网络七层协议与TCPIP协议

合集下载

OSI七层模型与TCPIP五层模型

OSI七层模型与TCPIP五层模型

OSI七层模型与TCPIP五层模型博主是搞是个FPGA的,⼀直没有真正的研究过以太⽹相关的技术,现在终于能静下⼼学习⼀下,希望⾃⼰能更深⼊的掌握这项最基本的通信接⼝技术。

下⾯就开始搞了。

⼀、OSI参考模型今天我们先学习⼀下以太⽹最基本也是重要的知识——OSI参考模型。

1、OSI的来源OSI(Open System Interconnect),即开放式系统互联。

⼀般都叫OSI参考模型,是ISO(国际标准化组织)组织在1985年研究的⽹络互连模型。

ISO为了更好的使⽹络应⽤更为普及,推出了OSI参考模型。

其含义就是推荐所有公司使⽤这个规范来控制⽹络。

这样所有公司都有相同的规范,就能互联了。

2、OSI七层模型的划分OSI定义了⽹络互连的七层框架(物理层、数据链路层、⽹络层、传输层、会话层、表⽰层、应⽤层),即ISO开放互连系统参考模型。

如下图。

每⼀层实现各⾃的功能和协议,并完成与相邻层的接⼝通信。

OSI的服务定义详细说明了各层所提供的服务。

某⼀层的服务就是该层及其下各层的⼀种能⼒,它通过接⼝提供给更⾼⼀层。

各层所提供的服务与这些服务是怎么实现的⽆关。

3、各层功能定义这⾥我们只对OSI各层进⾏功能上的⼤概阐述,不详细深究,因为每⼀层实际都是⼀个复杂的层。

后⾯我也会根据个⼈⽅向展开部分层的深⼊学习。

这⾥我们就⼤概了解⼀下。

我们从最顶层——应⽤层开始介绍。

整个过程以公司A和公司B的⼀次商业报价单发送为例⼦进⾏讲解。

<1> 应⽤层OSI参考模型中最靠近⽤户的⼀层,是为计算机⽤户提供应⽤接⼝,也为⽤户直接提供各种⽹络服务。

我们常见应⽤层的⽹络服务协议有:HTTP,HTTPS,FTP,POP3、SMTP等。

实际公司A的⽼板就是我们所述的⽤户,⽽他要发送的商业报价单,就是应⽤层提供的⼀种⽹络服务,当然,⽼板也可以选择其他服务,⽐如说,发⼀份商业合同,发⼀份询价单,等等。

<2> 表⽰层表⽰层提供各种⽤于应⽤层数据的编码和转换功能,确保⼀个系统的应⽤层发送的数据能被另⼀个系统的应⽤层识别。

集线器(HUB)、交换机、路由器的区别和联系及OSI七层模型及TCPIP通信协议

集线器(HUB)、交换机、路由器的区别和联系及OSI七层模型及TCPIP通信协议

集线器(HUB)、交换机、路由器的区别和联系及OSI七层模型及TCPIP通信协议集线器(HUB)、交换机、路由器的区别和联系及OSI七层模型及TCP/IP通信协议集线器(HUB):集线器()属于纯⽹络底层设备。

它也不具备所具有的,所以它发送数据时都是没有针对性的,⽽是采⽤⼴播⽅式发送。

也就是说当它要向某节点发送数据时,不是直接把数据发送到⽬的节点,⽽是把发送到与集线器相连的所有节点。

属于物理层(OSI七层模型);作⽤:定义⼀些电器,机械,过程和规范,如集线器;PDU(协议数据单元):bit/⽐特;设备:集线器HUB; 注意:没有寻址的概念;在⽹络中只起到和重发作⽤,⽬的是扩⼤⽹络的传输范围,⽽不具备信号的定向传送能⼒,是—个标准的共享式设备。

Hub组成的⽹络是共享式⽹络,同时Hub也只能够在下⼯作Hub主要⽤于共享⽹络的组建,是解决从服务器直接到最的⽅案。

在交换式⽹络中,Hub直接与相连,将交换机的数据送到桌⾯。

使⽤Hub组⽹灵活,它处于⽹络的⼀个星型结点,对结点相连的进⾏集中管理,不让出问题的⼯作站影响整个⽹络的正常运⾏,并且⽤户的加⼊和退出也很⾃由。

交换机交换机(Switch)意为“”是⼀种⽤于电(光)信号转发的。

它可以为接⼊交换机的任意两个提供独享的电信号通路。

最常见的交换机是。

其他常见的还有电话语⾳交换机、等。

属于数据链路层(OSI七层模型);作⽤:定义如何格式化数据,⽀持错误检测;典型协议:以太⽹,帧中继(古董级VPN)PDU:frame(帧)设备:以太⽹交换机;备注:交换机通过MAC地址转发数据,逻辑链路控制;交换机的主要功能包括物理编址、、错误校验、帧序列以及流控。

