最新导数练习题(含答案)

合集下载

导数的计算练习题及答案

导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。

解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。

f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。

化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。

2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。

求导练习题带答案

求导练习题带答案

求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。

以下是一些求导的练习题及其答案,适合初学者练习。

练习题1:求函数 f(x) = x^3 的导数。

解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。

因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。

练习题2:求函数 g(x) = sin(x) 的导数。

解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。

所以,g'(x) = cos(x)。

练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。

解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。

对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。

练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。

解:这里我们使用链式法则和幂函数的求导法则。

首先,设 u = x^2- 1,那么 k(x) = u^3。

u 的导数是 u' = 2x,而 u^3 的导数是3u^2。

应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。

练习题5:求函数 m(x) = e^x 的导数。

解:根据指数函数的求导法则,e^x 的导数是它自身。

所以,m'(x) = e^x。

练习题6:求函数 n(x) = ln(x) 的导数。

解:自然对数函数 ln(x) 的导数是 1/x。

因此,n'(x) = 1/x。

练习题7:求函数 p(x) = (3x - 2)^5 的导数。

解:使用链式法则和幂函数的求导法则。

导数练习题及答案

导数练习题及答案

导数练习题及答案一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( ) A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx =4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的.图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x →0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。

(完整版)导数习题+答案

(完整版)导数习题+答案

一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.2.已知函数f(x)=xlnx﹣2x+a,其中a∈R.(1)求f(x)的单调区间;(2)若方程f(x)=0没有实根,求a的取值范围;(3)证明:ln1+2ln2+3ln3+…+nlnn>(n﹣1)2,其中n≥2.3.已知函数f(x)=axlnx(a≠0).(Ⅰ)求函数f(x)的单调区间和最值;(Ⅱ)若m>0,n>0,a>0,证明:f(m)+f(n)+a(m+n)ln2≥f(m+n)4.已知函数f(x)=2e x﹣x(1)求f(x)在区间[﹣1,m](m>﹣1)上的最小值;(2)求证:对时,恒有.5.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.6.已知函数f(x)=ln(x+2)﹣a(x+1)(a>0).(1)求函数f(x)的单调区间;(2)若x>﹣2,证明:1﹣≤ln(x+2)≤x+1.7.已知函数f(x)=ln(x+1)﹣x.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)若x>﹣1,证明:.8.已知函数(1)当a=1时,利用函数单调性的定义证明函数f(x)在(0,1]内是单调减函数;(2)当x∈(0,+∞)时f(x)≥1恒成立,求实数a的取值范围.9.已知函数f(x)=(1)当a<0,x∈[1,+∞)时,判断并证明函数f(x)的单调性(2)若对于任意x∈[1,+∞),不等式f(x)>0恒成立,求实数a的取值范围.参考答案与试题解析一.解答题(共9小题)1.已知a>0,函数f(x)=lnx﹣ax2,x>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性。

导数练习题含答案完整版

导数练习题含答案完整版

导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。

导数高中试题及解析答案

导数高中试题及解析答案

导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。

解析:首先,我们需要找到函数 \( f(x) \) 的导数。

根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。

2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。

解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。

因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。

3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。

解析:这是一个复合函数,我们可以使用链式法则来求导。

首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。

对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。

导数考试题型及答案详解

导数考试题型及答案详解

导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。

答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。

答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。

解:首先求导数f'(x) = 3x^2 - 12x + 9。

然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。

2. 已知函数y = ln(x),求y'。

解:根据对数函数的导数公式,y' = 1/x。

四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。

证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。

五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。

解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。

然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。

因此,该物体在t = 3时的瞬时速度为0。

六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。

(完整版)导数练习题(含答案)

(完整版)导数练习题(含答案)

