偏微分方程数值解复习题(2011硕士)
偏微分方程数值解期末试题及标准答案
偏微分方程数值解试题(06B )参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称,定义)(),(),(21)(n R x x b x Ax x J ∈-=,)()(0x x J λλϕ+=.若0)0('=ϕ,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分)反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的展开式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)(),,(|{11=∈=a u b a H u u H E为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v E ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdu p u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u E ∈,使)(m in )(1*u J u J EH u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧-====⨯=∈=∂∂+∂∂====x u u u u G y x y u x u y y x x 1||,0|,1|)1,0()1,0(),(,010102222 (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。
偏微分方程数值解法试题与答案
一.填空(1553=⨯分)1.若步长趋于零时,差分方程的截断误差0→lmR ,则差分方程的解lm U 趋近于微分方程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{})(,,),()(21Ω∈''=ΩL f f f y x f H y x关于内积=1),(g f _____________________是Hilbert 空间;3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________;5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。
二.(13分)设有椭圆型方程边值问题用1.0=h 作正方形网格剖分 。
(1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题xut u ∂∂=∂∂ , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。
试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。
1.所选用的差分格式是: 2.计算所求近似值:四.(12分)试讨论差分方程()ha h a r u u r u u k l k l k l k l ττ+-=-+=++++11,1111逼近微分方程0=∂∂+∂∂xu a t u 的截断误差阶R 。
思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。
思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格式。
(完整word版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 a6
(完整 word 版)偏微分方程数值解习题解答案 q7
a7 q8
(完整 word 版)偏微分方程数值解习题解答案 a8
(完整 word 版)偏微分方程数值解习题解答案 q9
q10
(完整 word 版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 q11
a1 q2
(完整 word 版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 q3
(完整 word 版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 q4
(完整 word 版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 q5
(完整 word 版)偏微分方程数值解习题解答案 q3
(完整 word 版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 q4
(完整 word 版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 q5
a5
(完整 word 版)偏微分方程数值解习题解答案 q6
(完整 word 版)偏微分方程数值解习题解答案
(完整 word 版)偏微分方程数值解习题解答案 q12
a12 第二章 第三章 第四章 第五章 第六章 q1
(完整 word 版)偏微分方程数值解习题解答案 1
(完整 word 版)偏微分方程数值解习题解答案
2 q3
(完整 word 版)偏微分方程数值解习题解答案 a3
六章 q1
(完整 word 版)偏微分方程数值解习题解答案
偏微分方程数值习题解答
偏微分⽅程数值习题解答李微分⽅程数值解习题解答 1-1 如果0)0('=?,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是⽅程组 b Ax =的解证明:由)(λ?的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλ?+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλ?+-=必要性:由0)0('=?,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλ?x Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的⼴义导数⼏乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的⼴义导数,由⼴义导数的定义可知,对于任意)()(0I C x ∞∈?,有-=ba ba dx x x f dx x x g )()()()('1?? ??-=ba ba dx x x f dx x x g )()()()('2?? 两式相减,得到)(0)()(021I C x g g ba ∞∈?=- 由变分基本引理,21g g -⼏乎处处为零,即21,g g ⼏乎处处相等.补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=?11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的⼀阶⼴义导数,试⽤类似的⽅法定义)(x f 的k 阶导数,...2,1(=k ) 解:⼀阶⼴义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈?,有 ?-=bak kba dx x x f dx x x g )()()1()()()(??则称)(x f 有k 阶⼴义导数,)(x g 称为)(x f 的k 阶⼴义导数,并记kk dxfd x g =)(注:⾼阶⼴义导数不是通过递推定义的,可能有⾼阶导数⽽没有低阶导数.2.利⽤)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|??f f x x f x f n ba n -≤-?00'''|||||||||)())()((|??f f dx x x g x f n ba n -≤-?对于任意的)()(0I C x ∞∈?,成⽴=∞a ba n n dx x x f dx x x f )()()()(lim ??=∞→ba b a nn dx x x g dx x x f )()()()(lim '??由?-=ba n ba ndx x x f dx x x f )()()()(''??取极限得到dx x x f dx x x g ba ba ??-=)()()()('??即')(f x g =,即)(1I H f ∈,且0||||||||||||0''01→-+-=-f f f f f f n n n故)(1I H 中的基本列是收敛的,)(1I H 是完全的. 3.