产氢产乙酸菌群

合集下载

川农环境微生物学期末复习题及答案

川农环境微生物学期末复习题及答案

川农环境微生物学期末复习题及答案环境微生物学复习题一、名词解释1、发酵作用—是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。

2、农药安全系数—3、硝化作用-氨基酸脱下的氨,在有氧的条件下,经亚硝化细菌和硝化细菌的作用转化为硝酸4、转导—通过吻合噬菌体的媒介作用,将供体细胞内特定的基因(DNA片段)携带至受体细胞中,从而使受体细胞获得供体细胞的部分遗传性状的现象。

5、培养基—根据各种微生物对营养的需要,包括水、碳源、能源、氮源、无机盐及生长因子等按一定的比例配置而成的,用以培养微生物的基质6、好氧活性污泥—是由多种多样的好氧微生物和兼性厌氧微生物(兼有少量的厌氧微生物)与污(废)水中有机和无机固体物质混凝交织在一起,形成的絮状体或称绒粒。

7、质粒-原核生物细胞中,一种独立于染色体外,能进行自主复制的环状DNA分子。

8、P/H指数—P代表光能自养型微生物,H代表异氧性微生物,两者的比值即P/H指数,该指数反映水体污染和自净程度。

9、活性污泥与菌胶团-是一种绒絮状小泥粒,由好氧菌为主体的微型生物群以及胶体、悬浮物等组成的微生物集团。

颗粒大小约为0.02-0.2mm,表面积为20-100cm2/ml,相对密度约为1.002-1.006。

外观呈黄褐色,有时亦呈深灰、灰褐、灰白等色。

静置时,能凝聚成较大的绒粒而沉降。

它具有很强的吸附及分解有机物的能力。

菌胶团—好氧活性污泥(绒粒)的结构和功能的中心是能起絮凝作用的细菌形成的细菌团块。

10、反硝化作用-兼性厌氧的硝酸盐还原细菌将硝酸盐还原为氮气。

11、转化—受体细胞直接吸收来自供体细胞的DNA片段,并把它整合到自己的基因组里,从而获得供体细胞部分遗传性状的现象。

12、化能自养微生物—生长需要无机物,在氧化无机物的过程中获取能源,同时,无机物有作为电子供体,使CO2还原为自身有机碳化物。

二、选择题1、根据其在水中的存在及数量情况,B、大肠杆菌可作为粪便污染的指示菌。

沼气发酵微生物的种类

沼气发酵微生物的种类

沼气发酵微生物的种类沼气发酵微生物是一个统称,包含发酵性细菌、产氢产乙酸菌、耗氢产乙酸菌、食氢产沼气(CH4)菌、食乙酸产甲烷菌五大类群。

这些微生物依照各自的养分必要,起着分歧的物资转化感化。

从庞杂有机物的降解,到甲烷的形成,就是由它们分工合作和彼此感化而完成的。

在沼气发酵进程中,五大类群细菌组成一条食品链,从各群细菌的心理代谢产品或它们的运动对发酵液pH值的影响来看,沼气发酵进程可分为水解、产酸和产甲烷阶段。

前三类群细菌的运动可使有机物形成各类有机酸,是以,将其统称为不产甲烷菌。

后二类群细菌的运动可使各类有机酸转化成甲烷,是以,将其统称为产甲烷菌。

1.不产甲烷菌不产甲烷菌能将庞杂的大分(fn)子有机物酿成简略的小分子量的物资。

它们的种类繁多,依据感化基质来分,有纤维分化菌、半纤维分化菌、淀粉分化菌、卵白质分化菌、脂肪分化菌和一些特殊的细菌,如产氢菌、产乙酸菌等。

2.产甲烷菌产甲烷菌是沼气发酵的主要成分--甲烷的发生者。

是沼气发酵微生物的焦点,它们严峻厌氧,对氧和氧化剂很是敏感,最合适的pH值范畴为中性或微碱性。

它们依附二氧化碳(CO2)和氢进展,并以废料的情势排出甲烷,是恳求进展物资最简略的微生物。

沼气微生物的进展纪律生物和性命运动以新陈代谢为基本,沼气发酵微生物的进展和代谢进程可分顺应期、对数进展期、均衡期、衰亡期四个时代。

1.顺应期菌种方才接入新奇培育液中,细菌的各类心理性能必要有一个顺应进程,细胞内各类酶体系要颠末一番调剂,这一时代细菌并不立刻进行滋生(zh)。

顺应期的是非与细菌的种类及状况变更前提有关。

例如,滋生速度快的酸化菌,一般顺应期较短,滋生速度慢的产甲烷菌顺应期就较长。

此外接种量的几多,接种物所处的进展发育阶段及其前后生涯前提都对顺应期的是非有所影响。

2.对数进展期细胞颠末一段顺应后,渐渐以最快速度进行滋生,即按1、2、4、8、16的级关于沼气发酵的微生物数上升。

这一段时间内发酵产品的增加速度随细胞数量的增加而上升。

重大环境科学与工程真题及答案

重大环境科学与工程真题及答案

重大环境科学与工程真题及答案2014环境微生物学一.名词解释1、温和噬菌体温和噬菌体是指不引起宿主细胞裂解的噬菌体,当它侵入宿主细胞后,其核酸附着并整合在宿主染色体上,和宿主细胞的核酸同步复制,宿主细胞不裂解而继续生长。

2、选择培养基选择培养基就是用以抑制非目的微生物的生长并使所要分离的微生物生长繁殖的培养基3、互生关系指两种不能单独生活的微生物共同生活于同一环境中,各自执行优势的生理功能,在营养上互为有利,这两者之间的关系叫互生关系。

4、基因突变微生物的DNA被某种因素引起碱基的缺失,置换或插入,改变了基因内部原有的碱基排列顺序,从而引起其后代表型的改变,当后代突然表现与亲代显然不同的能遗传的性状时,就称为突变。