导数概念及其几何意义、导数的运算一、选择题:1 已知,若,则a 的值等于32()32f x ax x =++(1)4f '-=ABCD1931031631332 已知直线与曲线,则b 的值为1y kx =+3y x ax b =++切于点(1,3)A3B-3C5D-53 函数的导数为2y x a a =+2()(x-)ABCD 222()x a -223()x a +223()x a -222()x a +4 曲线在点处的切线与坐标轴围成的三角形的面积为313y x x =+4(1,)3A B C D192913235已知二次函数的导数为,对于任意实数x ,有,则2y ax bx c =++(),(0)0f x f ''>()0f x ≥的最小值为(1)(0)f f 'A3BC 2 D52326 已知函数在处的导数为3,则的解析式可能为()f x 1x =()f x A B2()(1)3(1)f x x x =-+-()2(1)f x x =-CD 2()2(1)f x x =-()1f x x =-7 下列求导数运算正确的是AB211(1x x x'+=+21(log )ln 2x x '=CD 3(3)3log x x e '=⋅2(cos )2sin x x x x'=-8 曲线在处的切线的倾斜角为32153y x x =-+1x =AB C D6π34π4π3π9 曲线在点处的切线方程为3231y x x =-+(1,1)-A BCD 34y x =-32y x =-+43y x =-+45y x =-10设函数的图像上的点处的切线斜率为k ,若,则函数的sin cos y x x x =+(,)x y ()k g x =()k g x =图像大致为11 一质点的运动方程为,则在一段时间内相应的平均速度为253s t =-[1,1]t +∆ABCD 36t ∆+36t -∆+36t ∆-36t -∆-12 曲线上的点到直线的最短距离是()ln(21)f x x =-230x y -+=ABCD 013 过曲线上的点的切线平行于直线,则切点的坐标为32y x x =+-0P 41y x =-0P A B(0,1)(1,0)-或(1,4)(1,0)--或CD (1,4)(0,2)---或(2,8)(1,0)或14 点P 在曲线上移动,设点P 处切线的倾斜角为,则角的取值范围是323y x x =-+ααABC D [0,]2π3[0,)[,)24πππ 3[,)4ππ3(,]24ππ二、填空题15 设是二次函数,方程有两个相等实根,且,则的表达式()y f x =()0f x =()22f x x '=+()y f x =是______________16 函数的导数为_________________________________2sin x y x=17 已知函数的图像在点处的切线方程是,则_________()y f x =(1,(1))M f 122y x =+(1)(1)f f '+=18 已知直线与曲线有公共点,则k 的最大值为___________________________y kx =ln y x =三、解答题19 求下列函数的导数(1)(2) (3)(4) 1sin 1cos xy x-=+y =y =+tan y x x =⋅20 已知曲线与,直线与都相切,求直线的方程21:C y x =22:(2)C y x =--l 12,C C l 21 设函数,曲线在点处的切线方程为()bf x ax x=-()y f x =(2,(2))f74120x y --=(1)求的解析式()f x(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并()y f x =0x =y x =求此定值。

完整版)导数大题练习带答案

完整版)导数大题练习带答案

完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。

Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。

+\infty)$。

Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。

m+3]$ 上的最值。

$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。

m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。

Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。

证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。

2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。

Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。

$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。

导数基础训练试题及答案

导数基础训练试题及答案

导数基础训练试题及答案一、单项选择题(每题3分,共30分)1. 函数f(x)=x^2在x=1处的导数是()。

A. 0B. 1C. 2D. 32. 函数f(x)=3x^3+2x^2+5的导数是()。

A. 9x^2+4xB. 9x^2+4x+5C. 3x^2+4xD. 3x^2+4x+53. 函数f(x)=sin(x)的导数是()。

A. cos(x)B. sin(x)C. -cos(x)D. -sin(x)4. 如果函数f(x)的导数为f'(x)=6x,那么f(x)可能是()。

A. 3x^2+CB. 2x^3+CC. x^3+CD. x^2+C5. 函数f(x)=e^x的导数是()。

A. e^xC. -e^xD. -e^(-x)6. 函数f(x)=ln(x)的导数是()。

A. 1/xB. xC. ln(x)D. 17. 函数f(x)=x^(1/3)的导数是()。

A. 1/3x^(-2/3)B. 1/3x^(1/3)C. x^(-2/3)D. x^(2/3)8. 函数f(x)=sqrt(x)的导数是()。

A. 1/(2sqrt(x))B. 1/2sqrt(x)C. 2/sqrt(x)D. 2sqrt(x)9. 函数f(x)=x^5-5x^3+x的导数是()。

A. 5x^4-15x^2+1B. 5x^4-15x^2+xC. 5x^4-15x^2+1+xD. 5x^4-15x^210. 函数f(x)=cos(x)的导数是()。

A. -sin(x)B. sin(x)D. cos(x)二、填空题(每题4分,共20分)1. 函数f(x)=x^3的导数是______。

2. 函数f(x)=1/x的导数是______。

3. 函数f(x)=tan(x)的导数是______。

4. 函数f(x)=x^2-6x+10的导数是______。

5. 函数f(x)=ln(x)+x的导数是______。

三、解答题(每题10分,共50分)1. 求函数f(x)=x^2+3x-5在x=2处的导数值。

导数测试题(含答案)

