网络协议分层知识集锦:七层、四层、五层
osi各层协议

osi各层协议OSI模型(Open Systems Interconnection Reference Model)是由国际标准化组织(ISO)制定的网络协议参考模型,在网络通信中起到了非常重要的作用。
OSI模型将网络通信分为七个层级,每个层级具有不同的功能和协议。
以下是对每个层级的简要介绍:第一层:物理层(Physical Layer)物理层是OSI模型最底层的层级,负责处理物理介质和电信号传输。
主要职责是将比特流转换成电信号或光信号,并通过物理介质传输,例如:网线、光纤、Wi-Fi、蓝牙、红外线等等。
该层没有识别任何网络设备或协议,仅负责将数字数据转换成信号传输。
第二层:数据链路层(Data Link Layer)数据链路层负责数据包的传输和数据传输的控制。
该层负责建立为节点之间数据传输的逻辑通道,并处理帧同步、流量控制、错误检测和纠错。
数据链路层中的协议有:以太网、局域网、WLAN、PPP等。
第三层:网络层(Network Layer)网络层负责网络间的数据传输、寻址和路由。
该层通过IP协议确定来源和目标设备,并使用路由协议将数据包从源设备发送到目标设备。
此外,网络层还负责分割和重组数据包,以便在中间经过的路由器之间进行传输,以便操作系统能找到目标设备并将数据包正确路由。
较著名的协议包括:IP、ARP、RARP、ICMP及IPsec等。
第四层:传输层(Transport Layer)传输层用于维护数据传输的完整性和可用性。
该层负责确认和处理数据传输过程中的错误,确保数据按正确的顺序传输,还负责拥塞控制。
传输层协议有:TCP、UDP及SPX等。
TCP是传输控制协议,它提供了可靠的数据传输,也精确确定要传输的数据,以及控制拥塞的情况。
UDP是用户数据包协议,它允许发送方将数据发送到网络上,但对数据传输过程中的错误不做保障和验证。
第五层:会话层(Session Layer)会话层负责建立传输的会话和维护其状态。
网络七层协议

网络七层协议网络七层协议是计算机网络通信中的一种规范,定义了在不同网络设备之间进行通信时所涉及的不同层次的功能和任务。
这些层次被称为网络七层协议。
七层协议是一个分层的结构,每一层负责特定的功能,通过将网络通信过程拆分为多个层次,使得网络设备之间的通信更加高效和灵活。
网络七层协议的架构是由国际标准化组织(ISO)在1984年发布的ISO/OSI模型(Open Systems Interconnection Reference Model)所定义的。
该模型将整个网络通信过程划分为七个层次,从下到上分别为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1. 物理层:物理层是网络七层协议的最底层,负责控制网络设备之间的实际传输介质,例如电缆、光纤等。
物理层的任务包括传输数据的二进制形式,确定物理连接和电压规范等。
2. 数据链路层:数据链路层是位于物理层之上的一层,主要负责将原始的数据分割为数据帧,并在物理层的基础上提供错误检测和纠正功能。
数据链路层还负责进行帧同步和流量控制。
3. 网络层:网络层是位于数据链路层之上的一层,负责处理路由和转发数据包的功能。
网络层使用IP地址来标识和寻址设备,以便将数据包从源节点传输到目标节点。
4. 传输层:传输层是网络七层协议的第四层,主要负责在网络设备之间建立可靠的数据传输连接。
传输层使用端口号来标识不同应用程序,并提供流量控制、拥塞控制和错误恢复等功能。
5. 会话层:会话层是位于传输层之上的一层,负责在不同应用程序之间建立、管理和维护会话连接。
会话层提供了对话控制和同步功能,确保通信的顺序和正确性。
6. 表示层:表示层是网络七层协议的第六层,负责将数据从一种格式转换为另一种格式,以便在不同设备之间进行传输和处理。
表示层可以对数据进行加密、压缩和解压缩等操作。
7. 应用层:应用层是网络七层协议的最上层,提供面向用户的网络服务。
在应用层中,可以实现各种各样的协议和功能,例如电子邮件、文件传输、网页浏览等。
网络协议的分层结构及功能

网络协议的分层结构及功能随着互联网的普及,网络协议成为网路通讯的基础,而网络协议的分层结构对于提高网络效能有着极大的帮助。
因此,在这篇文章中我们将对网络协议的分层结构及其功能进行详细的探讨。
网络协议的分层结构网络协议的分层结构是指将网络通讯中的各种功能分成不同的层次,从而使不同层次的功能得以分开进行处理。