证明⾮齐次两点边值问题证明:边界条件齐次化令)()(0a x x u -+=βα,则0u u w -=满⾜齐次边界条件.w 满⾜的⽅程为00Lu f Lu Lu Lw -=-=,即w 对应的边值问题为==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w Ew E ∈=∈其中),(),(21)(0*w Lu f w w a w J --=.⽽Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*⽽200)()(),(),(C b u b p u u a u Lu +-=-β从⽽**)()()(~)(C b u b p u Jw J +-=β则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题(1.2.28)建⽴虚功原理解:令)(0a x u -+=βα,0u u w -=,则w 满⾜)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈?0),(),(0=--v Lu f v Lw应⽤分部积分,+-=-=-b a b a b a dx dx dv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),((还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈?,成⽴0)()(),(),(=--b v b p v f v u a β注:形式上与⽤v 去乘⽅程两端,应⽤分部积分得到的相同. 5试建⽴与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈⽤v 乘⽅程两端,应⽤分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu⽽??-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ??=+-=2222222222| 上式为),(][2222v f dx uv dx vd dx u d b a =+?定义dx uv dxvd dx u d v u a ba ][),(2222+=?,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈?),(),(v f v u a =1-41.⽤Galerkin Ritz -⽅法求边值问题==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==π?解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满⾜齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1,其中),...2,1(n i c i =满⾜的Galerkin Ritz -⽅程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑= ⼜xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ?-=+=+=ππππππππ)cos()cos(2)sin()sin()cos()cos()(),(1010210''-+πππjx ix sin sin 21由三⾓函数的正交性,得到≠=+=j i j i i a j i ,0,212),(22π??⽽]1)1[()(2)sin()1(),(3102--=-=-?jj j dx x j x x x x ππ? 于是得到+-=-=为偶数为奇数j j j j a x x c j j j j 0 )1()(8),(),(2232ππ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,⽤0)1(=u 代替右边值条件,)(x u n 是⽤Galerkin Ritz -⽅法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差.证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题(1.2.28)和基函数),...,2,1()()(n i a x x i i =-=?,写出Galerkin Ritz -⽅程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分⽅程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分⽅程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分⽅程为dx v qu x pv b v b p v f v w a ba ?--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=?,则Galerkin -Ritz ⽅程为∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβ?β??+=ba j i j i j i dx q p a ][),(''取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==221)(21)()()(21a b a b a b a b d -=---+-=ββ, )(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=3222)(34)(4),(a b dx a x a ba -=-=3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=??ββββ得到⽅程组为 --=----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有= 31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型⽅程有限元法§1.1 ⽤线性元求下列边值问题的数值解: 10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数. Galerkin 形式的变分⽅程为),(),(v f v Lu =,其中+-=10210"4),(uvdx vdx u v Lu π,?=1)(2sin 2),(dx x xv v f π⼜dx v u dx v u v u vdx u =+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''?+=π在单元],[1i i i x x I -=中,应⽤仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξ?-+++=++=1022210222222'111)1(41]41[]4[),(1021ξξπξξπ?πd h d hh dxa x x x x取2/1=h ,则计算得124),(211π??+=a122)1(41[),(210221πξξξπ??+-=-+-=?d h h a-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπ?d d h h f ??-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπ?d h f ?+=102)2121(2sin 2),(代数⽅程组为= ),(),(),(),(),(),(212122212111f f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,⽅程为4,3,2,1),(),(41==∑=j f ua j i iji应⽤局部坐标ξ表⽰,-+++=10221022])1(41[)41(),(ξξπξξπ??d hh d h h a j j248]88[21022πξξπ+=+=?dξξξπ??d hh a j j ])1(41[),(1021?-+-=++964)1(164212πξξξπ+-=-+-=?d 964),(21π??+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=??ξξξξ?d h d h f j-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπd h x h d h x h f j j j -++++=1010)1)](4 41(2sin[21)]44(2sin[42ξξξπξξξπd j d j++?=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就⾮齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元⽅程.解:设⽅程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈?)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表⽰为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =? 则有限元⽅程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=具体计算使⽤标准坐标ξ.。
