人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

合集下载

七年级数学上册1.2.4 绝对值-化简绝对值 选择题专项练习三(人教版,含解析)

七年级数学上册1.2.4 绝对值-化简绝对值 选择题专项练习三(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-化简绝对值1.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|2.若|a|=3,|b|=5,a 与b 异号,则|a -b|的值为( )A .2B .2-C .8D .2或83.|x|=2,则x 是( )A .2B .2-C .12 D .2或2-4.|-2018|等于( )A .-2018B .2018C .8012D .120185.a ,b ,c 的大小关系如图所示,则 a b b c caa b b c c a ----+---∣∣∣∣∣∣ 的值是 ( )A .3-B .1-C .1D .36.若aab b =- ,则下列结论正确的是( )A .0,0a b <<B . 0,0a b >>C .0ab >D . 0ab ≤7.已知a 、b 、c 都是不等于0的数,求a b c abca b c abc +++的所有可能的值有()个. A .1 B .2 C .3 D .48.把下列各数在数轴上表示出来,表示在数轴最左边的数是( )A .23- B .32- C .0 D .()2.5--9.有理数a 在数轴上的表示如图所示,那么1a +=( )A .1+aB .1-aC .-1-aD .-1+a10.如果|a|=-a ,那么a 一定是 ( )A .正数B .负数C .非正数D .非负数11.如图数轴的A 、B 、C 三点所表示的数分别为a 、b 、c .若|a ﹣b|=3,|b ﹣c|=5,且原点O 与A 、B 的距离分别为4、1,则关于O 的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、B 之间C .介于B 、C 之间D .在C 的右边12.x 、y 、z 在数轴上的位置如图所示,则化简|x ﹣y|+|z ﹣y|的结果是( )A .x ﹣zB .z ﹣xC .x+z ﹣2yD .以上都不对13.已知∣a∣=-a,化简∣a -1∣-∣a -2∣所得的结果是( )A .-1B .1C .2a -3D .3-2a14.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --15.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列各式正确的个数有( ) ①abc >0;②a ﹣b+c <0;③||||1||a bc a b c ++=-;④|a+b|﹣|b ﹣c|+|a ﹣c|=﹣2c .A .4个B .3个C .2个D .1个16.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①0abc <;②0a b c -+<;③3abca b c ++=;④2a b b c a c a --++-=.A .4个B .3个C .2个D .1个17.在﹣710,0,﹣|﹣5|,﹣0.6,2,﹣(﹣13),﹣10中负数的个数有( )A .3B .4C .5D .618.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a -b|的结果为( )A .2aB .-2bC .-2aD .2b19.实数a ,b 在数轴上的位置如图所示,则|a|﹣|b|可化简为( )A .a ﹣bB .b ﹣aC .a+bD .﹣a ﹣b20.若a 是负数,则||a a +的值是( )A .负数B .零C .非负数D .无法确定参考答案1.D解析:根据绝对值的定义进行分析即可得出正确结论.详解:选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.2.C解析:先根据绝对值的性质求出a、b的值,再根据a、b异号讨论a、b的值,代入代数式进行计算.详解:∣|a|=3,|b|=5,∣a=±3,b=±5,∣a、b异号,∣当a=3时,b=-5,此时原式=|3-(-5)|=|8|=8;当a=-3时,b=5,此时原式=|-3-5|=|-8|=8.故选C.点睛:本题考查的是绝对值的性质及代数式求值,熟练掌握绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解题的关键.3.D解析:利用绝对值的代数意义求出x的值即可.详解:|x|=2,则x是2或-2,故选:D.点睛:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.解析:根据绝对值的概念判断即可.详解:|-2018|=2018故选B点睛:本题考查绝对值得概念,熟悉“正数的绝对是是它本事,负数的绝对值是它的相反数”是解题关键.5.A解析:先根据数轴分别判断出a b b c c a ---,,的符号,然后根据绝对值的性质去绝对值,化简即可.详解:解:由数轴可知: 0,00a b b c c a -<->-<, ∣a b b c c a a b b c c a ----+---∣∣∣∣∣∣=()()a b b c c a a b b c c a ----+----- =()111--+-=3-故选A.点睛:此题考查的是数轴的比较大小和去绝对值,掌握利用数轴比较大小和绝对值的性质是解决此题的关键.6.D解析:根据绝对值的性质:正数的绝对值等于这个数本身,负数的绝对值等于这个数的相反数,0的绝对值还是0进行判断.详解:a ab b=- ∴0a b≤ ∴a,b 异号∴ 0ab ≤故选D.本题考查了绝对值的化简,熟练掌握绝对值的性质是解题的关键.7.C解析:根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.详解:由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .点睛:本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.8.B解析:先根据绝对值运算、去括号法则化简选项,再根据数轴的定义即可得.详解:()22, 2.5 2.533-=--= 由数轴的定义,将四个选项在数轴上表示出来如下:由此可知,表示在数轴最左边的数是32-故选:B .点睛:本题考查了绝对值运算、去括号法则、数轴的定义,掌握理解数轴的定义是解题关键.9.B解析:由数轴可得到-1<a<0<1,从而逐步去掉绝对值,进而得出答案.详解:解:∣-1<a<0<1,∣|a|=a,1-a>0,+=1a-=1-a.则1a故答案选择B.点睛:从数轴得出a的取值范围,依据绝对值的性质逐步去掉绝对值是解题的关键.10.C解析:根据负数的绝对值等于他的相反数,可得答案.详解:∣负数的绝对值等于他的相反数,|a|=-a,∣a一定是非正数,故选C.点睛:考查了绝对值,注意负数的绝对值等于他的相反数.11.C解析:分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∣|a﹣b|=3,|b﹣c|=5,∣b=a+3,c=b+5,∣原点O与A、B的距离分别为4、1,∣a=±4,b=±1,∣b=a+3,∣a=﹣4,b=﹣1,∣c=b+5,∣c=4.∣点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.12.B解析:根据x、y、z在数轴上的位置,先判断出x-y和z-y的符号,在此基础上,根据绝对值的性质来化简给出的式子.详解:由数轴上x、y、z的位置,知:x<y<z;所以x-y<0,z-y>0;故|x-y|+|z-y|=-(x-y)+z-y=z-x.故选B.点睛:此题借助数轴考查了用几何方法化简含有绝对值的式子,能够正确的判断出各数的符号是解答此类题的关键.13.A解析:根据|a|=-a,可知a≤0,继而判断出a-1,a-2的符号,后去绝对值求解.详解:∣|a|=-a,∣a≤0.则|a-1|-|a-2|=-(a-1)+(a-2)=-1.故选:A.点睛:本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.D解析:负数小于0,可将各项化简,然后再进行判断.详解:解:A、−(−3+a)=3−a,当a≤3时,原式不是负数,故A错误;B、−a,当a≤0时,原式不是负数,故B错误;C、−|a+1|≤0,当a=−1时,原式不是负数,故C错误;D、∣−|a|≤0,∣−|a|−1≤−1<0,原式一定是负数,故选D.点评:点睛:本题考查了负数的定义和绝对值化简,掌握负数的定义以及绝对值的性质是解答此题的关键.15.B解析:先由数轴观察得出b<c<0<a,|b|>|c|>|a|,据此逐项计算验证即可.详解:解:∣由数轴可得:b <c <0<a ,|b|>|c|>|a|∣abc >0,①正确;a ﹣b+c >0,②错误;||||||a b c a b c++=1﹣1﹣1=﹣1,③正确; |a+b|﹣|b ﹣c|+|a ﹣c|=﹣a ﹣b ﹣(c ﹣b )+a ﹣c=﹣a ﹣b ﹣c+b+a ﹣c=﹣2c④正确.综上,正确的个数为3个.故选B .点睛:本题主要考查数轴上的有理数的正负性,绝对值以及大小比较,掌握有理数的四则运算法则和求绝对值法则,是解题的关键.16.D解析:先由数轴观察得出b <c <0<a ,|b|>|c|>|a|,据此逐项计算验证即可.详解:解:∣由数轴可得:b <c <0<a ,|b|>|c|>|a|∣abc >0,①错误;a -b+c >0,②错误;abca b c ++=1-1-1=-1,③错误;a b b c a c --++-=a -b -(-b -c)+a -c=a -b+b+c+a -c=2a ,④正确.综上,正确的个数为1个.故选:D .点睛:本题考查了利用数轴进行的相关计算,数形结合并明确绝对值等的化简法则,是解题的关键.17.B解析:负数就是小于0的数,依据定义即可求解.详解:解:﹣|﹣5|=﹣5,﹣(﹣13)=13,故负数有﹣710,﹣|﹣5|,﹣0.6,﹣10,共4个. 故选:B .点睛: 此题考查了正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.18.A解析:试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a -b<0则=(a+b )+a -b=a+b+a -b=2a,故选A 考点:1.数轴;2.绝对值19.C解析:试题分析:观察数轴可得a >0,b <0,所以则|a|﹣|b|=a ﹣(﹣b )=a+b .故答案选C . 考点:数轴;绝对值.20.B解析:根据绝对值的性质化简即可.详解:解:∣a 是负数,∣||0a a a a +=-+=,故选:B .点睛:本题主要考查了化简绝对值,解题的关键是熟知正数和零的绝对值是它本身,负数的绝对值是它的相反数.。

人教版七年级数学上册《有理数的加减法》强化训练卷【含答案】

人教版七年级数学上册《有理数的加减法》强化训练卷【含答案】

人教版七年级数学上册《有理数的加减法》强化训练卷1.计算(1)(﹣6)+(﹣13).(2)(﹣)+.2.计算(1)(﹣4)+9 (2)13+(﹣12)+17+(﹣18)3.在横线上填写每步运算的依据.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)( )=[(﹣6)+(+6)]+(﹣15)( )=0+(﹣15)( )=﹣15( )4.计算:(1);(2).5.先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(﹣28)﹣(﹣6)﹣(﹣13)﹣(+7)= (写成省略加号的和)= (使符号相同的加数在一起)= (运算结果);(2)(﹣3.1)﹣(﹣4.5)+(4.4)﹣(+1.3)+(﹣2.5)= (写成省略加号的和)= (使和为整数的加数在一起)= (运算结果).6.计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.7.阅读下面文字对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)(2)(﹣2019)+2018+(﹣2017)+20168.计算:(1)(2)9.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣6﹣7+19﹣11+3;(2)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣);(3)﹣(﹣1)+(﹣1)﹣.10.已知|a|=8,b2=36,且b>a,求a+b的值.11.若x2=9,|y|=2,且x<y,求x+y的值.12.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.13.若x是最大的负整数,|y|=5,z是相反数等于本身的数,求:x+y+z的值.14.已知|m|=4,|n|=3.(1)当m、n同号时,求m﹣n的值;(2)当m、n异号时,求m+n的值.15.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7﹣21|= ;②|﹣﹣0.8|= ;③|﹣|= :(2)数a在数轴上的位置如图所示,则|a﹣2.5|= .A.a﹣2.5B.2.5﹣aC.a+2.5D.﹣a﹣2.5(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.16.若,…,照此规律试求:(1)= ;(2)计算;(3)计算.答案1.解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.2.解:(1)(﹣4)+9=5;(2)13+(﹣12)+17+(﹣18)=13+17+(﹣12)+(﹣18)=30+(﹣30)=0.3.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)(加法交换律)=[(﹣6)+(+6)]+(﹣15)(加法交结合律)=0+(﹣15)(互为相反数的两个数相加得零)=﹣15(一个数与零相加仍得这个数)故加法交换律;加法结合律;互为相反数的两个数相加得零;一个数与零相加仍得这个数4.解:(1)=﹣4(2)=4.5+(﹣54)=﹣49.55.解:(1)原式=16﹣28+6+13﹣7=16+6+13+(﹣28﹣7)=0;(2)原式=﹣3.1+4.5+4.4﹣1.3﹣2.5=(4.4﹣3.1﹣1.3)+(4.5﹣2.5)=2.故(1)16﹣28+6+13﹣7;16+6+13+(﹣28﹣7);0.(2)﹣3.1+4.5+4.4﹣1.3﹣2.5;(4.4﹣3.1﹣1.3)+(4.5﹣2.5);2.6.解:(1)原式=﹣10.7+5.7=﹣5;(2)原式=﹣1+30=29.7.解:(1)﹣1+(﹣2)+7+(﹣4)=(﹣1﹣)+(﹣2﹣)+(7+)+(﹣4﹣)=(﹣1﹣2+7﹣4)+(﹣﹣+﹣)=0﹣=﹣;(2)(﹣2019)+2018+(﹣2017)+2016=(﹣2019﹣)+(2018+)+(﹣2017﹣)+(2016+)=(﹣2019+2018﹣2017+2016)+(﹣+﹣+)=﹣2﹣=﹣2.8.解:(1)原式==10﹣6=4;(2)原式==﹣100.9.解:(1)﹣6﹣7+19﹣11+3=﹣6﹣7﹣11+19+3=﹣24+22=﹣2;(2)===;(3)===.10.解:∵|a|=8,b2=36∴a=±8,b=±6,由b>a,得a=﹣8,b=±6,所以a+b=6+(﹣8)=﹣2 或a+b=﹣6+(﹣8)=﹣14.11.解:∵x2=9,|y|=2,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=2或x=﹣3,y=﹣2,∴x+y=﹣1或﹣5.12.解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.13.解:根据题意得:x=﹣1,y=±5,z=0,则x+y+z=﹣1﹣5+0=﹣6或x+y+z=﹣1+5+0=4.14.解:(1)∵|m|=4,|n|=3,∴当m、n同号时,m=4,则n=3,故m﹣n=1;m=﹣4时,n=﹣3,故m﹣n=﹣1;(2))∵|m|=4,|n|=3,∴当m、n异号时,m=4,则n=﹣3,故m+n=1;m=﹣4时,n=3,故m+n=﹣1.15.解:(1)①|7﹣21|=21﹣7;②|﹣﹣0.8|=;③|﹣|=﹣;故①21﹣7;②+0.8;③﹣;(2)由数轴得:a<2.5,则|a﹣2.5|=2.5﹣a,故选:B;(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;=+﹣+,=﹣+,=,②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.当2<a<5时,原式=﹣+﹣﹣+,=﹣+,=,当a≥5时,原式=+﹣﹣+,=.16.解:(1)=.故;(2)原式===;(3)原式===.。

新人教版数学七年级上册第1章有理数基础巩固与训练(含解析答案)

新人教版数学七年级上册第1章有理数基础巩固与训练(含解析答案)

新人教版数学七年级上册第一章有理数基础巩固与训练总分数分时长:题型单选题填空题简答题综合题题量8 6 1 5总分一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是13.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -64.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案5.下面各数是负数的是()A. 0B. -2017C.D.6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >07.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140 000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.11.若x2=16,则x=____1____;若x3=-8,则x=____2____.12.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 13.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.16.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?19.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期+5 -2 -4 +13 -10 +16 -9 生产辆数(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.第1章基础巩固与训练参考答案与试题解析一、选择题(共8题 ,总计0分)1.- 的倒数是()A. -4B. 4C.D. -【解析】略【答案】A2.下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【解析】一个数的绝对值不一定比0大,有可能等于0,故选项A错误;负数的相反数比它本身大,0的相反数是0,故选项B错误;0的绝对值等于其本身,故选项C错误.【答案】D3.计算(-3)3+52-(-2)2=()A. 2B. 5C. -3D. -6【解析】原式=-27+25-4=-6.【答案】D4.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到B时,点B所表示的数是()A. 1B. -6C. 2或-6D. 不同于以上答案【解析】向右移动时,点B表示的数是2;向左移动时,点B表示的数是-6.【答案】C5.下面各数是负数的是()A. 0B. -2017C.D.【解析】|-2017|=2017,只有-2017为负数.【答案】B6.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A. a+b<0B. ab<0C. b-a<0D. >0【解析】由题图知a<0,b>0,|a|<|b|,所以a+b>0,ab<0,b-a>0,<0.只有选项B正确.【答案】B7.某日,北京、上海、重庆、银川的最低气温分别是-4 ℃,5 ℃,6 ℃,-8 ℃.这四个城市中,气温最低的是()A. 北京B. 上海C. 重庆D. 银川【解析】本题考查实数的大小比较.-4,5,6,-8这四个数中,按大小顺序排列为6>5>-4>-8,因此最小的数是-8,所以银川的气温最低.【答案】D8.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000 m3.140000用科学记数法表示为()A. 14×104B. 1.4×105C. 1.4×106D. 0.14×106【解析】略【答案】B二、填空题(共6题 ,总计0分)9.如果把增产10%记作+10%,那么减产50%记作____1____,-12%表示____2____.【解析】略【答案】-50%减产12%10.若(a+3)2+|b-2|=0,则(a+b)2015=____1____.【解析】由题意得a+3=0,b-2=0,得a=-3,b=2,所以(a+b)2015=(-3+2)2015=(-1)2015=-1.【答案】-111.若x2=16,则x=____1____;若x3=-8,则x=____2____.【解析】略【答案】±4-212.一个数的相反数是它本身,这个数是____1____;一个数的倒数是它本身,这个数是____2____;一个数的绝对值是它本身,这个数是____3____;最大的负整数是____4____. 【解析】略【答案】0±1非负数-113.观察下列一组数:,….根据该组数的排列规律,可推出第10个数是____1____.【解析】分母为奇数,分子为自然数,所以它的规律用含n的代数式表示为,则n=10时可得结果为.【答案】14.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=____1____.【解析】由定义可得将集合A与集合B的所有元素放一起但必须删除重复的那部分元素0,1,5.【答案】{-3,-2,0,1,3,5,7}三、解答题(共6题 ,总计0分)15.把下列各数按要求分类.-4,10%,-1,-2,101,2,-1.5,0,,0.,7.(1).负整数集合:{____1____},(2).正分数集合:{____1____},(3).负分数集合:{____1____},(4).整数集合:{____1____}.【解析】(1)略(2)略(3)略(4)略【答案】(1)-4,-2(2)10%,,(3) -1,-1.5(4)-4,-2,101,2,0,716.计算:(1). ×××;(2).(-3.2)×(-4.8)-6.8×(-4.8);(3).×(-36);(4).9×15-12×(-8).【解析】(1)略(2)略(3)略(4)略【答案】(1)×××=-×××=-.(2)(-3.2)×(-4.8)-6.8×(-4.8)=-4.8×(-3.2-6.8)=-4.8×(-10)=48.(3)×(-36)=-×36+×36-×36+×36=-28+30-21+120=101.(4)9×15-12×(-8)=×15-×(-8)=150-+104-2=251.17.小明和小红都想参加学校组织的数学兴趣小组,根据学校分配的名额,他们两人只能有一人参加,数学老师想出了一个主意,如图,给他们六张卡片,每张卡片上都有一些数,将化简后的数在数轴上表示出来,再用“<”连接起来,谁先按照要求做对,谁就参加兴趣小组.你也一起来试一试吧!【解析】略【答案】解:①-(-2)=2;②(-1)3=-1;③-|-3|=-3;④0的相反数是0;⑤-0.4的倒数是- ;⑥比-1大的数是.在数轴上表示如下:用“<”连接起来为:③<⑤<②<④<⑥<①.18.综合(1).填空:①(2×3)2=____1____,22×32=____2____;=____3____,=____4____;=____5____,____6____.(2).想一想:(1)中每组中的两个算式的结果是否相等?(3).猜一猜:当n为正整数时,(ab)n等于什么?(4).试一试:结果是多少?【解析】(1)略(2)略(3)略(4)略【答案】(1)36361616-1-1(2)由上面的计算结果可知,(1)中每组中的两个算式的结果相等.(3)(ab)n=a n b n.(4)==119.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1).请你在④和⑤后面的横线上分别写出相对应的等式:(2).通过猜想,写出与第n个图形相对应的等式.【解析】(1)略(2)略【答案】(1)④4×3+1=4×4-3⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3.20.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负).一二三四五六日星期生产+5 -2 -4 +13 -10 +16 -9(1).根据记录的数据可知该厂星期五生产自行车辆.(2).根据记录的数据可知该厂本周实际生产自行车辆.(3).该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;若没有完成计划产量,少生产一辆扣20元.那么该厂工人这一周的工资总额是多少元?(4).若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.【解析】(1)略(2)略(3)略(4)略【答案】(1)周五生产自行车减产10辆,实际生产200+(-10)=190(辆).(2)本周生产自行车为1400+(+5-2-4+13-10+16-9)=1400+9=1409(辆).(3)1409×60+15(5+13+16)+20(-2-4-10-9)=84540+510-500=84550(元).(4)周计工资更多,因为实行每周计件工资制,总工资为1409×60+15(5+13+16-2-4-10-9)=84540+15×9=84675(元).84675>84550,所以按周计件工资更多.。

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)一、选择题1.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112C .12D .-112A 解析:A 【分析】逐一求出三个数的绝对值,代入原式即可求解. 【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A . 【点睛】本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.2.(0分)某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h >【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.(0分)有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.(0分)已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .2C解析:C 【解析】 【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案. 【详解】 ∵n 为正整数, ∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0 故选C. 【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.(0分)若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .1C解析:C 【解析】 【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是()A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5± A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.9.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.10.(0分)当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.二、填空题11.(0分)大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.12.(0分)小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.13.(0分)把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.14.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.++-+++-++++-=_____.【分析】15.(0分)计算:(1)(2)(3)(4)(2019)(2020)第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.16.(0分)分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0 【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 17.(0分)阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36 【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题. 【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n=mna a a a ⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36. 【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,20.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.三、解答题21.(0分)在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.22.(0分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米. 【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 24.(0分)计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.25.(0分)计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=----34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.26.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.27.(0分)计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.28.(0分)出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.。

七年级数学上册-绝对值化简强化训练(含答案)

七年级数学上册-绝对值化简强化训练(含答案)

七年级数学上册——绝对值化简强化训练1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b-a|+|c-a|-|c-b|。

解:由图可知c<0<a<b,故而b-a>0,c-a<0,c-b<0∴ |b-a|+|c-a|-|c-b|=(b-a)+(a-c)-(b-c)=b-a+a-c-b+c=02.已知有理数a、b、c在数轴上的位置如图所示,化简|b-c|-|c-a|+|b-a|。

解:由图可知c<b<0<a,故而b-c>0,c-a<0,b-a<0∴ |b-c|-|c-a|+|b-a|=(b-c)-(a-c)+(a-b)=b-c-a+c+a-b=03.有理数a、b、c在数轴上的位置如图所示,化简|a-b|+2|a+c|-|b-2c|。

解:由图可知c<a<0<b,故而a-b<0,a+c<0,b-2c>0∴ |a-b|+2|a+c|-|b-2c|=(b-a)+2[-(a+c)]-(b-2c)=b-a-2a-2c-b+2c =-3a4.有理数a、b、c在数轴上的位置如图所示,化简|b+a|-|b-c|+|a-c|。