交换机还具备了⼀些新的功能,如对VLAN()的⽀持、对汇聚的⽀持,甚⾄有的还具有的功能。

路由器连接两个或多个⽹络的硬件设备,在⽹络间起⽹关的作⽤,读取每⼀个数据包中的地址然后决定如何传送的专⽤智能性的⽹络设备。

通常是⼀个计算机,它能够理解不同的协议,例如某个局域⽹使⽤的以太协议,因特⽹使⽤的TCP/IP协议。

OSI七层模型和TCPIP模型及对应协议(详解)

OSI七层模型和TCPIP模型及对应协议(详解)

OSI七层模型和TCPIP模型及对应协议(详解)1.OSI七层模型OSI(Open Systems Interconnection)七层模型是国际标准化组织(ISO)制定的一种网络体系结构模型,将计算机网络的功能划分为七个层次,每个层次负责不同的任务。

这些层次从底层到顶层分别为:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。

-物理层:负责传输比特流,即原始的0和1的比特流。

-数据链路层:将物理层传输的数据流划分为数据帧,并在物理传输媒介上发送和接收数据帧。

-网络层:负责通过不同网络节点进行数据的路由和转发,实现数据包的传输。

-传输层:负责端到端的通信连接,在传输过程中确保数据的可靠传输和错误控制。

-会话层:负责建立、管理和终止应用程序之间的通信会话。

-表示层:负责数据的格式化和解码、加密和解密,确保接收方能够正确理解发送方的数据。

-应用层:提供用户与网络的接口,支持各种应用程序的网络访问和通信。

2.TCP/IP模型TCP/IP模型是一种通信协议体系结构,目前是互联网的基础协议。

TCP/IP模型由四个层次构成,分别为网络接口层、互联网层、传输层和应用层。

-网络接口层:负责将数据帧从物理层传输到网络层,并对数据进行分割和重组。

-互联网层:负责将数据包从源主机传输到目的主机,包括IP协议、ARP协议和ICMP协议等。

-传输层:负责数据的可靠传输和错误控制,包括TCP(传输控制协议)和UDP(用户数据报协议)等。

-应用层:提供用户与网络的接口,支持各种应用程序的网络访问和通信,包括HTTP、FTP、SMTP等协议。

3.OSI七层模型和TCP/IP模型的对应关系及协议:-OSI的物理层对应TCP/IP的网络接口层,协议包括以太网、Wi-Fi 等。

-OSI的数据链路层对应TCP/IP的网络接口层,协议包括以太网、Wi-Fi等。

-OSI的网络层对应TCP/IP的互联网层,协议包括IP、ARP、ICMP等。

TCPIP模型及OSI七层参考模型各层的功能和主要协议

TCPIP模型及OSI七层参考模型各层的功能和主要协议

TCPIP模型及OSI七层参考模型各层的功能和主要协议TCP/IP模型和OSI七层参考模型是两种不同的网络协议体系架构,用于描述和管理计算机网络中传输数据的过程。