(完整word版)偏微分方程数值解习题解答案
L试讨论逼近对蘇程詈+若。
的差分沁1)2)q1 二:行口匚1)解:设点为(X ? ,/曲)屮则町=讥心厶)=班勺厶+J + °(工心)(Y )+0(F ).ot所以截断误差为:3E=丄 ------ + ---- 「 T h 啰_喟+竺护一 o (F )T= 0(T + 力”2)解:设点为:(X y ,/林1 ) 3则町=讥勺,_)=以E ,_+1)+ (Y ) +o (巧卩 ot “;:;=班心+1 厶+i )=叽厶+i )+滋( h )+ * 臥工心)(为 2)+o ox (X)d心;=班心亠心)=班心,/+1)+敕:;D (一力)+ 3 役;D(血 2)+0(亥2)«截断误差为:2舟A 1 ” E= ------------ + ------------ — (―+ _) T h dt dx叭:=班%厶+i )+敗?心)(_勿+0 @2)〜dx-(史+空八dt dx 呼1_吋】+竺丛Q —O (X )-(叱 3 +dtdx 22・试用积分插值法推导知铁。
逼近的差分裕式班勺厶叙)一班勺,乩i)+ ——-——£)dtTq2 “-” *\ | (— 4- —)dxdt = | (un t 4- un x)ds = 0* dt & \得-U] /J+U2 r+x^ A-u4 r = 0+JE (j-l? n)F (j,n)G (j^n+l)H (j-l,n+l)^% ~ 的=旳=竹“4 = W/-lMf MTh=h T-T-ll"h + LL r H + ll:4h —LL:N =Op第二章第三章第四章第五章第六章P781.如果①'(0)二0,则称工。
是』(0)的驻点(或稳定:点)-设矩阵A对称(不必正定),求证忑是』(工)的驻点.的充要条件是1心是方程加二&的解B 42・ 试用积分插值法推导知铁。
逼近的差分裕式证: 充分性:①⑻二J 缶)+ 乂(加° -b t ^+—(Ax r x)①'(Ji) = (Ax c - A, x) + A{Ax r x) aEff))S 宀沪若①0)二Q,即(山° 一氛对=0 心怎宀A X Q -h = ()目卩 Ax-b^则帀是方程Ax^b 的解卩 必要性*若心是芳程A^ = b^\解则 Ax a —h - 0 (J 4X 0 — Z?,x) = 0+^◎ (0)=(吐命-b t x) - 0+J所以町是』0)的驻点dpg%3:证明非齐次两点边值间题心現(&)二 e it (E)二 Qu与T 7面的变分间题等价:求血EH 】,认@) = G 使 J(w t ) = min J(y)其中心SiuHU (2)-d』(#) =壬仗站)-(7» —芒⑹戲(D) +而久込叭如(2.13)(提示;先把边值条件齐衩化)+d dxO 字)+梓二/ ax13页证明:令 = w(x) + v(x)其中 w(x) = Q + (x-a)0 w(a) = a yv @) = “v(a) = 0 v(^>) = 0®所以2S = 瞥+qu = j DX DX Pd r /w 血、《, 乂 、 f"丁〔P(T + :F)]+Q(W + V )" ax dx ax* 丫 d z dv. 产 / d dw 、 豪 令 = - — O —) +(?v = /-(- —^> — +^w) = y;^ ax ax dx ax 所以(1)的等价的形式2厶” =一?0 字)= 卩ax axu(a) = a u\b) = 0a其中久=/-(-£■去字+0W )"ax ax 则由定理22知,讥是辺值间题(2)的解的充要条件是 且满定变分方程"ogf)-C/i 小 0 Vve^Pr (Zv> 一 /j )tdx + p @»: (b)f @) ① W = J(u) = J(u.+^)^— a (u^ + 兔,以.+ 无)一(/,功・ +加)[以・(E )+加@)] 2 □2=J(认)+ N[a@・,f)-(/,£)-+乙agd-Qfm 沁卜• Q dx dx 「(加•一/)加x +卩@加:(砂@)-卩@)戊@) Ja(3) => (4)所以可证得• 3必要性:若如 是边值间题(1)的解。
偏微分方程数值习题解答
偏微分方程数值习题解答对于任意的)(0I C ∞∈ϕ,有⎰⎰-=bak kba dx x x f dx x x g )()()1()()()(ϕϕ则称)(x f 有k 阶广义导数,)(x g 称为)(x f 的k 阶广义导数,并记kk dxfd x g =)(注:高阶广义导数不是通过递推定义的,可能有高阶导数而没有低阶导数.2.利用)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使 0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|ϕϕf f x x f x f n ba n -≤-⎰ 00'''|||||||||)())()((|ϕϕf f dx x x g x f nb a n -≤-⎰对于任意的)()(0I C x ∞∈ϕ,成立⎰⎰=∞→ba b a n n dx x x f dx x x f )()()()(lim ϕϕ⎰⎰=∞→ba b a nn dx x x g dx x x f )()()()(lim 'ϕϕ由⎰⎰-=ba nb a ndx x x f dx x x f )()()()(''ϕϕ取极限得到dx x x f dx x x g ba b a ⎰⎰-=)()()()('ϕϕ 即')(f x g =,即)(1I H f ∈,且0||||||||||||0''01→-+-=-f f f f f f n n n故)(1I H 中的基本列是收敛的,)(1I H 是完全的.3.证明非齐次两点边值问题证明:边界条件齐次化令)()(0a x x u -+=βα,则0u u w -=满足齐次边界条件.w 满足的方程为00Lu f Lu Lu Lw -=-=,即w 对应的边值问题为⎩⎨⎧==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w EHw E ∈=∈ 其中),(),(21)(0*w Lu f w w a w J --=.而Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*而200)()(),(),(C b u b p u u a u Lu +-=-β从而**)()()(~)(C b u b p u Jw J +-=β 则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u 使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题(1.2.28)建立虚功原理 解:令)(0a x u -+=βα,0u u w -=,则w 满足)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈∀0),(),(0=--v Lu f v Lw应用分部积分,⎰⎰+-=-=-b a b a b a dx dxdvdx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),((还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈∀,成立0)()(),(),(=--b v b p v f v u a β注:形式上与用v 去乘方程两端,应用分部积分得到的相同.5试建立与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈ 用v 乘方程两端,应用分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu而⎰⎰-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ⎰⎰=+-=2222222222| 上式为),(][2222v f dx uv dxvd dx u d b a =+⎰定义dx uv dxvd dx u d v u a ba ][),(2222+=⎰,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈∀),(),(v f v u a =1-41.