解:由图可知c<a<0<b且|b|<|a|<|c|,故而b+a<0,b-c>0,a-c>0 ∴ |b+a|-|b-c|+|a-c|=-(b+a)-(b-c)+(a-c)=-b-a-b+c+a-c=2b5.有理数a、b、c在数轴上的位置如图所示,化简|a-c|-|c-2b|+|a+c|-|a+b|。

解:由图可知c<a<0<b,故而a-c>0,c-2b<0,a+c<0,a+b>0∴ |a-c|-|c-2b|+|a+c|-|a+b|=(a-c)-(2b-c)+[-(a+c)]-(a+b)=-a-3b-c 6.若有理数a、b、c在数轴上的位置如图所示,化简|a+c|+|2a+b|-|c-b|。

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)

牢记方法规则:1.判断绝对值里面量的正负2.去掉绝对值产生括号3.去掉括号合并同类项第1天1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.:2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.:4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.,5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.第2天6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.*7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.(9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.—10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.!第3天11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.【13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.^14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.】15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.第4天16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.*17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|》18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.!20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.!参考答案1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.【解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c):=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.,解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.$解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)$=b.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.&解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)`=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.)12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.?解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.~解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.解:∵由数轴上a、b、c的位置可知,a<b<0<c,(∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。

人教版初中七年级数学上册第一章《有理数》阶段练习(含答案解析)

人教版初中七年级数学上册第一章《有理数》阶段练习(含答案解析)

1.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.2--的相反数是( )A .12-B .2-C .12D .2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D .【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 4.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.5.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.6.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键. 9.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 10.计算-3-1的结果是( )A .2B .-2C .4D .-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.11.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B 解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.计算-2的结果是( ) A .0B .-2C .-4D .4A 解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法14.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.15.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.1.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.5或﹣5【分析】先根据绝对值的定义求出ab 的值然后根据ab <0确定ab 的值最后代入a ﹣b 中求值即可【详解】解:∵|a|=3|b|=2∴a =±3b =±2;∵ab <0∴当a =3时b =﹣2;当a =﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a 、b 的值,然后根据ab <0确定a 、b 的值,最后代入a ﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a =±3,b =±2;∵ab <0,∴当a =3时b =﹣2;当a =﹣3时b =2,∴a ﹣b =3﹣(﹣2)=5或a ﹣b =﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.2.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.3.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.4.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.5.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.6.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.7.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.8.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.9.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.11.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.计算(1)21145()5 -÷⨯-(2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5 -÷⨯-11116()55=-⨯⨯- 16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯- 1148()()22=-⨯-⨯- 42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.2.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.3.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.4.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯-=488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.。

2023-2024学年人教版七年级数学上册第一章【有理数】训练卷附答案解析

2023-2024学年人教版七年级数学上册第一章【有理数】训练卷附答案解析

2023-2024学年七年级数学上册第一章【有理数】训练卷(满分120分)一、选择题(本大题共10小题,共30分)1.−2023的绝对值是()A.12023B.2023C.−12023D.−20232.中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是()A.0.5B.±0.5C.−0.5D.53.负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作+5元,那么支出5元记作()A.−5元B.0元C.+5元D.+10元4.以下说法正确的是()A.正整数和负整数统称整数B.整数和分数统称有理数C.正有理数和负有理数统称有理数D.有理数包括整数、零、分数5.用四舍五入法对0.06045取近似值,错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.061(精确到千分位)D.0.0605(精确到0.0001)6.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×1037.有4,−92,−3,0四个数,其中最小的是()A.4B.−92C.−3D.08.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.−3B.0C.3D.−69.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(−2),根据这种表示法,可推算出图2所表示的算式是()A.(+3)+(+6)B.(+3)+(−6)C.(−3)+(+6)D.(−3)+(−6)10.观察下列等式:31=3,32=9,33=27,34=81,35=243,…,根据其中的规律可得31+32+33+…+32023的结果的个位数字是()A.0B.2C.7D.9二、填空题(本大题共5小题,共15分)11.在−1、0、1、2这四个数中,既不是正数也不是负数的是.12.比较大小:−12−1;−2−|−3|;−(−12)−(−13).13.计算:1+(−2)+3+(−4)+…+2023+(−2024)=________.14.若|x+2|+(y−3)2=0,则x y=.15.已知有理数a、b、c在数轴上对应点的位置如图所示,则|b−c|−|a−b|−|c|的化简结果为.三、计算题(本大题共8小题,共75分)16.(12分)计算:(1)(−16+34−512)×12(2) (−20)−(+5)−(−5)−(−12).(3)(+325)+(−278)−(−535)−(+18)(4)−12−(12−23)÷13×[−2+(−3)2].17.(6分)将下列各数在数轴上表示出来,并用“<”把它们连接起来.−4,−|−3|,0,−13,+(+2),π18.(7分)现有10袋小麦,称量后记录如下(单位:千克) :91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.(1)若以90千克为标准,把超出的千克数记为正数,不足的千克数记为负数,请依次写出10袋小麦的千克数与90的差值.(2)请利用(1)中的差值,求这10袋小麦的质量和.19.(9分)出租车司机老姚某天上午的营运全是在一条笔直的东西走向的路上进行.如果规定向东为正,向西为负,那么他这天上午行车里程(单位:千米)记录如下:+5,−3,+6,−7,+6,−2,−5,+4,+6,−8.(1)将第几名乘客送到目的地时,老姚刚好回到上午的出发点?(2)将最后一名乘客送到目的地时,老姚距上午的出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元,则姚师傅在这天上午一共收入多少元?20.(10分)某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超额记为正、不足记为负):(单位:只)星期一二三四五六日与计划量的差值+5−2−4+13−6+6−3(1)根据记录的数据可知该厂生产风筝最多的一天是星期;(2)产量最多的一天比产量最少的一天多生产多少只风筝⋅(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元,少生产一只扣4元,那么该厂工人这一周的工资总额是多少元⋅21(10分)简便运算能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力起到非常大的作用.阅读下列相关材料.材料一:计算:124÷(23−34+16−512).分析:利用通分计算23−34+16−512会很麻烦,可以采用以下方法进行计算.解:∵(23−34+16−512)÷124=(23−34+16−512)×24=23×24−34×24+16×24−512×24=−8,∴124÷(23−34+16−512)=−18.材料二:下列算式是一类两个两位数相乘的特殊计算方法.38×32=100×(32+3)+8×2=1216;67×63=100×(62+6)+7×3=4221.根据以上材料,完成下列计算:(1)请你根据材料一,计算:(−148)÷(−12+516+34−724).(2)请你根据材料二,计算:(−54)×56.22.(10分)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示−1的点重合,则表示−3的点与表示______的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示−3的点与表示______的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为______,点B表示的数为______.23(11分)(1)比较下列各式的大小:|5|+|3||5+3|,|−5|+|−3||(−5)+(−3)|,|−5|+|3||(−5)+3|,|0|+|−5||0+(−5)|.(2)通过(1)的比较、观察,请你归纳猜想:当a,b为有理数时,|a|+|b|a+b|.(填“≥”“≤”“>”或“<”)(3)根据以上信息,小华提出:“当|x|+|−2|=|x−2|成立时,x是负数”,你同意他的观点吗⋅请说明理由.答案和解析1.【答案】B解:因为负数的绝对值等于它的相反数,所以−2023的绝对值是:2023.故选:B.2.【答案】A解:−0.5的相反数是0.5,故选:A.3.【答案】A【解答】解:由把收入5元记作+5元,可知支出5元记作−5元;故选A.4.【答案】B解:A.正整数,负整数和0统称整数,所以本选项错误;B.整数和分数统称为有理数,本选项正确;C.正有理数,负有理数和0统称有理数,故C选项错误;D.有理数包括整数、分数,故D选项错误,故选B.5.【答案】C解:A、0.06045精确到0.1得0.1,故本选项不符合题意;B、0.06045精确到百分位得0.06,故本选项不符合题意;C、0.06045精确到千分位得0.060,故本选项符合题意;D、0.06045精确到0.0001得0.0605,故本选项不符合题意.故选:C.【点睛】6.【答案】B解:将数据186000用科学记数法表示为 1.86×105;故选B7.【答案】B解:−92<−3<0<4,故最小的数为−92,故选:B.8.【答案】A解:因为a+b=0,所以a=−b,即a与b互为相反数.又因为AB=6,所以b−a=6.所以2b=6.所以b=3.所以a=−3,即点A表示的数为−3.故选:A.9.【答案】B解:由题意可知:(+3)+(−6),故选:B.10.【答案】D解:由已知可知31=3,32=9,33=27,34=81,…个位数字每四个一组循环,∵31=3,32=9,33=27,34=81四个数的个位数字之和是0,又2023÷4=505…3,∴3+9+7=19,∴31+32+33+…+32023的结果的个位数字是9.故选:D.11.【答案】0解:一个数既不是正数,也不是负数,则这个数是0.故答案为:0.12.【答案】>>13.【答案】−1013解:1+(−2)+3+(−4)+…+2025+(−2026)=[1+(−2)]+[3+(−4)]+…+[2023+(−2024)] =(−1)+(−1)+…+(−1)=−1×1012=−1012.故答案为−1012.14.【答案】−8解:因为|x+2|+(y−3)2=0,所以x+2=0,y−3=0,所以x=−2,y=3,所以(−2)3=−8.故答案为:−8.15.【答案】a解:由数轴可知,a<0,b>0,c<0,∴b−c>0,a−b<0,∴|b−c|−|a−b|−|c|=(b−c)−(b−a)−(−c)=b−c−b+a+c=a,故答案为:a.16.【答案】解:(1) (−16+34−512)×12=−16×12+34×12−512×12=−2+9−5=2(2)原式=−20+(−5)+5+12=−8.(3)原式=325+535−278−18=9−3=6.(4)原式=2.5.17.【答案】在数轴上表示如下.−4<−|−3|<−13<0<+(+2)<π.18.【答案】【小题1】+1,+1,+1.5,−1,+1.2,+1.3,−1.3,−1.2,+1.8,+1.1.【小题2】905.4千克.19.【答案】解:(1)因为5−3+6−7+6−2−5=0,所以将第7名乘客送到目的地时,老姚刚好回到上午的出发点.(2)因为5−3+6−7+6−2−5+4+6−8=2,所以将最后一名乘客送到目的地时,老姚距上午的出发点2 km,在出发点的东面.(3)8+2×2+8+8+2×3+8+2×4+8+2×3+8+8+2×2+8+2×1+8+2×3+8+ 2×5=126(元).所以姚师傅在这天上午一共收入126元.20..【答案】【小题1】四【小题2】+13−(−6)=13+6=19(只).答:产量最多的一天比产量最少的一天多生产19只风筝.【小题3】(+5)+(−2)+(−4)+(+13)+(−6)+(+6)+(−3)=9(只),(700+9)×20+9×5=709×20+45=14180+45=14225(元).答:该厂工人这一周的工资总额是14225元.21.【答案】【小题1】−113.【小题2】−3024.22.【答案】37−15解:操作一:∵折叠数轴,使表示1的点与表示−1的点重合,∴原点为折叠点,即1与−1的中点为原点,∵表示−3的点距原点的距离为3,表示3的点距原点的距离为3,∴表示−3的点与表示3的点重合.故答案为:3.操作二:①∵折叠数轴,使表示1的点与表示3的点重合,∴表示2的点为折叠点,即表示2的点为重合点的中点,∵表示−3的点距表示2的距离为5,表示7的点距表示2的距离为5,∴表示−3的点与表示7的点重合;故答案为:7.②∵AB=6,折叠后A,B两点重合,∴点A到表示2的点的距离与点B到表示2的点的距离都为3,∵到表示2的点的距离等于3的点对应的数分别为:−1,5,又∵A在B的左侧,∴A点表示的数为−1,B点表示的数为5.故答案为:−1;5.本题主要考查了数轴,两点之间的距离,本题是操作型题目,根据折叠的对称性是解题的关键.23.【答案】【小题1】==>=【小题2】≥【小题3】不同意,x还可以是0,那么x应该是非正数.。

七年级数学上册强化训练 新人教版含答案 (11)

七年级数学上册强化训练 新人教版含答案 (11)

强化训练121、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则20082008b a +等于 ( )(A )1 (B ) -1 (C ) ±1 (D ) 22、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面积是 ( )(A) 252cm (B) 452cm (C) 3752cm (D) 15752cm3、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正方形的 ( )(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上图1 图34、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是 ( )(A )2α-β (B )α-β (C )α+β (D )以上都不正确5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=21PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为 ( )(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x元,根据题意,可列方程为7、2.42º= º ′ ″8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表:(1)用数量x 表示售价C 的公式,C=___ __ __(2)当销售数量为12千克时,售价C 为_____ _9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=2110、解方程(1) 5(x -1)-2(x+1)=3(x -1)+x+1(2)235.112.018.018.0103.002.0x x x --+-=+11、用棋子摆出下列一组图形:(1)(2)(3)(1)填写下表:(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?12、如图所示, 设l=AB+AD+CD, m=BE+CE, n=BC. 试比较m、n、l的大小, 并说明理由.数学强化训练(十二)(答案)1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则a2007+b 2007等于( A )(A )1 (B ) -1 (C ) 1 (D ) 22、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方形的面积是 ( C )(A) 252cm (B) 452cm (C) 3752cm (D) 15752cm图1 图33、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲从A点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正方形的( B )(A )AB 边上 (B )DA 边上 (C )BC 边上 (D )CD 边上4、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是( A )(A )2α-β (B )α-β (C )α+β (D )以上都不正确5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=21PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为( D )(A )30 cm (B )60 cm (C )120 cm (D )60 cm 或120 cm6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x7、2.42º1分)8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表: (1价(2)当销售数量为12千克时,售价C 为_____32.4__9、先化简,后计算:2(a 2b+ab2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=21 解:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2 =2 a 2b+2 ab 2-[2 ab 2 -1 + a 2b]-2=2 a 2b+ 2 ab 2-2 ab 2 + 1 - a 2b-2= a 2b-110、解方程. (每小题3分, 共6分)(1) 5(x -1)-2(x+1)=3(x -1)+x+1 (2)35.118.018.0102.0x x x --+-=+ 11、用棋子摆出下列一组图形:(1)(2)(3)(1)填写下表:(2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数;(用含n 的代数式表示)解:依题意可得当摆到第n 个图形时棋子的枚数应为:6 + 3(n -1)= 6 + 3n - 3 = 3n+3(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?(1分)解:由上题可知此时9933=+n ∴32=n答:第32个图形共有99枚棋子。

人教版2021年七年级上册:《有理数的混合运算》强化训练卷 含答案

人教版2021年七年级上册:《有理数的混合运算》强化训练卷  含答案

人教版2021年七年级上册:《有理数的混合运算》强化训练卷一.选择题1.下列计算错误的是()A.﹣3÷(﹣)=9B.()+(﹣)=C.﹣(﹣2)3=8D.|﹣2﹣(﹣3)|=52.丁丁做了4道计算题:①(﹣1)2018=2018;②0﹣(﹣1)=﹣1;③;④.请你帮他检查一下,他一共做对了()A.1道B.2道C.3道D.4道3.在下列计算中,正确的是()A.﹣22÷(﹣2)2=4÷4=1B.35÷(5﹣7)=35÷5﹣35÷7=7﹣5=2 C.(﹣1)÷(﹣2)÷(﹣3)=﹣D.0÷(﹣4)×3÷(﹣2)2=34.计算:(﹣2)2021+(﹣2)2022的是()A.22021B.﹣1C.﹣2D.﹣220215.算式−2□0.5的值最小时,“□”中填入的运算符号是()A.+B.﹣C.×D.÷二.填空题6.计算:﹣4+2×(﹣1)=.7.计算:(﹣3)2+(﹣2)3=.8.若规定=ad﹣bc,计算=.9.规定一种运算:a*b=(2a﹣b)(2a+b),那么3*(2*1)=.10.已知m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2020pq+x2的值是.三.解答题11.计算:(1)(﹣48)÷8﹣(﹣5)×(﹣6);(2)﹣32÷×(﹣)2.12.计算:(1)﹣14﹣×[2﹣(﹣3)]2;(2)(﹣3+﹣)÷(﹣).13.计算(1)﹣32+(﹣)2×(﹣3)3÷(﹣1)25;(2)1×﹣(﹣)×2+(﹣)×.14.计算:(1)﹣66×4﹣(﹣2.5)÷(﹣0.1);(2)(﹣1)10×2+(﹣2)3÷4.15.计算:8+(﹣3)2×(﹣)÷|﹣2|.16.计算:.17.计算:﹣32÷(﹣2)2﹣|﹣1|×6+(﹣2)3.18.计算:|﹣2|﹣(﹣)2+(﹣1)2021﹣1÷2×.19.计算:.20.下面是圆圆同学计算一道题的过程:2÷(﹣+)×(﹣3)=[2÷(﹣)+2÷]×(﹣3)=2×(﹣3)×(﹣3)+2×4×(﹣3)=18﹣24=6.圆圆同学这样算正确吗?如果正确请解释理由;如果不正确,请你写出正确的计算过程.21.已知:a与b互为相反数,c与d互为倒数,|x|=2,求代数式(﹣cd)2019+x2﹣的值.参考答案一.选择题1.解:﹣3÷(﹣)=3×3=9,故选项A正确;()+(﹣)==,故选项B正确;﹣(﹣2)3=﹣(﹣8)=8,故选项C正确;|﹣2﹣(﹣3)|=|﹣2+3|=1,故选项D错误;故选:D.2.解:∵(﹣1)2018=1,故①错误;∵0﹣(﹣1)=0+1=1,故②错误;∵﹣1+﹣=﹣1,故③错误;∵,故④正确.故丁丁一共做对了1道,故选:A.3.解:A.﹣22÷(﹣2)2=﹣4÷4=﹣1,故A计算错误,不符合题意;B.35÷(5﹣7)=35÷(﹣2)=﹣,故B计算错误,不符合题意;C.(﹣1)÷(﹣2)÷(﹣3)=(﹣3)=﹣,故C计算正确,符合题意;D.0÷(﹣4)×3÷(﹣2)2=0,故D计算错误,不符合题意;故选:C.4.解:(﹣2)2021+(﹣2)2022=(﹣2)2021+(﹣2)×(﹣2)2021=(1﹣2)×(﹣2)2021=﹣1×(﹣2)2021=22021故选:A.5.解:﹣2+0.5=﹣1.5,﹣2﹣0.5=﹣2.5,﹣2×0.5=﹣1,﹣2÷0.5=﹣4,∵﹣4<﹣2.5<﹣1.5<﹣1,∴算式−2□0.5的值最小时,“□”中填入的运算符号是÷.二.填空题6.解:原式=﹣4+(﹣2)=﹣6.故答案为:﹣6.7.解:原式=9+(﹣8)=1.故答案为:1.8.解:根据题中的新定义得:=3×2﹣(﹣2)×0=6+0=6,故答案为:6.9.解:由题意:2*1=(2×2﹣1)×(2×2+1)=(4﹣1)×(4+1)=3×5=15;∴3*(2*1)=3*15=(2×3﹣15)×(2×3+15)=(6﹣15)×(6+15)=﹣9×21=﹣189.故答案为:﹣189.10.解:∵m、n互为相反数,p、q互为倒数,x的绝对值为2,∴m+n=0,pq=1,x=2或﹣2,则原式=+2020×1+4=2024.故答案为:2024.三.解答题11.解:(1)(﹣48)÷8﹣(﹣5)×(﹣6)=﹣6﹣30(2)﹣32÷×(﹣)2=﹣9××=﹣.12.解:(1)﹣14﹣×[2﹣(﹣3)]2=﹣1﹣×(2+3)2=﹣1﹣×52=﹣1﹣×25=﹣1﹣5=﹣6;(2)(﹣3+﹣)÷(﹣)=(﹣3+﹣)×(﹣12)=×(﹣12)﹣3×(﹣12)+×(﹣12)﹣×(﹣12)=﹣4+36+(﹣2)+7=37.13.解:(1)﹣32+(﹣)2×(﹣3)3÷(﹣1)25=﹣9+×(﹣27)÷(﹣1)=﹣9+×27×1=﹣9+3=﹣6;(2)1×﹣(﹣)×2+(﹣)×=1×+×2﹣×=(1+2﹣)×=3×=.14.解:(1)﹣66×4﹣(﹣2.5)÷(﹣0.1)=﹣264﹣25=﹣289;(2)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2+(﹣2)=0.15.解:8+(﹣3)2×(﹣)÷|﹣2|=8+9×(﹣)÷2=8+(﹣12)÷2=8+(﹣6)=2.16.解:原式===.17.解:﹣32÷(﹣2)2﹣|﹣1|×6+(﹣2)3=﹣9÷4﹣×6+(﹣8)=﹣﹣8+(﹣8)=﹣.18.解:|﹣2|﹣(﹣)2+(﹣1)2021﹣1÷2×=2﹣+(﹣1)﹣1××=2﹣+(﹣1)﹣19.解:=﹣|﹣4﹣3|+(×8)2020×8=﹣7+12020×8=﹣7+1×8=﹣7+8=.20.解:2÷(﹣+)×(﹣3)=×(﹣3)=2×(﹣12)×(﹣3)=72.21.解:∵a与b互为相反数,c与d互为倒数,|x|=2,∴a+b=0,cd=1,x=±2,当x=2时,(﹣cd)2019+x2﹣=(﹣1)2019+22﹣=﹣1+4﹣=﹣1+4﹣0=3;当x=﹣2时,(﹣cd)2019+x2﹣=(﹣1)2019+(﹣2)2﹣=﹣1+4﹣=﹣1+4﹣0=3;由上可得,代数式(﹣cd)2019+x2﹣的值是3.。

七年级数学上册人教版绝对值专题(课堂学案及配套作业)(解析版)

七年级数学上册人教版绝对值专题(课堂学案及配套作业)(解析版)