5、酶的活性中心酶的活性中心是指酶的活性部位,是酶蛋白分子中直接参与和底物结合,并与酶的催化作用直接有关的部位。

它是酶行使催化功能的结构基础。

6、氨基酸的等电点在一定pH条件下,某种氨基酸接受或给出质子的程度相等,分子所带的净电荷为零,此时溶液的pH值就称为该氨基酸的等电点7、鉴别培养基当几种细菌由于对培养基中某一成分的分解能力不同,其菌落通过指示剂显示出不同的颜色而被区分开,这种起鉴别和区分不同细菌作用的培养基叫鉴别培养基。

8、EMP途径即糖酵解途径,在无氧条件下,1mol葡萄糖逐步分解而产生2mol丙酮酸,2mol (NADH+H+)和2molATP的过程。

9、贫营养型微生物指水源水里面的有机物含量很少,氮、磷等营养物质的缺乏。

这样的水体中生长的细菌叫贫营养细菌,一般都是自养菌。

10、PCR技术PCR技术称DNA多聚酶链式反应,是DNA不需通过克隆而在体外扩增,短时间内合成大量DNA片段的技术。

二.简答1.简述水体自净的过程,从生态系统的角度分析水体为什么可以实现自净?水体自净是指河流接纳了一定量的有机污染物后,在物理、化学和水生物等因素的综合作用后得到净化,水质恢复到污染前的水平和状态,其具体过程为:1.有机污染物排入水体后被水体稀释,有机和无机固体物质沉降至河底2.水体中好氧细菌利用溶解氧把有机物分解为简单有机物和无机物,并用以组成自身有机体,水中溶解氧急剧下降至零,此时鱼类绝迹,原生动物轮虫浮游甲壳动物死亡,厌氧细菌大量繁殖,对有机体进行厌氧分解。

微生物产沼气技术

微生物产沼气技术

沼气综合利用
• 关于微生物沼气目前还没有很深入的研究, 但这并不影响其利用。 • 它是实现农业产业化,以及再生能源和环 境保护等方面一种有效的途径。
产气 菌
食乙酸 产甲烷 菌群
沼气发酵微生物菌群的研究现状
(广西农学报JournalofGuangxiAgricultur第22卷第4期Vol22,No)
• 在有机聚合物占多数的废物厌氧生物处理 中,水解作用是整个过程的限速步骤。在一 个能够正常进行发酵的沼气池中,非产甲烷 细菌对有机物分解利用的速度决定了产甲 烷细菌产甲烷的速度。
» 近10年来的研究发现,产氢产乙酸菌包括互营单胞菌属、 互营杆菌属、梭菌属、暗杆菌属等。这类细菌能把各 种挥发性脂肪酸降解为乙酸和H2。利用乙酸的产甲烷 细菌有索氏甲烷丝菌和巴氏甲烷八叠球菌,两者的生长 速率差别较大。在一般的厌氧反应器中,约70%的甲烷 由乙酸分解而来,30%由氢气还原二氧化碳而来。在厌 氧反应器中,甲烷产量的70%是由乙酸歧化菌产生的。
微生物产沼气技术应用
概述
• 微生物利用生活有机物垃圾、污水、粪便、 农副产品及废弃有机物产生沼气,即可治 理环境污染,又可以利用废物产生能源, 而且是重要的再生能源。特别是我国农村 大力推广的“沼气生态园”,将沼气、厕 所、畜禽舍健在日光温室内,成为“四合 一体”模式,形成以微生物发酵产沼气、 沼液、沼渣为中心的种植业、养殖业、可 再生能源和环境保护“四结合”的生态系 统,在我国经济和社会的可持续发展中起 重要作用。
产气原理
分解 底物
密闭 有机 物 发酵性 菌群ห้องสมุดไป่ตู้
初步 转化
丙酸、 丁酸、 醇和 乳酸 等 乙酸、丙酸、 丁酸、醇、 CO2等
产氢、 产乙酸 菌群

污染控制微生物学试题

污染控制微生物学试题

污染控制微⽣物学试题季污染控制微⽣物试题C⼀、填空(0.5分×30)1.微⽣物⼀词并⾮(⽣物分类学上)的专⽤名词,⽽是指所有(形体微⼩)、(结构较为简单),⼀般须借助光学显微镜甚⾄电⼦显微镜才能观察到的低等⽣物的(统称),包括病毒、(原核⽣物)、(真菌)、(单细胞藻类)以及(原⽣动物)和(后⽣动物)等。