用Galerkin Ritz -方法求边值问题⎩⎨⎧==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==πϕ解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满足齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1ϕ,其中),...2,1(n i c i =满足的Galerkin Ritz -方程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑=ϕϕϕ 又xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ⎰⎰⎰⎰-=+=+=ππππππππϕϕϕϕϕϕ)cos()cos(2)sin()sin()cos()cos()(),(1010210''⎰-+πππjx ix sin sin 21 由三角函数的正交性,得到⎪⎩⎪⎨⎧≠=+=j i j i i a j i ,0,212),(22πϕϕ而]1)1[()(2)sin()1(),(3102--=-=-⎰jj j dx x j x x x x ππϕ 于是得到⎪⎩⎪⎨⎧+-=-=为偶数为奇数j j j j a x x c j j j j 0)1()(8),(),(2232ππϕϕϕ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,用0)1(=u 代替右边值条件,)(x u n 是用Galerkin Ritz -方法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差.证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题(1.2.28)和基函数),...,2,1()()(n i a x x ii =-=ϕ,写出Galerkin Ritz - 方程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分方程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分方程为 0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ⎰⎰+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分方程为dx v qu x pv b v b p v f v w a ba ⎰--+=])([)()(),(),(0'ββ取n i a x x ii,...,2,1,)()(=-=ϕ,则Galerkin -Ritz 方程为⎰⎰∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβϕβϕϕϕ⎰+=ba j i j i j i dx q p a ][),(''ϕϕϕϕϕϕ取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==⎰ϕϕ221)(21)()()(21a b a b a b a b d -=---+-=ββ,)(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=⎰ϕϕϕϕ3222)(34)(4),(a b dx a x a ba -=-=⎰ϕϕ3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=⎰⎰ββββ 得到方程组为⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b 特别取1,0==b a ,有⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型方程有限元法§1.1 用线性元求下列边值问题的数值解:10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y 解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数.Galerkin 形式的变分方程为),(),(v f v Lu =,其中⎰⎰+-=10210"4),(uvdx vdx u v Lu π,⎰=1)(2sin 2),(dx x xv v f π又dx v u dx v u v u vdx u ⎰⎰⎰=+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''⎰+=π在单元],[1i i i x x I -=中,应用仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξϕ⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+++=++=⎰⎰⎰⎰1022210222222'111)1(41]41[]4[),(1021ξξπξξπϕπϕϕϕd h d hh dxa x x x x取2/1=h ,则计算得124),(211πϕϕ+=a122)1(41[),(210221πξξξπϕϕ+-=-+-=⎰d h h a⎰⎰-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπϕd d h h f ⎰⎰-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπϕd h f ⎰+=102)2121(2sin 2),(代数方程组为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛),(),(),(),(),(),(212122212111ϕϕϕϕϕϕϕϕϕϕf f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,方程为4,3,2,1),(),(41==∑=j f ua j i ijiϕϕϕ应用局部坐标ξ表示,⎰⎰-+++=10221022])1(41[)41(),(ξξπξξπϕϕd hh d h h a j j248]88[21022πξξπ+=+=⎰dξξξπϕϕd hh a j j ])1(41[),(1021⎰-+-=++964)1(164212πξξξπ+-=-+-=⎰d 964),(21πϕϕ+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=⎰⎰ξξξξϕd h d h f j⎰⎰-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπϕd h x h d h x h f j j j ⎰⎰-++++=1010)1)](441(2sin[21)]44(2sin[42ξξξπξξξπd j d j ⎰⎰++⨯=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就非齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元方程.解:设方程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈∀)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表示为)(),(v F v u A = 设节点基函数为),...,2,1,0)((N j x j =ϕ 则有限元方程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=ϕϕϕ具体计算使用标准坐标ξ.。
偏微分方程数值习题解答