导数测试题(含答案)

导数测试题姓名 班别 座号 分数一、选择题答题卡:二.填空题答题卡13. 14.15. 16.1.曲线x y e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e2.设x x x x f ln 42)(2--=,则0)('>x f 的解集为( )A. ),0(+∞B. ),2()0,1(+∞-C. ),2(+∞D.)0,1(- 3.已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,( )A .9B .6C .-9D .-64. 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .35.函数y=12x 2-㏑x 的单调递减区间为( )(A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞)6.设函数f (x )=2x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12为f(x)的极小值点C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点 7.曲线3ln 2y x x =++在点0P 处的切线方程为410x y --=,则点0P 的坐标是 ( )A .(0,1)B .(1,1)-C .(1,3)D .(1,0)8.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是( )9.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P 横坐标的取值范围为 ( ) A .11,2⎡⎤--⎢⎥⎣⎦ B .[]1,0- C .[]0,1 D .1,12⎡⎤⎢⎥⎣⎦10.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 ( )(A )21y x =- (B )y x = (C )32y x =- (D )23y x =-+11.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 ( )A .4B .14-C .2D .12- 12.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为 ( ) (A) 1n (B) 11n + (C) 1n n + (D) 1 二.填空题13.曲线y=x 3-x+3在点(1,3)处的切线方程为 .14.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =____________. 15.若函数2()1x a f x x +=+在1x =处取极值,则a =16.已知函数32()42f x x ax x =-+-=在处取得极值,若,[1,1],()()m n f m f n '∈-+则的最小值是_______.三.解答题17.函数()2ln 2x f x k x =-,0k >. (I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.。