期末复习绝对值专题(解析版)第一部分教学案类型一利用绝对值的性质求值例1(2022秋•江岸区校级月考)已知|x|=3,|y|=5.(1)若x<y,求x+y的值;(2)若xy<0,求x﹣y的值.思路引领:由题意可知x=±3,y=±5,(1)由于x<y时,有x=3,y=5或x=﹣3,y=5,代入x+y即可求出答案;(2)由于xy<0,x=﹣3,y=5或x=3,y=﹣5,代入x﹣y即可求出答案.解:由题意知:x=±3,y=±5,(1)∵x<y,∴x=±3,y=5,∴x+y=2或8;(2)∵xy<0,∴x=﹣3,y=5或x=3,y=﹣5,∴x﹣y=±8.总结提升:本题考查有理数的运算,绝对值的性质,涉及代入求值,分类讨论的思想,属于基础题型.变式训练1.(2022秋•方城县校级月考)已知|x|=3,|y|=7.(1)若x<y,求x+y的值;(2)若x>y,求x﹣y的值.思路引领:(1)先求得x=±3,y=±7,再根据条件求出x、y即可求解;(2)根据条件求得x、y,进而求解即可.解:(1)∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=﹣3,y=7或x=3,y=7,当x=﹣3,y=7时,x+y=﹣3+7=4;当x=3,y=7时,x+y=3+7=10,∴x+y的值为4或10;(2)∵x>y,∴x=﹣3,y=﹣7或x=3,y=﹣7,当x =﹣3,y =﹣7时,x ﹣y =﹣3+7=4, 当x =3,y =﹣7时,x ﹣y =3+7=10, ∴x ﹣y 的值为4或10.总结提升:本题考查代数式求值、绝对值的性质,根据题设求得对应的x 、y 是解答的关键.类型二 利用绝对值的性质去绝对值例2 已知a <﹣b ,且ab >0,化简|a |﹣|b |+|a +b |+|ab |= .思路引领:根据题中的条件判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果. 解:∵a <﹣b ,且ab >0,∴a +b <0,a ,b 同号,都为负数, 则原式=﹣a +b ﹣a ﹣b +ab =﹣2a +ab . 故答案为:﹣2a +ab总结提升:此题考查了整式的加减,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.例3(2021秋•渝中区校级期中)已知有理数a ,b ,c 在数轴上面的位置如图所示:化简|a +b |﹣|c ﹣a |+|b ﹣c |= .思路引领:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可. 解:由图可知b <0<a <c , 则a +b <0,c ﹣a >0,b ﹣c <0, ∴原式=﹣a ﹣b ﹣c +a ﹣b +c =﹣2b . 故答案为:﹣2b .总结提升:本题考查了整式的加减、数轴及绝对值的知识,掌握数轴上右边的数总比左边的数大是解答本题的关键. 变式训练1.(2022秋•江岸区期中)如图,数轴上的点A 、B 、C 、D 对应的数分别为a 、b 、c 、d ,且这四个点满足每相邻的两点之间的距离相等. (1)化简|a ﹣c |﹣|b ﹣a |﹣|b ﹣d |. (2)若|a |=|c |,b ﹣d =﹣4,求a 的值.思路引领:(1)根据数轴得到a<b<c<d,得到a﹣c<0 b﹣a>0 b﹣d<0,根据绝对值的性质和去括号法则计算;(2)根据题意得到B点为原点,即b=0,根据数轴的概念解答.解:(1)由图可知:a<b<c<d∴a﹣c<0 b﹣a>0 b﹣d<0,∴原式=﹣(a﹣c)﹣(b﹣a)﹣[﹣(b﹣d)]=﹣a+c﹣b+a﹣d+b=c﹣d;(2)∵|a|=|c|,a<c,AB=BC∴B点为原点,∴b=0,∵b﹣d=﹣4,∴d=4,∴a=﹣2.总结提升:本题考查的是数轴和绝对值,掌握绝对值的性质,数轴的概念是解题的关键.2.(2021秋•贡井区期中)如图,数轴上的点A,B,C,D,E对应的数分别为a,b,c,d,e,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a﹣c0,b﹣a0,b﹣d0(填“>“,“<“或“=“);(2)化简:|a﹣c|﹣2|b﹣a|﹣|b﹣d|;(3)若|a|=|e|,|b|=3,直接写出b﹣e的值.思路引领:(1)根据数轴得出a<b<c<d<e,再比较即可;(2)先去掉绝对值符号,再合并同类项即可;(3)先求出b、e的值,再代入求出即可.解:(1)从数轴可知:a<b<c<d<e,∴a﹣c<0,b﹣a>0,b﹣d<0,故答案为:<,>,<;(2)原式=|a﹣c|﹣2|b﹣a|﹣|b﹣d|=﹣a+c﹣2(b﹣a)﹣(d﹣b)=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(3)|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.总结提升:本题考查了数轴,绝对值,相反数和有理数的大小比较等知识点,能根据数轴得出a<b<c<d<e是解此题的关键.类型三利用绝对值的非负性求值例4(2009秋•新华区校级月考)已知|a+2|+|b﹣3|=0,求a和b的值.思路引领:直接根据非负数的性质进行解答即可.解:∵|a+2|+|b﹣3|=0,∴a+2=0,b﹣3=0,解得a=﹣2,b=3.总结提升:本题考查的是非负数的性质,根据绝对值的性质得出a+2=0,b﹣3=0是解答此题的关键.变式训练1.(2020秋•洪山区校级月考)已知|a﹣1|=3,|b﹣3|与(c+1)2互为相反数,且a<b,求代数式2a﹣b+c﹣abc的值.思路引领:利用绝对值的代数意义,非负数的性质确定出各自的值,代入原式计算求出值.解:∵|a﹣1|=3,|b﹣3|与(c+1)2互为相反数,且a<b,∴a﹣1=3或a﹣1=﹣3,|b﹣(c+1)2=0,解得:a=4或﹣2,∵a<b,∴a=﹣2,b=3,c=﹣1,原式=2×(﹣2)﹣3+(﹣1)﹣(﹣2)×3×(﹣1)=﹣14.总结提升:此题考查了有理数的混合运算,以及非负数的性质,熟练掌握运算法则是解本题的关键.类型四aa类型问题例5(2022秋•隆昌市校级月考)阅读下列材料并解决有关问题,我们知道|x|={x(x>0)0(x=0)−x(x<0),当x>0时,x|x|=xx=1,当x<0时,x|x|=x−x=−1.且当x>0,y<0时,xy<0.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当a<0,b>0时,a|a|+b|b|=.(2)已知a,b是有理数,当ab≠0时,a|a|+b|b|=.(3)已知a,b,c是有理数,a+b+c=0,abc<0,求b+c|a|+a+c|b|+a+b|c|的值.思路引领:(1)根据“当x>0时,x|x|=xx=1,当x<0时,x|x|=x−x=−1”进行计算即可;(2)分三种情况进行解答,即a、b同正,同负,一正一负进行解答即可;(3)由a+b+c=0可得a+b=﹣c,a+c=﹣b,b+c=﹣a,进而将原式变为−a|a|−b|b|−c|c|,再根据(1)的解法进行计算即可.解:(1)∵a<0,∴|a|=﹣a,∴a|a|=a−a=−1,又∵b>0,∴|b|=b,∴b|b|=bb=1,∴a|a|+b|b|=0;故答案为:0;(2)当a>0,b>0时,a|a|+b|b|=1+1=2,当a>0,b<0时,a|a|+b|b|=1﹣1=0,当a<0,b>0时,a|a|+b|b|=−1+1=0,当a<0,b<0时,a|a|+b|b|=−1﹣1=﹣2,故答案为:﹣2或0或2;(3)∵a+b+c=0,∴a+b=﹣c,a+c=﹣b,b+c=﹣a,∴原式=−a|a|−b|b|−c|c|,又∵a+b+c=0,abc<0,∴a、b、c中有一个负数,两个正数,∴原式=−a |a|−b |b|−c |c|=﹣1﹣1+1 =﹣1, 答:b+c |a|+a+c |b|+a+b |c|的值为﹣1.总结提升:本题考查绝对值,理解“当x >0时,x|x|=x x=1,当x <0时,x|x|=x −x=−1”是解决问题的关键. 变式训练1.(2017秋•邛崃市期末)设a +b +c =0,abc >0,则b+c |a|+c+a |b|+a+b |c|的值是 .思路引领:由a +b +c =0,abc >0,可知a 、b 、c 中二负一正,将b +c =﹣a ,c +a =﹣b ,a +b =﹣c 代入所求代数式,可判断−a |a|,−b |b|,−c |c|中二正一负.解:∵a +b +c =0,abc >0, ∴a 、b 、c 中二负一正,又b +c =﹣a ,c +a =﹣b ,a +b =﹣c , ∴b+c |a|+c+a |b|+a+b |c|=−a |a|+−b |b|+−c |c|,而当a >0时,−a |a|=−1,当a <0时,−a |a|=1,∴−a |a|,−b |b|,−c |c|的结果中有二个1,一个﹣1,∴b+c |a|+c+a |b|+a+b |c|的值是1.故答案为:1.总结提升:此题考查的知识点是绝对值,判断a 、b 、c 的符号是解题的关键. 类型五 多绝对值问题例6 (2020秋•恩施市月考)已经知道|x |的几何意义是数轴上数x 所对应的点与原点之间的距离,即|x ﹣0|,也就是说,表示数轴上的数x 与数0之间的距离,这个结论可以推广为,|x 1﹣x 2|表示数x 1与数x 2对应点之间的距离. 例1:已知|x |=2,求x 的值.解:在数轴上与原点的距离为2的点表示的数为﹣2和2,所以x 的值为2或者﹣2. 例2:已知|x ﹣1|=2,求x 的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,所以x 的值为3或者﹣1.根据两个例子,求解:(1)|x﹣1|=5,求x.(2)|x+1|=5,求x.(3)|x+3|+|x﹣3|=6,找出所有符合条件的整数x.思路引领:通过对例题的理解,根据数轴的性质,找到在数轴上对应的点,即可求解.解:(1)在数轴上与1对应的点的距离为5的点表示的数为﹣4和6,所以x的值为﹣4或者6;(2)在数轴上与(﹣1)对应的点的距离为5的点表示的数为4和﹣6,所以x的值为4或者﹣6;(3)在数轴上与(﹣3)对应的点的距离加上在数轴上与3对应的点的距离之和为6,因为(﹣3)到3的距离为6,所以x只有在(﹣3)与3之间可以满足表达式,x可以取:﹣3,﹣2,﹣1,0,1,2,3.总结提升:本题主要考查了数轴结合绝对值的应用,绝对值性质在数轴上双向表示方法是解决问题的关键.类型六绝对值最值问题例7(2018秋•雨花区校级月考)同学们都知道,|2﹣(﹣1)|表示2与﹣1的差的绝对值,实际上位可理解为在数轴上正数2对应的点与负数﹣1对应的点之间的距离,试探索:(1)|2﹣(﹣1)|=;如果|x﹣1|=2,则x=.(2)求|x﹣2|+|x﹣4|的最小值,并求此时x的取值范围;(3)由以上探索已知(|x﹣2|+|x+4|)+(|y﹣1|+|y﹣6|)=20,则求x+y的最大值与最小值;(4)由以上探索及猜想,计算x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2017|+|x﹣2018|的最小值.思路引领:(1)根据绝对值的意义直接计算即可;(2)把|x﹣2|+|x﹣4|理解为:在数轴上表示x到﹣4和2的距离之和,根据两点间的距离公式,点在线段上,可得最小值,从而得结论;(3)先确定x、y的取值范围,再分类讨论.(4)观察已知条件可以发现,|x﹣a|表示x到a的距离.要使题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.解:(1)|2﹣(﹣1)|=|2+1|=3,|x﹣1|=2,x﹣1=2或x﹣1=﹣2x=3或﹣1故答案为:3,3或﹣1;(2)∵|x﹣2|+|x﹣4|理解为:在数轴上表示x到4与2的距离之和,∴当x 在2与4之间的线段上(即2≤x ≤4)时,|x ﹣2|+|x ﹣4|的值有最小值,最小值为4﹣2=2,此时x 的取值范围为:2≤x ≤4.(3)因为x ﹣2=0,x +4=0时,x =2或﹣4,y ﹣1=0,y ﹣6=0时,y =1或6. 当x <﹣4时,|x ﹣2|+|x +4|=2﹣x ﹣x ﹣4=﹣2x ﹣2;当﹣4≤x ≤2时,|x ﹣2|+|x +4|=2﹣x +x +4=6;当x >2时,|x ﹣2|+|x +4|=x ﹣2+x +4=2x +2;当y <1时,|y ﹣1|+|y ﹣6|=1﹣y +6﹣y =﹣2y +7;当1≤y ≤6时,|y ﹣1|+|y ﹣6|=y ﹣1+6﹣y =5;当y >6时,|y ﹣1|+|y ﹣6|=y ﹣1+y ﹣6=2y ﹣7; 当x <﹣4,y <1时,x +y 取最小值, 此时(﹣2x ﹣2)+(﹣2y +7)=20 x +y =−152当x >2,y >6时,x +y 取最大值, 此时(2x +2)+(2y ﹣7)=20 x +y =252所以x +y 的最大值是252,最小值是−152.(4)由已知条件可知,|x ﹣a |表示x 到a 的距离,只有当x 到1的距离等于x 到2018的距离时,式子取得最小值. ∴当x =1+20182=1009.5时,式子取得最小值, 此时,|x ﹣1|+|x ﹣2|+|x ﹣3|+…+|x ﹣2017|+|x ﹣2018|=|1009.5﹣1|+|1009.5﹣2|+|1009.5﹣3|+…+|1009.5﹣2016|+|1009.5﹣2017|+|1009.5﹣2018| =2(1008.5+1007.5+…+2.5+1.5+0.5) =2×[0.5×1009+(1+2+3…+1008)] =2×(504.5+1008(1+1008)2) =1018081.总结提升:本题考查了绝对值,读懂题目信息,理解绝对值的几何意义是解题的关键. 变式训练1.(2022秋•灌南县校级月考)认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A ,B 两点在数轴上分别表示有理数a ,b ,那么A ,B 两点之间的距离可表示为|a ﹣b |.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是,②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.思路引领:(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3)|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到2之间(包括﹣1、2)的任意一个数,要使|x ﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x ﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|),要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x ﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x ﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.总结提升:本题考查了列代数式、数轴、绝对值,读懂题目信息,理解绝对值的几何意义是解题的关键.第二部分配套作业1.(2020秋•江汉区校级期末)下列说法:①|a|=﹣a,则a为负数;②数轴上,表示a、b 两点的距离为a﹣b;③|a+b|=a﹣b,则a>0,b=0或a=0,b<0;④|a+b|=|a|﹣|b|,则ab≤0.其中正确的有()个.A.1B.2C.3D.4思路引领:根据绝对值的性质,数轴的概念计算,判断即可.解:|a|=﹣a,则a为非正数,①错误;数轴是表示a、b两点的距离为|a﹣b|,②错误;|a+b|=a﹣b,则a>0,b=0或a=0,b<0或a=0,b=0,③错误;|a+b|=|a|﹣|b|,则ab≤0.④正确;故选:A.总结提升:本题考查的是数轴的概念,绝对值的性质,掌握绝对值的性质,灵活运用分情况讨论思想是解题的关键.2.(2022秋•江岸区校级期中)下列说法正确的个数为()①如果|a|=a,那么a>0;②使得|x﹣1|+|x+3|=4的x的值有无数个;③用四舍五入法把数2005精确到百位是2000;④几个数相乘,积的符号一定由负因数的个数决定,当负因数的个数为偶数时积为正A.0个B.1个C.2个D.3个思路引领:根据绝对值的性质可判断①,②,利用四舍五入法可直接求解判断③,根据有理数乘法的性质可判断求解④.解:①如果|a|=a,那么a≥0,故原说法不符合题意;②当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,故x的值有无数个,故原说法符合题意;③用四舍五入法把数2005精确到百位是2.0×103,故原说法不符合题意;④几个非0的数相乘,积的符号一定由负因数的个数决定,当负因数的个数为偶数时积为正,故原说法不符合题意.故有1个.故选:B.总结提升:本题主要考查有理数的乘法,绝对值的性质,近似数,掌握相关性质是解题的关键.3.(2021秋•涪城区校级月考)下列说法:①若a为有理数,且a≠0,则a<a2;②若1a=a,则a=1;③若a3+b3=0,则a、b互为相反数;④若|a|=﹣a,则a<0;⑤若b<0<a,且|a|<|b|,则|a+b|=﹣|a|+|b|,其中正确说法的有.思路引领:各式利用相反数,绝对值,倒数的定义,乘方的意义,以及加法法则判断即可.解:①若a为有理数,且a≠0,则a不一定小于a2,说法错误;②若1a=a,则a=1或﹣1,说法错误;③若a3+b3=0,则a、b互为相反数,说法正确;④若|a|=﹣a,则a≤0,说法错误;⑤若b<0<a,且|a|<|b|,则|a+b|=﹣|a|+|b|,说法正确.故答案为:③⑤.总结提升:此题考查了有理数的乘方,相反数,绝对值,倒数,以及有理数的加法,熟练掌握运算法则及各自的性质是解本题的关键.4.(2022秋•蒲江县校级期中)已知:|a|=2,|b|=3且a>b,求a+b的值.思路引领:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=2时,b=﹣3或a=﹣2时,b=﹣3,所以a+b=﹣1或a+b=﹣5.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=﹣3,则a+b=﹣1.当a=﹣2时,b=﹣3,则a+b=﹣5.总结提升:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.5.(2022秋•安岳县校级月考)(1)已知|a|=5,|b|=3,且a>b,求a﹣b的值;(2)已知|a+2|+|b﹣4|+|c﹣5|=0,求式子a﹣2b﹣(﹣c)的值.思路引领:(1)根据绝对值的意义,可得a、b的值,根据有理数的减法,可得答案;(2)根据绝对值的和为零,可得每个绝对值为零,根据代数式求值,可得答案.解:(1)由|a|=5,|b|=3,且a>b,得a=5,b=±3.当a=5,b=3时,a﹣b=5﹣3=2,当a=5,b=﹣3时,a﹣b=5﹣(﹣3)=5+3=8;(2)由|a+2|+|b﹣4|+|c﹣5|=0,得a+2=0,b﹣4=0,c﹣5=0.解得a=﹣2,b=4,c=5.当a=﹣2,b=4,c=5时,a﹣2b﹣(﹣c)=﹣2﹣2×4﹣(﹣5)=﹣2﹣8+5=﹣5.总结提升:本题考查了代数式求值,利用绝对值的意义得出a、b、c的值,再利用代数式求值.6.(2021秋•新洲区期中)已知|x+1|=4,(y+2)2=4,若x+y≥﹣5,求x﹣y的值.思路引领:根据条件求出x,y的值,根据x+y≥﹣5,分三种情况分别计算即可.解:∵|x+1|=4,(y+2)2=4,∴x+1=±4,y+2=±2,∴x=﹣5或3,y=0或﹣4,∵x+y≥﹣5,∴当x=﹣5,y=0时,x﹣y=﹣5;当x=3,y=0时,x﹣y=3;当x=3,y=﹣4时,x﹣y=7;综上所述,x﹣y的值为﹣5或3或7.总结提升:本题考查了绝对值,有理数的加减法,考查分类讨论的数学思想,根据x+y ≥﹣5,分三种情况分别计算是解题的关键.7.(1)已知a,b,c在数轴上的位置如图所示,化简:|a+b|﹣2|c﹣b|+|c﹣a|﹣|a+c|(2)已知a<0,ab>0,|c|﹣c=0,化简:|b|﹣|a+b|﹣|c﹣b|+|a﹣c|.思路引领:(1)由题意可得c<a<0<b,则a+b>0,c﹣b<0,c﹣a<0,a+c<0,根据绝对值的定义化简可得.(2)由题意可得b<0,c是非负数,则a+b<0,c﹣b>0,a﹣c<0,再根据绝对值的定义化简可得.解:(1)由题意可得c<a<0∴a+b>0,c﹣b<0,c﹣a<0,a+c<0∴|a+b|﹣2|c﹣b|+|c﹣a|﹣|a+c|=a+b﹣2b+2c+a﹣c+a+c=3a﹣b+2c(2)∵a<0,ab>0,|c|﹣c=0,∴b<0,c是非负数∴a+b<0,c﹣b>0,a﹣c<0|b|﹣|a+b|﹣|c﹣b|+|a﹣c|=﹣b+a+b﹣c+b+c﹣a=b总结提升:本题考查了数轴和绝对值,利用|a|=a(a>0),|a|=﹣a(a<0),|a|=0(a =0)化简是本题的关键.8.(2021秋•西城区校级期中)已知|ab﹣2|与|b﹣1|互为相反数,求式子1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2021)(b+2021)的值.思路引领:由题意可知,|ab﹣2|+|b﹣1|=0,根据绝对值的非负性可得|ab﹣2|=0,|b﹣1|=0,进而求出a和b的值,再代入所求式子即可.解:由题意可知,|ab﹣2|+|b﹣1|=0,∴|ab﹣2|=0,|b﹣1|=0,∴b=1,a=2,∴1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2021)(b+2021)=12×1+1(2+1)(1+1)+1(2+2)(1+2)+⋯+1(2+2021)(1+2021)=1−12+12−13+13−14+⋯+12022−12023=1−1 2023=2022 2023.总结提升:本题考查了代数式求值,绝对值的非负性,得出1n(n+1)=1n−1n+1,以及抵消法的运用是解题的关键.9.阅读材料:我们知道:|x|的几何意义为数轴上表示数x的点到原点的距离,点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a﹣b|,所以式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离.根据上述材料,回答下列问题:(1)数轴上表示数﹣2的点与表示数5的点之间的距离为;(2)等式|x﹣2|=3的几何意义是,x的值为;(3)若|x﹣3|=|x﹣5|,求x的值;(4)求式子|x﹣1|+|x﹣3|的最小值.思路引领:(1)根据两点间的距离公式即可求解;(2)根据|x1﹣x2|的几何意义求解可得;(3)先去绝对值,再解方程即可求解;(4)由题意知|x﹣1|+|x﹣3|表示数x到1和3的距离之和,当数x在两数之间时式子取得最小值.解:(1)数轴上表示数﹣2的点与表示数5的点之间的距离为5﹣(﹣2)=7.故答案为:7;(2)等式|x﹣2|=3的几何意义是表示到数2的距离为3的点,x的值为﹣1或5.故答案为:表示到数2的距离为3的点,﹣1或5;(3)|x﹣3|=|x﹣5|,x﹣3=±(x﹣5),解得x=4.故x的值为4;(4)式子|x﹣1|+|x﹣3|表示数x到1和3的距离之和,当x<1时,原式=﹣x+1﹣x+3=﹣2x+4>2,当1≤x≤3时,原式=x﹣1﹣x+3=2,当x>3时,原式=x﹣1+x﹣3=2x﹣4>2,故式子|x﹣1|+|x﹣3|的最小值为2.总结提升:本题考查了一元一次方程的应用,数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.10.(2022秋•安阳期中)我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示﹣10和﹣5的两点之间的距离是.(2)数轴上表示x和﹣3的两点A,B之间的距离是.(3)说出|x+2|+|x﹣2|+|x﹣4|的最小值是.(4)结合数轴求|x﹣1|+|x|+|x+2|+|x﹣4|的最小值为.此时符合条件的整数x 为.思路引领:(1)利用两点距离公式|﹣10﹣(﹣5)|计算即可;(2)利用两点距离公式|x﹣(﹣3)|计算即可;(3)根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示数轴上一点到﹣2,2,4的距离之和,据此解答即可;(4)根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示数轴上一点到1,0,﹣2,4的距离之和,此时符合条件的整数x为1或0.解:(1)根据结论:数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为AB=|a﹣b|可得,数轴上表示﹣10和﹣5的两点之间的距离是|﹣10﹣(﹣5)|=|﹣5|=5.故答案为:5;(2)∵数轴上表示x和﹣3的两点A、B之间的距离是|x+3.故答案为:|x+3|;(3)|x+2|+|x﹣2|+|x﹣4|表示数轴上一点到﹣2,2,4的距离之和,∴当x为2时,距离和最小为4﹣(﹣2)=6.故答案为:6.(4)|x﹣1|+|x|+|x+2|+|x﹣4|表示数轴上一点到1,0,﹣2,4的距离之和,此时符合条件的整数x为1或0.故答案为:7,1或0.总结提升:此题综合考查了一元一次方程的应用、数轴、绝对值的有关内容,解题的关键是正确理解题意给出的距离的定义.11.(2022秋•祁阳县校级期中)我们知道,在数轴上,|a|表示a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a﹣b|利用此结论.回答以下问题:(1)数轴上表示﹣10和﹣5的两点之间的距离是;(2)数轴上表示x和﹣3的两点A,B之间的距离是;(3)式子|x+2|+|x﹣2|+|x﹣4|的最小值是.思路引领:(1)利用两点距离公式|﹣10﹣(﹣5)|计算即可;(2)利用两点距离公式|x﹣(﹣3)|计算即可;(3)根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示数轴上一点到﹣2,2,4的距离之和,据此解答即可.解:(1)根据结论:数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为AB=|a﹣b|可得,数轴上表示﹣10和﹣5的两点之间的距离是|﹣10﹣(﹣5)|=|﹣5|=5,故答案为:5;(2)∵数轴上表示x和﹣3的两点A、B之间的距离是|x+3|,故答案为:|x+3|;(3)|x+2|+|x﹣2|+|x﹣4|表示数轴上一点到﹣2,2,4的距离之和,∴当x为2时,距离和最小为﹣(﹣2)=6,故答案为:6.总结提升:此题综合考查了一元一次方程的应用、数轴、绝对值的有关内容,解题的关键是正确理解题意给出的距离的定义,本题属于基础题型.13.(2020秋•公安县期中)探究活动:【阅读】我们知道,|﹣5|表示数轴上表示﹣5的点到原点的距离,|a|表示数轴上表示a的点到原点的距离,这是绝对值的几何意义.【探索】(1)数轴上表示﹣1和﹣5的两点之间的距离是,数轴上表示2和﹣3的两点之间的距离是;数轴上两个点A、B,分别用数a、b表示,那么A、B两点之间的距离为AB=.(2)数轴上表示﹣2和x的两点A、B之间的距离是,如果AB=3,那么x的值为.(3)若|x﹣2|+|x+3|=7,试求x的值;(4)当x为何值时,式子|x+2020|+|x﹣1|取最小值,最小值是多少.思路引领:(1)根据数轴上两点间的距离求法求解即可;(2)由题意可得|x+2|=3,求解x即可;(3)|x﹣2|+|x+3|=7表示数轴上表示x的点到表示2的点的距离与到﹣3的点的距离之和,当﹣3≤x≤2时,(3)|x﹣2|+|x+3|的值最小为5,结合题意可知,当表示x的点在表示2的点的右边时,x的值为3;当表示x的点在表示﹣3的点的左边时,x的值为﹣4;(4)|x+2020|表示数轴上表示x的点到表示﹣2020的点的距离,|x﹣1|表示数轴上表示x 的点到表示1的点的距离,由(3)的分析可知,﹣2020≤x≤1时,距离之和最小是2021.解:(1)数轴上表示﹣1和﹣5的两点之间的距离是|﹣1﹣(﹣5)|=4,数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5,AB=|a﹣b|,故答案为:4,5,|a﹣b|;(2)表示﹣2和x的两点A、B之间的距离是|x﹣(﹣2)|=|x+2|,∵AB=3,∴|x+2|=3,解得x=1或x=﹣5,故答案为:|﹣2﹣x|,﹣5或1;(3)|x﹣2|+|x+3|=7表示数轴上表示x的点到表示2的点的距离与到﹣3的点的距离之和,∵表示x的点在表示2和﹣3的两个点之间时,距离之和为5,∴当表示x的点在表示2的点的右边时,若|x﹣2|+|x+3|=7,则x的值为3;当表示x的点在表示﹣3的点的左边时,若|x﹣2|+|x+3|=7,则x的值为﹣4;∴x的值为3或﹣4;(4)∵|x+2020|表示数轴上表示x的点到表示﹣2020的点的距离,|x﹣1|表示数轴上表示x的点到表示1的点的距离,由(3)的分析可知,当表示x的点在表示﹣2020和1的两个点之间时,距离之和最小,∴当﹣2020≤x≤1时,式子|x+2020|+|x﹣1|取最小值,最小值是2021.总结提升:本题考查实数与数轴,熟练掌握数轴上点的特征,绝对值的意义是解题的关键.。