李微分方程数值解习题解答 1-1 如果0)0('=ϕ,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解证明:由)(λϕ的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλϕ+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλϕ+-=必要性:由0)0('=ϕ,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλϕx Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的广义导数几乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意)()(0I C x ∞∈ϕ,有⎰⎰-=ba ba dx x x f dx x x g )()()()('1ϕϕ ⎰⎰-=ba ba dx x x f dx x x g )()()()('2ϕϕ 两式相减,得到)(0)()(021I C x g g ba ∞∈∀=-⎰ϕϕ 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等.补充:证明),(v u a 的连续性条件证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=⎰11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的一阶广义导数,试用类似的方法定义)(x f 的k 阶导数,...2,1(=k ) 解:一阶广义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈ϕ,有 ⎰⎰-=bak kba dx x x f dx x x g )()()1()()()(ϕϕ则称)(x f 有k 阶广义导数,)(x g 称为)(x f 的k 阶广义导数,并记kk dxfd x g =)(注:高阶广义导数不是通过递推定义的,可能有高阶导数而没有低阶导数.2.利用)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|ϕϕf f x x f x f n ba n -≤-⎰00'''|||||||||)())()((|ϕϕf f dx x x g x f n ba n -≤-⎰对于任意的)()(0I C x ∞∈ϕ,成立⎰⎰=∞→ba ba n n dx x x f dx x x f )()()()(lim ϕϕ⎰⎰=∞→ba b a nn dx x x g dx x x f )()()()(lim 'ϕϕ由⎰⎰-=b a nba ndxxxfdxxxf)()()()(''ϕϕ取极限得到dxxxfdxxxg baba⎰⎰-=)()()()('ϕϕ即')(fxg=,即)(1IHf∈,且||||||||||||''1→-+-=-ffffffnnn故)(1IH中的基本列是收敛的,)(1IH是完全的.3.证明非齐次两点边值问题证明:边界条件齐次化令)()(axxu-+=βα,则0uuw-=满足齐次边界条件.w满足的方程为LufLuLuLw-=-=,即w对应的边值问题为⎩⎨⎧==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w EHw E ∈=∈ 其中),(),(21)(0*w Lu f w w a w J --=.而Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*而200)()(),(),(C b u b p u u a u Lu +-=-β从而**)()()(~)(C b u b p u Jw J +-=β 则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题()建立虚功原理 解:令)(0a x u -+=βα,0u u w -=,则w 满足)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈∀0),(),(0=--v Lu f v Lw应用分部积分,⎰⎰+-=-=-b a b a b a dx dxdv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),(( 还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈∀,成立0)()(),(),(=--b v b p v f v u a β注:形式上与用v 去乘方程两端,应用分部积分得到的相同. 5试建立与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈ 用v 乘方程两端,应用分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu而⎰⎰-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ⎰⎰=+-=2222222222| 上式为),(][2222v f dx uv dxvd dx u d b a =+⎰定义dx uv dxvd dx u d v u a ba ][),(2222+=⎰,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈∀),(),(v f v u a =1-41.用Galerkin Ritz -方法求边值问题⎩⎨⎧==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==πϕ解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满足齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1ϕ,其中),...2,1(n i c i =满足的Galerkin Ritz -方程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑=ϕϕϕ 又xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ⎰⎰⎰⎰-=+=+=ππππππππϕϕϕϕϕϕ)cos()cos(2)sin()sin()cos()cos()(),(1010210''⎰-+πππjx ix sin sin 21由三角函数的正交性,得到⎪⎩⎪⎨⎧≠=+=j i j i i a j i ,0,212),(22πϕϕ而]1)1[()(2)sin()1(),(3102--=-=-⎰jj j dx x j x x x x ππϕ 于是得到⎪⎩⎪⎨⎧+-=-=为偶数为奇数j j j j a x x c j j j j 0)1()(8),(),(2232ππϕϕϕ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,用0)1(=u 代替右边值条件,)(x u n 是用Galerkin Ritz -方法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差. 证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题和基函数),...,2,1()()(n i a x x i i =-=ϕ,写出Galerkin Ritz -方程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分方程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分方程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ⎰⎰+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分方程为dx v qu x pv b v b p v f v w a ba ⎰--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=ϕ,则Galerkin -Ritz 方程为⎰⎰∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβϕβϕϕϕ⎰+=ba j i j i j i dx q p a ][),(''ϕϕϕϕϕϕ取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==⎰ϕϕ221)(21)()()(21a b a b a b a b d -=---+-=ββ,)(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=⎰ϕϕϕϕ3222)(34)(4),(a b dx a x a ba -=-=⎰ϕϕ3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=⎰⎰ββββ 