2. ⽆论是动、植物病毒或噬菌体,其增殖过程基本相同,⼤致分为(吸附)、(侵⼊和脱壳)、(⽣物合成)和(装配与释放)等连续⼏个阶段。

3. 微⽣物数量的测定可以采⽤:显微镜计数法、(⽐浊)法、(平板菌落计数)法和(薄膜过滤计数)法等。

4. 基因重组的主要⽅式包括(转化)、(接合)和(转导)。

5. 有机废⽔的厌氧⽣物处理,主要依靠(产酸发酵菌群)、(产氢产⼄酸菌群)、(同型产⼄酸菌群)和(产甲烷菌群)等四⼤类群微⽣物作⽤完成的。

6. 组成RNA的碱基包括(A )、(G )、(C )和(U )等四种。

7. 有机废⽔厌氧⽣物处理中,常见的产酸发酵类型有(⼄醇型发酵)、(丙酸型发酵)和(丁酸型发酵)等三种。

⼆、术语解释(2分×10)1. 异染粒:⼜称捩转菌素,主要成分是多聚偏磷酸盐,具有较强的嗜碱性或嗜中性。

因为它被蓝⾊染料(如甲烯蓝)染⾊后不呈蓝⾊⽽呈紫红⾊⽽得名。

⼀般认为它可能是磷源和能源性贮藏物。

2. 菌胶团:产⽣荚膜与粘液层的细菌,相互粘连在⼀起,形成具有⼀定形态的细菌集团,具有共同的粘液层,内含许多细菌。

3.培养基:由⼈⼯配制的,供给微⽣物⽣长繁殖或积累代谢产物所⽤的营养基质,叫做培养基。

它是科学研究、⽣产微⽣物制品及应⽤等⽅⾯的基础,由于各种微⽣物所需要的营养物质不同,所以培养基的种类也很多。

为此,在配制培养基时需要针对微⽣物不同的营养类型,满⾜特定的⽣长条件,并根据不同的培养⽬的,选择适宜的培养基。

4. 固有酶与适应酶:微⽣物⽣活过程中分泌的,与其作⽤底物存在与否⽆关的酶称为固有酶;⼀般情况下并不表达,只有在⼀定条件刺激下才会分泌的酶称为适应酶。

《沼气工程技术》复习提纲

《沼气工程技术》复习提纲

第一讲1、沼气的产生沼气是多种有机质在一定温度、湿度、酸碱度及厌氧条件下,经微生物分解代谢所产生的一种可燃性混合气体。

沼气的产生过程称为沼气发酵,国际上统称厌氧消化。

地球上每年由光合作用生成4×1011吨有机物,其中约5%以不同形式在厌氧条件下被微生物分解生成沼气。

2、沼气工程的概念①最初是指以粪便、秸秆等农业废弃物为原料,以沼气生产为目标的系统工程。

单纯追求能源生产。

目前已拓展为以各种有机废弃物厌氧发酵为手段,以追求能源为目标,最终实现沼气、沼液、沼渣的综合利用。

②沼气工程是以农业废弃物和有机垃圾的厌氧消化为主要技术环节,集污水处理、沼气生产、资源化利用为一体的系统工程。

3、发展沼气的意义减少碳排放,保护生态环境;为农村(城市)提供清洁、可再生能源(资源);合理处置农业有机废弃物资源;改善农村卫生条件,提高农民生活水平;开展综合利用,调整农业生产模式,发展“生态高值”农业;减少农业生产投资,增加农民收入;带动沼气及相关产业发展;缓解能源供应紧张局面等。

第二讲沼气发酵是一个由多种类群细菌参与完成的,通过分解有机物并产生以CH4和CO2为主要产物的,复杂的微生物学过程。

1、沼气发酵的特点沼气发酵是一个复杂的生物化学过程,具有以下特点:(1)参与发酵微生物种类繁多,混菌发酵。

(2)发酵原料复杂,来源广泛,可处理高浓度有机废水(COD大于50000mg/L);(3)厌氧发酵自身能耗低,相同条件下仅为好氧分解的1/30~1/20;(4)沼气发酵装置(厌氧反应器)种类繁多,条件适合,均可产气;(5)产甲烷菌要求氧化还原电位-330mv以下,即严格厌氧环境。

2、参与沼气发酵的细菌(沼气发酵的微生物类群)(1)发酵性细菌水解纤维素、蛋白质、脂类为可溶性糖类、肽、氨基酸和脂肪酸等。

水解菌(大多为厌氧菌,也有兼性菌):梭状芽孢杆菌、拟杆菌、丁酸菌、嗜热双歧杆菌、产气梭状芽孢杆菌、产琥珀酸梭状菌、北京丙酸杆菌和产氢螺旋体等。

生物质转化技术复习资料

生物质转化技术复习资料

1. 能源:可再生能源与不可再生能源;清洁能源:风能、太阳能、水能等。

生物质能:是直接或间接地通过绿色植物的光合作用,把太阳能转化为化学能的形式固定和储存在生物体内的能量。

生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。

它包括植物、动物和微生物。

广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。

有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。

狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。

特点:可再生性。

低污染性。

广泛分布性。

2. 生物质主要化学组成有纤维素、半纤维素和木质素以及少量的灰分和提取物。

纤维素:是由β-D-葡萄糖基通过1,4-β糖苷键连接起来的线型高分子化合物,半纤维素:是由几种不同类型的单糖构成的异质多聚体,这些糖是五碳糖和六碳糖,包括木糖、阿拉伯糖和半乳糖等。

木质素:是苯丙烷类结构单元通过碳-碳键和氧桥键连接而成的的无定型且具有网状结构的芳香族聚合物,半纤维素热性质最不稳定,因为半纤维素有支链结构木质素具有芳环结构,碳元素含量高,因此热稳定性高,热值高热解产物:挥发分;焦炭水解产物:3. 生物质压缩成型:p31-33影响成型的因素:温度、水分、颗粒大小、成型压力、原料种类生物质压缩成型技术按成型加压的方法分,螺旋挤压式、活塞冲压式、辊模碾压式辊模碾压式采用湿压(冷压)成型工艺,螺旋挤压式、活塞冲压式采用热压成型工艺工艺:常温湿压成型、热压成型、炭化成型、冷压成型。

成型燃料燃烧和散状燃烧有什么不同?p41典型热压成型工艺流程:生物质原料→粉碎→干燥→成型→冷却→筛分→包装4. 生物质直接燃烧:秸秆、垃圾等生物质完全燃烧,产生的热量主要用于发电或集中供热生物质燃料燃烧过程p54:1.预热干燥阶段;2.热分解阶段;3.挥发分燃烧阶段;4.固定碳燃烧阶段;5.燃尽阶段。

微生物与生活垃圾处理

微生物与生活垃圾处理

微生物与生活垃圾处理摘要:垃圾是人类在日常生活中不可避免地产生的废弃物,针对生活垃圾本文介绍了几种主要生物处理方法,以及分析了在处理过程中的各种微生物,并指出了生物处理正成为生活垃圾处理的发展方向之一。

关键词:生活垃圾;生物处理技术;微生物随着经济的发展,人口的增加以及人民生活水平的提高,城市生活垃圾的产量与日俱增,<<中国二十一世纪议程>>白皮书指出:“全国历年城市生活垃圾存量达60多亿吨,有200个城市陷入垃圾包围之中。

”据统计,我国城市垃圾增长率大于10%,超过全世界平均8.42%的年平均增长速度[1]。

如何处理好如此庞大的城市生活垃圾,已成为全世界广泛关注的问题。

同时其带来的环境污染和人类聚居状况恶化等问题,也成为世界各国共同关心的问题,它还成为制约我国社会和经济可持续发展的障碍。

因此垃圾的处理向着减量化、无害化和资源化的方向发展是我们的对策。

目前,国内外处理垃圾的主要方法有卫生填埋、堆肥化、焚烧,其中前两种处理方式均属于生物处理技术。

具体来说,这种垃圾生物处理技术就是城市生活垃圾中固有的或外添加的微生物,在一定控制条件下,进行一系列的生物化学反应,使得垃圾中的不稳定的有机物代谢后释放能量或转化为新的细胞物质,从而垃圾逐步达稳定化的一个生化过程。