七年级数学上册专题提分精练数轴和绝对值的化简结合(解析版)

七年级数学上册专题提分精练数轴和绝对值的化简结合(解析版)

专题10 数轴和绝对值的化简结合1.已知实数m 在数轴上的位置如图所示,则化简|2||1|m m +--的结果为( )A .21m +B .21m --C .3-D .3【答案】A【解析】【分析】根据数轴,判断m 是负数,且|m |<1,从而判定m -1<0,m +2>0,化简即可.【详解】∵, ∴m <0,且|m |<1,∴m -1<0,m +2>0,∴|2||1|21=21m m m m m +--=+-++,故选A .【点睛】本题考查了数轴的意义,绝对值的化简,正确获取数轴信息,熟练化简绝对值是解题的关键. 2.已知a ,b 两数在数轴上的位置如图所示,则化简代数式12b a a b -----的结果是( )A .1B .2a ﹣3C .-1D .2b ﹣1 【答案】C【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:由数轴可知b <−1,1<a <2,∴b -a <0,1-a <0,b -2<0, 则()()()1212121b a a b a b a b a b a b -----=-----=--+-+=-.故选:C .【点睛】此题考查了整式的加减,数轴,以及绝对值,判断出绝对值里边式子的正负是解本题的关键. 3.实数a ,b ,c ,在数轴上的位置如图所示,化简:a b c a b c ---+-的结果是( )A .0B .aC .bD .c【答案】A【解析】【分析】根据数轴上点的位置可知000a b c a b c -<->-<,,,由此求解即可.【详解】 解:由题意得:0a b c a b c <<<>>,, ∴000a b c a b c -<->-<,, ∴a b c a b c ---+-()=b a c a c b ---+-b ac a c b =--++-0=,故选A .【点睛】本题主要考查了根据数轴上点的位置化简绝对值,正确得出000a b c a b c -<->-<,,是解题的关键.4.有理数a ,b ,c 在数轴上的位置如图所示,则a c ++c b --b a +=( )A .-2bB .0C .2D .2c -2b【答案】B【解析】【分析】先由数轴确定a 、b 、c 的符号,进而确定每个绝对值里面的代数式的符号,然后根据绝对值的性质化简绝对值,再进行整式的加减运算即得答案.【详解】解:由图示得:a <0,b <0,c >0,a c >,则a +c <0,c -b >0,b +a <0,所以()()()0a c c b b a a c c b a b a c c b a b ++--+=-++---+=--+-++=⎡⎤⎣⎦故选:B .【点睛】本题考查了绝对值的化简和整式的加减运算,解题的关键是根据加减法则确定代数式的符号并正确的进行绝对值的化简.5.有理数a 、b 、c 在数轴上位置如图,则a c a b b c --++-的值为( ).A .2aB .222a b c +-C .0D .2c -【答案】A【解析】【分析】根据数轴,确定每个数的属性,每个代数式的属性,后化简即可.【详解】根据数轴上点的位置得:0b c a <<<,且a b <,则0a c ->,0a b +<,0b c -<, 则2a c a b b c a c a b b c a --++-=-++-+=.故选A .【点睛】本题考查了数轴和有理数的大小比较与绝对值的化简,掌握获取数轴信息,熟练化简是解题的关键.6.如图,数轴上的三点A ,B ,C 分别表示有理数a ,b ,c ,则化简|a -b |-|c -a |+|b -c |的结果是( )A .2a -2cB .0C .2a -2bD .2b -2c 【答案】B【解析】【分析】根据数轴,得到信息为a <b <0<c ,化简绝对值即可.【详解】∵a <b <0<c ,∴a -b <0,b -c <0,c -a >0,∴|a -b |-|c -a |+|b -c |=b -a -c +a +c -b=0,故选B .本题考查了数轴,有理数的大小比较,绝对值的化简,正确读取数轴信息,准确进行绝对值的化简是解题的关键.7.已知a 、b 、c 的大致位置如图所示:化简a c b c a b ++---的结果是( )A .222a c b +-B .0C .22c b -D .2c 【答案】D【解析】【分析】根据数轴判断出a ,b ,c 的符号,求得a +c 、b -c 、a -b 的符号,然后化简求解即可.【详解】解:由数轴可得:0b a c <<<,0a c +>∴0b c -<,0a b ->, ∴()()()2a c b c a b a c b c a b a c b c a b c ++---=+----=+-+-+=故选:D【点睛】此题考查了数轴以及绝对值,涉及了去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.8.有理数a ,b 在数轴上对应的位置如图所示,那么代数式11a b a b a b a b -++--+的值是( )A .-1B .1C .3D .-3【答案】D【解析】【分析】先根据数轴求出-1<a <0,0<b <1,|a |<|b |,再去掉绝对值,然后根据分式的性质计算即可.【详解】解:根据数轴可知:-1<a <0,0<b <1,|a |<|b |, ∴原式11a b a b a b a b --+=+--+ 111=---3=-.故选:D .本题考查了代数式的化简、数轴和去绝对值的计算,解题的关键是注意去掉绝对值后,要保证得数是非负数.9.有理数a 在数轴上的对应点的位置如图所示,化简2a a --的结果是______.【答案】2-【解析】【分析】由题意可得a >2,利用绝对值化简可求解.【详解】解:由题意可得:a >2,222,a a a a --=--=-∴故答案为:2-【点睛】本题考查绝对值的化简,利用数轴比较数的大小从而正确化简计算是解题关键. 10.已知:数a ,b ,c 在数轴上的对应点如图所示,化简|b ﹣a |+|b ﹣c |=_____.【答案】a c -##-c +a【解析】【分析】由数轴可知a ,b ,c 的大小关系,进而可知绝对内代数式的正负性,进而可得到答案.【详解】解:由数轴可知0a b c >>>∴0,0b a b c --<>∴原式=()b a b c a c --+-=-故答案为:a c -.【点睛】本题考查化简绝对值,熟练掌握相关知识是解题的关键.11.在数轴上,表示实数a 、b 的点的位置如图所示,化简:a b b a -+-= ___________【答案】2a【分析】a 、b 在原点的两侧,a 为正数,b 为负数,且b -a <0,由此根据绝对值的意义和有理数的加减法计算方法化简即可.【详解】解:由实数a 、b 在数轴上的位置可知,b <0<a ,b -a <0,∴|a |-|b |+|b −a |=a -(-b )−(b −a )=a +b −b +a=2a故答案为:2a .【点睛】此题考查整式的加减,绝对值的意义,以及有理数的加减法计算方法,解题的关键是读懂数轴,得到a ,b ,b -a 的符号.12.已知,数a 、b 、c 的大小关系如图所示:化简||||2||3||a c b a a c b c +----+-=____.【答案】222a b c -+【解析】【分析】【详解】由数轴可得:b <0,0<a <c ,∴(a +c )>0,(b -a )<0,(a -c )<0,(b -c )<0,∴||||2||3||a c b a a c b c +----+-=a +c -(a -b )-2(c -a )+3(c -b )=a +c -a +b -2c +2a +3c -3b =2a -2b +2c ,故答案为:2a -2b +2c .【点睛】本题考查了化简绝对值及整式的加减;根据数轴判断子式的正负是解题的关键. 13.有理数a ,b ,c 在数轴上表示的点如图所示,则化简22b c a b c a +----=______.【答案】4a -b【解析】根据数轴可以判断a、b、c的正负和它们的绝对值的大小,从而可以化简题目中的式子.【详解】解:由数轴可得,a<b<c,|b|<|c|<|a|,∴|b+c|﹣2|a﹣b|﹣|c﹣2a|=b+c﹣2(b﹣a)﹣(c﹣2a)=b+c﹣2b+2a﹣c+2a=4a-b.【点睛】本题考查数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.14.已知有理数a,b在数轴上的位置如图,化简:|2﹣3b|﹣2|2+b|+|a+2|﹣|3b﹣2a|的结果为_____.【答案】8+2b﹣a.【解析】【分析】根据有理数a,b在数轴上的位置可判断绝对值内部各代数式的正负,进而对绝对值进行化简计算即可.【详解】解:根据有理数a,b在数轴上的位置可知:2﹣3b>0,2+b<0,a+2>0,3b﹣2a<0,∴|2﹣3b|﹣2|2+b|+|a+2|﹣|3b﹣2a|=2﹣3b+2(2+b)+a+2+(3b﹣2a)=2﹣3b+4+2b+a+2+3b﹣2a=8+2b﹣a,故答案为:8+2b﹣a.【点睛】本题考查整式的加减,根据点在数轴的位置判断式子的正负,有理数的加法运算和有理数的减法运算,化简绝对值.解题关键是能根据有理数a,b在数轴上的位置,结合有理数的加法运算和有理数的减法运算判断绝对值内各式子的符号,据此化简绝对值.15.已知x、y两数在数轴上表示如图.化简:|2x-3y|-|y|+|x|.【答案】3x﹣2y【解析】【分析】由y<0<x,得到2x-3y>0,然后利用绝对值的代数意义将所求式子化简,合并后即可得到结果.【详解】解:由数轴可得y<0<x,|y|<|x|,∴2x-3y>0,∴|2x-3y|-|y|+|x|=2x-3y+y+x=3x-2y.【点睛】此题考查了数轴以及有理数比较大小,涉及到的知识有:绝对值的代数意义,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.16.已知A,B,C三点在数轴上如图所示,它们表示的数分别是a,b,c.且|a|<|b|.(1)填空:abc0,a+b0(填“>”“<”或“=”).(2)化简:|a﹣b|﹣2|a+b|+|b﹣c|.【答案】(1)<,>;(2)﹣3a﹣2b+c【解析】【分析】(1)根据数轴上点的位置可知a <0,b>0,c>0,|c|>|b|>|a|,由此求解即可;(2)根据绝对值的含义和求法,化简|a﹣b|﹣2|a+b|+|b﹣c|即可.(1)根据数轴上A、B、C三点的位置,可知a<0<b<c,且|c|>|b|>|a|,∴abc<0,a+b>0,故答案为:<,>;(2)由题意可知,a﹣b<0,a+b>0,b﹣c<0,∴|a﹣b|﹣2|a+b|+|b﹣c|=b﹣a﹣2(a+b)+c﹣b=b﹣a﹣2a﹣2b+c﹣b=﹣3a﹣2b+c此题主要考查了有理数大小比较的方法,绝对值的含义和求法整式的加减,要熟练掌握以上知识点,同时要明确∶当数轴方向朝右时,右边的数总比左边的数大是解题的关键. 17.已知有理数,,a b c 在数轴上的位置如下图所示,化简:22a c c b b a ++--+【答案】a c +【解析】【分析】由数轴上各数的位置可得a <b <0<c ,|c |<|b |<|a |,再根据加减法运算法则得出a +c 、c -b 、b +a 的符号,再化简绝对值,然后去括号合并同类项即可求解.【详解】解:由数轴知:a <b <0<c ,|c |<|b |<|a |,∴a +c <0,c -b >0,b +a <0, ∴22a c c b b a ++--+=-(a +c )+2(c -b )+2(b +a )=2222a c c b b a --+-++=a c +.【点睛】本题考查数轴、绝对值、式子的符号是解答的关键.18.解答下列各题(1)有8筐白菜,以每筐25千克为标准重量,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣1.5,﹣2,﹣2.5.回答下列问题:①与标准重量比较,8筐白菜总计超过多少千克或不足多少千克?②若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?(2)有理数a 、b 、c 在数轴上的位置如图所示.①用“>”或“<”填空:a +b _____0,c ﹣b______0;②|a +b |=_______,|c |=______,|c ﹣b |=_______;③化简:|a +b |-|c |+|c ﹣b |.【答案】(1)①总计不足5千克;②出售这8筐白菜可卖507元(2)①>,<;②a b +,c -,b c -;③2+a b【分析】(1)①根据有理数加法列式计算,即可求出结果;②先计算这8筐白菜的总重量,再根据单价乘以数量等于总价,即可解答.(2)①先根据数轴先比较出各数的大小,则可得出a b +和c b -与0的关系;②利用①的结果,结合绝对值的非负性,分别去绝对值即可;③利用②的结果,先去绝对值,再合并同类项,即可得出结果.(1)(1)解:①∵()()()()()1.5320.51 1.52 2.5+-++-++-+-+-=()4.59.5+-=5-,∴总计不足5千克;②∵这8筐白菜的总重量=()2585195⨯+-=(千克),∴出售这8筐白菜可卖2.6195507⨯=(元),答:出售8筐白菜可卖507元.(2)解:①由数轴可得:101c a b <-<<<<,∴0a b +>,0c b -<,故答案为:>,<;②∵0a b +>, ∴a b a b ++=,∵0c <, ∴c c -=,∵0c b -<, ∴cb bc =-﹣, 故答案为:a b +,c -,b c - ③a b c c b +-+-=()()()a b c b c +--+-=a b c b c +++-=2+a b .【点睛】本题考查了正数和负数、有理数的加法运算的简单应用,以及与数轴有关的计算,去绝对值和整式运算等知识,理清题中的正数和负数的意义和掌握绝对值的非负性是解答本题的关键.19.已知有理数a 、b 、c 在数轴上的位置如图所示,且a b =(1)求a b +和a b的值 (2)化简:2a a b c a c b b -+--+---【答案】(1)0a b +=;1a b=-;(2)3b . 【解析】【分析】 (1)根据a b =且a 、b 位于原点两侧,得到a 、b 互为相反数,然后进行求解即可; (2)先分别判定绝对值内的数的大小,再去绝对值,再合并同类项即可求解.【详解】(1)∵a b =且a 、b 位于原点两侧∴a 、b 互为相反数∴0a b +=,1a b=- (2)如图可得:c <b <0<a 且||||a b =∴a >0,a=-b 即a+b=0,c -a <0,-b <0,-2b >0因此|||||||||2|a a b c a c b b -+--+---=0()()(2)a a c b c b ---+---=2a a c b c b -++-+=3b【点睛】本题考查了根据数轴取绝对值进行计算的问题,其中根据去掉绝对值是解答本题的关键. 20.已知 a ,b ,c 在数轴上的位置如图所示,则化简|a -b|-|2c+b|+|a+c|.【答案】c .【解析】【分析】根据数轴得出c <b <0<a ,|a|<|c|,所以a -b >0,2c+b <0,a+ c <0,据此去掉绝对值符号,再合并同类项即可;解:∵从数轴可知:c <b <0<a ,|a|<|c|,∴a -b >0,2c+b <0,a+ c <0,∴|a -b|-|2c+b|+|a+c|=a -b -(-2c - b )+(-a -c )= a -b+2c+b -a -c=c ;答案是:c.【点睛】本题考查了数轴和绝对值、合并同类项等知识点,能正确去掉绝对值符号是解此题的关键.21.有理数a 、b 在数轴上的对应点位置如图所示,化简121a b a b ++-++-.【答案】222a b --+【解析】【分析】结合数轴,确定a+1,2-b ,a+b -1的符号是正或负,再结合绝对值的非负性,去掉绝对值符号,最后去括号合并同类项即可完成.【详解】根据数轴,10,20,0a b a b +<->+<121a b a b ++-++-(1)(2)[(1)]a b a b =-++-+-+-121a b a b =--+---+222a b =--+【点睛】本题考查数轴以及绝对值的化简,难度较大,属于易错题,熟练掌握绝对值的非负性以及有理数加减法的运算法则是解题关键.22.已知a 、b 、c 在数轴上位置如图所示:(1)判断正负,用“>”或“<”填空:b -a 0; c -b 0; a +c 0;(2)化简:2b a c b a c ----+【答案】(1)>;<;<;(2)a+3c【解析】(1)先根据数轴判断a 、b 、c 的符号及大小,再根据有理数的加减法,可得答案;(2)由(1)中的判断,再根据绝对值的性质,可化简去掉绝对值,合并同类项,可得答案.【详解】解:(1)由数轴可知c <a <0<b,∴b -a >0; c -b <0; a +c <0;(2)∵b -a >0; c -b <0; a +c <0 ∴2b a c b a c ----+=b -a -(b -c)-2(-a -c)=b -a -b+c+2a+2c=a+3c【点睛】本题考查了绝对值的性质及数轴的有关知识,利用数轴判断出a 、b 、c 的符号及大小关系,再用绝对值的性质化简是解题关键.23.已知,,a b c ,数在数轴上的位置如图所示:(1)化简:a b bc ca abc a b bc ca abc++++; (2)若b a c >>,化简:c a b c b a a c -+--+++.【答案】(1)-3;(2)3a c --【解析】【分析】(1)先判断a 、b 、c 的符号,进而判断相关积的符号,脱去绝对值计算即可;(2)根据条件判断出每一个绝对值内的式子的符号,在根据绝对值的性质脱去绝对值计算即可求解.【详解】解:()1由图中数轴可得0b a c <<<,0,0,0bc ca abc ∴<<> 原式111113a b bc ca abc a b bc ca abc----=++++=----+=-; ()2又b a c >>0,0,0,0c a b c b a a c ∴->+<-<+<∴原式()()()c a b c b a a c =--++--+c a b c b a a c =---+---3a c =--.【点睛】本题考查了绝对值的化简,整式的加减等知识,根据数轴提供的信息判断出绝对值内的符号是解题关键.24.已知a 、b 、c 在数轴上的位置如图所示,(1)用“>”或“<”填空:c b +_________0,ac_________0,abc_________0,ab c +____________0.(2)求代数式a ab abc a ab abc++的值. 【答案】(1) <;<;>;>;(2)1.【解析】【分析】(1)利用有理数的加法和乘法判断式子的符号,即可得到;(2)先去绝对值,然后合并即可.【详解】由数轴可知:b a 0c <<<,b c >(1)0c b +<,0ac <,0abc >,0ab c +>故答案为<,<,>,>;(2)ab 1111a abc a ab abc a ab abc a ab abc++=-++=-++=; 故答案为1-.【点睛】本题考查了有理数的大小比较,有理数的乘除法,有理数的大小比较比较有理数的大小可以利用数轴,它们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.也考查了绝对值.。