虽然它们是两个独立的模型,但是它们之间存在着很多相似之处。

下面详细介绍TCP/IP模型和OSI七层参考模型各层的功能和主要协议。

一、TCP/IP模型TCP/IP模型是互联网常用的网络协议体系架构,由四个层次构成,即网络接口层、网际层、传输层和应用层。

1.网络接口层:网络接口层是通过物理连接和电流,将数据变成二进制电信号以便于在网络中传输。

它负责将数据包转换成比特流传输,是数据在局域网中的传输介质,主要包含物理层和数据链路层。

物理层:负责物理传输介质的传输细节,如光纤、电缆等。

数据链路层:负责数据在物理网络中的传输,通过帧传输保证数据的准确性,如以太网、WiFi等。

主要协议:Ethernet、PPP、ARP等。

2.网际层:网际层是在网络中定位和标识主机的过程,它负责通过IP地址将数据传输到目标主机。

网际层是TCP/IP模型中最重要的层,提供传送和路由数据包的功能。

主要协议:IP、ICMP、ARP、RARP等。

3.传输层:传输层主要是为应用层提供可靠的数据传输,负责数据的分段、传输和排序,确保数据的有序、可靠和无差错。

主要协议:TCP、UDP。

4.应用层:应用层是TCP/IP模型最上层的层次,主要是用户和网络应用之间的接口层。

应用层的协议提供了网络应用之间的通信。

主要协议:HTTP、FTP、SMTP、DNS等。

二、OSI七层参考模型OSI(Open System Interconnection)七层参考模型是国际标准化组织(ISO)提出的通信协议模型,它将数据传输过程分成了七个不同层次,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。

1.物理层:物理层是物理媒介上数据的传输和传输的电流、光信号转换的功能部分,负责传输原始的比特流。

网络知识梳理--OSI七层网络与TCPIP五层网络架构及二层三层网络

网络知识梳理--OSI七层网络与TCPIP五层网络架构及二层三层网络

⽹络知识梳理--OSI七层⽹络与TCPIP五层⽹络架构及⼆层三层⽹络作为⼀个合格的运维⼈员,⼀定要熟悉掌握OSI七层⽹络和TCP/IP五层⽹络结构知识。

废话不多说!下⾯就逐⼀展开对这两个⽹络架构知识的说明:⼀、OSI七层⽹络协议OSI是Open System Interconnect的缩写,意为开放式系统互联。

OSI参考模型各个层次的划分遵循下列原则:1)根据不同层次的抽象分层2)每层应当有⼀个定义明确的功能3)每层功能的选择应该有助于制定⽹络协议的国际标准。

4)各层边界的选择应尽量节省跨过接⼝的通信量。

5)层数应⾜够多,以避免不同的功能混杂在同⼀层中,但也不能太多,否则体系结构会过于庞⼤6)同⼀层中的各⽹络节点都有相同的层次结构,具有同样的功能。

7)同⼀节点内相邻层之间通过接⼝(可以是逻辑接⼝)进⾏通信。

8)七层结构中的每⼀层使⽤下⼀层提供的服务,并且向其上层提供服务。

9)不同节点的同等层按照协议实现对等层之间的通信。

根据以上标准,OSI参考模型分为(从上到下):物理层->数据链路层->⽹络层->传输层->会话层->表⽰层->应⽤层。

1)物理层涉及在信道上传输的原始⽐特流。

2)数据链路层的主要任务是加强物理层传输原始⽐特流的功能,使之对应的⽹络层显现为⼀条⽆错线路。

发送包把输⼊数据封装在数据帧,按顺序传送出去并处理接收⽅回送的确认帧。

3)⽹络层关系到⼦⽹的运⾏控制,其中⼀个关键问题是确认从源端到⽬的端如何选择路由。

4)传输层的基本功能是从会话层接收数据⽽且把其分成较⼩的单元传递给⽹络层。

5)会话层允许不同机器上的⽤户建⽴会话关系。

6)表⽰层⽤来完成某些特定的功能。

7)应⽤层包含着⼤量⼈们普遍需要的协议。

各层功能见下表:七层模型的每⼀层都具有清晰的特征。

基本来说:1)第七⾄第四层(应⽤层->表⽰层->会话层->传输层)处理数据源和数据⽬的地之间的端到端通信,2)第三⾄第⼀层(⽹络层->数据链路层->物理层)处理⽹络设备间的通信。