1 生活垃圾生物处理方法1.1堆肥处理法堆肥是依靠自然界广泛分布的细菌、放线菌、真菌等微生物,有控制地促进可被生物降解的有机物向稳定的腐殖转化的生物化学过程,最终形成类似腐殖质,可作为肥料或土壤的改良剂。

堆肥技术是实现城市垃圾资源化、无害化的一条重要途径。

它不仅可以杀死垃圾中的病原菌,有效处理垃圾中的有机物,增加土壤中的有机成份,而且可生产有机肥料,有利于增加农业产量[2]。

由于传统堆肥处理法是利用堆制原料中的土著微生物来降解有机污染物,堆肥初期土著微生物数量少,需要一定时间才能繁殖起来,且各种微生物分解速度差别很大,因此传统堆肥往往存在发酵时间长、产生臭味且肥效低等问题。

11废水生物处理基本原理

11废水生物处理基本原理


⑶真菌:活性污泥中的真菌主要是腐生或寄 生的丝状菌。具有分解碳水化合物、脂肪、 蛋白质及其他含氮化合物的功能,但若大量 异常地增殖会导致产生污泥膨胀现象。真菌 在活性污泥中的大量出现往往与水质有关, 某些含碳较高或pH较低的工业废水处理系统 中常可观察到较多的霉菌出现。


⑷原生动物:废水净化由差变好的过程中,依次出 现:肉足虫→游泳型纤毛虫→固着型纤毛虫 ⑸微型后生动物:后生动物在活性污泥系统中并不 经常出现,只有在处理水质良好时才有一些微型后 生动物存在,主要有轮虫、线虫和寡毛类。它们多 以细菌、原生动物以及活性污泥碎片为食。一般来 说,轮虫的出现反映了有机质的含量较低,水质较 好;线虫可在城市污水厂的活性污泥中大量存在。 活性污泥中的寡毛类以颤蚯蚓为代表,是活性污泥 中体形最大、分化较高级的一种多细胞生物。
轮虫、线虫、 寡毛类的沙 蚕、顠体虫 去除滤池内的 污泥、防止污 泥积聚和堵塞
生物组成
以菌胶团为主 要组分,辅以 固着型纤毛虫及 浮游球衣菌、 游泳型纤毛虫 藻类等 净化和稳定 污、废水水质 促进滤池净化速 度,提高滤池整 体的处理效率
功能
(二)生物膜对有机物质的降解及其生长
①有机物从流动水中通过扩散作用转移到附着水中去,同时氧 也通过流动水、附着水进入生物膜的好氧层; ②生物膜中的有机物进行好氧分解;代谢产物如CO2、H2O等 无机物沿相反方向排至流动水层及空气中;
厌氧消化机理
厌氧生物处理(或称厌气生物处理)是在无氧的条件
下,借厌氧微生物(包括兼性微生物),主要是厌氧菌 (包括兼性菌)的作用来进行的。
厌氧活性污泥净化废水的作用机理:
三阶段理论:
▲水解发酵阶段
▲产氢、产乙酸阶段 ▲产甲烷阶段 乙酸

产氢产乙酸菌与产甲烷菌的关系

产氢产乙酸菌与产甲烷菌的关系

产氢产乙酸菌与产甲烷菌的关系在大自然的大家庭里,微生物们的生活可真是精彩纷呈,尤其是那些产氢的细菌和产甲烷的细菌。

哎呀,这两个小家伙的关系简直像是一对欢喜冤家。

产氢菌,就像那个爱开玩笑的朋友,时不时地就来点惊喜,把氢气释放出来。

而产甲烷菌呢,就像是那个喜欢收集宝贝的家伙,专门把氢气转化成甲烷,搞得整个生态环境都热闹非凡。

说到这,咱们得先了解产氢菌。

它们的工作简直是“发氢机器”。

这小子在分解有机物的时候,像个拼命三郎,气势汹汹地把氢气给放出来。

就好比你在厨房里煮东西,水开了,蒸汽四溅,那滋味可真让人感觉到生活的热气腾腾。

这些产氢菌在厌氧环境中发光发热,简直就是一群微小的化学家,调皮得很。

再说说产甲烷菌。

这小子可有意思了,它们就像是个能工巧匠,把产氢菌放出来的氢气当成原料,开始忙活起来。

你想啊,没了它们,产氢菌的氢气就没有地方去,干等着也是没意思。

于是,产甲烷菌就像一位贴心的朋友,接过氢气,制造出甲烷,顺便把环境搞得热热闹闹,真是别有一番风味。

这俩小家伙到底是什么关系呢?可以说是相辅相成,缺一不可。

产氢菌释放的氢气,正好被产甲烷菌利用,形成了一个“你来我往”的生态循环。

它们的合作关系就像是一场双人舞,一起翩翩起舞,和谐又默契。

就拿废水处理来说吧,很多时候,废水里可有不少有机物,产氢菌在这方面可是大展拳脚,它们把这些有机物拆得七零八落,氢气哗哗冒出来。

这时候,产甲烷菌就像是那位赶到派对的舞者,迅速上场,抓住氢气,把它转化成甲烷,简直是一拍即合。

不过,咱们也得注意,这俩家伙可不是一味合作。

环境条件不太妙,比如温度太高,或者pH值不合适,产氢菌的表现可能就不那么给力。

产甲烷菌可不喜欢这种情况,没了氢气,它们的“舞会”可就没法继续。

就像一场派对,酒水不够,大家都没劲。

这个时候,双方的关系就会受到影响,生态平衡可就乱了套。

说到这里,可能有人会问,这种关系对我们人类有什么用呢?哦,别急!产氢和产甲烷在能源开发方面可是大有作为。

2024年沼气工程运行管理常识(2篇)

2024年沼气工程运行管理常识(2篇)

2024年沼气工程运行管理常识1.1 沼气发酵的生物作用沼气发酵微生物是人工制取沼气的最重要因素,有了大量的沼气微生物,并使各种类群的微生物获得基本的生长条件,沼气发酵原料才能在微生物的作用下转化为沼气。