这种分层结构的好处是可以实现模块化和可扩展性,而且每一层都可以独立进行设计和维护,从而提高网络性能和可靠性。
网络协议的分层结构通常分成七层,即物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
下面我们会分别介绍每个层次的功能和重要性。
物理层物理层主要负责将数字信号转换为物理媒介上的电子信号,并对信号进行传输和接收。
它控制物理媒介的连接方式、信号传输速率和数据传输距离,与接线、接头、电信号等有关。
具体来说,物理层的主要任务包括:1. 传输数字信号:将数字信号转换为物理媒介上的电子信号进行传输。
2. 传输数据:将数据通过物理介质传输到远程节点。
3. 控制传输速率:调整数据传输速率,以确保数据的可靠传输。
4. 确定物理连接方式:确定与其他设备之间的物理连接方式,包括电缆、光缆、无线电信道等。
数据链路层数据链路层主要负责将物理层传输的数据转换为数据包,并将数据包传输到目标设备上。
它控制数据包的传输和接收,提供一些控制和监控功能,从而保证数据传输的可靠性。
具体来说,数据链路层的主要任务包括:1. 将数据转换为数据帧:将数据转换为数据帧,以便在物理网络上传输。
2. 控制访问:控制节点在共享的介质上的访问,以避免冲突和竞争。
3. 纠错和控制流量:纠正传输过程中出现的一些错误,并调节流量以避免网络超载。
4. 帧同步:为确保帧能被正确地接收和解析,确保数据帧的同步。
网络层网络层主要负责将数据包从发送端传输到接收端,并处理不同网络之间的路由和转发问题。
它控制数据包的路由、转发和选路,提供流量控制和差错控制的功能。
OSI七层模型基础知识及各层常见应用

OSI七层模型基础知识及各层常见应用OSI Open Source Initiative(简称OSI,有译作开放源代码促进会、开放原始码组织)是一个旨在推动开源软件发展的非盈利组织。
OSI参考模型(OSI/RM)的全称是开放系统互连参考模型(Open System Interconnection Reference Model,OSI/RM),它是由国际标准化组织ISO提出的一个网络系统互连模型。
它是网络技术的基础,也是分析、评判各种网络技术的依据,它揭开了网络的神秘面纱,让其有理可依,有据可循。
一、OSI参考模型知识要点图表1:OSI模型基础知识速览模型把网络通信的工作分为7层。
1至4层被认为是低层,这些层与数据移动密切相关。
5至7层是高层,包含应用程序级的数据。
每一层负责一项具体的工作,然后把数据传送到下一层。
由低到高具体分为:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
第7层应用层—直接对应用程序提供服务,应用程序可以变化,但要包括电子消息传输第6层表示层—格式化数据,以便为应用程序提供通用接口。
这可以包括加密服务第5层会话层—在两个节点之间建立端连接。
此服务包括建立连接是以全双工还是以半双工的方式进行设置,尽管可以在层4中处理双工方式第4层传输层—常规数据递送-面向连接或无连接。
包括全双工或半双工、流控制和错误恢复服务第3层网络层—本层通过寻址来建立两个节点之间的连接,它包括通过互连网络来路由和中继数据第2层数据链路层—在此层将数据分帧,并处理流控制。
本层指定拓扑结构并提供硬件寻址第1层物理层—原始比特流的传输电子信号传输和硬件接口数据发送时,从第七层传到第一层,接受方则相反。
各层对应的典型设备如下:应用层………………。
计算机:应用程序,如FTP,SMTP,HTTP表示层………………。
计算机:编码方式,图像编解码、URL字段传输编码会话层………………。
计算机:建立会话,SESSION认证、断点续传传输层………………。
网络5层协议

网络5层协议网络5层协议是指网络通信中,将通信过程分为五个层次的协议模型。
这个模型划分了不同的功能,使得网络通信变得高效和可靠。
下面将逐层介绍网络5层协议。
第一层:物理层物理层是网络5层协议中的最底层,它负责将比特流转化为电信号,并通过物理介质进行传输。
物理层的主要作用是提供传输介质、数据编码和物理拓扑等方面的标准。
物理层协议定义了电缆的类型、传输速率和接口标准等。
第二层:数据链路层数据链路层位于网络5层协议的第二层,它负责将物理层传输的比特流划分为数据帧,并进行错误检测和纠正。
数据链路层的功能包括帧同步、流控制和差错控制等。
此外,数据链路层还定义了数据帧中的MAC地址,用于在局域网中唯一标识网络设备。
第三层:网络层网络层是网络5层协议中的第三层,它负责将数据链路层传输的数据包进行路由选择和转发。