osi和tcpip层次模型的区别

osi和tcpip层次模型的区别

osi和tcpip层次模型的区别OSI和TCP/IP层次模型的区别在计算机网络中,层次模型是一种组织和管理计算机网络功能的方法。

OSI(开放式系统互联)和TCP/IP(传输控制协议/因特网互联协议)是两种不同的层次模型,它们都为网络通信提供了标准化的框架。

然而,它们在结构和功能上存在一些区别。

一、OSI层次模型OSI层次模型是由国际标准化组织提出的,它将网络通信划分为七个不同的层次,每个层次负责一种特定的功能。

以下是每个层次的简要介绍:1. 物理层(Physical Layer):负责传输原始的比特流,例如通过光缆或电缆发送数字信号。

2. 数据链路层(Data Link Layer):负责在直接相连的设备之间传输数据帧,并检测和纠正传输中的错误。

3. 网络层(Network Layer):负责在多个网络之间进行数据包的路由和转发,以实现数据的传递。

4. 传输层(Transport Layer):负责确保端到端的可靠传输,提供数据的分段和重组等功能。

5. 会话层(Session Layer):负责建立、管理和终止网络会话,以便在通信设备之间进行通信。

6. 表示层(Presentation Layer):负责将数据进行编码和解码,以便不同设备之间可以正确地解释和处理数据。

7. 应用层(Application Layer):负责提供特定应用程序(如电子邮件、文件传输)所需的服务和协议。

二、TCP/IP层次模型TCP/IP层次模型是因特网的基本通信协议,它将网络通信划分为四个层次,每个层次有不同的功能。

以下是每个层次的简要介绍:1. 网络接口层(Network Interface Layer):与OSI的物理层和数据链路层相对应,负责提供网络接口以进行数据传输。

2. 网络层(Internet Layer):与OSI的网络层相对应,负责在不同网络之间进行数据包的路由和转发。

3. 传输层(Transport Layer):与OSI的传输层相对应,提供可靠的端到端数据传输,并为应用层提供端口和流控制等功能。

OSI模型与TCPIP协议的关系

OSI模型与TCPIP协议的关系

OSI模型与TCPIP协议的关系OSI模型与TCP/IP协议的关系在计算机网络领域中,为了实现不同设备之间的通信和数据传输,出现了OSI模型(Open Systems Interconnection Model)和TCP/IP协议(Transmission Control Protocol/Internet Protocol)。

OSI模型是一种理论框架,用于描述和规范计算机网络中各个层次的功能和交互关系,而TCP/IP协议则是一种实际应用在网络中的协议集合,它实现了OSI模型中的相关功能。

OSI模型总共分为七个层次,每个层次负责不同的功能。

而TCP/IP协议则是根据OSI模型进行了简化和整合,将其分为四个层次。

下面将逐层介绍OSI模型和TCP/IP协议的关系。

第一层:物理层(Physical Layer)物理层是OSI模型和TCP/IP协议中的第一层。

它定义了硬件设备之间数据传输的物理特性和参数。

OSI模型中的物理层负责电压、电流、物理接口等底层细节,而TCP/IP协议中的物理层则更加关注网络传输媒介,如以太网、无线等。

第二层:数据链路层(Data Link Layer)数据链路层是OSI模型和TCP/IP协议中的第二层。

它负责将物理层所传输的数据包进行分割和组装,并进行差错检测和纠正。

OSI模型中的数据链路层主要包括了逻辑链路控制(LLC)和媒体访问控制(MAC)两个子层,而TCP/IP协议中的数据链路层则更加关注网络节点之间的直接通信,如以太网、无线等。

第三层:网络层(Network Layer)网络层是OSI模型和TCP/IP协议中的第三层。

它负责为数据包选择合适的路径和转发决策,以实现不同网络之间的数据传输。

OSI模型中的网络层包括了路由(Routing)和网络互联(Network Interconnection)等功能,而TCP/IP协议中的网络层则主要使用IP协议来实现数据的寻址和路由。

OSI七层模型与TCPIP模型的比较

OSI七层模型与TCPIP模型的比较

OSI 七层模型与TCPIP 模型的⽐较OSI 七层模型与TCP/IP 模型的背景故事就略过吧,直接进⼊正题。

⾸先,OSI 有七层模型,⽽TCP/IP 模型只有四层,不过⼀般书上为了⽅便讲解则将这两者的优点合在⼀起分为了五层。

注:以下顺序均为从低到⾼OSI 七层分别是:物理层,数据链路层,⽹络层,运输层,会话层,表⽰层,应⽤层TCP/IP 四层分别是:⽹络接⼝层,⽹际层,传输层,应⽤层我们⼀般的五层分别是:物理层,数据链路层,⽹络层,传输层,应⽤层下⾯对上述模型进⾏详细叙述OSI 模型:TCP/IP 模型的⽹络接⼝层可近似看为物理层+链路层⽹际层可近似看作⽹络层传输层可近似看作运输层但是TCP/IP 模型和OSI 模型的⼀个很⼤的区别就是:OSI 模型中,⽹络层可以选择⾯向连接和⽆连接,⽽运输层中必定是⾯向连接的TCP/IP 模型中,⽹络层不⾯向连接,⽽传输层中是可以选择⾯向连接的TCP ,和⽆连接的UDP此外,他们之间还有些差别.OSI 参考模型精确地定义了三个主要概念:服务、协议、接⼝;⽽TCP/IP 模型并没有,这不符合软件⼯程的思想。