沼气发酵过程中主要有五大菌群(发酵性细菌、产氢产乙酸菌、耗氢产乙酸菌、产甲烷菌)参与活动。

五大菌群:①发酵性细菌:一些不溶性物质被发酵性细菌所分泌的胞外酶水解为可溶性糖、肽、氨基酸和脂酸,再将吸入细胞,发酵为乙酸、丙酸、丁酸等和醇类及一定量的H2及CO2②产氢产乙酸菌:除甲酸、乙酸和甲醇外的物质均不能被产甲烷菌所利用,所以必须由产氢产乙酸菌将其分解转化为乙酸、氢和二氧化碳③耗氢产乙酸菌:它们既能利用H2+CO2生成乙酸,也能代谢糖类生成乙酸。

④产甲烷菌(食氢、食乙酸):它们在厌氧条件下将前三群细菌代谢的终产物,在没有外源受氢体的情况下,把乙酸和H2、CO2转化成CH4+CO2。

产甲烷菌广泛存在于水沉积物和动物消化道等极端厌氧的环境中。

不产甲烷菌(水解发酵细菌、产氢产乙酸细菌等)-为甲烷菌提供营养(将发酵原料的碳水化合物、蛋白质和脂肪等复杂有机物水解后形成可溶性的简单化合物,该类菌为产甲烷菌提供合成细胞的基质和能源。

--为产甲烷菌创造适宜的厌氧生态环境(该类菌群中的好氧和兼性厌氧菌的活动,使发酵液的氧化还原电位不断下降,逐步为产甲烷菌创造厌氧生态环境。

--为产甲烷菌清除有毒物质。

--与甲烷菌共同维持环境中适宜的酸碱度(氨化细菌进行氨化作用,产生的氨可以中和部分有机酸;产甲烷菌不断利用乙酸、氢和二氧化碳生成甲烷;通过这两类菌群的共同作用,使发酵液的pH值稳定在适宜范围。

产甲烷菌将不产甲烷菌产生的乙酸、氢气和二氧化碳等发酵基质转化为甲烷。

1.2厌氧消化产沼气的条件沼气发酵就是培养和积累厌氧消化细菌,使细菌具有良好的生活条件;只有首先做到了这一点,才有可能得到较好的沼气生产率或污水净化效率。

微生物的生命活动要求多种条件,其中主要条件包括发酵原料、厌氧活性污泥、消化器负荷、发酵温度、pH值、碳氮比、有害物质的控制及均质等。

污水厌氧生物处理系统中的产氢产乙酸过程

污水厌氧生物处理系统中的产氢产乙酸过程

--●Vol.33,No.92015年9月中国资源综合利用China Resources Comprehensive Utilization污水厌氧生物处理系统中的产氢产乙酸过程刘海燕1,高尚1,王晓玲2(1.长春市海威市政工程设计有限公司,长春130012;2.吉林建筑大学市政与环境工程学院,长春130118)摘要:基于产氢产乙酸菌的吉布斯自由能,分析了产氢产乙酸菌与产甲烷菌等耗氢菌的种间氢转移机制,结合氢自养反硝化菌的代谢特征及影响因素,揭示了产氢产乙酸菌可与氢自养反硝化菌耦合,为开发新型产乙酸反应器及菌群功能调控技术提供理论基础。

关键词:水解酸化,产氢产乙酸,耦合,种间氢转移中图分类号:X703.1文献标识码:A文章编号:1008-9500(2015)09-0029-03由于能源短缺,加之废水中的难降解有机污染物种类和数量的增加,使得污水厌氧生物处理技术越来越受到重视。

在废水处理工程领域,厌氧生物降解过程一般划分为3个阶段,即水解发酵、产氢产乙酸和产甲烷阶段[1]。

水解发酵阶段产生丁酸、乳酸、丙酸、乙酸、乙醇等;产氢产乙酸阶段将上述产物(除乙酸外)转化为氢气和乙酸,将生物质转化为乙酸,可大大减少甲烷和二氧化碳这两种温室气体的产生。

污水厌氧生物降解出水中常含有过量的氮以及磷,需进一步处理才能达标排放,常见的后处理是厌氧反应器出水进行释磷-吸磷、硝化-反硝化过程,而乙酸是产甲烷菌、聚磷菌以及反硝化菌的良好碳源。

1产氢产乙酸过程机理废水中有机物质的产氢产乙酸是由多种菌群协同完成的复杂的生物学过程,一般经历发酵细菌、产氢产乙酸菌的纵向接替转化[2]。

厌氧生物降解过程中的产氢产乙酸过程是将产酸发酵阶段两个碳以上的有机酸(除乙酸)和醇转化为乙酸、H 2、CO 2等,并产生新的细胞物质的过程。

参与产氢产乙酸过程的细菌即为产氢产乙酸细菌(H 2-producing acetogens ,HPA )。

在标准状态下,产氢产乙酸菌降解不同短链脂肪酸的产氢产乙酸的反应不能自发进行,需要和反硝化菌、硫酸盐还原菌或产甲烷菌等耗氢菌协同作用才能完成物质的转化,与上述微生物互营生长。