网络层的主要任务是实现不同子网之间的数据传输,通过IP地址对数据进行唯一标识和寻址。
此外,网络层还负责数据的分片和重组,以提高网络的效率和可靠性。
第四层:传输层传输层是网络5层协议中的第四层,它主要负责提供可靠的端到端数据传输服务。
传输层使用端口号标识不同的应用程序,并通过传输协议(如TCP或UDP)实现可靠或不可靠的数据传输。
传输层还负责拥塞控制和流量控制,以保证网络的稳定性和高效性。
第五层:应用层应用层是网络5层协议中的最高层,它负责为用户提供网络应用服务。
应用层包括各种应用协议,如HTTP、FTP和DNS等。
应用层协议定义了数据的格式、传输方式和应用逻辑等。
通过应用层,用户可以访问网络资源、发送电子邮件和进行文件传输等操作。
以上是对网络5层协议的简要介绍。
网络通信中,通过这五个层次的协议模型,实现了数据在不同设备之间的传输和交换。
每个层次都有特定的功能和任务,共同协作完成网络通信的目标。
了解网络5层协议对于理解网络通信、网络安全和网络优化等方面都具有重要意义。
osi七层模型各层功能及协议讲解

osi七层模型各层功能及协议讲解协议方信息:协议方A:________________协议方B:________________ 。
联系人:________________ 。
联系电话:________________ 。
邮箱:________________ 。
协议签署日期:________________ 。
亲爱的各位同仁,今天我们来聊聊那神秘而又不失优雅的OSI七层模型。
哦,对,你没听错,这可不是什么高深的数学公式,而是网络世界的基石!准备好了吗?让我们一起从头到尾,轻松搞懂这七层的精彩世界吧!第一层:物理层物理层就像是我们日常生活中的交通工具,负责把数据从一个地方搬到另一个地方。
想象一下,没了交通工具,我们的生活会变得多无趣呀!在这个层面上,电缆、光纤和无线信号都是它的好朋友。
协议有:Ethernet、USB、DSL等等。
第二层:数据链路层我们来到数据链路层。
这一层的工作就像是一个严谨的门卫,确保在网络上发送的数据是完整的,没被损坏。
它处理物理地址,比如MAC地址,确保数据包能顺利通过。
常见的协议有:PPP、Ethernet(对,它又来了!)。
第三层:网络层网络层就像是一个聪明的导航系统,负责找到数据的最佳路径。
这一层处理逻辑地址,也就是IP地址,确保数据包能在复杂的网络中找到家。
常见的协议有:IP、ICMP (别担心,这不是怪兽的名字!)。
第四层:传输层传输层可以说是网络的快递公司,负责确保数据包按顺序、安全地送达。
想象一下,快递小哥把你的包裹送错了,那可真是让人抓狂!它主要的协议有:TCP(可靠性极高)和UDP(速度快,但有风险)。
第五层:会话层会话层负责管理应用程序之间的对话。
它像是一个聊天记录,确保双方的交流不会被打断,确保数据的连贯性。
没有它,我们的网络会议可真是糟糕透了!协议有:RPC、PPTP等。
第六层:表现层表现层就像是网络的翻译官,负责数据的格式转换和加密。
这一层确保不同类型的数据能被正确理解,就像一个人在不同语言间切换。
网络协议分层知识集锦:七层、四层、五层

一、概述OSI(Open System Interconnection)开放系统互连的七层协议体系结构:概念清楚,理论比较完整,但既复杂又不用。
TCP/IP四层体系结构:简单,易于使用。
五层原理体系结构:综合OSI 和TCP/IP 的优点,为了学术学习。
二、详述网络协议设计者不应当设计一个单一、巨大的协议来为所有形式的通信规定完整的细节,而应把通信问题划分成多个小问题,然后为每一个小问题设计一个单独的协议。
这样做使得每个协议的设计、分析、时限和测试比较容易。
协议划分的一个主要原则是确保目标系统有效且效率高。
为了提高效率,每个协议只应该注意没有被其他协议处理过的那部分通信问题;为了主协议的实现更加有效,协议之间应该能够共享特定的数据结构;同时这些协议的组合应该能处理所有可能的硬件错误以及其它异常情况。
为了保证这些协议工作的协同性,应当将协议设计和开发成完整的、协作的协议系列(即协议族),而不是孤立地开发每个协议。
在网络历史的早期,国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)共同出版了开放系统互联的七层参考模型。
一台计算机操作系统中的网络过程包括从应用请求(在协议栈的顶部)到网络介质(底部),OSI参考模型把功能分成七个分立的层次。