得到方程组为⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型方程有限元法§ 用线性元求下列边值问题的数值解:10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数.Galerkin 形式的变分方程为),(),(v f v Lu =,其中⎰⎰+-=10210"4),(uvdx vdx u v Lu π,⎰=1)(2sin 2),(dx x xv v f π又dx v u dx v u v u vdx u ⎰⎰⎰=+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''⎰+=π在单元],[1i i i x x I -=中,应用仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξϕ⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+++=++=⎰⎰⎰⎰1022210222222'111)1(41]41[]4[),(1021ξξπξξπϕπϕϕϕd h d hh dxa x x x x取2/1=h ,则计算得124),(211πϕϕ+=a122)1(41[),(210221πξξξπϕϕ+-=-+-=⎰d h h a⎰⎰-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπϕd d h h f ⎰⎰-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπϕd h f ⎰+=102)2121(2sin 2),(代数方程组为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛),(),(),(),(),(),(212122212111ϕϕϕϕϕϕϕϕϕϕf f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,方程为4,3,2,1),(),(41==∑=j f ua j i ijiϕϕϕ应用局部坐标ξ表示,⎰⎰-+++=10221022])1(41[)41(),(ξξπξξπϕϕd hh d h h a j j248]88[21022πξξπ+=+=⎰dξξξπϕϕd hh a j j ])1(41[),(1021⎰-+-=++964)1(164212πξξξπ+-=-+-=⎰d 964),(21πϕϕ+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=⎰⎰ξξξξϕd h d h f j⎰⎰-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπϕd h x h d h x h f j j j ⎰⎰-++++=1010)1)](441(2sin[21)]44(2sin[42ξξξπξξξπd j d j⎰⎰++⨯=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就非齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元方程.解:设方程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈∀)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表示为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =ϕ 则有限元方程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=ϕϕϕ具体计算使用标准坐标ξ.。
偏微分方程数值解例题答案
yyy[y例11110.1[1(101)]0.9,10.1[0.9(10.10.9)]0.9019,1(0.90.9019)0.900952p c y y y ì=-´´+´=ïï=-´´+´=íïï=+=î20.900950.1[0.90095(10.10.90095)]0.80274,0.900950.1[0.80274(10.20.80274)]0.80779,1(0.802740.80779)0.805262p c y y yì=-´´+´=ïï=-´´+´=íïï=+=î 这样继续计算下去,其结果列于表9.1. 表9.1 Euler 方法方法改进的Euler 方法方法准确值准确值n xn yny)(n x y0.1 0.9000000 0.9009500 0.9006235 0.2 0.8019000 0.8052632 0.8046311 0.3 0.7088491 0.7153279 0.7144298 0.4 0.6228902 0.6325651 0.6314529 0.5 0.5450815 0.5576153 0.5563460 0.6 0.4757177 0.4905510 0.4891800 0.7 0.4145675 0.4310681 0.4296445 0.8 0.3610801 0.3786397 0.3772045 0.9 0.3145418 0.3326278 0.3312129 1.0 0.2741833 0.2923593 0.2909884 从表9.1可以看出,Euler 方法的计算结果只有2位有效数字,而改进的Euler 方法确有3位有效数字,这表明改进的Euler 方法的精度比Euler 方法高. 例2 试用Euler 方法、改进的Euler 方法及四阶经典R-K 方法在不同步长下计算初值问题ïîïíì=££+-=1)0(,10),1(d d y x xy y xy 在0.2、0.4、0.8、1.0处的近似值,并比较它们的数值结果. 解 对上述三种方法,每执行一步所需计算)1(),(xy y y x f +-=的次数分别为1、2、4。
偏微分方程数值解法题解
偏微分方程数值解法(带程序)例1 求解初边值问题22,(0,1),012,(0,]2(,0)12(1),[,1)2(0,)(1,)0,0u ux t t x x x u x x x u t u t t ⎧⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩∂∂=∈>∂∂∈=-∈==>要求采用树脂格式 111(2)n n n n nj j j j j u u u u u λ++-=+-+,2()tx λ∆=∆,完成下列计算: (1) 取0.1,0.1,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
(2) 取0.1,0.5,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
(3) 取0.1, 1.0,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
并与解析解22()22181(,)sin()sin()2n t n u n x t n x e n ππππ∞-==∑进行比较。
解:程序function A=zhongxinchafen(x,y,la) U=zeros(length(x),length(y)); for i=1:size(x,2)if x(i)>0&x(i)<=0.5 U(i,1)=2*x(i); elseif x(i)>0.5&x(i)<1 U(i,1)=2*(1-x(i)); end endfor j=1:length(y)-1for i=1:length(x)-2U(i+1,j+1)=U(i+1,j)+la*(U(i+2,j)-2*U(i+1,j)+U(i,j)); end endA=U(:,size(U,2))function u=jiexijie1(x,t) for i=1:size(x,2) k=3;a1=(1/(1^2)*sin(1*pi/2)*sin(1*pi*x(i))*exp(-1^2*pi^2*t));a2=a1+(1/(2^2)*sin(2*pi/2)*sin(2*pi*x(i))*exp(-2^2*pi^2*t));while