可.解答:解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油;(2)当x=5时,6x2﹣18x=6×52﹣18×5=150﹣90=60(桶),答:当x=5时,便民超市中午过后一共卖出60桶食用油.点评:此题考查的知识点是正式的加减,关键是正确列出算式并正确运算.25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米) 14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?考点:正数和负数.分析: (1)根据有理数的加法,分别进行相加即可;(2)根据有理数的加法运算,可得每次的距离,再根据有理数的大小比较,可得答案;(3)根据题意先算出航行的距离,再乘以冲锋舟每千米耗油2升,即可得出答案.解答:解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油82×2=164升,则途中至少应补充64升油.点评:本题考查了正数和负数,掌握有理数的加法运算是解题关键,注意不论向哪行驶都耗油.26.如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A 的爬行路线为:B→A(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(+3 ,+4 ),B→D(+3 ,﹣2 ),C→ D (+1,﹣2 );(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.考点:有理数的加减混合运算;正数和负数;坐标确定位置.分析:(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.解答:解:(1)A→C(+3,+4);B→D(+3,﹣2);C→D(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;(3)甲虫A爬行示意图与点P的位置如图所示:点评:本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.27.将长为1,宽为a的长方形纸片( <a<1)如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后剩下的矩形为正方形,则操作终止.< p="">(1)第一次操作后,剩下的矩形两边长分别为a与1﹣a ;(用含a 的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a= ;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.考点:一元一次方程的应用;列代数式;整式的加减.分析:(1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a>2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a<2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.解答:解:(1)∵长为1,宽为a的长方形纸片( <a<1),< p=""> ∴第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,∴1﹣a=2a﹣1,解得a= ;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a>2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得: .当时,1﹣a>2a﹣1.所以,是所求的一个值;②当1﹣a<2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得: .当时,1﹣a<2a﹣1.所以,是所求的一个值;所以,所求a的值为或 ;故答案为(1)a与1﹣a;(2) .点评:本题考查了一元一次方程的应用,解题的关键是分别求出每次操作后剩下的矩形的两边的长度,有一定难度.。

第一讲 初一上册代数(有理数,整式加减,一元一次方程解法)(教师版)

第一讲   初一上册代数(有理数,整式加减,一元一次方程解法)(教师版)

第一讲 初一上册代数(有理数,整式加减,一元一次方程解法)本讲课程目标知识与技能 有理数,整式加减,一元一次方程解法 过程与方法 讲练结合 情感态度价值观本讲课程的重点系统复习初一有理数、整式的加减、一元一次方程等三章内容,讲练结合。

重分析及运算准确。

本讲课程的难点 实际问题的建模及解答 教学方法建议精讲多练,讲练结合 选材程度及数量课堂精讲例题 搭配课堂训练题 课后作业 A 类( )道( )道( )道B 类 ( )道 ( )道 ( )道C 类( )道( )道( )道要点一:有理数知识的复习一、知识梳理要点一知识规律或思维方法、解题方法梳理1.正数、负数、有理数、数轴、相反数、绝对值及倒数的概念。

2.有理数的加减法、乘除法、以及乘方的运算法则及运算律(交换律、结合律、分配律)。

3.科学记数法及近似数,以及有理数混合运算的运算顺序二、课堂精讲例题1.7)16(944981---÷⨯÷- ;2. (-61+43-125)⨯)12(-;3. B .⎥⎦⎤⎢⎣⎡-÷--⨯---3210)2(322)32(314. 如果a ﹥0,那么在数轴上a 对应的点在原点 ,-a 对应的点在原点 .-a 可以在原点的右边吗?答: . 5. 32-的相反数是 ,绝对值是 . 6. 绝对值在2与5之间的整数有 .7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有 个.–6 –4 –3 –2 1 0 1 2 3 5 68. 如果a ,b 互为相反数,那么a+b= . 9. 比较下列各数的大小(填―>‖、―<‖或―=‖) 8-____ 0 ,32 _____32- , 218- _______219- , 21- 010. B. 下图是一个正方体的展开图,请在六个正方形中各添入一个数,使得按虚线折叠成正方体后,相对面上的两数互为相反数.11. B. 10袋小麦, 如果以40千克为准,超过的千克数记作正数,不足的千克数记做负数.称重的纪录如下:+2,+1,―0.5,―1,―2,+3,―0.5,―1,―1,0 这10袋小麦的总重量是多少千克?12. B. 下表列出了国外几大个城市与北京的时差(带正号的数表示同一时刻比北京时间早的小时数)城市 纽约 巴黎 东京 与北京的时差-13-7+1(1) 如果现在是北京时间上午8:00,那么东京时间是多少?(2) 如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?13. 观察下面一列数,探究其中的规律: —1,21,31-,41,51-,61 (1) 填空:第11,12,13三个数分别是 , , ;(2) 第2008个数是什么?(3) 如果这列数无限排列下去,与哪个数越来越近?14. 观察下列算式:1=1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 …………… 按规律填空:(1)1+3+5+7+9= (2)1+3+5+ (2005)15. 某天,小明和小亮利用温差法测量紫金山一个山峰的高度,小明测得山顶温度为-1.1℃,同时,小亮测得山脚温度是1.6℃,已知该地区高度每增加100m ,气温大约降低0.6℃,问这个山峰的高度大约是多少米?要点一课堂巩固练习 1、计算:1)241416()2-+⨯- 2)48×(-61+43-121)3)-22×7-(-3)×6+84)(-1)2009-(43-61-83)×24-(-2)2×35)4)321(215⨯⎥⎦⎤⎢⎣⎡+--÷ 6)20103)1(|52|)3(2)2(---+-⨯--7))921(149)149()95()149(94-⨯--⨯---⨯2、如果一个数的平方等于这个数的绝对值,则这个数是( ) A.0, -1 B.±1 C.0,1 D.0, ±13、在-(-2)、|-1|、-|0|,-22,(-3)2,-(-4)5中正数有( ) A.1个 B.2个 C.3个 D.4个4、下列运算错误的是( ) A.13÷(-3)=3×(-3)B.-5÷(-12)=-5×(-2) C.8-(-2)=8+2 D.0÷3=0 5、一个数的平方等于16,则这个数是( ) A.+4 B.-4 C.±4 D.±8 6、若()0322=-++b a ,求243b ab -的值7、若==-+-x y x ,则0)32(22 ,=y 。