图1表示了OSI分层模型。
图1OSI七层参考模型OSI模型的七层分别进行以下的操作:第一层物理层第一层负责最后将信息编码成电流脉冲或其它信号用于网上传输。
它由计算机和网络介质之间的实际界面组成,可定义电气信号、符号、线的状态和时钟要求、数据编码和数据传输用的连接器。
如最常用的RS-232规范、10BASE-T的曼彻斯特编码以及RJ-45就属于第一层。
所有比物理层高的层都通过事先定义好的接口而与它通话。
如以太网的附属单元接口(AUI),一个DB-15连接器可被用来连接层一和层二。
第二层数据链路层数据链路层通过物理网络链路提供可靠的数据传输。
不同的数据链路层定义了不同的网络和协议特征,其中包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。
网络七层协议

网络七层协议网络七层协议是指OSI(Open System Interconnection,开放式系统互联)参考模型,也称为ISO标准化的国际标准协议模型。
该模型将网络通信中的功能划分为七个层级,每一层都有其独立的功能和协议,共同工作以实现完整的网络通信。
第一层:物理层(Physical Layer)物理层是网络通信的最底层,主要负责传输二进制数字信号。
它定义了电气、机械和功能规范,处理与传输媒介之间的接口。
常见的物理层协议包括以太网(Ethernet)和无线局域网(Wi-Fi)。
第二层:数据链路层(Data Link Layer)数据链路层负责在直接相连的节点之间传输数据帧,并成功进行差错检测和修复。
它将数据帧分成较小的数据包(帧)并通过物理层发送。
常见的数据链路层协议有以太网(Ethernet)和Wi-Fi。
第三层:网络层(Network Layer)网络层负责在多个网络之间进行路由选择和数据转发,以实现不同网络之间的通信。
它主要使用IP协议进行数据包分组和传输。
常见的网络层协议有IP(Internet Protocol)和ICMP (Internet Control Message Protocol)。
第四层:传输层(Transport Layer)传输层负责提供端到端的数据传输服务,包括数据分段、错误处理和流量控制。
它主要使用TCP(Transmission ControlProtocol)和UDP(User Datagram Protocol)协议。
TCP提供可靠的连接和流量控制,而UDP则提供无连接和低开销的服务。
第五层:会话层(Session Layer)会话层负责建立、管理和维护应用程序之间的会话,包括对话控制和同步。
它通过主动发起或被动响应方式来建立会话,并负责处理会话持续性、中断和恢复等问题。
第六层:表示层(Presentation Layer)表示层负责对数据的格式进行转换和加密,以保证不同系统之间的数据交换能够正确解释和理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概述OSI(Open System Interconnection)开放系统互连的七层协议体系结构:概念清楚,理论比较完整,但既复杂又不用。
TCP/IP四层体系结构:简单,易于使用。
五层原理体系结构:综合OSI 和TCP/IP 的优点,为了学术学习。
二、详述网络协议设计者不应当设计一个单一、巨大的协议来为所有形式的通信规定完整的细节,而应把通信问题划分成多个小问题,然后为每一个小问题设计一个单独的协议。
这样做使得每个协议的设计、分析、时限和测试比较容易。
协议划分的一个主要原则是确保目标系统有效且效率高。
为了提高效率,每个协议只应该注意没有被其他协议处理过的那部分通信问题;为了主协议的实现更加有效,协议之间应该能够共享特定的数据结构;同时这些协议的组合应该能处理所有可能的硬件错误以及其它异常情况。
为了保证这些协议工作的协同性,应当将协议设计和开发成完整的、协作的协议系列(即协议族),而不是孤立地开发每个协议。
在网络历史的早期,国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)共同出版了开放系统互联的七层参考模型。
一台计算机操作系统中的网络过程包括从应用请求(在协议栈的顶部)到网络介质(底部),OSI参考模型把功能分成七个分立的层次。
图1表示了OSI分层模型。
图1OSI七层参考模型OSI模型的七层分别进行以下的操作:第一层物理层第一层负责最后将信息编码成电流脉冲或其它信号用于网上传输。