OSI 模型诞⽣于协议产⽣之前,因此是通⽤的,不偏向于任何协议,但也由于没有协议⽅⾯的经验,不知道将哪些功能放到哪⼀层更好;TCP/IP 模型诞⽣于协议产⽣后,因此不会出现协议不能匹配模型的情况,但是不适合于任何⾮TCP/IP 的协议栈。

TCP/IP 充分认识到了异构⽹络的互联问题,因此将⽹络协议IP 作为单独的重要层次;⽽OSI 则在此后才在⽹络层中划分出⼀个⼦层来完成类似与TCP/IP 模型中的IP 的功能。

⽽⾄于我们现在常⽤的五层模型,就是从上⾯将那五层抽取出来,⼤家⽐较学习即可。

层次简介物理层传输单位:⽐特硬件:集线器、中继器任务:透明地传输⽐特流功能:定义了电路接⼝的⼀些参数(如机械尺⼨、形状,交换电路的数量和排列等)也规定了通信链路上传输的信号的意义和电⽓特性(即什么信号代表0,什么信号代表1)注意:传输信息所⽤的物理媒介,⽐如双绞线、光纤等不属于物理层协议,⽽在物理层协议之下数据链路层传输单位:帧硬件:交换机,⽹桥任务:将⽹络层传下来的IP 数据报封装成帧功能:成帧、差错控制、流量控制、传输管理作⽤:实现数据在链路上的点对点的正确传输⽹络层传输单位:数据报硬件:路由器任务:将传输层传下来的报⽂段封装分组,选择合适的路由使分组能够正确交付到⽬的主机功能:流量控制,拥塞控制,差错控制,⽹际互联,路由选择作⽤:就是实现信息在各个⽹络之间的正确传输运输层传输单位:报⽂段(TCP),⽤户数据报(UDP)任务:负责两个进程间的通信功能:流量控制,差错控制,服务质量,数据传输管理作⽤:实现端到端之间的通信,链路层是点到点注:运输层还具有复⽤和分⽤的功能会话层向表⽰层实体或⽤户进程提供建⽴连接并在连接上有序地传输数据,也成为建⽴同步(SYN)会话层负责管理主机间的会话进程,包括建⽴、管理以及终⽌进程间的会话表⽰层转变数据格式,包括加密、解密、压缩等功能应⽤层为特定类型的⽹络应⽤提供访问OSI 的⼿段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Host A
对等通信
应用层
APDU
应用层
表示层 会话层 传输层 网络层 数据链路层 物理层
PPDU SPDU Segment Packet Frame
Bit