abs(a2-a1)>0.00001a1=a2;a2=a1+(1/(k^2)*sin(k*pi/2)*sin(k*pi*x(i))*exp(-k^2*pi^2*t));k=k+1;endu(i)=8/(pi^2)*a2;endclc; %第1题第1问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.001:t1];y2=[0:0.001:t2];y3=[0:0.001:t3];la=0.1;subplot(131)A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5);line(x,u3,'color','b','linewidth',1); title('例1(1)');subplot(132);line(x,u1,'color','b','linewidth',1);line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解');subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5);line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第2问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.005:t1];y2=[0:0.005:t2];y3=[0:0.005:t3];la=0.5;subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(2)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第3问 clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.01:t1];y2=[0:0.01:t2];y3=[0:0.01:t3];la=1.0; subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold on line(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2) line(x,A2,'color','r','linestyle',':','linewidth',1.5); line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3) line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(3)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解'); 运行结果:表1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解例2 用Crank-Nicolson 格式完成例1的所有任务。
偏微分方程数值解复习题(2013硕士)
偏微分方程数值解期末复习(2012硕士)一、考题类型本次试卷共六道题目,题型及其所占比例分别为:填空题20%;计算题80% 二、按章节复习内容第一章知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等;要求: 熟练一元函数的数值微分公式;会辨认差分格式, 计算线性多步法的局部截断误差和阶;第二章知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容、收敛和稳定性等;要求: 熟练多元函数的数值微分公式;会建立椭圆型方程边值问题的差分格式;计算局部截断误差;了解极值原理讨论格式的收敛性和稳定性;第四章知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式等;要求: 会建立抛物型方程边值问题的经典差分格式;计算局部截断误差;会计算格式的传播因子或传播矩阵;会讨论格式的稳定性;第五章知识点:依赖区域、左偏心格式、右偏心格式、中心格式、LF格式、LW 格式、Wendroff格式、跳蛙格式、特征线、CFL条件等;要求: 建立双曲型方程边值问题的差分格式;计算局部截断误差;会计算格式的传播因子或传播矩阵;讨论格式的稳定性;第七章知识点:单元、线性元、线性基、(单元)刚度矩阵、(单元)荷载向量等;要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式三 练习题1、 试建立Euler 法(向后Euler 法或梯形法),并讨论格式的局部截断误差和阶。
P4,6,8+课件2、 已知一个线性二或三步法,试讨论格式的局部截断误差和阶。
偏微分方程总复习和课后习题答案
由牛顿第二定律,得
Tu x (b, t ) Tu x (a, t )
b b a b u 2u R dx ( x) 2 dx a t t
b b 2u u 2u a T x2 dx a R t dx a ( x) t 2 dx
T 2 弦是均匀的,故 为常数,记 a ,
四、其他混合问题
五、分离变量方法
第一章、第二章习题答案
习题1 P14
1 (2),(3),(5),(7); 2; 3 习题1 P14
1 (2) 二阶线性非齐次方程 (3) 一阶拟线性齐次方程 (5) 二阶线性非齐次方程
(7) 四阶拟线性非齐次方程
习题2 P33
1
1.解:取弦的平衡位置为OX轴,运动平面为XOU
度升高所需热量 为
u(x,t) 为 x 处 t 时刻温度, 为杆密度
x
x+x
Q c( Ax)[u ( x, t t ) u ( x, t )]
t 0
Q cAut xt
n
x
n
x+x
大小
x
q ku
u q k n
(2)、Furier s 实验定理:单位 时间内流过单位 面积的热量 q (热 流强度量)与温 度的下降成正比
复习课
一、基本概念
1. 偏微分方程的定义P1 2. 偏微分方程的阶数,线性、拟线性、完全非线性 偏微分方程的定义P10 3. 偏微分方程的适定性P23
二、方程的导出,分类与化简
三、公式的直接应用题
1. 2. 3. 4. 5. 达朗贝尔公式P36 公式P42 傅里叶(逆)变换P106 P110例 4.1.7结论 泊松公式P112
偏微分方程数值解试卷
一、(10分)简叙偏微分方程数值解研究的内容。
建立一个偏微分方程数值格式,需要研究和讨论哪些问题?一个好的数值格式应该到达哪些要求?二、(10分)简叙用差分方法求解偏微分方程数值解的方法和步骤。
三、(10分)请解释收敛性、稳定性、相容逼近性三个概念。
它们之间有何区别和联系?四.对如下两点边值问题:⎪⎩⎪⎨⎧==<<=+-,0)1( )0(,10 ,222u u x f u dx ud 将区间[0,1]作剖分:N N x x x x <<<<=-1100 , (1) 在上述网格剖分下建立中心差分格式; (10分) (2) 写出局部截断误差;并问当网格剖分满足什么条件时,上述差分格式的误差阶为2; (10分)(3) 利用极值定理证明解的存在唯一性。
(10分)四、(1)中心差分格式:)()()(2))()()()((21111u R x f x u h x u x u h x u x u h h i i i ii i i i i i i +=+---+--+++ (2)局部截断误差:)(3)(2331h O dx u d hh u R iii i +⎥⎦⎤⎢⎣⎡--=+ 显然当剖分为等距时,误差阶为2 (3)用极值定理证存在唯一性:只需证明齐次(边值与右端恒零)问题只有平凡解.实际上,设iu 是齐次问题的解,则由极值定理,i u 既不能在区间内部取正的极大,也不能取负的极小,因此0=i u 。
七.已知两点边值问题:⎪⎩⎪⎨⎧==<<=-0)1( )0(10 ,22u u x f dx ud (A) (1) 写出问题(A )的虚功原理(含证明); (25分) (2) 写出建立线性有限元方程组h h h b U A =的主要步骤; (10分)(3) 对于线性有限元方程组h h h b U A =,设h A 产生扰动h A ∆,h b 产生扰动h b ∆,由此引起h U 产生扰动h u ∆,说明h u ∆与h A ∆,h b ∆之间的关系.(5分)七. (1)⎪⎩⎪⎨⎧==<<=-0)1( )0(10 ,22u u x f dx u d (A )检验函数空间为:{}0)1(,0)0(),()()(1==∈=v v I H x v x v V ,]1,0[=I ,本题中检验函数空间与 试探函数空间相同.对V v ∈∀ 有:)(122---⎰dx v f dx ud ⇒0101=-⎰⎰dx v f dx dx vd dx u d dx fv dx dx vd dx u d v u a ⎰⎰==110v)(f, , ),( (2分)从而问题(A )变分问题可描述为:求V U u =∈使得),(),(v f v u a = 对V v ∈∀ 成立。
偏微分方程数值分析练习题
一、判断题(判断下列题目是否正确,如果正确请打“√”,错误请打“×”)1、Possion 方程属于椭圆型方程。
( √ )2、所有的对角矩阵、Hermite 矩阵和酉矩阵都是正规矩阵。