导数专项训练及答案

导数专项训练及答案

导数专项训练 例题讲解【1】导数的几何意义及切线方程1.已知函数()a f x x =在1x =处的导数为2-,则实数a 的值是________.2. 曲线y =3x -x 3上过点A (2,-2)的切线方程为___________________.3. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 . 4.若直线y =kx -3与曲线y =2ln x 相切,则实数k =_______.5.已知直线2+=x y 与曲线()a x y +=ln 相切,则a 的值为 _______. 6. 等比数列{}n a 中,120121,9a a ==,函数122012()()()()2f x x x a x a x a =---+,则曲线()y f x =在点(0,(0))f 处的切线方程为_____________.7.若点P 是曲线y=x 2-ln x 上的任意一点,则点P 到直线y=x-2的最小距离为________. 8. 若点P 、Q 分别在函数y =e x 和函数 y =ln x 的图象上,则P 、Q 两点间的距离的最小值是_____. 9. 已知存在实数a ,满足对任意的实数b ,直线y x b =-+都不是曲线33y x ax =-的切线,则实数a 的取值范围是_________.10. 若关于x 的方程3x e x kx -=有四个实数根,则实数k 的取值范围是_____________. 11. 函数f (x)=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g(x )在它们的交点(1, c )处具有公 共切线,则c 的值是___________.【2】常见函数的导数及复合函数的导数1.f(x)=2 , 则f ’(2) =______. 2. 设曲线y =ln 1xx +在点(1, 0)处的切线与直线x -ay +1=0垂直,则a =_______.3.函数333()(1)(2)(100)f x x x x =+++在1x =-处的导数值为___________.4. 已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1, f (1))处的切线方程是____________.5. 若函数()1*()n f x x n N +=∈的图像与直线1x =交于点P ,且在点P 处的切线与x 轴交点的横坐标为n x ,则20131201322013320132012log log log log x x x x ++++的值为 .6. 设f 1(x )=cos x ,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++=,则sin A 的值是______.【3】导数与函数的单调性22x xe e -⎛⎫+ ⎪⎝⎭1. 函数21ln 2y x x =-的单调递减区间为______. 2. 已知函数()ln ()f x x a R =∈,若任意12[2,3]x x ∈、且12x x >,t =()2121()f x f x x x --,则实数t的取值范围____________.3. 已知函数f (x )=x 3-6x 2+9x +a 在x R ∈上有三个零点,则实数a 的取值范是 .4.设'()f x 和'()g x 分别是f (x )和()g x 的导函数,若'()'()0f x g x ≤在区间I 上恒成立,则称f (x )和g (x )在区间I 上单调性相反.若函数f(x)=3123x ax -与g (x )=x 2+2bx 在开区间(a , b )上单调性相反(a >0),则b -a 的最大值为 . 【4】导数与函数的极值、最值1. 已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += . 2. 已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 .3. 已知函数f (x )=x 4+ax 3+2x 2+b ,其中a , b R ∈.若函数f (x )仅在x =0处有极值,则a 的取值范围是______________.4. 设曲线(1)x y ax e =-在点()10,y x A 处的切线为1l ,曲线()x e x y --=1在点02(,)B x y 处的切 线为2l .若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围为____________.5.已知函数f (x )=e x -1, g(x )= -x 2+4x -3若有f (a )=g (b ),则b 的取值范围为______.6. '()f x 是函数3221()(1)3f x x mx m x n =-+-+的导函数,若函数['()]y f f x =在区间[m ,m+1]上单调递减,则实数m 的取值范围是__________. 【解答题】1. 某企业拟建造如上图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左 右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造 费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米 建造费用为()3c c >.设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r2. 已知函数f (x )=2ax -(a +2)x +ln x .(1)当a =1时,求曲线y = f(x )在点(1, f(1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e )上的最小值为-2,求a 的取值范围.3. 已知函数x a x x f ln )()(-=,(0≥a ).(1)当0=a 时,若直线m x y +=2与函数)(x f y =的图象相切,求m 的值; (2)若)(x f 在[]2,1上是单调减函数,求a 的最小值;(3)当[]e x 2,1∈时,e x f ≤)(恒成立,求实数a 的取值范围.(e 为自然对数的底).4.已知函数2()ln ,af x x a x=+∈R . (1)若函数()f x 在[2,)+∞上是增函数,求实数a 的取值范围; (2)若函数()f x 在[1,]e 上的最小值为3,求实数a 的值.5.设函数2()1x f x e x ax =---(1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围导数专项练习答案 【1】导数的几何意义及切线方程1. 2;2. y =-2或9x +y -16=03.34; 4. 2e ; 5. 3; 6.201232y x =+; 7. 2; 8. 2; 9. 13a < 10. ()0,3e -11. 4【2】常见函数的导数及复合函数的导数 1. e -1e; 2. 12- 3. 3⨯99! 4. 2x -y -1=0; 5. -1 ; 6. 1;【3】导数与函数的单调性1. (0, 1);2. 11,32⎛⎫⎪⎝⎭; 3. (-4, 0); 4. 12【4】导数与函数的极值、最值1. 11;2. 2ln2-2;3. 88,33⎡⎤-⎢⎥⎣⎦; 4. 312a ≤≤; 5. []1,3 ; 6.0m ≥[5] 解答题 1. 答案解:(1)由题意可知()23480233r l r l r πππ+=≥,即2804233l r r r =-≥,则02r <≤. 容器的建造费用为2228042346433y rl r c r r r c rππππ⎛⎫=⨯+⨯=-+ ⎪⎝⎭, 即2216084y r r c rπππ=-+,定义域为{}02x r <≤. (2)2160168y r rc r πππ'=--+,令0y '=,得3202r c =-.令32022r c ==-,得92c =,①当932c <≤时,32022c ≥-,当02r <≤时,0y '<,函数单调递减,∴当2r =时y有最小值;②当92c >时,32022c <-,当32002r c <<-时,0y '<;当3202r c >-时,0y '>, ∴当3202r c =-时y 有最小值. 综上所述,当932c <≤时,建造费用最小时2r =;当92c >时,建造费用最小时3202r c =-2. 答案()()()()()()()22(2)2ln 0+22110220......5f x ax a x x ax a a f x ax a x x x =-++∞-+-'>=-++=>函数的定义域是,,当时,分()()()()()22212110=0,11..............................................................62ax a x ax f x f x x xx x a -+---''=====⋯⋯⋯令,即所以或分3. 解答4.若21a <,则20x a ->,即()0f x '>在[1,]e 上恒成立,此时()f x 在[1,]e 上是增函数.5. 解答导数专题复习(配详细答案)体型一:关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