污水生物处理系统中的主要微生物

污水生物处理系统中的主要微生物

47
二、参与厌氧生物处理的微生物
不产甲烷细菌和产甲烷细菌相互依赖、相互制约。表现在: 1 不产甲烷细菌未产甲烷细菌提供生长和产甲烷所需的的基质。
不产甲烷细菌的产物氢、二氧化碳、乙酸提供给产甲烷细菌。 产甲烷细菌为厌氧环境有机物分解食物链最后环节。 2 不产甲烷细菌为产甲烷细菌创造适宜的氧化还原条件。
水处理生物学
教师:赵 彬e
第九章 污水生物处理系统中的主要微生物
2
污水生物处理的基本原理
自然界中很多微生物有分解与转化有机物等污染物的能力。 污水生物处理法:利用微生物处理废水的方法。 目前生物处理法主要是用来去除污水中溶解的和胶体的有机污染物质 以及氮、磷等营养物质,亦可用于某些重金属离子和无机盐离子的处理。
一、污水的好氧生物处理
1 概念 在有氧的条件下,借好氧微生物的作用处理污水。 2 污水好氧生物处理作用对象
●溶解的有机物——直接渗入细胞内被吸收
●固体的、胶体的有机物——间接吸收 附在菌体外,由细菌所分泌的胞外酶分解为溶解性物质,
渗入细胞。
7
一、污水的好氧生物处理
3 生物处理原理:能过自身的生命活动——氧化、还原、合成
原因:■低溶氧、低pH值
絮体不稳定、破裂
细菌不凝聚,为游离个体。
■在过度曝气时,紊流剪切絮块成碎块。
2、微小絮体
现象:不会在出水中形成高浓度,可观察到离絮体。
原因:■长泥龄、低有机负荷
29
二、好氧活性污泥法中的微生物
3、 起泡沫(厚、棕色泡沫)
诺卡氏菌属的丝状微生物超量生长,曝气系统的气泡又附着在诺 卡氏菌的菌体上。 温度>18℃,长泥龄(>9天)利于该菌生长。
正常的絮状体的结构有两类:

厌氧生物处理新技术-吕炳南

厌氧生物处理新技术-吕炳南

背 景
厌氧处理的优势(1)
考虑其主要优点及巨大的应用潜力,厌氧处理过程应该是在环境 保护方面最可行和最不易受攻击的核心技术。而且从目前的我们所了 解的知识来看,如果不考虑厌氧处理技术需要后处理以对有机物、致 病菌和营养物达标的话,对厌氧处理技术几乎提不出缺点来: 1、原来普遍认为厌氧处理过程稳定性差,但现在研究者和工程 者却发现厌氧处理过程是非常稳定的。只是厌氧处理过程应该在适当 方式下运行,这意味着厌氧处理过程首先应该被工程者和运行者充分 了解;
背 景
厌氧处理的优势(3)
厌氧处理与传统的好氧处理技术相比具有巨大的优势: 1、 厌氧处理过程中不需要氧; 2、 厌氧处理过程所产生的剩余污泥比好氧处理过程少3~20 倍; 3、 好氧过程产生的污泥在能够安全处置前必须先在专门的 厌氧污泥消化池内稳定。 所以,在厌氧处理过程中,曝气和污泥处置费用这两项与好 氧废水处理有关的最大的费用将会被戏剧性地减少。
背 景
事实上由于污水的一些特点,如:污水的低COD浓度、 高SS浓度、相对较低的温度、负荷波动等常常会对厌氧的运 行、费用等产生负面影响,从而夸大了厌氧处理过程的困难。 但Rittmann 和 Baskin 研究了污水这些特点对厌氧处理过程的 影响,并进行了量化估计,认为通过认真地选择厌氧处理技 术、适当的反应器设计和恰当的运行控制,这些困难大部分 是能够克服的。
第1部分 污水厌氧生物处理基本原理
第二阶段是产氢产乙酸阶段,在产氢产乙酸菌的作用下,把 除乙酸、甲酸、甲醇以外的第一阶段的产物,如丙酸、丁酸等脂 肪酸和醇类转化为乙酸和H2/CO2。产氢产乙酸细菌将有机酸氧化 形成的电子,使质子还原而形成氢气,因此该类细菌又称为质子 还原的产乙酸细菌;
第1部分 污水厌氧生物处理基本原理

第十九章厌氧处理

第十九章厌氧处理

第19章厌氧生物处理19.1 厌氧生物处理基本原理Bryant认为消化经历四个阶段:1.水解阶段,固态有机物被细菌的胞外酶水解;2.酸化;3.乙酸化阶段,指进入甲烷化阶段之前,代谢中间液态产物都要乙酸化4.第四阶段是甲烷化阶段。

根据厌氧消化的两大类菌群,厌氧消化过程又可分为两个阶段,即:酸性发酵阶段和碱性发酵阶段,如(图 19-1)所示。

1.酸性发酵阶段两阶段理论将液化阶段和产酸阶段合称为酸性发酵阶段。

在酸性发酵阶段,高分子有机物首先在兼性厌氧菌胞外酶的作用下水解和液化,然后渗入细胞体内,在胞内酶的作用下转化为醋酸等挥发性有机酸和硫化物。

pH 值下降。

氢的产生,是消化第一阶段的特征,所以第一阶段也称作“氢发酵”。

兼性厌氧菌在分解有机物的过程中产生的能量几乎全部消耗作为有机物发酵所需的能源,只有少部分合成新细胞。

因此酸性消化时,细胞的增殖很少。

产酸菌在低 pH 值时也能生存,具有适应温度、 pH 值迅速变化的能力。

2.碱性消化阶段专性厌氧菌将消化过程第一阶段产生的中间产物和代谢产物均被甲烷菌利用分解成二氧化碳、甲烷和氨,pH 值上升。

由于消化过程第二阶段的特征是产生大量的甲烷气体,所以第二阶段称为“甲烷发酵”。

由于甲烷菌的生长条件特别严格,即使在合适的条件下其增殖速度也非常小,因此甲烷化过程控制污水或者污泥的厌氧消化进程。

图 19-1 厌氧消化两阶段示意图19.1.1废水处理工艺中的厌氧微生物在厌氧消化系统中微生物主要分为两大类:非产甲烷菌( non-menthanogens )和产甲烷细菌( menthanogens )。

厌氧消化过程的非产甲烷菌和产甲烷菌的生理特性有较大的差异,对环境条件的要求迥异,见(表19-1)。

表 19-1 产酸菌和产甲烷菌的特性参数参数产甲烷菌产酸菌对 pH 的敏感性敏感,最佳 pH 为 6.8~7.2 不太敏感,最佳 pH 为5.5~7.0氧化还原电位 Eh < -350mv( 中温 ) , < -560mv( 高温 ) < -150~200mv 对温度的敏感性最佳温度: 30~38 ℃, 50~55 ℃最佳温度: 20~35 ℃非产甲烷菌又称为产酸菌( acidogens ),它们能将有机底物通过发酵作用产生挥发性有机酸( VFA )和醇类物质,使处理系统中液体的 pH 值降低。