( √ )3、一阶双曲型方程并不是每个边界都给定条件,因此差分方程所需的边界条件往往要比微分方程的边界条件要多。
( )4、设),(t x u 是定解问题充分光滑的解,对于其差分格式,如果当0,→h τ时,其截断误差趋向于0,则称差分与定解问题是稳定的。
( x )5、Von Neumann 条件只是稳定性的必要条件。
( x )6、 如果当时间步长τ和空间步长h 趋于0时,差分格式的截断误差趋于0,就说这个差分格式是与微分方程相容的。
( √ )7、 如果当时间步长τ和空间步长h 无限缩小时,差分格式的解能无限逼近到微分方程的解,就说这个差分格式是收敛的。
( √ )8、 差分格式的相容性和收敛性是两个完全不同的概念,但是相容的差分格式必定也是收敛的。
( x )9、 差分格式的稳定性与差分格式本身有关,而与网格比的大小无关。
( x )10、 给定一个适定的线性初值问题,如果逼近它的差分格式是和它相容的,那么差分格式的收敛性是差分格式的稳定性的充分且必要条件。
( √ )11、 Von Neumann 条件只是稳定性的必要条件。
( x )12、 如果我们得到差分格式的截断误差为)()/(23h O h O +τ,那么差分格式在时间上是三阶精度的,在空间上是二阶精度的。
( x )13、 在有限差分数值解法中,无法得到一个无条件相容并且无条件稳定的显示差分格式。
( √ )二、填空题1.如果一个定解问题的解的存在性、唯一性和稳定性成立,称定解问题是 适定 的。
2.如果n n C ⨯∈u ,满足 U H U=I ,则u 称为酉矩阵。
3.Lax 等价定理是: 给一个适定的线性初值问题以及与其相容的差分格式,则差分格式的稳定性是差分格式收敛性的充分必要条件4.迎风格式的基本思想是:双曲线方程中关于空间偏导数用在特征线方向一侧的单边差商来代替。
偏微分方程考试题
数学物理方程及数值解 复习提要一、偏微分方程的建立 CH1 典型方程和定解条件 【内容提要】1. 方程的建立(步骤:确定物理量;微元法建立等式;化简得方程)主要方法:微元法; 泛定方程:(1) 波动方程(双曲型):弦振动方程:222222(,)(,)(),()u x t u x t F a a txρ∂∂==∂∂张力单位长度弦质量 传输线方程:222222222221,00i a LCi a a t x t x νν∂∂∂∂-=-=∂∂∂=∂;, 电磁场方程:22222211,,H E H E t t εμεμ∂∂=∇=∇∂∂22222222221(),με标量函数形式:∂∂∂∂=++∂∂∂=∂u u u z a u a t x y (2) 热传导方程/扩散方程(抛物型):ρ,其中22u Fa u f f t c ∂=∇+=∂ 导热杆(无热源)222u u a t x ∂∂=∂∂, 导热片(无热源)22222()u u u a t x y ∂∂∂=+∂∂∂ (3) 稳恒方程(椭圆型):Poisson 方程:,2u f ∇= Laplace 方程:,20u ∇=2.定解条件:初始条件及边界条件边界条件(1)第一类边界条件(Dirichlet 条件): 1(,)(,)D u M t f M t ∂=(2) 第二类边界条件(Neumann 条件):2Duf n ∂∂=∂ (3) 第三类边界条件(Robin 条件): 3()Duu f n σ∂∂+=∂ 3.定解问题的提法:⎧⎪⎧⎨⎨⎪⎩⎩偏微分方程(泛定方程)定解问题初始条件定解条件边界条件()Cauchy ⎧⎨⎩泛定方程(1)初始问题初始条件 ⎧⎨⎩泛定方程(2)边界问题(第一,二,三)边界条件⎧⎪⎨⎪⎩泛定方程(3)混合问题初始条件边界条件4.线性偏微分方程的基本性质(1).线性迭加原理212,11,,,,,,,:nnij i ij i n i j i i j iL a b c a b c f x x x x x x ==∂∂=++∂∂∂∑∑其中是算子的函数111(1,2)(),nnni i ii ii i i i i i L u f in L c u c L u c f=====⇒==∑∑∑命题:21110(1,2),,()0,nnii i i i i i i i i i k j u Lu i c u c L c u x x ∞===∂==⇒=∂∂∑∑∑一致敛命收题:(2.) 齐次化原理(冲量原理)Duhamel 原理:设(,,)x t ωτ是方程22222,,(,)(,)0,(,),a x t t x x x f x x t ωτωτωττω⎧∂∂=-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解,⇒0(,,)d ,()t x t u x t ωττ=⎰是方程22222(,),,0(,0)(,0)0,0,u u a f x t x t tx u x u x x t ⎧∂∂=+-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程数值解期末复习(2011硕士)
一、考题类型
本次试卷共六道题目,题型及其所占比例分别为:
填空题20%;计算题80%
二、按章节复习内容
第一章
知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等;
要求: 会辨认差分格式, 判断线性多步法的误差和阶;
第二章
知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等;
要求: 建立椭圆型方程边值问题的差分格式, 极值原理;
第四章
知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等;
要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差;
第五章
知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等;
要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差;
第七章
要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式
三 练习题
1、 已知显格式21131()22
n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。
P39+P41
2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。
提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数
之间的关系 课件
3、用数值微分方法或数值积分方法建立椭圆型方程
2222(,),(,),u u f x y x y x y ∂∂--=∀∈Ω∂∂ :01,01x y Ω≤≤≤≤
内点差分格式。
P75+课件
4、构造椭圆型方程边值问题的差分格式. P101 (4)题
5、构建一维热传导方程220,(0)u u Lu a a t x
∂∂=-=>∂∂的数值差分格式(显隐格式等)。
参考P132-135相关知识点
6、设有逼近热传导方程22(0)u u Lu a f a const t x ∂∂≡-==>∂∂的带权双层格式
()()1111111122(1)2k k
j j
k k k k k k j j j j j j u u a u u u u u u h
θθτ++++-+-+-⎡⎤=-++--+⎣⎦ 其中[0,1]θ∈,试求其截断误差。
并证明当2
1212h a θτ=-时,截断误差的阶最
高阶为24()O h τ+。
P135+P165+课件
7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x
∂∂≡-==>∂∂的最简显隐和六点CN 格式稳定性。
P156+课件
8、对一阶常系数双曲型方程的初边值问题
0,0,0,0,(,0)(),0,(0,)(),0,
u u a t T x a t x u x x x u t t t T φψ∂∂⎧+=<≤<<∞>⎪∂∂⎪⎨=≤<∞⎪⎪=≤≤⎩
试建立左右偏心差分格式。
P185+课件
9、设有逼近双曲型方程
0u u a t x
∂∂+=∂∂的双层加权格式()()11111(1)0k k
j j k k k k j j j j u u a u u u u h
θθτ+++---⎡⎤+-+--=⎣⎦, [0,1]θ∈ 试求其截断误差, 并说明当1122ar
θ=-时截断误差为最高阶22()O h τ+. P194 10、对于两点边值问题(),(,)(),()d du p qu f x a b dx dx u a u b αβ
⎧-+=∈⎪⎨⎪==⎩ 用等距结点线性元推导有
限元方程. 参考P267+P271相关知识点+课件。