它由计算机和网络介质之间的实际界面组成,可定义电气信号、符号、线的状态和时钟要求、数据编码和数据传输用的连接器。
如最常用的RS-232规范、10BASE-T的曼彻斯特编码以及RJ-45就属于第一层。
所有比物理层高的层都通过事先定义好的接口而与它通话。
如以太网的附属单元接口(AUI),一个DB-15连接器可被用来连接层一和层二。
第二层数据链路层数据链路层通过物理网络链路提供可靠的数据传输。
不同的数据链路层定义了不同的网络和协议特征,其中包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。
物理编址(相对应的是网络编址)定义了设备在数据链路层的编址方式;网络拓扑结构定义了设备的物理连接方式,如总线拓扑结构和环拓扑结构;错误校验向发生传输错误的上层协议告警;数据帧序列重新整理并传输除序列以外的帧;流控可能延缓数据的传输,以使接收设备不会因为在某一时刻接收到超过其处理能力的信息流而崩溃。
数据链路层实际上由两个独立的部分组成,介质存取控制(Media Access Control,MAC)和逻辑链路控制层(Logical LinkControl,LLC)。
MAC描述在共享介质环境中如何进行站的调度、发生和接收数据。
MAC确保信息跨链路的可靠传输,对数据传输进行同步,识别错误和控制数据的流向。
一般地讲,MAC只在共享介质环境中才是重要的,只有在共享介质环境中多个节点才能连接到同一传输介质上。
IEEE MAC规则定义了地址,以标识数据链路层中的多个设备。
逻辑链路控制子层管理单一网络链路上的设备间的通信,IEEE 802.2标准定义了LLC。
LLC支持无连接服务和面向连接的服务。
在数据链路层的信息帧中定义了许多域。
这些域使得多种高层协议可以共享一个物理数据链路。
第三层网络层网络层负责在源和终点之间建立连接。
它一般包括网络寻径,还可能包括流量控制、错误检查等。
相同MAC标准的不同网段之间的数据传输一般只涉及到数据链路层,而不同的MAC标准之间的数据传输都涉及到网络层。
例如IP路由器工作在网络层,因而可以实现多种网络间的互联。
第四层传输层传输层向高层提供可靠的端到端的网络数据流服务。
传输层的功能一般包括流控、多路传输、虚电路管理及差错校验和恢复。
流控管理设备之间的数据传输,确保传输设备不发送比接收设备处理能力大的数据;多路传输使得多个应用程序的数据可以传输到一个物理链路上;虚电路由传输层建立、维护和终止;差错校验包括为检测传输错误而建立的各种不同结构;而差错恢复包括所采取的行动(如请求数据重发),以便解决发生的任何错误。
传输控制协议(TCP)是提供可靠数据传输的TCP/IP协议族中的传输层协议。
第五层会话层会话层建立、管理和终止表示层与实体之间的通信会话。
通信会话包括发生在不同网络应用层之间的服务请求和服务应答,这些请求与应答通过会话层的协议实现。
它还包括创建检查点,使通信发生中断的时候可以返回到以前的一个状态。
第六层表示层表示层提供多种功能用于应用层数据编码和转化,以确保以一个系统应用层发送的信息可以被另一个系统应用层识别。
表示层的编码和转化模式包括公用数据表示格式、性能转化表示格式、公用数据压缩模式和公用数据加密模式。
公用数据表示格式就是标准的图像、声音和视频格式。
通过使用这些标准格式,不同类型的计算机系统可以相互交换数据;转化模式通过使用不同的文本和数据表示,在系统间交换信息,例如ASCII(American Standard Code for Information Interchange,美国标准信息交换码);标准数据压缩模式确保原始设备上被压缩的数据可以在目标设备上正确的解压;加密模式确保原始设备上加密的数据可以在目标设备上正确地解密。
表示层协议一般不与特殊的协议栈关联,如QuickTime是Applet计算机的视频和音频的标准,MPEG是ISO的视频压缩与编码标准。
常见的图形图像格式PCX、GIF、JPEG是不同的静态图像压缩和编码标准。
第七层应用层应用层是最接近终端用户的OSI层,这就意味着OSI应用层与用户之间是通过应用软件直接相互作用的。
注意,应用层并非由计算机上运行的实际应用软件组成,而是由向应用程序提供访问网络资源的API(Application Program Interface,应用程序接口)组成,这类应用软件程序超出了OSI模型的范畴。
应用层的功能一般包括标识通信伙伴、定义资源的可用性和同步通信。
因为可能丢失通信伙伴,应用层必须为传输数据的应用子程序定义通信伙伴的标识和可用性。