污水处理中的微生物原理

污水处理中的微生物原理

污水处理中的微生物原理编辑说明:此章在很多书上都有涉及,但深层次讲解的少,编写此章的目标是,使入门者真正理解各类微生物特点和会用生物相分析系统环境,使本章作为中控室、化验室观测生物相的必要知识。

编写时要注意多涉猎专业书籍,结合微生物学和一些论文,力图达到不仅知道结论,还要深究原因。

我们在第三章已经说过: 生物处理方法的核心(或者说城镇污水处理厂的运行核心)是,使用设施、设备,控制曝气量、水量、污泥量、营养物质等,创造出适宜微生物存活和生长的环境,并有意的引导微生物的生长向我们需要去除的污染物性质方向发展,最终达到污水处理的目的。

所以,凡是采用了微生物处理方法的城镇污水处理厂,微生物原理是污水处理的核心知识,一个好的运营师,可以通过微生物的状态和变化就可判断外部环境、内部环境的各种变化,并提前采取措施将出现的问题苗头消灭。

在活性污泥法中,微生物生活于活性污泥中,在生物膜法中,微生物生活于生物膜中,存在地方虽不一样,但生物种群是基本一致的。

另:微生物种群非常多,按世代期(可理解为生长周期)分,从几个小时长一代到几十天长一代不等,活性污泥是由人为控制泥龄的,一般在10~25天之间,不会超过30天,所以种群是人为遴选优化过的,具有去除污染物针对性更强,但难以降解的污染物去除效果不好的特点;而生物膜法的污泥变化是由生物自行生长脱落决定的,所以各种世代期不同的种群在理论上均有存在,具有去除污染物更彻底,但处理量有限制的特点。

在微生物学领域里,习惯将动胶菌属形成的细菌团块称为菌胶团。

在水处理工程领域内,则将所有具有荚膜或粘液或明胶质的絮凝性细菌互相絮凝聚集成的菌胶团块也称为菌胶团,这是广义的菌胶团。

如上所述,菌胶团是活性污泥(绒粒)的结构和功能的中心,表现在数量上占绝对优势(丝状膨胀的活性污泥除外),是活性污泥的基本组分。

它的作用表现在:1、有很强的生物吸附能力和氧化分解有机物的能力。

一旦菌胶团受到各种因素的影响和破坏,则对有机物去除率明显下降,甚至无去除能力。

能源化工知识点--概论沼气石油

能源化工知识点--概论沼气石油

沼气技术什么是沼气:沼气是一种能够燃烧的气体。

我们常在一些水塘、臭水沟和粪坑中,看到咕嘟咕嘟地往表面冒气泡,气温越高,气泡冒得越多,这些气泡里的气体就是沼气。

最初,人们在沼泽地带发现这种气体,所以就给它起名叫“沼气”。

沼气的来源沼气是通过各种有机物发酵,又叫厌氧消化,由种类繁多的沼气发酵微生物分解转化,最终产生沼气的过程。

人工沼气发酵的条件:1、发酵原料(有机物质)2、合适的温度3、一定的水份4、有绝对厌氧的环境5、酸碱度适当①厌氧:又称为“绝氧”,一个生物体或细胞能在分子氧缺乏或不存在的条件下生长;沼气发酵的原料:最常用的是人畜禽(猪、牛、羊、鸡、鸭、鹅等)粪便,各种作物秸秆(稻草、麦草、玉米秸)、青杂草、烂叶草、水葫芦、有机废渣与废水(酒漕、制豆腐的废渣水、屠宰场废水)等,都是很好的沼气发酵原料。

我国沼气发展的历史第一阶段:上世纪30年代中国式沼气池——水压式沼气池技术不成熟、没有形成规模第二阶段:上世纪70年代农村燃料严重短缺,沼气再一次被重视技术不成熟沼气池寿命短第三阶段:上世纪80年代技术可靠、大中型沼气蓬勃发展,沼气综合利用沼气发展目标从“能源回收”向“环境保护”转移,南方“猪-沼-果”,北方“四位一体”,西北“五配套”平均热值:约21 520 kJ/m3 合1.45立方煤气或0.69立方天然气原料特性原料:农作物桔杆和废弃物、木质废料、甘蔗渣、畜禽养殖厂粪便、酒糟以及有机物含量高的化工制药和食品工业污水。

秸秆、木质原料、甘蔗渣的主要成分是纤维素(30%~40%)、半纤维素(30%~35%)和木质素(15%~25%),灰分。

畜禽养殖厂粪便、酒糟、工业废水含有的主要物质为:纤维素、半纤维素、淀粉、果胶质、脂类、蛋白质。

纤维素:葡萄糖-原纤维-微纤维-纤维素,难水解;半纤维素:由2—6个不同的糖苷组成,分子量小聚合度低,位于许多纤维素之间,易水解;木质素:是一类由苯丙烷单元通过醚键和碳-碳键联结成的、具有三维结构的芳香族化合物,填充于纤维素框架间;木质素和半纤维素包裹着纤维素,使酶难以和纤维素进行接触水解。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机物负荷 参数为有机负荷率
4. 消化池的搅拌
在有机物的厌氧发酵过程中,让反应器中的微 生物和营养物质(有机物)搅拌混合,充分接触,将 使得整个反应器中的物质传递、转化过程加快。
使池内污泥浓度分布均匀,利于 微生物生长繁殖
作用
释放有害气体
使环境因素在反应器内保持均匀
5. 有毒有害物质
影响甲烷菌 生长的因素
产氢产乙酸菌群
绝对厌氧或兼性厌氧细菌,可将前面步骤产生的挥发性有 机酸转化为乙酸、H2/CO2。
厌氧生物处理的微生物
产甲烷细菌
•产甲烷细菌是严格专性厌氧细菌,其生存环境要求绝对无氧; •产甲烷细菌属古细菌,一类可利用乙酸转化为甲烷和CO2,另 一类利用H2还原CO2合成甲烷; •对环境影响非常敏感,氧和氧化剂有毒害作用; •生长特别缓慢;
pH:6.8~7.2 温度:35~38ºC和52~55ºC
甲烷菌专性厌氧,且处理系统中不能含有浓度过 高的SO42-,SO32-。
污水和泥液中的碱度有缓冲作用,如果有足够的碱 度中和有机酸,其pH有可能维持在6.8以上,酸化和甲 烷化两大类细菌就可以共存,从而消除分阶段现象。
厌氧法与好氧法相比,降解较不彻底,放出的热 量少,反应速度低。
水解
(碳水化合物,
蛋白质,脂肪等) 细菌的胞外
水解的和溶 解的有机物