人教版七年级数学试题:第一章 有理数 强化训练题(含解答)

人教版七年级数学试题:第一章 有理数 强化训练题(含解答)

有理数的强化训练题1.(教材P5习题T5变式)七年级某班派出12名同学参加数学竞赛,这12名同学的成绩分别是90分、95分、70分、71分、72分、79分、81分、77分、78分、80分、82分、85分.(1)这12名同学成绩的平均分是多少?(2)以平均分为标准,用正数表示超出平均分的部分,用负数表示不足平均分的部分,它们对应的数分别是什么?2.在七年级(1)班举行的“数学晚会”上,A ,B ,C ,D ,E 五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16.主持人按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限,每名同学只能参加一组).如果让你来分,那么你会如何分组呢?3.小华、小明、小强三位同学的家分别位于东西方向的一条笔直的道路边,以道路边的一个雕塑为原点,向东方向为正方向,则他们三家的位置如图:(单位:m)星期六他们约好去某一家排练节目.(1)去哪一家,他们的路程之和最小?此时路程和是多少?(2)去哪一家,他们的路程之和最大?此时路程和是多少?4.已知数a ,b 在没有标明单位长度的数轴上的大致位置如图所示:(1)说出数a ,b 的正负性;(2)在数轴上标出a ,b 的相反数-a ,-b 的位置;(3)若a 与-a 相隔2 020个单位长度,则数a 是多少?5.根据|x|是非负数,且非负数中最小的数是0,解答下列问题:(1)当x 取何值时,|x -2 018|有最小值?这个最小值是多少?(2)当x 取何值时,2 019-|x -1|有最大值,这个最大值是多少?6.已知|m|=3,|n|=2,且m <n ,求m +n 的值.7.将下列计算过程补充完整:1+2-3-4+5+6-7-8+9+10-11-12+…+97+98-99-100.解:原式=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+…+(97+98-99-100) =-4+(-4)+(-4)+…+(-4)=-4×= .8.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求3x -(a +b +cd)x 的值. 9.用简便方法计算:(1)(-8)×(-5)×(-0.125);(2)(-112-136+16)×(-36);(3)0.7×149+234×(-15)+0.7×59+14×(-15);10.如图所示的运算流程中,若输入的数为3,则输出的数为 .11.已知|a -1|+(b -2)2=0,求(a -b)2 018的值.12.计算(能用简便计算的尽量用简便方法计算):(1)(-48)÷8-(-5)×(-6);(2)-0.75×(-112)÷(-214);(3)(-1.5)×45÷(-25)×34;(4)(12-58-14)×(-24);(5)(-4)×(-10)×0.5×0×2 018;13.下列用科学记数法表示的数,原来分别是什么数?5×106,1.20×105,-9.3×104,-2.34×108.14 下列由四舍五入法得到的近似数各精确到哪一位?(1)478;(2)0.032;(3)5.80亿;(4)4.0×105.15. 已知数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12ab +c +d 5+e 2的值 16.若|x -2|与(y +7)2互为相反数,试求y x 的值.17.a ,b 分别是数轴上两个不同点A ,B 所表示的有理数,且|a|=5,|b|=2,A ,B 两点在数轴上的位置如图所示:(1)试确定数a ,b ;(2)A ,B 两点相距多少个单位长度?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数; (4)点P 从A 点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2 019次后,求P 点表示的数.参考答案:1.解:(1)这12名同学成绩的平均分是(90+95+70+71+72+79+81+77+78+80+82+85)÷12=80(分).(2)它们对应的数分别是+10,+15,-10,-9,-8,-1,+1,-3,-2,0,+2,+5.2.解:答案不唯一,分组一:整数:2,0,-3;分数:-12,16. 分组二:正数:2,16;0;负数:-12,-3. 3.解:(1)去小明家路程和最小,为900 m.(2)去小强家路程和最大,为1 600 m.4.解:(1)a为负数,b为正数.(2)-a,-b的位置如图所示:(3)因为a与-a相隔2 020个单位长度,所以a与-a都离原点1 010个单位长度.因为a在原点的左侧,所以a点表示的数为-1 010.5.解:(1)当x=2 018时,|x-2 018|有最小值,这个最小值是0.(2)当x=1时,2 019-|x-1|有最大值,这个最大值是2 019.6.解:因为|m|=3,|n|=2,所以m=±3,n=±2.因为m<n,所以m=-3,n=±2.所以m+n=-3+2=-1或m+n=-3-2=-5.所以m+n的值为-1或-5.7.解:原式=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+…+(97+98-99-100)=-4+(-4)+(-4)+…+(-4)=-4×25=-100.8.解:由题意知a+b=0,cd=1,x=±2,当x=2时,原式=4;当x=-2时,原式=-49.用简便方法计算:(1)(-8)×(-5)×(-0.125);解:原式=(-8)×(-0.125)×(-5)=1×(-5)=-5.(2)(-112-136+16)×(-36);解:原式=(-112)×(-36)+(-136)×(-36)+16×(-36)=3+1-6=-2.(3)0.7×149+234×(-15)+0.7×59+14×(-15); 解:原式=(0.7×149+0.7×59)+[234×(-15)+14×(-15)] =0.7×(149+59)+(-15)×(234+14) =0.7×2+(-15)×3=1.4+(-45)=-43.6.10 -211.解:因为|a -1|≥0,(b -2)2≥0,又因为|a -1|+(b -2)2=0,所以a -1=0, b -2=0.因为a =1, b =2.所以(a -b)2 018=(1-2)2 018=1.12.计算(能用简便计算的尽量用简便方法计算):(1)(-48)÷8-(-5)×(-6);解:原式=-6-30=-36.(2)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)(12-58-14)×(-24); 解:原式=12×(-24)-58×(-24)-14×(-24)=-12+15+6=9.(5)(-4)×(-10)×0.5×0×2 018;解:原式=0.13.解:原数分别为3 500 000,120 000,-93 000,-234 000 000.14.下列由四舍五入法得到的近似数各精确到哪一位?(1)478;(2)0.032;(3)5.80亿;(4)4.0×105.解:(1)精确到个位.(2)精确到千分位.(3)精确到百万位.(4)精确到万位.15.解:因为a ,b 互为倒数,所以ab =1.因为c ,d 互为相反数,所以c +d =0.因为e 的绝对值为2,所以e =±2.所以e 2=(±2)2=4.所以12ab +c +d 5+e 2=12+0+4=412.16.解:由题意,得|x -2|+(y +7)2=0,因为|x -2|≥0,(y +7)2≥0,所以|x -2|=(y +7)2=0.解得x =2,y =-7,所以y x =(-7)2=49.16. 解:(1)因为|a|=5,|b|=2,所以a =5或-5,b =2或-2.由数轴可知,a <b <0,所以a =-5,b =-2.(2)-2-(-5)=3.答:A ,B 两点相距3个单位长度.(3)①若C 点在B 点的右侧,则CB =13CA =13(CB +AB). 所以CB =12AB =32. 所以点C 表示的数为-2+32=-12; ②若C 点在A ,B 点之间,则CB =13CA =13(AB -CB). 所以CB =14AB =34.所以点C 表示的数为-2-34=-112. 综上,C 点表示的数为-12或-114. (4)-5-1+2-3+4-5+6-7+…-2 017+2 018-2 019=-1 015. 答:P 点表示的数为-1 015.。

专题01 有理数(解析版)-2020-2021学年七年级数学上册期中期末复习考点强化训练(人教版)

专题01 有理数(解析版)-2020-2021学年七年级数学上册期中期末复习考点强化训练(人教版)