高中导数试题题型及答案

高中导数试题题型及答案

高中导数试题题型及答案一、选择题1. 函数 \( y = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数是:A. 6B. 4C. 5D. 72. 已知 \( f(x) = x^3 + ax^2 + bx + c \),其中 \( a = 1 \),\( b = -1 \),\( c = 1 \),求 \( f'(x) \):A. \( 3x^2 + 2x - 1 \)B. \( 3x^2 + 2x + 1 \)C. \( 3x^2 + 2x \)D. \( 3x^2 + 1 \)二、填空题3. 函数 \( y = x^3 \) 的导数是 ______ 。

答案:\( 3x^2 \)4. 如果 \( f(x) = \sin(x) \),那么 \( f'(x) \) 是 ______ 。

答案:\( \cos(x) \)三、计算题5. 求函数 \( y = x^4 - 5x^3 + 6x^2 \) 的导数。

答案:\( y' = 4x^3 - 15x^2 + 12x \)6. 已知 \( f(x) = \ln(x) + 2x^2 - 3x \),求 \( f'(x) \)。

答案:\( f'(x) = \frac{1}{x} + 4x - 3 \)四、应用题7. 某物体的位移函数是 \( s(t) = 2t^3 - 3t^2 + 4t \),求物体在\( t = 2 \) 秒时的瞬时速度。

答案:首先求导数 \( s'(t) = 6t^2 - 6t + 4 \),然后将 \( t= 2 \) 代入,得到 \( s'(2) = 6 \times 2^2 - 6 \times 2 + 4 =24 - 12 + 4 = 16 \) 米/秒。

8. 某工厂的产量函数是 \( P(x) = 100x - x^2 \),求工厂在 \( x= 10 \) 时的边际产量。

导数的练习题及答案

导数的练习题及答案

导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。

掌握导数的概念对于解决各种数学和物理问题至关重要。

在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。

练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。

解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。

在这个例子中,我们可以使用直接求导的方法来计算导数。

首先,我们对每一项使用求导法则。

对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。

然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。

所以,$f'(x) = 6x^2 - 10x + 3$。

接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。

将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。

所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。

练习题二:求函数 $y = e^x \sin(x)$ 的导数。

解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。

首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。

然后,我们求出每个函数的导数。

对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。

根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数概念及其几何意义、导数的运算一、选择题:1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于A193B103C163D1332 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为 A3B-3C 5D -53 函数2y x a a =+2()(x-)的导数为 A222()x a -B223()x a +C223()x a -D 222()x a +4 曲线313y x x =+在点4(1,)3处的切线与坐标轴围成的三角形的面积为 A19B 29C 13D 235 已知二次函数2y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为 A3B52C 2 D326 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B()2(1)f x x =-C2()2(1)f x x =-D ()1f x x =-7 下列求导数运算正确的是 A 211()1x x x'+=+B21(log )ln 2x x '=C3(3)3log x x e '=⋅D 2(cos )2sin x x x x '=-8 曲线32153y x x =-+在1x =处的切线的倾斜角为 A6π B 34π C 4π D 3π9 曲线3231y x x =-+在点(1,1)-处的切线方程为 A34y x =-B32y x =-+C43y x =-+ D 45y x =-10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为11 一质点的运动方程为253s t =-,则在一段时间[1,1]t +∆内相应的平均速度为 A36t ∆+B36t -∆+C36t ∆- D 36t -∆-12 曲线()ln(21)f x x =-上的点到直线230x y -+=的最短距离是ABCD 013 过曲线32y x x =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为 A (0,1)(1,0)-或B(1,4)(1,0)--或C(1,4)(0,2)---或D (2,8)(1,0)或14 点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是 A[0,]2πB3[0,)[,)24πππ C 3[,)4ππ D 3(,]24ππ二、填空题15 设()y f x =是二次函数,方程()0f x =有两个相等实根,且()22f x x '=+,则()y f x =的表达式是______________16 函数2sin x y x=的导数为_________________________________17 已知函数()y f x =的图像在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f '+=_________ 18 已知直线y kx =与曲线ln y x =有公共点,则k 的最大值为___________________________ 三、解答题19 求下列函数的导数(1)1sin 1cos x y x-=+ (2) 52sin x x y x +=(3) y = (4) tan y x x =⋅ 20 已知曲线21:C y x =与22:(2)C y x =--,直线l 与12,C C 都相切,求直线l 的方程21 设函数()bf x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --= (1)求()f x 的解析式(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值。