有机酸 醇类 醛类等
乙酸化 乙酸细菌
乙酸
甲烷化 甲烷细菌
H2,CO2
甲烷细菌
酸化 产酸细菌
CH4
CH4
大分子有机物(碳水化合物、 蛋白质、脂肪等)
水解(胞外酶) 简单有机物(单糖、氨基酸等)
酸化(产酸细菌)
有机酸(丙酸、丁酸、戊酸 等)、醇、醛等
主要用于污泥的消化、高浓度有机废水和温度较高 的有机工业废水的处理。
污水的厌氧生物处理方法
一、化粪池 用于处理来自厕所的粪便废水。曾广泛用于不
设污水厂的合流制排水系统。还可用于郊区的别墅 式建筑。
化粪池例图
二、厌氧生物滤池
优点:处理能力高; 滤池内可以保持很高的 微生物浓度;不需另设 泥水分离设备,出水SS 较低;设备简单、操作 方便。
H2/CO2
乙酸化(乙酸细菌)
甲烷化
甲烷化
(甲烷细菌) CH4 (甲烷细菌)
乙酸
厌氧生物处理的特点
优点:
1、需要的能量少,产生甲烷是一种潜在的能源; 2、产生的剩余生物污泥较少; 3、容积负荷较高,可处理高浓度、难降解的有机废水; 4、需要的营养物较少;
缺点:
1、处理过程的反应复杂,反应速度较慢,起动时间较长; 2、对温度、pH等环境因素更为敏感; 3、出水水质较差,需要进一步处理;
厌氧生物处理是有机污染物在无氧的条件 下,借助专性厌氧细菌和兼性厌氧细菌的作用下, 将大部分有机污染物转化为甲烷、二氧化碳、水 以及简单小分子有机物等的一种生物处理方法。
经厌氧生物处理以后,多数有机物被分解和 稳定,厌氧处理以后的污泥(熟污泥)或消化液 可回用于农田作为肥料,因而目前已经受到普遍 重视。
影响厌氧生物处理的主要因素
1. pH和碱度
厌氧
产生
有机酸
最佳为 pH 7.0~7.3
甲烷菌分解有机酸时产生的重碳酸盐不断增加
2. 温度
中温:33~35ºC 高温:50~55ºC
3. 负荷
厌氧反应池的容积决定于厌氧反应的负荷率。
容积负荷 参数为投配率 表 达 日进入的有机物量与池子容积之比,在一定 方 程度上反映了污染物在消化池中的停留时间 式
发酵细菌群(产酸细菌)
多为兼性厌氧或专性厌氧细菌,主要参与复杂有机物的水 解,其主要功能是: •首先通过胞外酶的作用将不溶性有机物水解成可溶性有机物; •将可溶性有机物转化为乙酸、丙酸、丁酸、乳酸等有机酸及乙 醇、CO2、H2等。
研究表明,该类细菌对有机物的水解比较缓慢,但产酸反 应速率较快。
厌氧生物处理的微生物
第二段:保持严格的厌氧条件和pH,以利于甲 烷菌的生长;降解、稳定有机物,产生含甲烷较多 的消化气,并截留悬浮固体,以改善出水水质。
厌氧和好氧技术的联合运用
有些废水含有很多复杂的有机物,对于好氧 生物处理而言是属于难生物降解或不能降解的, 但这些有机物往往可以通过厌氧菌分解为较小分 子的有机物,而那些较小分子的有机物可以通过 好氧菌进一步分解。
良好的厌氧污泥床 污泥形成颗粒状,污泥 浓度高(60~80g/l), 有机负荷率和去除率均 较高,不需要搅拌,能 适应负荷冲击和温度与 pH的变化。
UASB是一种有发 展前途的厌氧处理设备。
五、分段厌氧处理法
第一段:水解和液化有机物为有机酸;缓冲和 稀释负荷冲击与有害物质,并将截留难降解的固态 物质。一般停留时间0.8~1.5天,pH3.6~4.0。
早期的厌氧生物处理主要面对的是固态有机物 (包括有机污泥或粪便等),所以称为消化。
两阶段:
消化 过程
液化(酸化) 气化(甲烷化)
污泥的pH迅速下降,大分 子有机物转化为小分子有机 酸、醇、醛等液态产物和 CO2、H2、NH3、H2S等
产生消化气,主体是CH4, 以及部分CO2等
四阶段:
大分子有机物
采用缺氧与好氧工艺相结合的流程,可以达 到生物脱氮的目的(A/O法)。厌氧-缺氧-好氧法 (A/A/O法)和缺氧-厌氧-好氧法(倒置A/A/O法),可 以在去除BOD和COD的同时,达到脱氮、除磷的 效果。
缺点:滤料费Βιβλιοθήκη 较 高;滤料易堵塞,尤其 是下部,生物膜很厚; 堵塞后,没有简单有效 的清洗方法。因此,悬 浮物高的废水不适用。
三、厌氧接触法
对于悬浮物较高的有机废水,可以采用厌氧接 触法,它实际上是厌氧活性污泥法,不需要曝气而 需要脱气。
四、上流式厌氧污泥床反应器(UASB)
上流式厌氧污泥床反应器
一般来说,对于废水中有机物浓度较低、温度较低、出水水质要求较高,并要 求去除营养物的场合倾向于采用好氧生物处理技术。而对于有机物浓度较高、温度较 高的工业废水,厌氧处理可能更为经济。
随着对厌氧生物处理工艺的进一步了解,厌氧处理作为好氧处理的预处理手段已 经成为目前较为广泛采用的一种方法。
厌氧生物处理的微生物
相关文档
最新文档