专题01有理数考点强化训练考点01正负数1.如果盈利8万元记为+8万元,那么亏损6万元,记为___________万元.【答案】-6【解析】【分析】由于“盈余”与“亏损”为相反意义的量,根据正数和负数的意义即可表示出亏损6万元.【详解】解:因为盈余8万元,记作+8万元,∴所以亏损6万元应记作-6万元.故答案为:-6.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.+,那么运出粮食5吨,应记作_______.2.粮库运进粮食100吨,计作100【答案】-5【解析】【分析】根据题意可得运进记为“+”,则运出即为“-”;接下来根据负数表示的意义, 表示出“运出粮食5吨”.【详解】+,那么运出粮食5吨,应记作-5吨.解: 粮库运进粮食100吨,计作100故本题答案为-5.【点睛】本题是关于正负数意义的题目, 解答本题需明确正负数所表示的含义.3.温度由﹣5℃上升6℃是()A.1℃B.﹣1℃C.11℃D.﹣11℃【答案】A【分析】温度由开始是﹣5℃,上升6℃,即在﹣5℃的基础上上升了6℃【详解】温度由﹣5℃上升6℃是:﹣5+6=1(℃).故选:A .【点睛】本题考察正负数之间的运算以及理解能力.4.下列各数:0,5-,()7--,8--,2(4)-中,负数有( )A . A . 1个B . B .2个C . C . 3个D .D . 4个【答案】B【分析】根据负数的概念、 有理数的乘方以及绝对值的概念进行判断即可.【详解】正数大于0, 负数小于0; 因为0=0, -5 < 0, -(-7) = 7 > 0, 8--= -8 < 0, 由有理数的乘方定义可知,2(4)(4)(4)16-=-⨯-=>0,所以负数共有2个.故选B.【点睛】本题主要考查负数的概念、 有理数的乘方以及绝对值的概念.5.在710-, 0,5--,0.6-, 2,13,10-, (-1)2020中负数的个数有( ) A .3B .4C .5D .6【答案】B【分析】根据小于0的数是负数,可得负数的个数【详解】 710-<0 5=-50--<0.6-<010-<0所以负数个数为4个故选B【点睛】本题考查的是正数和负数的判断,熟练掌握两者的性质是解题的关键.6.在下列有理数:﹣4,﹣(﹣3)3,|﹣27|,0,﹣14中,其中是负数的个数有( ) A .1个 B .2个 C .3个 D .4个根据负数的定义求解即可,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.【详解】在所列的实数中,负数有﹣4、﹣14这2个,故选:B.【点睛】本题考查了负数的定义,解题的关键是熟记定义.考点02有理数的分类7.下列说法中,正确..的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.若|a|=|b|,则a与b互为相反数D.整数包括正整数和负整数【答案】B【分析】根据有理数的分类逐一作出判断即可.【详解】解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a 与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.8.若a表示任意一个有理数,则下列说法中正确的是()A.﹣a是负有理数B.|a|是正有理数C.1a是有理数D.2a是有理数【答案】D【分析】根据有理数的定义进行判断即可.【详解】解:若a表示任意一个有理数, 则当a=0时,-a不是负有理数, |a|不是正有理数, 1a无意义, 故1a不是有理数.故选项A、B、C错误.不论a取任何有理数, 2a总是有理数.故选项D正确.本题主要考查有理数的定义.9.下列说法:(1)﹣3.56 既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0 是非正数;(4)﹣2018 既是负数,也是整数但不是有理数;(5)自然数是整数,其中正确的个数是()A.4B.3C.2D.1【答案】B【分析】根据有理数的分类, 即可解答.【详解】(1)-3.56既是负数、分数, 也是有理数, 正确;(2)正整数和负整数统称为整数,错误, 还有0;(3)0是非正数,正确;(4)-2014既是负数, 也是整数, 但不是有理数,错误,-2014是有理数;(5)自然数是整数,正确.正确的有3个,故选:B.【点睛】本题是关于有理数分类的题目,掌握有理数的定义与分类方法是关键.10.下面关于0的四种说法,其中正确的是()A.0是正数B.0是负数C.0既是正数也是负数D.0是有理数【答案】D【分析】根据有理数的分类,0既不是正数也不是负数.【详解】解:A选项错误,0不是正数;B选项错误,0不是负数;C选项错误,0既不是正数也不是负数;D选项正确,0是有理数.故选:D.【点睛】本题考查有理数的分类,解题的关键是掌握有理数的分类.11.下列关于有理数的分类正确的是()A.有理数分为正有理数和负有理数B .有理数分为整数、正分数和负分数C .有理数分为正有理数、0、分数D .有理数分为正整数、负整数、分数【答案】B【分析】本题根据有理数的两种分类方法来进行选择.【详解】有理数的第一种分类方法:0⎧⎪⎨⎪⎩正有理数有理数负有理数;有理数的第二种分类方法:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数. 选项A ,D 的分类中缺0,选项C 将两种分类方法混淆.故选B .【点睛】本题考查了有理数的两种分类方法:第一种:0⎧⎪⎨⎪⎩正有理数有理数负有理数;第二种:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数,熟记并灵活运用这两种分类方法是解本题的关键.12.把下列各数按要求分类:①4-,②25%-,③1-,④12,⑤10.2--,⑥2,⑦1.5,⑧0,⑨ 0.123,⑩ 4.1010010001...(填序号)整数集合:{ }.分数集合:{ }.正数集合:{ }.非负有理数集合:{ }.【答案】整数集合:①③⑥⑧;分数集合:②④⑤⑦⑨;正数集合:③④⑥⑦⑨⑩;非负有理数集合:③④⑥⑦⑧⑨⑩.【分析】根据整数、分数和有理数的定义逐一判断即可.【详解】由题意得:整数集合:①③⑥⑧;分数集合:②④⑤⑦⑨;正数集合:③④⑥⑦⑨⑩;非负有理数集合:③④⑥⑦⑧⑨⑩.【点睛】本题考查了有理数的分类,题目较为基础,关键是掌握有理数的两种分类方式:按定义分类和按正负分类.13.把下列各数分别填在相应的横线上:1,-0.20,135,325,-789,0,-23.13,0.618,-2014,π,0.1010010001….正数有:______________________________________________________;分数有:______________________________________________________;负数有:______________________________________________________;正整数有:____________________________________________________;非正数有:_____________________________________________________;负整数有:_____________________________________________________;非负数有:_____________________________________________________;负分数有:_____________________________________________________;非负整数有:___________________________________________________.【答案】1,135,325,0.618,π,0.1010010001…;-0.20,135,-23.13,0.618;-0.20,-789,-23.13,-2014;1,325;-0.20,-789,0,-23.13,-2014;-789,-2014;1,135,325,0,0.618,π,0.1010010001…;-0.20,-23.13;1,325,0.【解析】按照本题中给出的分类,结合各类型数的定义依次分析各个数的特征,得(1) 1是正数;1是正整数;1是非负数;1是非负整数.(2) -0.20是分数;-0.20是负数;-0.20是非正数;-0.20是负分数.(3)135是正数;135是分数;135是非负数.(4) 325是正数;325是正整数;325是非负数;325是非负整数.(5) -789是负数;-789是非正数;-789是负整数.(6) 0是非正数;0是非负数;0是非负整数.(7) -23.13是分数;-23.13是负数;-23.13是非正数;-23.13是负分数.(8) 0.618是正数;0.618是分数;0.618是非负数.(9) -2014是负数;-2014是非正数;-2014是负整数.(10) π是正数;π是非负数.(11) 0.1010010001…是正数;0.1010010001…是非负数.故本题应进行如下填写:(正数) 1,135,325,0.618,π,0.1010010001…;(分数) -0.20,135,-23.13,0.618;(负数) -0.20,-789,-23.13,-2014;(正整数) 1,325;(非正数) -0.20,-789,0,-23.13,-2014;(负整数) -789,-2014;(非负数) 1,135,325,0,0.618,π,0.1010010001…;(负分数) -0.20,-23.13;(非负整数) 1,325,0.考点03数轴14.已知点A是数轴上的点,如果将点A向左移动5个单位长度,终点表示的数是2,那么点A表示的数是________.【答案】7【分析】根据数轴上的点向右移动加,向左移动减,即可得答案.【详解】∵将点A向左移动5个单位长度,终点表示的数是2,∴把表示2的点向右移动5个单位长度,终点表示的数则是A,2 + 5 = 7,故A点表示的数为7.故答案为7【点睛】本题考查了数轴,关键点是正确识记数轴上点的移动规律:向右移动加,向左移动减.15.在数轴上与表示3-的点距离等于5的点所表示的数是()A.1B.2和8C.8-D.8-和2【答案】D【解析】【分析】结合数轴进行判断, 从表示3的点向左向右分别找数, 即可得出结果.【详解】解: 数轴上与-3距离等于5个单位的点有两个,从表示-3的点向左数5个单位是-8,从表示-3的点向右数5个单位是2.故答案为:-8或2.故选D.【点睛】本题考查了在数轴上, 把数和点对应起来, 也就是把“数”和“形”结合起来, 二者互相补充, 相辅相成, 本题注意观察所有符合条件的点, 在学习中要注意培养数形结合的数学思想.16.数轴上的A点表示-3的点距离是5个单位长度,则A点表示的数为________.【答案】-8或2【解析】【分析】根据题意,A点有可能在-3表示的点的左边,也有可能在-3表示的点的右边,根据数轴上两点间的距离的求法,求出A点表示的数为多少即可.【详解】解:当A点在-3表示的点的左边时,-3-5=-8;当A点在-3表示的点的右边时,-3+5=2;所以A点表示的数为-8或2.故答案为:-8或2.【点睛】本题主要考查了在数轴上表示数的方法,以及数轴上两点间的距离的求法,要熟练掌握.17.在数轴上与表示- 2的点的距离为3个单位长度的点所表示的数是_________ .【答案】-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.18.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C【解析】试题分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,考点:(1)、实数大小比较;(2)、实数与数轴考点04相反数是()19.设a是一个正数,则aA.0B.正数C.负数D.正数、负数或0【答案】C【分析】根据正数的相反数是负数即可解答.【详解】解:∵a是一个正数,∴﹣a是一个负数,故选:C.【点睛】本题考查相反数的定义,解答的关键是熟知正数的相反数是负数、负数的相反数是正数、0的相反数是0.20.下面说法正确的是()A.π的相反数是-3.14B.符号相反的数互为相反数C.一个数和它的相反数可能相等D.正数与负数互为相反数【答案】C【分析】根据相反数的定义逐项判断即可.【详解】-绝对值不相等,故A选项不正确.A.π的相反数是-π,π与 3.14B.符号相反的数互为相反数,不正确;还需要绝对值相等才行,故B选项不正确.C.一个数和它的相反数可能相等,0的相反数是0,故C选项正确.D.正数与负数互为相反数,缺少绝对值的判断,故D选项不正确.故选:C.【点睛】本题考查相反数的定义,牢记定义是解题关键.21.若代数式1﹣8x与9x﹣3的值互为相反数,则x=_____.【答案】2【解析】【分析】由互为相反数两数之和为0列出方程1﹣8x+9x﹣3=0,求出方程的解即可得到结果.【详解】解:根据题意得:1﹣8x+9x﹣3=0,移项合并得:x=2,故答案为2【点睛】此题考查代数式求值,相反数,解题关键在于利用其性质列出方程.22.若a,b互为相反数,则55+的值为__________.a b【答案】0【分析】根据互为相反数的两个数之和为0可得a+b=0,代入可得答案.【详解】解:由于a、b互为相反数,所以a+b=0,则5a+5b=5(a+b)=5⨯0=0.故答案为:0【点睛】本题主要考查了相反数的相关知识.23.如果a与1互为相反数,则|a+2|等于()A.2B.-2C.1D.-1【答案】C【解析】【分析】由相反数的定义得出a 的值,再带入代数式中即可求解.【详解】由a 与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C【点睛】此题考查了相反数的定义,熟知相反数的定义是解决此题的关键.24.下列说法正确的是( )A .-3是相反数B .3是相反数C .-3与3互为相反数D .符号相反的数互为相反数【答案】C【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】A 、-3是相反数,说法错误,不符合题意;B 、3是相反数,说法错误,不符合题意;C 、-3与3互为相反数,说法正确,符合题意;D 、符号相反的数互为相反数,说法错误,如2,-3符号相反但不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.25.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是____.【答案】-8、8【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的,两个点到原点的距离相等,所以互为相反数的两个数到原点的距离为8,故这两个数分别为8和-8.故答案为-8、8.26.已知a 4+和2(b 3)-互为相反数,那么a 3b +等于______.【答案】5【解析】试题分析:先根据相反数的性质列出方程,再根据非负数的性质求得a 、b 的值,最后代入求值即可.由题意得则所以 考点:相反数的性质,非负数的性质点评:解题的关键是熟练掌握非负数的性质:若两个非负数的和为0,这两个数均为0.考点05绝对值27.2--的相反数是( )A .12-B .2-C .12D .2【答案】D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D .【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.28.已知︱x ︱=4,︱y ︱=5且x >y ,则2x -y 的值为( )A .-13B .+13C .-3或+13D .+3或-1【答案】C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x -y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x -y=2×4-(-5)=13,当x=-4,y=-5时,2x -y=2×(-4)-(-5)=-3,∴2x -y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.29.若1<a <2,则化简|a -2|+|1-a |的结果是( )A .a -1B .1C .a +1D .a -3【答案】B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵1<a <2∴a -2<0,1-a<0∴|a -2|+|1-a |= -(a -2)-(1-a )=-a+2-1+a=1,因此答案选择B .【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.30.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b --【答案】A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:−2<a <−1<0<b <1,且|a|>|b|,∴a−b <0,a +b <0,则原式=b−a +2a +2b =a +3b ,故选:A.【点睛】此题考查了整式的加减,数轴以及绝对值,熟练掌握运算法则是解本题的关键.31.已知1a b c a b c++=,则abc abc 的值是( ) A .-1B .1C .±1D .不确定【答案】A【分析】先根据已知等式得出a 、b 、c 的正负,再化简绝对值即可得.【详解】由题意得:,,a b c 均不为0,因此,分以下四种情况:(1)当,,a b c 中没有负数,都是正数时, 则1113a c a b cb ++=++=,与题意不符,舍去; (2)当,,a bc 中只有1个负数时,不妨设a 为负数, 则1111a c a b cb ++=-++=,符合题意, 此时1abc abc abc abc==--; (3)当,,a b c 中有2个负数时,不妨设,a b 为负数, 则()1111a c b a b c++=-+-+=-,与题意不符,舍去; (4)当,,a b c 中都是负数时, 则()()1113a c a cb b ++=-+-+-=-,与题意不符,舍去; 综上,abc abc的值为1-, 故选:A .【点睛】本题考查了化简绝对值、有理数加法的应用,依据题意,正确分四种情况讨论是解题关键.32.若5a =,则a 的值为( )A .5B .-5C . 5±D .不能确定【答案】C【分析】根据绝对值的性质进行求解即可,其中正数的绝对值为本身,0的绝对值为0,负数的绝对值为它的相反数.【详解】|a|=5 ,则a=±5故选C .【点睛】本题考查了绝对值,熟练掌握绝对值的性质和求一个数的绝对值的方法是本题的关键.33.若21a -=,则a=______________.【答案】1或3【解析】【分析】一个数的绝对值等于1,那么这个数等于1±.【详解】∣a -2∣=1,易知a -2=1或a -2=-1,求得a=1或a=3.【点睛】理解绝对值的几何意义是解题的关键.34.已知4a =,7b =,且0a b ->,则+a b 的值为( )A .11B .3或11C .3-或11-D .3 或11-【答案】C【解析】【分析】先依据绝对值的性质求得a 、b 的值, 然后再由0a b ->, 确定出a 、b 的具体值, 最后代入计算即可.【详解】 解:4a =,7b =, ∴a=4±,b=7±. 又 0a b ->,∴a=4, b=-7.或a=-4,b=-7,∴当a=4, b=-7,则a+b=4-7=-3;当a=-4, b=-7则a+b=-4-7=-11.故选:C.【点睛】本题主要考查有理数的加、减法及绝对值的定义域性质.35.若a b =,则a 与b 的关系是( )A .a =bB .a =-bC .a =b =0D .a =b 或a =-b【答案】D【分析】两个数相等,两个数的绝对值也相等,两个数互为相反数,绝对值相等,据此求解即可.【详解】 ∵a b =∴a b =或=-a b故选D .【点睛】本题考查了绝对值的化简,求一个数的绝对值,题目较为基础,熟记求一个数绝对值的规律是本题的关键. 36.已知a =1,b =2,c =4,且a b c >>,则a b c -+=________.【答案】1-或3-【分析】因为a b c >>,所以根据题意应该分为两种情况,为1a =±, 2b =-, 4c =-,然后带入原式即可求解.【详解】由题意得:1a =±, 2b =-, 4c =-,当a =1-,2b =-, 4c =-时a b c -+=3-;当a =1,2b =-, 4c =-时,a b c -+=1-;故答案为:1-或3-.【点睛】本题考查了绝对值的化简,和有理数大小的比较,根据题意确定a 的取值分为两种情况是本题的易错点,注意不要丢项落项.37.如果13m +=,那么m =____________.【答案】±2【解析】【分析】先根据上述方程求出m 的绝对值,即可得出答案.【详解】 ∵13m += ∴2m =∴m=±2,因此答案为±2.【点睛】本题考查的是一个数的绝对值,注意一个正数的绝对值有两个,他们互为相反数.考点06比较大小38.比较大小:−5________−2.3.(填“>”“<”“=”)【答案】<【解析】【分析】根据负数比较大小的法则进行解答即可.【详解】解:.1-5|=5,1-2.3|=2.3∵5>2.3,∴-5<-2.3.故答案为: <.【点睛】本题考查的是实数的大小比较, 熟知负数比较大小的法则是解答此题的关键.39.比较大小78-_____67-(用“>”、“<”、“=”填空) 【答案】<【分析】求出两个数的绝对值,根据绝对值大的反而小即可判断.【详解】 7788-=,6677-= ∵749856=,648756=,49485656> ∴7687-<- 故答案为<.【点睛】本题考查了负数的比较大小,熟记负数比较大小时,绝对值大的反而小是本题的关键.40.比较大小:(用“>”“<”“=”连接)(1)56⎛⎫+- ⎪⎝⎭_____67--(2) 3.14-______π-【答案】> >【分析】 (1)将左右两端同时化简,然后通分进行比较即可;(2)根据两个负数比较大小,绝对值大的反而小进行判断即可.【详解】(1)55356642⎛⎫+-=-=- ⎪⎝⎭ 66367742--=-=- 35364242< 5667∴->- (2) 3.14π>3.14π∴->-.【点睛】本题考查了有理数的比较大小,正数比负数大,而两个负数比较大小时,绝对值大的反而小.41.比较大小:14⎛⎫--⎪⎝⎭_________13--. 【答案】>【分析】将两项分别化简后比较大小,正数一定大于负数.【详解】 14⎛⎫-- ⎪⎝⎭=14,1133--=- ∴14>13- 故答案为>. 【点睛】本题考查了求一个数的相反数,绝对值的化简,有理数大小的比较:正数一定大于负数,两个负数比较大小,绝对值大的反而小.42.+(34-)________|57-|;-3.14________π-(比较大小)【答案】< >【分析】正数比负数大,两个负数比较大小绝对值大的反而小,据此逐一判断即可.【详解】∵3344⎛⎫+-=-<⎪⎝⎭,5577-=>∴3547⎛⎫+-<- ⎪⎝⎭∵ 3.14π-<-∴ 3.14π->-故答案为<;>.【点睛】本题考查了有理数的比较大小,两个负数比较大小时,熟记绝对值大的反而小是本题的关键.考点07绝对值化简43.有理数a,b,c在数轴上的位置如图所示,化简|a+b|﹣|b+c|﹣|c+a|=_____.【答案】﹣2b【解析】【分析】先根据数轴判断出a、b、c的正负情况以及绝对值的大小, 然后判断出(a+b), (b+c), (c+a)的正负情况, 再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形,a<b<0<c,且|b|<|c|<|a|,∴a+b<0,b+c>0,c+a<o,原式=-(a+b)-(b+c)+(c+a)=-a-b-b-c+c+a,=-2b.故答案为-2b.【点睛】本题主要考查绝对值及数轴等知识.44.观察下列各式的特征:|76|76-=-;|67|76-=-;11112525-=-;11115225-=-.根据规律,解决相关问题: (1)把下列各式写成去掉绝对值符号的形式(不能写出计算结果):①|721|-= ; ②77||1718-= . (2)当a b >时,|a 一|b = ;当a b <时,|a 一|b = .(3)有理数a 在数轴上的位置如图,则化简|a 一2|的结果为 .A .2a -B .2a + .2C a -D .2a --(4)计算:111111112324320202019-+-+-++- 【答案】(1)①21-7;②771718-;(2)-a b ,b a -;(3)C ;(4)20192020【分析】 绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0,然后根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简; (1)①因为7<21,所以|721|217-=-;②因为771718>,所以7777||17181718-=- (2)根据绝对值的性质即可解得;(3)因为-1<a <0<2,所以22a a -=-(4)根据绝对值的性质和有理数运算,化简绝对值即可解得;【详解】解:(1)①因为7<21,所以|721|217-=-;②因为771718>,所以7777||17181718-=- 故答案为:①21-7;②771718-; (2)当a b >时,a b a b -=-当a b <时,a b b a -=-故答案为:-a b ,b a -(3)因为-1<a <0<2,所以22a a -=-故选C(4)原式=1111111111+223342018201920192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=112020-=20192020 【点睛】本题考查绝对值的性质,解题的关键是根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简; 45.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数x ,使得|x+5|+|x -2|=7这样的整数是_____.(3)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有写出最小值,如果没有说明理由.【答案】(1) 7(2) -5,-4,-3,-2,-1, 0, 1, 2(3) 有最小值.当X 取3到6之间的任意有理数时,最小值为3.【解析】【分析】(1)根据题目中的式子和绝对值可以解答本题;(2)利用分类讨论的数学思想可以解答本题;(3)根据题意,利用分类讨论的数学思想可以解答本题.【详解】(1)|5﹣(﹣2)|=|5+2|=7.故答案为7;(2)当x >2时,|x +5|+|x ﹣2|=x +5+x ﹣2=7,解得:x =2与x >2矛盾,故此种情况不存在;当﹣5≤x ≤2时,|x +5|+|x ﹣2|=x +5+2﹣x =7,故﹣5≤x ≤2时,使得|x +5|+|x ﹣2|=7,故使得|x +5|+|x ﹣2|=7的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;当x <﹣5时,|x +5|+|x ﹣2|=﹣x ﹣5+2﹣x =﹣2x +3=7,得x =﹣5与x <﹣5矛盾,故此种情况不存在. 故答案为﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;(3)|x ﹣3|+|x ﹣6|有最小值,最小值是3.理由如下:当x >6时,|x ﹣3|+|x ﹣6|=x ﹣3+x ﹣6=2x ﹣9>3;当3≤x ≤6时,|x ﹣3|+|x ﹣6|=x ﹣3+6﹣x =3;当x <3时,|x ﹣3|+|x ﹣6|=3﹣x +6﹣x =9﹣2x >3.故|x ﹣3|+|x ﹣6|有最小值,最小值是3.【点睛】本题考查了数轴、绝对值,解答本题的关键是明确数轴的特点和绝对值,利用数轴和分类讨论的数学思想解答. 46.观察下列每对数在数轴上的对应点间的距离,3与5,4与﹣2, ﹣4与3, ﹣1与﹣5.并回答下列各题:(1)数轴上表示4和﹣2两点间的距离是 ;表示﹣1和﹣5两点间的距离是 .(2)若数轴上的点A 表示的数为x ,点B 表示的数为﹣3.①数轴上A 、B 两点间的距离可以表示为 (用含x 的代数式表示);②如果数轴上A 、B 两点间的距离为|AB |=1,求x 的值.(3)直接写出代数式23x x ++-的最小值为 .【答案】(1)6 4 (2)①丨x+3丨 ②-2或者-4 (3)5【分析】距离一定是个非负数.【详解】(1)数轴上表示4和﹣2两点间的距离是6;表示﹣1和﹣5两点间的距离是4.(2)距离是个非负数,故值一定要加绝对值.令丨x-(-3)丨=1,解得:x=-2或者-4(3)当2x <-时,代数式23x x ++-的最小值为21x -+当23x -≤≤时,代数式23x x ++-的最小值为5当3x >时,代数式23x x ++-的最小值21x - 综合以上,可知代数式23x x ++-的最小值为5.【点睛】本题考察数轴的相关知识和绝对值的运用.47.如图所示,在数轴上A 点表示数a B 点表示数b ,且a 、b 满足2690a b ++-=,点A 、点.B 之间的数轴上有.......一点C ,且BC =2AC , (1)点A 表示的数为______,点B 表示的数为______;则C 点表示的数为______.(2)若一动点P 从点A 出发,以3个单位长度/秒速度由A 向B 运动;同一时刻,另一动点Q 从点C 出发,以1个单位长度/秒速度由C 向B 运动,终点都为B 点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q 运动时间为t 秒.①经过______秒后,P、Q两点重合;②点P与点Q之间的距离PQ=1时,求t的值.【答案】(1)-3,9,1;(2)2秒;(3)32或52或7秒.【分析】(1)根据非负数的性质求出a、b的值即可;设C点表示的数为x,则-3<x<9,根据BC=2AC列出方程,解方程即可;(2)①根据路程=速度×时间可得AP=3t,CQ=t,根据AC=AP-CQ列方程即可求出t;②分三种情况:点P在点Q的左边;t<4时,点P在点Q的右边;4<t<8时,点P到达点B,停止运动,此时QB=1.【详解】(1)∵|2a+6|+|b-9|=0,∴2a+6=0,b-9=0,∴a=-3,b=9,即点A表示的数为-3,点B表示的数为9;设C点表示的数为x,则-3<x<9,根据BC=2AC,得9-x=2[x-(-3)],解得x=1.即C点表示的数为1;(2)根据题意得,AC=AP-CQ∴3t-t=3+1解得,t=2;(3)分三种情况:如果点P在点Q的左边,由题意得3t+1+8-t=12,解得t=32;如果t<4时,点P在点Q的右边,由题意得3t-1+8-t=12,解得t=52;如果4<t<8时,点P到达点B,停止运动,此时QB=1,由题意得8-t=1,解得t=7.即当t=32或52或7秒时,点P 与点Q 之间的距离为1个单位长度. 【点睛】本题考查了一元一次方程的应用,数轴,两点间的距离,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.考点08有理数加法48.计算:(1)44413()()()13171317-+-++- (2)2111(4)(3)6(2)3324-+-++- 【答案】(1)1-;(2)334-. 【分析】根据有理数的加法法则,结合有理数的加法运算律进行计算即可.【详解】(1)原式=44413()[()]13131717-++-+- =0(1)+-=1-.(2)原式=2111[(4)(3)][6(2)]3324-+-++- =218(62)44-+- =1844-+ =334-. 【点睛】 本题有以下两个解题要点:(1)熟记“有理数的加法法则”;(2)知道有理数的加法交换律和结合律,并能在解题中灵活应用.49.运用运算律计算:(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)(-103)+(+134)+(-97)+(+100)+(-114); (3)(-318)+(-2.16)+814+318+(-3.84)+(-0.25)+45;(4)(-34)+338+|-0.75|+(-512)+|-258|.【答案】(1)-6.7;(2)-9912;(3) 245;(4) 0.5.【解析】【分析】各项结合后,相加即可得到结果.【详解】(1)原式=(0.36+0.3+0.64)+(-7.4-0.6) =1.3-8=-6.7.(2)原式=[(-103)+(-97)]+[(+134)+(-114)]+100=-200+12+100=-991 2 .(3)原式=-318-2.16+814+318-3.84-14+45=(-318+318)-(2.16+3.84)+(814-14)+45=0-6+8+4 5=24 5 .(4)原式=-0.75+338+0.75-5.5+258=(-0.75+0.75)+(338+258)-5.5=0+6-5.5=0.5.【点睛】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.50.对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,-5,0,-2,+4,-1,-1,+3.(1)这8名男生有百分之几达到标准?(2)这8名男生共做了多少个引体向上?【答案】(1)50%;(2)80个;【分析】负数的没有达标.【详解】(1)负数的没有达标,故48=50%;(2)∵ 2-5+0-2+4-1-1+3=0∴8⨯10=80个.【点睛】正确理解题意是解题的关键.51.一位出租车司机某日中午的营运全在市区的环城公路上进行.如果规定:顺时针方向为正,逆时针方向为负,那天中午他拉了五位乘客所行车的里程如下:(单位:千米)+10,﹣7,+4,﹣9,+2.(1)将最后一名乘客送到目的地时,这位司机距离出车地点的位置如何?(2)若汽车耗油为a升/千米,那么这天中午这辆出租车的油耗多少升?(3)如果出租车的收费标准是:起步价10元,3千米后每千米2元,问:这个司机这天中午的收入是多少?【答案】(1)0,回到起点(2)32a升;(3)86元【分析】(1)计算这位司机行驶的路程的代数和即可,(2)计算出每段路程的绝对值的和后乘以a,即为这天中午汽车共耗油数;(3)表示出每段的收入后计算它们的和即为中午的收入.【详解】(1)+10+(﹣7)+4+(﹣9)+2=0,答:这位司机回到起点;(2)|10|+|-7|+|+4|+|-9|+|+2|=32,32×a=32a(升)答:这天中午这辆出租车的油耗32a升;(3)(10-3)×2+10+(7-3)×2+10+(4-3)×2+10+(9-3)×2+10+10=86(元)答:这个司机这天中午的收入是86元52.阅读下面的解答过程:计算:112⨯+123⨯+134⨯+…+1910⨯.。