定义资源可用性时,应用层为了请求通信而必须判定是否有足够的网络资源。
在同步通信中,所有应用程序之间的通信都需要应用层的协同操作。
OSI的应用层协议包括文件的传输、访问及管理协议(FTAM),以及文件虚拟终端协议(VIP)和公用管理系统信息(CMIP)等。
TCP/IP分层模型TCP/IP分层模型(TCP/IP Layening Model)被称作因特网分层模型(Internet Layering Model)、因特网参考模型(Internet Reference Model)。
图2表示了TCP/IP分层模型的四层。
图2TCP/IP四层参考模型TCP/IP协议被组织成四个概念层,其中有三层对应于ISO参考模型中的相应层。
ICP/IP协议族并不包含物理层和数据链路层,因此它不能独立完成整个计算机网络系统的功能,必须与许多其他的协议协同工作。
TCP/IP分层模型的四个协议层分别完成以下的功能:第一层网络接口层网络接口层包括用于协作IP数据在已有网络介质上传输的协议。
实际上TCP/IP标准并不定义与ISO数据链路层和物理层相对应的功能。
相反,它定义像地址解析协议(Address Resolution Protocol,ARP)这样的协议,提供TCP/IP 协议的数据结构和实际物理硬件之间的接口。
第二层网间层网间层对应于OSI七层参考模型的网络层。
本层包含IP协议、RIP协议(Routing Information Protocol,路由信息协议),负责数据的包装、寻址和路由。
同时还包含网间控制报文协议(Internet Control Message Protocol,ICMP)用来提供网络诊断信息。
第三层传输层传输层对应于OSI七层参考模型的传输层,它提供两种端到端的通信服务。
其中TCP协议(Transmission Control Protocol)提供可靠的数据流运输服务,UDP协议(Use Datagram Protocol)提供不可靠的用户数据报服务。
第四层应用层应用层对应于OSI七层参考模型的应用层和表达层。
因特网的应用层协议包括Finger、Whois、FTP(文件传输协议)、Gopher、HTTP(超文本传输协议)、Telent(远程终端协议)、SMTP(简单邮件传送协议)、IRC(因特网中继会话)、NNTP(网络新闻传输协议)等。
三总结与比较OSI的七个层次:第7层应用层—直接对应用程序提供服务,应用程序可以变化,但要包括电子消息传输第6层表示层—格式化数据,以便为应用程序提供通用接口。
这可以包括加密服务第5层会话层—在两个节点之间建立端连接。
此服务包括建立连接是以全双工还是以半双工的方式进行设置,尽管可以在层4中处理双工方式第4层传输层—常规数据递送-面向连接或无连接。
包括全双工或半双工、流控制和错误恢复服务第3层网络层—本层通过寻址来建立两个节点之间的连接,它包括通过互连网络来路由和中继数据第2层数据链路层—在此层将数据分帧,并处理流控制。
本层指定拓扑结构并提供硬件寻址第1层物理层—原始比特流的传输,电子信号传输和硬件接口OSI七个层次的功能:物理层为数据链路层提供物理连接,在其上串行传送比特流,即所传送数据的单位是比特。
此外,该层中还具有确定连接设备的电气特性和物理特性等功能。
数据链路层负责在网络节点间的线路上通过检测、流量控制和重发等手段,无差错地传送以帧为单位的数据。
为做到这一点,在每一帧中必须同时带有同步、地址、差错控制及流量控制等控制信息。
网络层为了将数据分组从源(源端系统)送到目的地(目标端系统),网络层的任务就是选择合适的路由和交换节点,使源的传输层传下来的分组信息能够正确无误地按照地址找到目的地,并交付给相应的传输层,即完成网络的寻址功能。
传输层传输层是高低层之间衔接的接口层。
数据传输的单位是报文,当报文较长时将它分割成若干分组,然后交给网络层进行传输。
传输层是计算机网络协议分层中的最关键一层,该层以上各层将不再管理信息传输问题。
会话层该层对传输的报文提供同步管理服务。
在两个不同系统的互相通信的应用进程之间建立、组织和协调交互。
例如,确定是双工还是半双工工作。
表示层该层的主要任务是把所传送的数据的抽象语法变换为传送语法,即把不同计算机内部的不同表示形式转换成网络通信中的标准表示形式。
此外,对传送的数据加密(或解密)、正文压缩(或还原)也是表示层的任务。
应用层该层直接面向用户,是OSI中的最高层。
它的主要任务是为用户提供应用的接口,即提供不同计算机间的文件传送、访问与管理,电子邮件的内容处理,不同计算机通过网络交互访问的虚拟终端功能等。