22 已知定义在正实数集上的函数221()2,()3ln 2f x x axg x a x b =+=+,其中0a >,设两曲线(),()y f x y g x ==有公共点,且在公共点处的切线相同(1)若1a =,求b 的值(2)用a 表示b ,并求b 的最大值导数概念及其几何意义、导数的运算答案二、填空题:15、2()21f x x x =++16、222sin cos sin x x x x y x-⋅'=17、 3 18、1e三、解答题: 19、解:(1)22cos (1cos )(1)sin (1cos )cos 1sin (1cos )x x xinx xy x x x x -⋅++-'=+-++=+(2)332252232sin 33cos 2sin 2x y x xx y x x x x x x----=++'∴=-+-(3)222(1)(01)1y x x x x=+=≥≠-且 22(1)(1)(1)(1)2(1)4(01)(1)x x x x y x x x x ''+---+'∴=-=≥≠-且(4)222sin (tan )()cos (sin )cos sin (cos )1cos cos tan (tan )tan cos xx xx x x x x x y x x x x x x x''=''-=='''∴=+=+20、解:设直线l 斜率为k ,且与曲线12,C C 相切于点11122(,)(,)P x y x y 2,P 由 22(),()(2)f x x g x x ==--得 ()2,()24f x x g x x ''==-+∴11()2k f x x '== (1)22()24k g x x '==-+ (2) 又2221122121(2)y y x x k x x x x -+-==--- (3)由 (1)(2)(3)式得:11220220x x x x ==⎧⎧⎨⎨==⎩⎩或∴ 04k k ==或且1(0,0)(2,0)P 2且P 或1(2,4)(0,4)P -2且P∴ 所求直线l 的方程为 044y y x ==-或21、解:(1)方程74120x y --=可化为734y x =-当2x =时,12y =又 2()b f x a x '=+于是 1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得13a b =⎧⎨=⎩故 3()f x x x=-(2)设00(,)P x y 为曲线上任一点,由23()1f x x '=+,知曲线在点00(,)P x y 处的切线方程为 0023(1)()y y x x x-=+- 即 002233()(1)()y x x x x x --=+- 令 060,x y x ==-得: 从而得切线与直线0x =的交点坐标为06(0,)x -令 y x = 的 02y x x ==从而得切线与直线y x =的交点坐标为00(2,2)x x所以点00(,)P x y 处的切线与直线y x =0x =所围成的三角形面积为0016262S x x =-⋅= 故曲线()y f x =上任一点处的切线与直线y x =0x =所围成的三角形面积为定值,此定值为6.22、解:(1)1a =∴ 21()2,()3ln 2f x x xg x x b =+=+∴ 3()2,()f x x g x x''=+=设两曲线的交点为00(,)P x y∴ 0000()()()()f x g x f x g x =⎧⎨''=⎩∴ 200000123ln 232x x x b x x ⎧+=+⎪⎪⎨⎪+=⎪⎩解得: 03x =-(舍去),或01x = 所以 52b = (2)0000()()()()f x g x f x g x =⎧⎨''=⎩∴ 22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩解得:03x a =-,或0x a = 00,a x a >∴=所以222123ln 2a a a ab +=+ 即 2253ln (0)2b a a a a =-> 设 225()3ln (0)2h a a a a a =-> ∴ ()56ln 32(13ln )h a a a a a a a '=--=-令 13()0,h a a e '==又当 13(0,)a e ∈时,()0h a '>,当13(,)a e ∈+∞时,()0h a '<∴当13a e=时,()h a取最大值2223335322e e e-=即 b 的最大值为23 3 2 e。

相关文档
最新文档