专题 含有绝对值的式子的化简(解析版)-七年级数学上册

专题 含有绝对值的式子的化简(解析版)-七年级数学上册

(人教版)七年级上册数学《第二章整式的加减》专题含有绝对值的式子的化简一、选择题(共10小题)1.有理数a、b在如图所示数轴的对应位置上,则|b﹣a|﹣|b|化简后结果为()A.a B.﹣a C.a﹣2b D.b﹣2a【分析】代入化简后的算式,求出算式的值是多少即可.【解答】解:|b﹣a|﹣|b|=a﹣b+b=a,故选:A.【点评】此题主要考查了整式的加减﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.2.(2022秋•罗湖区校级期末)有理数a,b在数轴上如图所示,则化简|2a|﹣|b|+|2a﹣5|的结果是()A.4a+b﹣5B.4a﹣b﹣5C.b+5D.﹣b﹣5【分析】先结合数轴确定a,b的范围,再运用绝对值知识进行化简.【解答】解:由题意可得,﹣2<b<﹣1<1<a<2,∴|2a|﹣|b|+|2a﹣5|=2a﹣(﹣b)+[﹣(2a﹣5)]=2a+b﹣2a+5=b+5,故选:C.【点评】此题考查了运用数轴表示有理数及绝对值求解的能力,关键是能准确理解并运用以上知识.3.(2022秋•天山区校级期末)已知a,b,c在数轴上位置如图所示,则|a﹣b|﹣|b﹣c|+|c﹣a|可化简为()A.0B.2b﹣2a C.2a﹣2b D.﹣2a【分析】先由数轴确定a,b,c的符号和大小,再分别确定a﹣b,b﹣c,c﹣a的符号,最后化简绝对值并计算求解.【解答】解:由题意得,a<b<0<c且|a|>|b|>|c|,∴a﹣b<0,b﹣c<0,c﹣a>0,∴|a﹣b|﹣|b﹣c|+|c﹣a|=b﹣a+b﹣c+c﹣a=2b﹣2a,故选:B.【点评】此题考查了运用数轴进行绝对值的化简、计算能力,关键是能准确理解并运用以上知识.4.(2022秋•永兴县期末)有理数a,b,c在数轴上的位置如图所示,式子|a|+|b|+|a+b|+|b﹣c|化简为()A.2a+3b﹣c B.3b﹣c C.b+c D.c﹣b【分析】根据正数的绝对值等于它本身,负数的绝对值等于它的相反数可得结果.【解答】解:由数轴得,﹣1<a<0,b>1,c>b,∴a+b>0,b﹣c>0,∴|a|+|b|+|a+b|+|b﹣c|=﹣a+b+a+b﹣b+c=b+c.故选:C.【点评】本题考查了绝对值与数轴,用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.5.(2022秋•黄埔区期末)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.【点评】本题考查的是整式的加减、数轴和绝对值,熟知数轴上右边的数总比左边的大是解答此题的关键.6.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|c﹣b|=()A.0B.2a+2b C.2b﹣2c D.2a+2c【分析】根据数轴的意义可知:c<a<0<b,结合绝对值的性质化简给出的式子.【解答】解:根据数轴图可知:c<a<0<b,∴a+b>0,a+c<0,c﹣b<0,∴|a+b|+|a+c|﹣|c﹣b|=a+b﹣a﹣c+c﹣b=0.故选:A.【点评】此题考查了数轴、绝对值的有关内容,能够正确判断绝对值内的式子的符号,再根据绝对值的性质正确化简.7.已知有理数a,b在数轴上的位置如图所示,则化简|b+1|﹣|b﹣a|的结果为()A.a﹣2b﹣1B.a+1C.﹣a﹣1D.﹣a+2b+1【分析】先根据数轴判断a、b的大小,再判断所求式子中绝对值内部的符号,再化简求值.【解答】解:由数轴可知,﹣1<b<0,1<a<2,∴b+1>0,|b+1|=b+1,b﹣a<0,|b﹣a|=a﹣b,∴原式=b+1﹣(a﹣b)=1+2b﹣a,故选:D.【点评】本题考查绝对值和数轴.关键在于根据数轴判断b+1、b﹣a的符号,进而取绝对值化简求值.8.有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a﹣2c+2b B.0C.﹣2c D.2a【分析】根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,即可求解.【解答】解:根据点所处的位置确定绝对值内数据的符号:c﹣a<0,a+b<0,b﹣c<0,原式=﹣(c﹣a)+(a+b)+(b﹣c)=2a﹣2c+2b,故选:A.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.9.已知有理数a,b,c在数轴上的位置如图,且|c|>|a|>|b|,则|a+b|﹣2|c﹣b|+|a+c|=()A.c﹣b B.0C.3b﹣3c D.2a+3b﹣c【分析】由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,再按照绝对值的化简法则和有理数的加减运算法则计算即可.【解答】解:由有理数a,b,c在数轴上的位置及|c|>|a|>|b|可得:c<b<0<﹣b<a<﹣c,∴|a+b|﹣2|c﹣b|+|a+c|=a+b﹣2(b﹣c)﹣a﹣c=b﹣2b+2c﹣c=c﹣b.故选:A.【点评】本题考查了借助数轴进行的绝对值化简及有理数的加减运算,数形结合并熟练掌握相关运算法则是解题的关键.10.(2022秋•辉县市校级期末)有理数a,b,c在数轴上所对应的点的位置如图所示,试化简|a﹣b|﹣2|b ﹣c|+|a+b|﹣|c+b|的结果是()A.﹣3b+3c B.3b﹣3c C.﹣2a+3b+c D.2a﹣b+3c【分析】根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|,然后化简绝对值即可.【解答】解:∵c<b<0<a,|a|<|b|<|c|,∴a﹣b>0,|b﹣c|>0,|a+b|<0,|c+b|<0,∴|a﹣b|﹣2|b﹣c|+|a+b|﹣|c+b|=a﹣b﹣2(b﹣c)+[﹣(a+b)]﹣[﹣(c+b)]=a﹣b﹣2b+2c﹣(a+b)+(c+b)=a﹣b﹣2b+2c﹣a﹣b+c+b=﹣3b+3c,故选:A.【点评】本题主要考查了绝对值的意义,有理数加法、减法运算,合并同类项,解题的关键是根据有理数a,b,c在数轴上所对应的点的位置得出c<b<0<a,|a|<|b|<|c|.二、填空题(共10小题)11.(2022秋•莱阳市期末)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|=.【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b与c ﹣b的正负,利用绝对值的代数意义化简所求式子,合并同类项即可得到结果.【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.12.(2022秋•温江区校级期中)有理数a,b,c数轴上的位置如图所示,请化简:|﹣c+b|+|a﹣c|﹣|b+a|=.【分析】结合数轴判断﹣c+b<0,a﹣c>0,b+a<0,再根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”可将原式化简,即得答案.【解答】解:由数轴可知:﹣c+b<0,a﹣c>0,b+a<0,∴原式=﹣(﹣c+b)+(a﹣c)+(b+a)=c﹣b+a﹣c+b+a=2a,故答案为:2a.【点评】本题考查了数轴,绝对值,关键是根据绝对值的性质“正数和零的绝对值是本身,负数的绝对值是相反数”将原式化简.13.有理数a、b、c在数轴上的位置如图,则|a+c|+|c﹣b|﹣|a+b|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴得:a<b<0<c,且|a|>|b|>|c|,∴a+c<0,c﹣b>0,a+b<0,则原式=﹣a﹣c+c﹣b+a+b=0.故答案为:0.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.有理数a,b,c在数轴上的对应点如图所示,化简|a﹣b|﹣|a+c|+|b﹣c|=.【分析】根据绝对值的性质,可化简绝对值,根据整式的加减,可得答案.【解答】解:|a﹣b|﹣|a+c|+|b﹣c|=﹣(a﹣b)+(a+c)+(b﹣c)=﹣a+b+a+c+b﹣c=2b.故答案为:2b.【点评】本题考查了数轴,利用绝对值的性质化简是解题关键.15.有理数a,b,c在数轴上的位置如图所示,化简|a+b﹣c|﹣|c﹣b|+2|a+c|=.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴a+b﹣c<0,c﹣b>0,a+c<0,则原式=﹣a﹣b+c﹣c+b﹣2a﹣2c=﹣3a﹣2c,故答案为:﹣3a﹣2c.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.a,b,c三个数在数轴上的位置如图所示,化简|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|=.【分析】根据数轴点的位置得出a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,再去掉绝对值符号,合并同类项即可.【解答】解:∵从数轴可知:a<b<0<c,|b|<|c|,∴a+b<0,b﹣c<0,c﹣a>0,a﹣b<0,∴|a+b|﹣|b﹣c|+|c﹣a|﹣|a﹣b|==﹣(a+b)﹣(c﹣b)+(c﹣a)﹣(b﹣a)=﹣a﹣b﹣c+b+c﹣a﹣b+a=﹣a﹣b,故答案为:﹣a﹣b.【点评】本题考查了整式的加减和数轴的应用,解此题的关键是能根据数轴去掉绝对值符号,题目比较好,难度不是很大.17.已知数a、b、c在数轴上的位置如图所示,则|a﹣c|﹣|a+b+c|﹣|b﹣a|=.【分析】先根据a、b、c在数轴上的位置进行绝对值的化简,然后去括号,合并同类项求解.【解答】解:由图可得,c<b<0<a,则原式=a﹣c+(a+b+c)+(b﹣a)=a﹣c+a+b+c+b﹣a=a+2b.故答案为:a+2b.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.18.已知有理数a,b,c在数轴上的位置如图所示,化简:|b﹣c|﹣2|b﹣a|+|c+a|=.【分析】根据数轴上右边的数总比左边的数法,判断大小;原式各项利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:c<b<0<a,|c|>|a|,∴﹣c>a,∴b﹣c>0,b﹣a<0,a+c<0,∴原式=b﹣c﹣2(a﹣b)+(﹣c﹣a)=b﹣c﹣2a+2b﹣c﹣a=﹣3a+3b﹣2c;故答案为﹣3a+3b﹣2c.【点评】此题考查了整式的加减,绝对值,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.19.表示有理数a,b,c的点在数轴上的位置如图所示,请化简|a+b|﹣2|a﹣c|+|c﹣a+b|=.【分析】根据数轴先判断a、b、c的符号和大小关系,再判断a+b、a﹣c、c﹣a+b的符号,进而去绝对值化简.【解答】解:根据数轴可知,a<b<0<c,故a+b<0,a﹣c<0,c﹣a+b>b﹣a>0,∴原式=﹣(a+b)﹣2(c﹣a)+(c﹣a+b)=﹣a﹣b﹣2c+2a+c﹣a+b=﹣c.故答案为:﹣c.【点评】本题考查了绝对值的的化简.通过数轴判断a、b、c的符号,再判断绝对值中的式子符号,是解题的关键.有的时候还需要注意有理数与原点距离的远近.20.数a,b,c在数轴上的位置如图所示.化简:2|b﹣a|﹣|c﹣b|+|a+b|=.【分析】根据数轴即可将绝对值去掉,然后合并即可.【解答】解:由数轴可知:c<b<a,b﹣a<0,c﹣b<0,a+b>0,则原式=﹣2(b﹣a)+(c﹣b)+(a+b)=﹣2b+2a+c﹣b+a+b=3a﹣2b+c.故答案为:3a﹣2b+c.【点评】本题考查整式化简运算,涉及数轴,绝对值的性质,整式加减运算等知识.三、解答题(共20小题)21.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|【分析】由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,根据绝对值的性质化简即可.【解答】解:由题意可知:a﹣b>0,a+c<0,c﹣a<0,a+b+c<0,b﹣c>0,原式=a﹣b+a+c+c﹣a﹣a﹣b﹣c+b﹣c=﹣b【点评】本题考查数轴、绝对值等知识,解题的关键是记住绝对值的性质:数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.22.已知有理数a、b、c在数轴上对应点的位置如图所示.化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.【分析】由数轴得出﹣1<c<0<b<1<a,|b|<|c|<|a|,去掉绝对值符号,再合并即可.【解答】解:∵由数轴可知:﹣1<c<0<b<1<a,|b|<|c|<|a|,∴a﹣b>0,b﹣c>0,c﹣a<0,b+c<0,∴原式=a﹣b+b﹣c+c﹣a﹣(b+c)=﹣b﹣c.【点评】本题考查了数轴和绝对值,能正确去掉绝对值符号是解此题的关键.23.有理数a、b、c在数轴上的位置如图所示.化简:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|.【分析】根据数轴,先确定a、b、c的正负,再判断a﹣b,a+b,c﹣a,b﹣c,b﹣a+c的正负,最后根据绝对值的意义,对代数式化简.【解答】解:由数轴知:a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,b﹣a+c>0所以3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|﹣|b﹣a+c|=3(b﹣a)﹣(a+b)﹣(c﹣a)+2(c﹣b)﹣(b﹣a+c)=3b﹣3a﹣a﹣b﹣c+a+2c﹣2b﹣b+a﹣c=﹣b﹣2a.【点评】本题考查了数轴上点的特点、有理数的加减法法则及绝对值的化简.根据绝对值的意义化简代数式是关键.注意:大的数﹣小的数>0,小的数﹣大的数<0.24.有理数a,b,c在数轴上的位置如图:试化简:|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|【分析】根据绝对值的性质化简即可.【解答】解:由题意:a﹣b>0,c﹣a<0,b﹣c>0,c<0,∴|a﹣b|﹣|c﹣a|+|b﹣c|﹣|c|=a﹣b+c﹣a+b﹣c+c=c.【点评】本题考查绝对值的性质、数轴等知识,熟练掌握绝对值的性质是解决问题的关键.25.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|.【分析】首先判断出a<0,a+b<0,c﹣a>0,再根据绝对值的性质化简即可.【解答】解:观察数轴可知:a<0,a+b<0,c﹣a>0∴原式=﹣a+a+b+c﹣a=b+c﹣a.【点评】本题考查数轴、绝对值的性质等知识,解题的关键是熟练掌握绝对值的性质,记住如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.26.已知a,b在数轴上对应的点如图示化简:|a|+|a+b|﹣|a﹣b|﹣|b﹣a|.【分析】首先根据图示,可得a<0,a+b<0,b﹣a>0,a﹣b<0,然后根据整数的加减的运算方法,求出算式的值是多少即可.【解答】解:根据图示,可得a<﹣b<0<b<﹣a;∴a<0,a+b<0,a﹣b<0,b﹣a>0,∴|a|=﹣a,|a+b|=﹣(a+b),|a﹣b|=﹣(a﹣b,|b﹣a|=b﹣a,∴|a|+|a+b|﹣|a﹣b|﹣|b﹣a|=﹣a﹣a﹣b+a﹣b﹣b+a=﹣3b.【点评】此题考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大.还考查了整式的加减运算,解答此类问题的关键是要明确整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.27.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|+|a﹣b|﹣|b﹣c|+|2a|.【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值的性质去掉绝对值号,再合并同类项即可.【解答】解:由图可知,a<0,b>0,c<0且|c|>|a|>|b|,所以,a﹣b<0,b﹣c>0,a﹣c>0,所以原式=a﹣c+b﹣a﹣b+c﹣2a=﹣2a.【点评】本题考查了数轴,绝对值的性质,准确识图并判断出各数正负情况是解题的关键.28.已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|﹣|a+c|+2|c﹣b|.【分析】解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.【解答】解:由数轴可知:a>b>0>c,|a|>|c|,则b﹣a<0,a+c>0,c﹣b<0.∴|b﹣a|﹣|a+c|+2|c﹣b|=﹣(b﹣a)﹣(a+c)﹣2(c﹣b)=﹣b+a﹣a﹣c﹣2c+2b=b﹣3c.【点评】在去绝对值符号时要注意:大于0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.29.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.【点评】本题主要考查了数轴和绝对值,理解绝对值的意义是解答此题的关键.30.如图,数a,b,c在数轴上的位置如图.(1)判断符号:a+b0,b﹣c0,a﹣c0;(填“>”、“<”)(2)化简:|b﹣c|﹣|a+b|﹣|a﹣c|.【分析】(1)根据数轴、有理数的加法可判断a+b,b﹣c,a﹣c的符号;(2)根据绝对值和a+b,b﹣c,a﹣c的符号化简式子|b﹣c|﹣|a+b|﹣|a﹣c|即可.【解答】解:(1)由数轴得,a>c>0<b,|b|>a>c,∴a+b<0,b﹣c<0,a﹣c>0;故答案为:<,<,>;(2)∵a+b<0,b﹣c<0,a﹣c>0,∴|b﹣c|﹣|a+b|﹣|a﹣c|=﹣b+c﹣(﹣a﹣b)﹣(a﹣c)=﹣b+c+a+b﹣a+c=2c.【点评】本题考查了数轴,有理数的加减运算法则,绝对值的性质,整式的加减,掌握正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0是解题的关键.31.(2022秋•綦江区期中)有理数a、b、c在数轴上的对应点的位置如图所示:(1)用“>”“<”或“=”填空:a+b0,c﹣a0,b﹣c0;(2)化简:|a+b|﹣|c﹣a|﹣|b|+|b﹣c|.【分析】(1)根据各点在数轴上的位置判断出a,b,c的符号,进而可得出结论;(2)根据(1)中a,b,c的符号去绝对值符号即可.【解答】解:(1)由各点在数轴上的位置可知,a<0<b<c,|a|>b,∴a+b<0,c﹣a>0,b﹣c<0.故答案为:<,>,<.(2)∵由(1)可知,a+b<0,c﹣a>0,b﹣c<0,∴|a+b|﹣|c﹣a|﹣|b|+|b﹣c|=﹣(a+b)﹣(c﹣a)﹣b+(c﹣b)=﹣a﹣b﹣c+a﹣b+c﹣b=﹣3b.【点评】本题考查的是有理数的大小比较,熟知数轴的特点和绝对值的性质是解题关键.32.(2022春•杜尔伯特县期中)有理数a、b、c在数轴上的位置如图所示.(1)用“<”连接:0,a、b、c.(2)化简:|c﹣a|+2|b﹣c|﹣|a+b|【分析】根据有理数a、b、c在数轴上的位置即可得到结论.【解答】解:(1)a<b<0<c;(2)原式=(c﹣a)+2(﹣b+c)﹣(﹣a﹣b),=c﹣a﹣2b+2c+a+b,=3c﹣b.【点评】本题考查了数轴和有理数的大小比较法则,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.33.有理数a、b、c在数轴上的位置如图所示.(1)判断a﹣b0,a﹣c0,b﹣c0;(2)化简|a﹣b|+|a﹣c|﹣|b﹣c|.【分析】(1)由图可得:c<a<0<b,得a﹣c>0,a﹣b<0,b﹣c>0,从而解决此题.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0.根据绝对值的定义,得|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b ﹣c|=b﹣c,从而解决此题.【解答】解:(1)由图可得:c<a<0<b.∴a﹣c>0,a﹣b<0,b﹣c>0.故答案为:<,>,>.(2)由(1)得:a﹣c>0,a﹣b<0,b﹣c>0,∴|a﹣c|=a﹣c,|a﹣b|=b﹣a,|b﹣c|=b﹣c,∴|a﹣b|+|a﹣c|﹣|b﹣c|=b﹣a+a﹣c+c﹣b=0.【点评】本题主要考查数轴,绝对值、整式的加减运算,熟练掌握实数的大小关系、绝对值的定义、整式的加减运算法则是解决本题的关键.34.有理数a,b,c在数轴上的位置如图所示,(1)用“<”连接0,a,b,c;(2)化简代数式:|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|.【分析】(1)数轴上右边的数总比左边的数大,从而连接即可;(2)根据数轴得出a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,去掉绝对值后合并即可得出答案.【解答】解:(1)结合数轴可得:c<b<0<a;(2)由题意得:a﹣b>0,a+b<0,c﹣a<0,b﹣c>0,故|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|=a﹣b﹣a﹣b﹣a+c+b﹣c=﹣a﹣b.【点评】本题考查了整式的加减、数轴及绝对值的知识,掌握数轴上右边的数总比左边的数大是解答本题的关键.35.若有理数a、b、c在数轴上测的点A、B、C位置如图所示:(1)判断代数式c﹣b、a+c的符号;(2)化简:|﹣c|﹣|c﹣b|+|a+b|+|b|.【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.【解答】解:(1)因为a<b<0<c,|a|>|c|.所以c﹣b>0,a+c<0;(2)因为a<b<0<c,|a|>|c|.所以﹣c<0,c﹣b>0,a+b<0,原式=c﹣(c﹣b)﹣(a+b)﹣b=c﹣c+b﹣a﹣b﹣b=﹣a﹣b.【点评】本题考查了合并同类项,解题的关键是利用绝对值的性质化简绝对值,利用合并同类项得出答案.36.有理数a,b,c在数轴上的位置如图所示,(1)c0;a+c0;b﹣a0(用“>、<、=”填空)(2)试化简:|b﹣a|﹣|a+c|+|c|.【分析】(1)根据在数轴上原点左边的数小于0,得出c<0;a<0<b,再根据有理数的加减法法则判断a+c与b﹣a的符号;(2)先根据绝对值的意义去掉绝对值的符号,再合并同类项即可.【解答】解:(1)由题意,得c<a<0<b,则c<0;a+c<0;b﹣a>0;故答案为<;<;>;(2)原式=b﹣a+a+c﹣c=b.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了数轴与整式的加减.37.已知a>b>0,且|a|>|b|.(1)在数轴上画出a,b,﹣a,﹣b对应的点的大致位置;(2)化简|﹣a|﹣2|a﹣b|+|a+b|.【分析】(1)根据a,b的大小关系在数轴上画出对应点即可.(2)根据绝对值的性质化简即可.【解答】解:(1)如图所示.(2)∵a>b>0,∴a﹣b>0,a+b>0,∴|﹣a|﹣2|a﹣b|+|a+b|=a﹣2(a﹣b)+(a+b)=a﹣2a+2b+a+b=3b.【点评】本题考查作图﹣复杂作图、数轴、绝对值的性质,熟练掌握数轴和绝对值的性质是解答本题的关键.38.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,c,﹣c大小;(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【分析】(1)根据数轴即可比较大小;(2)根据绝对值的性质对整式进行化简求解.【解答】解:(1)由数轴可知:b<c<0<a,∵|a|=|c|,∴a=﹣c>﹣a=c>b.(2)∵a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴原式=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣2a﹣b+c.【点评】本题考查数轴,涉及比较大小,整式化简,绝对值的性质.39.有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:0,a,b,c;(2)化简代数式:3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.【分析】(1)根据数轴上的数,右边的总大于左边的进行判断即可;(2)根据绝对值的性质去绝对值进行计算.【解答】解:(1)如图可得,a<b<0<c;(2)由(1)得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)+[﹣(a+b)]﹣(c﹣a)+2[﹣(b﹣c)]=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.【点评】本题考查了整式的加减,解题的关键是比较a,b,c的大小以及绝对值的性质.40.(2022秋•锦江区校级期中)知有理数a、b、c在数轴上所对应的点的位单如图所示,原点为O.(1)试化简|a+2b|﹣|a+c|﹣|c﹣2b|;(2)若数轴上有一点所表示的数为x,且|x﹣5|=3,求﹣3x﹣4|1﹣x|的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(2)根据|x﹣5|=3,得x=8或x=2,再依次代入所求式子即可解答.【解答】解:(1)根据数轴上点的位置得:a<b<0<c,∴a+2b<0,a+c<0,c﹣2b>0,则原式=﹣a﹣2b+a+c﹣c+2b=0;(2)∵|x﹣5|=3,∴x﹣5=3或x﹣5=﹣3,∴x=8或x=2,当x=8时,﹣3x﹣4|1﹣x|=﹣3×8﹣4|1﹣8|=﹣52,当x=2时,﹣3x﹣4|1﹣x|=﹣3×2﹣4|1﹣2|=﹣10,综上,﹣3x﹣4|1﹣x|的值为﹣10或﹣52.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.。

七年级数学上册《第一章-有理数加减混合运算》练习题附答案-人教版

七年级数学上册《第一章-有理数加减混合运算》练习题附答案-人教版

七年级数学上册《第一章 有理数加减混合运算》练习题附答案-人教版一、选择题1.计算(﹣3)+9的结果等于( )A.6B.12C.﹣12D.﹣62.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高( )A.﹣3℃B.7℃C.3℃D.﹣7℃3.在算式﹣1+7﹣( )=﹣3中,括号里应填( )A.+2B.﹣2C.+9D.﹣94.﹣6的相反数与比5的相反数小1的数的和为( )A.1B.0C.2D.115.如果两个数的和为负数,那么这两个数一定是( )A.正数B.负数C.一正一负D.至少一个为负数6.计算﹣(+1)+|﹣1|,结果为( )A.﹣2B.2C.1D.07.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的数,则a ﹣b +c 的值为() A.﹣1 B.0 C.1 D.2 8.把﹣2+(+3)﹣(﹣5)+(﹣4)﹣(+3)写成省略括号和的形式,正确的是( )A.﹣2+3﹣5﹣4﹣3B.﹣2+3+5﹣4+3C.﹣2+3+5+4﹣3D.﹣2+3+5﹣4﹣39.若四个有理数之和的14是3,其中三个数是﹣10,+8,﹣6,则第四个数是( )A.+8B.﹣8C.+20D.+1110.若|m|=3,|n|=5且m ﹣n >0,则m +n 的值是( )A.﹣2B.﹣8或 ﹣2C.﹣8或 8D.8或﹣211.已知a,b,c 在数轴上的位置如图,化简∣a+c ∣﹣∣a ﹣2b ∣﹣∣c ﹣2b ∣的结果是()A.0B.4bC.﹣2a﹣2cD.2a﹣4b;12.计算+++++……+的值为( )A. B. C. D.二、填空题13.把(+5)﹣(﹣7)+(﹣23)﹣(+6)写成省略括号的和的形式为________.14.某冷库的室温为﹣4 ℃,一批食品需要在﹣28 ℃冷藏,如果每小时降温3 ℃,经过小时后能降到所要求的温度.15.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= .16.若∣x+y∣+∣y﹣3∣=0,则x﹣y的值为 .17.已知a、b、c是三个非负实数,且a+b=7, c ﹣ a =﹣5, s=a+b+c,则s的最大值与它最小值为的差为________.18.已知有理数a, b, c在数轴上的位置如图所示,则化简代数式∣b﹣c∣﹣∣c﹣a∣+∣b ﹣a∣= .三、解答题19.计算:13+(﹣15)﹣(﹣23).20.计算:﹣17+(﹣33)﹣10﹣(﹣16).21.计算:(﹣34)﹣(﹣12)+(+34)+(+8.5)﹣13;22.计算:434﹣(+3.85)﹣(﹣314)+(﹣3.15).23.一辆货车从货场A出发,向东行驶了2km到达批发部B,继续向东行驶了1.5km到达商场C,又向西行驶了5.5km到达超市D,最后回到货场.(1)用一个单位长度表示1km,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?24.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米),依先后次序记录如下:+9,﹣3,﹣5,+6,﹣7,+10,﹣6,﹣4,+4,﹣3,+7.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,则这辆出租车这天下午耗油多少升?25.检查一商店某水果罐头10瓶的质量,超出记为“+”号,不足记为“﹣”号,情况如下:﹣3克,+2克,﹣1克,﹣5克,﹣2克,+3克,﹣2克,+3克,+1克,﹣1克.(1)总的情况是超出还是不足?(2)这些罐头平均超出或不足为多少?(3)最多与最少相差是多少?26.某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少27.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示):(1)这天冷库的冷冻食品比原来增加了还是减少了?增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用是500元,运出每吨冷冻食品费用是800元;方案二:不管是运进还是运出,每吨冷冻食品费用都是600元.从节约运费的角度考虑,选用哪一种方案比较合适?参考答案1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】D6.【答案】D.7.【答案】C8.【答案】D9.【答案】C10.【答案】D11.【答案】B12.【答案】B13.【答案】5+7﹣23﹣614.【答案】815.【答案】016.【答案】﹣517.【答案】2.18.【答案】0.19.【答案】解:原式=13﹣15+23=21.20.【答案】解:原式=﹣17﹣33﹣10+16=﹣60+16=﹣44.21.【答案】解:原式=(﹣34+34)+(12+8.5)﹣13=0+9﹣13=823.22.【答案】解:原式=4.75﹣3.85+3.25﹣3.15=123.【答案】解:(1)如图.(2)由数轴可知超市D距货场A有2km.(3)货车一共行驶了2+1.5+5.5+2=11(km).24.【答案】解:(1)出租车离公园8千米,在公园的东方;(2)这辆出租车这天下午耗油6.4升.25.解:(1)﹣3+2﹣1﹣5﹣2+3﹣2+3+1﹣1=﹣5(克),即总的情况是不足5克.(2)5÷10=0.5(克),即平均不足0.5克.(3)3﹣(﹣5)=8(克),即最多与最少相差8克. 26.【答案】解:(1)250﹣9=241(辆).故本周六生产了241辆摩托车.(2)﹣5+7﹣3+4+10﹣9﹣25=﹣21<0所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.27.【答案】解:(1)﹣3×2+4×1+(﹣1)×3+2×3+(﹣5)×2=﹣9.故这天冷库的冷冻食品比原来减少了,减少了9吨.(2)方案一:费用为4×500+2×3×500+3×2×800+3×1×800+5×2×800=20200(元)方案二:费用为(6+4+3+6+10)×600=17400(元)由于17400<20200,所以从节约运费的角度考虑,选用方案二比较合适.。

人教版初中数学七年级上学期培优强化训练试卷及答案(9-16)

人教版初中数学七年级上学期培优强化训练试卷及答案(9-16)