表示层 会话层 传输层 网络层 数据链路层 物理层
Host B
❖ 每一层利用下一层提供的服务与对等层通信;每一 层使用自己的协议。
数据封装
Data H Data H H Data
❖ 在计算机网络出现的前期,计算机都是独立的设备, 每台计算机独立工作,互不联系。计算机与通信技术的结 合,对计算机系统的组织方式产生了深远的影响,使计算 机之间的相互访问成为可能。不同种类的计算机通过同种 类型的通信协议(protocol)相互通信,产生了计算机网 络(computer network)。
Modem/CSU/DSU
路由器
广域网交换机
接入服务器
三 标准化组织
❖ 国际标准化组织(ISO) ❖ 电子电器工程师协会(IEEE) ❖ 美国国家标准局(ANSI) ❖ 电子工业协会(EIA / TIA) ❖ 国际电信联盟(ITU) ❖ INTERNET架构委员会(IAB)
ISO /OSI 七层协议模型
举个典型的例子:一个大型ICP(Internet内容提供商) 为了支持更多的用户访问他的网站,在全世界多个地方放 置了相同内容的WWW(World Wide Web)服务器;通 过一定技术使不同地域的用户看到放置在离他最近的服务 器上的相同页面,这样来实现各服务器的负荷均衡,同时 用户也节省了访问时间。
❖ 计算机网络,就是把分布在不同地理区域的计算机以及专
门的外部设备利用通信线路互连成一个规模大、功能强的
网络系统,从而使众多的计算机可以方便地互相传递信息,
共享信息资源。(注:我们给出一个如此广泛的定义是因 为IT业迅速发展,各种网络互连终端设备层出不穷,像计 算机、打印机、PDA(Personnal Digital Assistate)、网 络电话等等各种支持网络互连的设备。
计算机网络的特性
1 .资源共享 网络的出现使资源共享变得很简单,交流的双方可以
跨越空间的障碍,随时随地传递信息。 2 .信息传输与集中处理 数据是通过网络传递到服务器(server)中,由服务器
集中处理后再回送到终端。
3.负载均衡(load balancing)与分布处理(distributed processing)
应用层 表示层 会话层 传输层 网络层 数据链路层 物理层
应用层 表示层 会话层 传输层 网络层 数据链路层 物理层
主机
交换机 路由器
❖ 数据封装和解封装过程。
服务器
Data H Data H H Data
❖ WAN分类: 共用电话网:PSTN 综合业务数字网:ISDN 数字数据网:DDN X.25共用分组交换网 帧中继:Frame Relay 异步传输模式:ATM
WAN常用设备
❖ WAN的设计目标: 运行在广阔的地理区域; 通过低速串行链路进行访问;
❖ 网络控制服从公共服务的规则; 提供全时的或部分时间的联接性; 联接物理上分离的、遥远的、甚至全球的设备。
❖ 局域网(Local Area Network,简称LAN) 一般限定在较小的区域内,小于10km的范 围,
通常采用有线的方式连接起来。
❖ 城域网(Metropolis Area Network,简称MAN) 规模局限在一座城市的范围内,10~100km的
区域。
❖ 广域网(Wide Area Network,简称WAN) 网络跨越国界、洲界,甚至全球范围。
网络基础与OSI参考模型 TCP/IP协议模型
❖ 一 什么是网络 ❖ 二 网络的类型 ❖ 三 ISO 协议模型 ❖ 四 TCP/IP 协议模型
❖ 现在网络已经不仅仅是一个时髦的名词。 事实上它已经成为人们生活不可缺少的一 部分,就象空气和水一样。
一 什么是网络
❖ 网络(network)是一个复杂的人或物的互连系统。我 们周围无时无刻不存在一张网,例如电话网、电报网等; 即使我们身体内部也存在许许多多的网络系统,例如神经 系统、消化系统等等.
❖ OSI(Open System Interconnect,开放系统互连)
❖物理层 ❖数据链路层 ❖网络层 ❖传输层 ❖会话层 ❖表示层 ❖应用层
❖ OSI RM:开放系统互连参考模型 (Open System Interconnection Reference Model)
网络世界的法律!
七层功能
4 .综合信息服务
网络的一大发展趋势是多维化,即在一套系统上提供 集成的信息服 务,包括来自政治、经济等各方面资源, 甚至同时还提供多媒体信息,如图像、语音、动画等。在 多维化发展的趋势下,许多网络应用的新形式不断涌现, 如:电子邮件(E-mail)、视频点播(VOD,Video On Demand)、电子商务(E-commerce)、视频会议 (Video conference)等等。
常见网络拓朴结构
❖ 拓扑结构:
总线、星型、树型 环型、网型
LAN定义
❖ LAN定义:通常指几公里以内的,可以 通过某种介质互联的计算机、打印机、 modem或其他设备的集合。
❖ 特点:距离短、延迟小、数据速率高、 传输可靠。
广域网定义及分类
❖ WAN定义:在大范围区域内提供数据通信 服务,主要用于互连局域网。
提供应用程序间通信
7
处理数据格式、数据加密等 6
建立、维护和管理会话
5
建立主机端到端连接
4
寻址和路由选择
3
提供介质访问、链路管理等
2
比特流传输
1
应用层 表示层 会话层 传输层 网络层 数据链路层 物理层
7
高层:负责主机之间的数据传输
6
5
分层的好处
4
3
底层:负责网络数据传输
2
1
应用层 表示层 会话层 传输层 网络层 数据链路层 物理层
网络的演进
简单连接 1960’s – 1970’s
基于网络的连接 1970’s – 1980’s
Host 低速连接
主机网络 Host
网络互联 1980’s –
WAN
二 网络的类型
按传输介质分类 : 有线网络 无线网络 光纤网络
按拓扑分类: 星型网络 环形网络 总线型网络
按作用区域分类: 局域网 广域网 城域网
相关文档
最新文档