中考数学考什么

中考数学考什么

中考数学考什么?初一上册有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

考察内容:①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式发和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

考察内容:①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础初一下册相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式出现。

分值为3-4分,难易度为易。

考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

考察主要内容:①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017秋七年级(上)期中模拟数学试卷
(考试时间100分钟,满分120分)
一 、精心选一选(每小题2分,共24分)
1. 在212-,+10
7
,-,0,,-1中,负数有( )
个 个 个 个
2. 任何一个有理数的绝对值在数轴上的位置是( )
A.原点两旁
B.整个数轴
C.原点右边
D.原点及其右边 3. 下列比较大小,正确的是( )
A. 32
-<107- B. 98-<95- C.73<31- D. 92<51
4. 如果=2a (3-)2,那么a 等于( )
B.-3 D.± 3
5. 2007-[2007-(2006-2007)]的值为( )
A.-1
B.-2007
C.-2
6. 一个数的倒数的相反数是5
1
3,那么这个数是( )
A.516-
B.516
C. 165
D. 165-
7. 32表示( )
×2×2 ×3 ×3 +2+2 8. 近似数×410的有效数字有( )
A. 5个
B. 3个
C. 2个
D. 以上都不对 9. 下列说法正确的是( )
A 、xyz 32与xy 32是同类项
B 、x 1和x 2
1是同类项 C 、235.0y x 与327y x 是同类项 D 、n m 25与24nm -是同类项 10. 下列方程为一元一次方程的是( )
A.3=xy B 2=y y 3- C.x x 22= D. y x 32=+ 11.如果∣2+a ∣+(1-b )2=0,那么2007)(b a +的值是( )
A.-2007 C.-1 12. 如果-4是关于x 的方程12-=+x k x 的解,那么k 等于( ) A.-13 C.-5 二 、用心填一填;(每小题2分,共24分)
的相反数是______;—2
1
1的倒数是______;______的绝对值是1;______的立方是8。

14. 水位上升30㎝记作+30㎝,那么-16㎝表示______________。

15. 在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至-183℃。

则月球表面昼夜的温差为________℃ 16. 列式表示:
(1)比a 大1的数: ; (2)m 的四分之三:____________; (3)x 的一半减y 的差:____________;(4)比a 的三分之一小2的数:____________。

17. 用“<”、“=”或“>”填空:
(1)-(-1)______-∣-1∣;(2)——;(3)—(—1)______∣—1∣。

18. 太阳半径大约是696000千米,用科学记数法表示为____________千米。

19. 计算(1)—3+2=__________;(2)2-2×3=__________; (3)0-(-4)=__________;(4)—2÷3×3=__________。

20. 3)2
3
(-的底数是________,指数是________,幂是________。

21. 以下式子:①-2+10=8 ②735=+x ③xy 2 ④0=y ⑤32=x ⑥ 7=-y x
⑦bc ac c b a +=+)(⑧b am +
其中等式有________个;其中是一元一次方程的是________________(填序号)。

22. 如果方程0232=+--m x 是一元一次方程,则m =________。

23. 35y x n 与m y x 22-是同类项,则m n =
24. 方程7354+=+x x 与方程+=+x x 638________(填一个常数)有相同的解。

三 、细心答一答
25. 计算:(每小题3分,共12分)
(1) [-13-(-)]×(-)÷32
1
(2)(1276543+-)÷23
(3) -12+[4
3
1+8×(-3)]×0-(-5)2 (4) 523+6÷(-2)+(-4)×212
26. 去括号,并合并相同的项(每小题3分,共6分)
(1) )1(2+-x x x 3+ (2) )25()(y x x y --+- 27.先化简,再求值:}4)]2(5[3{42222x x x x x x x +------,其中2
1
=x 。

(6分) 28. 解方程:(每小题3分,共12分)
(1) 8743-=+x x (2) )2(3)87(-=--x x x
(3)
)4(3223-=-x x (4) 3
2
221+-
=--x x x 29.已知∣a ∣=3,∣b ∣=2,且a <b ,求b a +的值。

(6分) 30.有理数a 、b 、c 在数轴上的位置如图所示:若 11m a b b a c c
=+------,求1000m 的值(6分)
31.某生产车间有60名工人生产太阳镜,1名工人
每天可生产镜片200片或镜架50个。

应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?(8分)
32.文峰大世界在某一时间以每件180元的价格卖出两件衣服,其中一件盈利20﹪,另一件亏损10﹪。

问卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(8分)
33、某工厂第一车间有x 人,第二车间比第一车间人数的54
少30人,如果从第二车间调出10人到第一车间,那么: (1)两个车间共有多少人? (2)调动后,第一车间的人数比第二车间多多少人?(8分)。

相关文档
最新文档