培优强化训练91.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.2.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?3.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?4.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG”改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的52.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?5.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.你认为哪种方案获利最多?为什么?数学培优强化训练(九)答案1、解:(1)分三种情况讨论:方案一:甲乙组合:设买甲种电视机x 台,则买乙种电视机(50-x)台,由题意得25502590000)50(21001500=-==-+x x x x 方案二:乙丙组合:设买乙种电视机y 台,则买丙种电视机(50-y)台,由题意得)(5.8790000)50(25002100舍去不合题意,y y y ==-+方案三:甲丙组合:设买甲种电视机z 台,则买丙种电视机(50-z)台,由题意得15503590000)50(25001500=-==-+z z z z 综上可以买甲乙两种电视机各25台或甲种电视机35台和丙种电视机15台.(2)方案一:)(100002525025150元=⨯+⨯方案三:)(90001525035150元=⨯+⨯为了获得最大利润应该买进甲乙两种型号的电视机各25台.(3)设买甲种型号的电视机x 台,甲种型号的电视机y 台,甲种型号的电视机(50-x-y)台,由题意得y x y x y x y x 523535041090000)50(250021001500-==+=--++易知y 为5的倍数,25,253,27,206,29,159,31,1012,33,515,35,0==================z x y z x y z x y z x y z x y z x y 因此有以上六种符合条件的方案.2、解:设每小时雨水增加量为a,每台水泵每小时的排水量为b,则根据积水量相同得a b a b a b 473321010=-⨯=-设用三台水泵需要x 小时将积水排尽,由题意得173010471047310103=-⨯=-⨯-=-x a a ax ax ab ax bx 答:用三台水泵需要1730小时将积水排尽.3、解:设人前进的速度为am/min,公共汽车的速度为xm/min,由题意得)(8.42501200503002501200)300(66120066300120044分===-===--=--==+t x a x x x a x x a x a 答:人前进的速度为50m/min,公共汽车的速度为250m/min,公共汽车每隔4.8分发一班.4、解:(1)出租车公司每次改装x 辆出租车,改装后每辆的燃料费为y 元,由题意得,%40804880)(4840220)2100(8052)100(802032)2100(80522)100(80203=-===-⨯=-⨯⨯⎪⎩⎪⎨⎧-⨯=-⨯=元用整体代换得y x x x x x xy x xy (2)设全部改装需要z 天收回成本,由题意得1251004000100)4880(=⨯=⨯-z z 答:公司共改装了40辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%.全部改装需要125天收回成本.5、解:方案一:)(1400001000140元=⨯方案二:)(725000)615140(10007500615元=⨯-+⨯⨯方案三:设这批蔬菜中有x 吨进行精加工,则有(140-x )吨进行粗加工,由题意得)(810000450080750060)(801406015161406元吨=⨯+⨯=-==-+x x x x 答:由此可以看出,方案三获利最多.培优强化训练101、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是,用字母可以表示成__________.2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m 2,最后结算时,有以下几种方案:方案一:按工计算,每个工30元(1个人干一天是1个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元;请你帮小红家出主意,选择方案_____付钱最合算.3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数.4、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是()A.相等B.互补C.互余D.无法确定5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为()6、(16分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n 为非负整数)展开式的项数及各项系数的有关规律.例如:0()1a b +=,它只有一项,系数为1;1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;1111111233……121243第5题A .B .C.D.222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;……根据以上规律......,解答下列问题:(1)4()a b +展开式共有项,系数分别为;(2)()n a b +展开式共有项,系数和...为.7、计算:(每小题10分,共20分)(1)1914726235|263131959|-+-(2)⎥⎦⎤⎢⎣⎡-+-⨯-⨯-522)2(32(3238、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50k m 的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km )-8-11-14-16+41+8(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?数学培优强化训练(十)(答案)1、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是,用字母可以表示成__________.1、有理数减法法则a-b=a+(-b)2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m 2,最后结算时,有以下几种方案:方案一:按工计算,每个工30元(1个人干一天是1个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元;请你帮小红家出主意,选择方案_____付钱最合算.2、方案二3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数.3、第二行依次填0和5,第三行填-0.54、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是(B )A.相等B.互补C.互余D.无法确定5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为(C )6、(16分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n 为非负整数)展开式的项数及各项系数的有关规律.例如:()1a b +=,它只有一项,系数为1;1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;……根据以上规律......,解答下列问题:121243第18题A .B .C.D.1111111233……(1)4()a b +展开式共有项,系数分别为;(2)()na b +展开式共有项,系数和...为.4.(1)5;1,4,6,4,1;(2)1n +,2n.7、计算:(每小题10分,共20分)(1)1914726235|263131959|-+-(2)⎥⎦⎤⎢⎣⎡-+-⨯-⨯-522)2()32(323=548、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km )-8-11-14-16+41+8(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?5.(1)1500米;(2)6825.6元培优强化训练111、(10分)小明从A 处向北偏东0'7238方向走10m 到达B 处,小亮也从A 处出发向南偏西0'1538方向走15m 到达C 处,则∠BAC 的度数为度。

人教版七年级数学上册《绝对值的化简》专题训练-附带答案

人教版七年级数学上册《绝对值的化简》专题训练-附带答案

人教版七年级数学上册《绝对值的化简》专题训练-附带答案类型一 绝对值之间是加号的化简1.计算: 34ππ-+-=________.【答案】1【解析】【分析】先化简绝对值 再加减运算即可求解.【详解】解:∵3<π<4 ∵34ππ-+-=34-+-=1故答案为:1.【点睛】本题考查化简绝对值、实数的加减运算 会利用绝对值的性质化简绝对值是解答的关键. 2.a 、b 两个有理数在数轴上的位置如图所示 则|a +b |=____.【答案】a b --##b a --【解析】【分析】 先根据数轴可得0,,b a b a 再确定a b +的符号 再化简绝对值即可.【详解】 解:由题意得:0,,b a b a 0,a b ∴+< .a b a b a b故答案为:.a b【点睛】本题考查的是利用数轴比较有理数的大小 绝对值的含义与化简 有理数的和的符号的确定掌握“0000x x x x xx ”是解本题的关键.3.若有理数,,a b c 在数轴上的位置如图:则b a b c -+-=____________ .【答案】c a -##-a+c【解析】【分析】根据数轴得出0a b c <<< ||||c a > 先去掉绝对值符号 再合并同类项即可.【详解】 解:从数轴可知:0a b c <<< ||||c a >0b c ∴-< 0b a ->||||b a b c b a b c c a ∴-+-=--+=-故答案是:c a -.【点睛】本题考查了数轴 绝对值 整式的加减 解题的关键是能正确去绝对值符号.4.已知32y -<< 化简23y y -++=_____.【答案】5【解析】【分析】根据绝对值的性质去掉绝对值号 然后化简即可.【详解】解:32y -<<23y y ∴-++=-(y -2)+(y +3)23y y =-++5=.故答案为:5.【点睛】本题考查了整式的加减、绝对值的意义 熟练掌握绝对值的意义是解题的关键.5.数a b 在数轴上的位置如图所示 化简:|b ﹣a |+|b |=______.【答案】2a b -##-2b +a【解析】【分析】根据数a b 在数轴上的位置得出2101b a --<<<<<然后化简绝对值即可. 【详解】解:根据数a b 在数轴上的位置可得:2101b a --<<<<<∵0b a -< 0b <∵|b ﹣a |+|b |=()2b a b b a b a b ---=-+-=-故答案为:2a b -.【点睛】本题考查了在数轴上表示有理数 化简绝对值 根据点在数轴上的位置得出相应式子的正负是解本题的关键.6.已知a b c 是∵ABC 的三边 化简:|a +b -c |+|b -a -c |=________.【答案】2a【解析】【分析】首先利用三角形的三边关系得出0,0a b c b a c +->--< 然后根据求绝对值的法则进行化简即可.【详解】解:∵,,a b c 是ABC ∆的三条边∵00a b c b a c +->--<, ∵||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=.故答案为:2a .【点睛】熟悉三角形的三边关系和求绝对值的法则 是解题的关键 注意 去绝对值后 要先添加括号 再去括号 这样不容易出错.|a +b -c |+|b -a -c |7.若a 、b 、 c 为整数 且 | a - b |19 + | c - a |99 =1 则| c - a | + | a - b | + | b -c |=________.【答案】2【解析】【分析】根据题意 ,,a b c 三个数中有2个数相等 设a b = 则1c a -= 1b c -= 进而即可求得答案.【详解】解:,,a b c 为整数 则,a b c a --也为整数 且| a - b |19 与| c - a |99 为非负数 和为1 ,,a b c ∴三个数中有2个数相等当a b =时 则1c a -= 1b c -= 0a b -=∴| c - a | + | a - b | + | b -c |=1012++=同理 当a c =或c b =时 均得到| c - a | + | a - b | + | b -c |=2故答案为:2.【点睛】本题考查了非负数的性质 根据题意求出,,a b c 三个数中有2个数相等是解题的关键.8.有理数a b c 在数轴上的位置如图所示 化简:|c ﹣a |+|c ﹣b |+|a +b |=_____.【答案】2b【解析】【分析】根据有理数a b c 在数轴上的位置可得c ﹣a >0 c ﹣b <0 a +b >0 再根据绝对值的意义进行化简即可.【详解】根据有理数a b c 在数轴上的位置可知 a <0<c <b b a >∵c ﹣a >0 c ﹣b <0 a +b >0∵|c ﹣a |+|c ﹣b |+|a +b |=c ﹣a +b ﹣c +a +b=2b故答案为:2b【点睛】本题考查的是利用数轴比较有理数的大小 有理数的加减法的运算法则 绝对值的化简 去括号 整式的加减运算 掌握以上知识是解题的关键.类型二 绝对值之间是减号的化简9.在数轴上数a 、b 、c 所对应的点如图所示 化简:b a c b --+=__________.【答案】a -2b -c【解析】【分析】根据数轴得到b <0<a <c 且b c < 由此得到b -a <0 c+b >0 利用绝对值性质化简合并即可.【详解】解:由数轴得b <0<a <c 且b c <∵b -a <0 c+b >0 ∵b a c b --+=-b+a -c -b=a -2b -c故答案为:a -2b -c .【点睛】此题考查了利用数轴比较数的大小 有理数绝对值的性质化简计算 整式的加减法 正确比较有理数的大小化简绝对值是解题的关键.10.若a <1 化简:31a a ---=__________.【答案】2【解析】【分析】由题意根据a 的取值范围 可以将题目中的式子的绝对值去掉 从而可以解答本题.【详解】解:∵a <1∵|3-a |-|a -1|=3-a +a -1=2故答案为:2.【点睛】本题考查整式的加减、绝对值 解答本题的关键是明确相关的计算方法.11.a 、b 两个数在数轴上的位置如图所示 则化简||||b b a --的结果是________.【答案】a【解析】【分析】由数轴得0b > 0a < 0b a -> 去绝对值有()b b a -- 从而得出结果.【详解】解:0b > 0a <0b a ∴->()b b a b b a b b a a ∴--=--=-+=故答案为:a .【点睛】本题考查了数轴 去绝对值.解题的关键与难点在于判断绝对值里数值的正负.12.a b c 在数轴上的位置如图所示 化简:2a b a c +--=__________.【答案】2a b c --【解析】【分析】 由题意可得:0,,a b c ab c 再判断0,0,a b a c 【详解】 解:0,,a b c a b c 0,0,a b a c∴ ()()22a b a c a b a c +--=-+---⎡⎤⎣⎦2a b a c22a b a c2a b c故答案为:2a b c --【点睛】本题考查的是利用数轴比较有理数的大小 化简绝对值 去括号 合并同类项 熟练的“化简绝对值”是解题的关键.13.若有理数a 、b 、c 在数轴上的位置如图所示 则a b b c --+可化简为__.【答案】a c --##c a --【解析】【分析】根据数轴判断出0a b c <<< b c < 即可得到0a b -< 0b c +> 再利用绝对值性值计算即可;【详解】由数轴可得:0a b c <<< b c <∵原式b a b c a c =---=--;故答案是:a c --.【点睛】本题主要考查了利用数轴比较式子大小 绝对值的性质 准确分析计算是解题的关键.14.若2<x <5 则|x ﹣2|﹣|5﹣x |=_______.【答案】2x -7##-7+2x【解析】【分析】根据2<x <5 得到x -2>0 5-x <0 根据绝对值的意义去绝对值 去括号 合并同类项即可求解.【详解】解:因为2<x <5所以x -2>0 5-x <0所以|x ﹣2|﹣|5﹣x |=(x -2)-(5-x )=2x-7.故答案为:2x-7【点睛】本题考查了绝对值的化简合并同类项去括号等知识根据x的取值脱去绝对值是解题关键.15.有理数a b c在数轴上的对应点如图所示化简代数式:|a|﹣|﹣b|+|c|=_____.【答案】a b c-++【解析】【分析】由数轴知a<b<0<c去绝对值即可求解.【详解】解:由数轴知a<b<0<c∵|a|﹣|﹣b|+|c|=a b c a b c.故答案为:a b c-++.【点睛】本题考查绝对值的性质.确定绝对值符号内代数式的性质符号是解答此类题目的关键.16.若0<a<1 -2<b<-1 则1212a ba b-+--+=_____.【答案】﹣2【解析】【分析】先根据题意得出a﹣1<0 b+2>0 再根据绝对值的性质化简即可解答.【详解】解:∵0<a<1 -2<b<-1∵a﹣1<0 b+2>0∵1212 a ba b-+--+=(1)212 a ba b--+--+=﹣1﹣1故答案为:-2.【点睛】本题考查有理数的减法运算、绝对值的性质 会利用绝对值的性质化简是解答的关键. 类型三 绝对值之间有加有减的化简17.有理数a b c 在数轴上表示的点如图所示 化简||||2||a b a c b c +---+=__________.【答案】33b c --##33c b【解析】【分析】根据数轴得出a b + a c - 1b -的符号 再去绝对值即可.【详解】 由数轴得0a b c b c <<<,< ∵0a b +< 0a c -< 0b c +>∵||||2||a b a c b c +---+()()2a b a c b c =-++--+22a b a c b c =--+---33b c =--.故答案为:33b c --.【点睛】本题主要考查了数轴和绝对值 掌握数轴、绝对值以及合并同类项的法则是解题的关键. 18.已知a b c 是有理数 它们在数轴上的对应点如图所示 化简:|a ﹣c |﹣|a ﹣b |+|b ﹣c |=_____.【答案】22a c -##22c a -+【解析】【分析】根据数轴 判断出a b c ,,的符号 从而得到a c a b b c ---,,的符号 化简求解即可.【详解】所以 0a c -> 0a b -< 0b c -> ∵||||22a c a b b c a c a b b c a c --+--+-+--=-=故答案为:22a c -【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.19.若有理数a b c 在数轴上的位置如图所示 则化简:||||||a c b c b ++--+=_________.【答案】a -【解析】【分析】根据有理数在数轴上的位置求得0c b a <<< c a >进而可得0a c +< 0b -> 0c b +< 进而化简绝对值即可【详解】解:根据有理数a b c 在数轴上的位置 可得0c b a <<< c a >∴0a c +< 0b -> 0c b +<∴||||||a c b c b ++--+=()a c b c b ------a c b c b a =---++=-故答案为:a -【点睛】本题考查了根据有理数在数轴上的位置判断式子的符号 绝对值化简 整式的加减运算 正确的判断式子的符号化简绝对值是解题的关键.20.有理数a b c 在数轴上的位置如图所示.化简代数式:323c a b c a b -+--+=_______ .【答案】5c +b##b+5c【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负 利用绝对值的代数意义化简 去括号合并即可.【详解】由图可知a <b <0<c则a +b <0 c -a >0 b -c <0 ∵==,c a c a b c c b a b a b ----+=--,∵原式=3()2()3()c a c b a b -+----332233c a c b a b =-+-++5c b =+故答案为:5c b +.【点睛】本题考查了整式的加减、数轴及绝对值的知识 掌握数轴上右边的数总比左边的数大是解答本题的关键.21.有理数a b c 在数轴上的位置如图所示 若m =|a +b |﹣|b ﹣1|﹣|a ﹣c | 则m =____.【答案】-1-c【解析】【分析】根据数轴上点的位置可得01b a c <<<< 即可推出0a b +< 10b -< 0a c -< 由此化简绝对值求解即可.【详解】解:由数轴上点的位置可知:01b a c <<<<∵0a b +< 10b -< 0a c -< ∵1m a b b a c =+----()()()1a b b c a =-+----1a b b c a =---+-+1c =--故答案为:1c --.【点睛】本题主要考查了根据数轴上点的位置化简绝对值 解题的关键在于能够熟练掌握数轴的相关知识.22.已知a <0 b <0 c >0 化简:2a b c a b a +--+--=________.【答案】3a b c ---【解析】【分析】根据条件分别求得2,,a b c a b a +---的符号 进而化简绝对值即可【详解】a <0b <0c >020,0,0a b c a b a ∴+<->--> ∴2a b c a b a +--+--=()2()a b c a b a ----+--2a b c a b a =---+--3a b c =---故答案为:3a b c ---【点睛】本题考查了化简绝对值 整式的加减 正确的化简绝对值是解题的关键.23.有理数a 、b 、c 在数轴上的位置如下图所示则a c a b b a a c +-+--+-=________.【答案】0【解析】【分析】由数轴上右边的点比左边点表示的数字大可知 c >b >a 且c >0 0>b >a a b c >> 再根据绝对值的性质解答即可.【详解】解:根据数轴可知c >b >a 且c >0 0>b >a a b c >>∵0a c +< 0a b +< 0b a -> 0a c -< ∵a c a b b a a c +-+--+-=()()()()a c a b b a a c -+++----=a c a b b a a c --++-+-+=0.故答案为:0.【点睛】注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号 难度适中. 24.已知a b c 为三个有理数 它们在数轴上的对应位置如图所示 则式子|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=______.【答案】0【解析】【分析】根据点在数轴上的位置判断式子的符号 然后根据绝对值的意义化简即可.【详解】解:根据数轴可知:1012c a b -<<<<<<∵0c b -< 0b a -> 0a c ->∵|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=()()()c b b a a c ------=c b b a a c -+-+-+=0;故答案为:0.【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.25.已知点A 、B 在数轴上表示的数分别是a 和b :化简|2|||3||a a b a b ---++=__________.【答案】44a b --##44b a【解析】【分析】根据A B 两点在数轴上的位置得到 然后进行计算即可.【详解】解:由图可知:a <0<b a b >∵-2a >0 a -b <0 a +b <0∵|2|||3||a a b a b ---++=233a a b a b -+---=44a b --故答案为:44a b --.【点睛】本题考查数轴的基本知识结合绝对值的综合运用 一定要看清题中条件.26.实数a b c 在数轴上的位置如图所示 化简:c b b a c -+--=______.【答案】a【解析】【分析】由题意得 0c b a <<< 0c b -< 0b a -< 根据绝对值的非负性进行解答即可得.【详解】解:由题意得 0c b a <<<∵0c b -< 0b a -< ∵c b b a c -+--=()()b c a b c -+---=b c a b c -+-+=a故答案为:a .【点睛】本题考查了绝对值 解题的关键是掌握绝对值的非负性.27.已知有理数a 、b 在数轴上的对应点位置如图所示 请化简:2a a b a b ++--=____________.【答案】3b -【解析】【分析】根据有理数a 、b 在数轴上的对应点位置 化简即可.【详解】解:根据数轴可知:101a b <-<<< ∵2a a b a b ++--=()2()a a b a b --++-=22a a b a b ---+-=3b -故答案为:3b -.【点睛】本题考查了数轴 化简绝对值根据有理数在数轴上的位置得出相应式子的符号是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答
案)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
牢记方法规则:1.判断绝对值里面量的正负
2.去掉绝对值产生括号
3.去掉括号合并同类项
第1天
1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.
2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.
3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.
4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.
5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.
第2天
6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.
7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.
8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.
9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.
10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.
第3天
11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.
12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.
13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.
14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.
15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.
第4天
16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|
18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.
19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.
参考答案
1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.
解:由数轴上点的位置可得:c<0<a<b,
∴b﹣a>0,c﹣a<0,c﹣b<0,
∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.
2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.
解:由图可得,c<b<0<a,
则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.
3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.
解:由数轴可知c<a<0<b,且|a|<|b|<|c|,
则a﹣b<0、a+c<0、b﹣2c>0,
∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)
=b﹣a﹣2a﹣2c﹣b+2c
=﹣3a.
4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.
解:根据题意得:c<a<0<b,且|b|<|a|<|c|,
∴b+a<0,b﹣c>0,a﹣c>0,
则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.
5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.
解:∵由图可知,c<a<b,
∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,
∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)
=a﹣c﹣2b+c﹣a﹣c﹣a﹣b
=﹣a﹣3b﹣c.
6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.
解:根据图示,可得c<b<0<a,且a<|c|,
∴a+c<0,2a+b>0,c﹣b<0,
∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.
7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.
解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,
故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|
=b+c﹣a+b﹣c﹣(b﹣a)
=b.
8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.
解:由数轴得,a<c<0<b,
∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,
∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.
9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.
解:根据数轴上点的位置得:﹣1<c<0<a<b,
∴c﹣1<0,a﹣c>0,a﹣b<0,
则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.
10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.
解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,
∴a﹣c<0,a+b>0,b﹣c<0,2b<0
原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)
=c﹣a﹣a﹣b﹣c+b﹣2b
=﹣2a﹣2b.
11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.
解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b
=﹣c.
12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.
解:∵由图可知c<0<a<b,|c|>b>a,
∴a﹣b<0,b﹣c>0,a+c<0,
∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a
=b﹣a﹣b+c+a+c﹣b+2a
=2a+2c﹣b.
13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.
解:由图可知,c<a<0<b,
所以,b﹣c>0,c+a<0,a﹣b<0,
所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)
=b﹣c﹣2c﹣2a﹣3b+3a
=a﹣2b﹣3c.
14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.
解:∵由图可知,c<a<0<b,
∴2b﹣c>0,c-a<0,a﹣b<0,
∴原式=2b﹣c+2(c-a)+3(b﹣a)
=2b﹣c+2c﹣2a+3b-3a
=-5a+b+c.
15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.
解:∵由数轴上a、b、c的位置可知,a<b<0<c,
∴a﹣b<0,c﹣a>0,b+c>0,
∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)
=﹣a+a﹣b+c﹣a+b+c
=﹣a+2c.
16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,
∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,
则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.
17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|
解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则
|2a﹣b|+3|c﹣a|﹣2|b﹣c|,
=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),
=﹣2a+b+3c﹣3a+2b﹣2c,
=﹣5a+3b+c.
18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.
解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,
则|a﹣b|+3|c﹣a|﹣|b﹣c|
=b﹣a+3(c﹣a)﹣(c﹣b)
=b﹣a+3c﹣3a﹣c+b
=2b﹣4a+2c.
19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.
解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,
∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,
∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,
=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,
=﹣3a﹣c+b.
20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.
解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,
则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|
=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)
=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c
=﹣3a+c.。

相关文档
最新文档