2018-2019学年福建省漳州市漳浦县七年级(上)期末数学试卷
漳州市七年级上册数学期末试卷(含答案)
漳州市七年级上册数学期末试卷(含答案)一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1062.球从空中落到地面所用的时间t(秒)和球的起始高度h(米)之间有关系式t=,若球的起始高度为102米,则球落地所用时间与下列最接近的是()A.3秒B.4秒C.5秒D.6秒3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短 B.两点确定一条直线C.垂线段最短 D.两点之间直线最短4.-2的倒数是()A.-2 B.12-C.12D.25.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是( )A.1601603045x x-=B.1601601452x x-=C.1601601542x x-=D.1601603045x x+=6.互不相等的三个有理数a,b,c在数轴上对应的点分别为A,B,C。
若:||||||a b b c a c-+-=-,则点B()A.在点 A, C 右边B.在点 A, C 左边C.在点 A, C 之间D.以上都有可能7.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120208.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.89.若OC是∠AOB内部的一条射线,则下列式子中,不能表示“OC是∠AOB的平分线”的是( )A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOC=12∠AOB D.∠AOC+∠BOC=∠AOB10.( )A.1,2 B.2,3 C.3,4 D.4,511.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-12.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚 B .赚了9元 C .赚了18元 D .赔了18元 13.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6 B .6- C .6-或6 D .无法确定 14.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=115.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题16.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 17.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.18.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 19.9的算术平方根是________20. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.21.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.22.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.23.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 25.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.26.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x为_____.27.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.28.方程x+5=12(x+3)的解是________.29.若4a+9与3a+5互为相反数,则a的值为_____.30.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,b,128…,则b=________.三、压轴题31.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.32.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)34.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数) (解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.35.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.36.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.37.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)38.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 4.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握5.B解析:B【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离 a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.7.B解析:B 【解析】 【分析】根据倒数的概念即可解答. 【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B . 【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.8.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.9.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.10.C 解析:C 【解析】【分析】. 【详解】 ∵9<15<16,∴, 故选C. 【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.11.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.12.D解析:D 【解析】试题分析:设盈利的这件成本为x 元,则135-x=25%x ,解得:x=108元;亏本的这件成本为y 元,则y -135=25%y ,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.13.C解析:C 【解析】 【分析】由题意直接根据根据绝对值的性质,即可求出这个数. 【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6-或6. 故选:C .【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.15.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题16.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.19.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.20.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案. 【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.21.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 22.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.23.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.24.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.25.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.26.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x 的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x 的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.27.18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.28.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.29.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.30.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、压轴题31.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.32.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.33.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.34.(1)3456;45678S S=+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n项的钢管数.【详解】(1)3456;45678S S=+++=++++(2)方法不唯一,例如:12S=+1233S=+++123444S=+++++12345555S=+++++++(3)方法不唯一,例如:()()12 (2)S n n n n=++++++()()()()=.....12.....1112n n n nn n n n+++++++=+++()312n n=+【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.。
2018-2019学年度第一学期七年级期末考试数学试卷参考答案
2018-2019学年度第一学期七年级期末考试数学试卷参考答案二、填空题(本大题共 5 小题,每小题4分,满分20分)11. 两点确定一条直线 12. 百 13. 4232'︒ 14.1003xx += 15. 60°或120°三、解答题(本大题共8小题,满分90分)16.(6分)计算题: 232123(2)(6)()3-+⨯---÷-解:原式=143(8)(6)9-+⨯---÷ (4分)42454=--+=26 (6分)17.(12分)解方程或方程组:(1)解方程:2131168x x ---= (2)解方程组:633594x y x y -=-⎧⎨-=⎩解:4(21)3(31)24x x ---= (3分) 解:将①⨯3得1899x y -=- ③ 25x -= 将③-②得1313x =-,解得1x =- (3分) 25x = (6分) 将1x =-代入②解得1y =- (4分) 所以此方程组解为11x y =-⎧⎨=-⎩(6分) 注:其他方法也可18.(10分)先化简,再求值:解:原式=223[223]x y xy xy x y xy --++=xy - (6分)当13,3x y ==-时,原式=13()13-⨯-= (10分)19.(10分)解:(1)∵多项式222,6,A x xy B x xy =-=+-∴2244(2)(6)A B x xy x xy -=--+-22846x xy x xy =---+2756x xy =-+ (6分)(2)∵由(1)知,24756A B x xy -=-+∴当1,2x y ==-时,原式=27151(2)6⨯-⨯⨯-+=7106++=23 (10分)20.(12分)解:设购得茶壶x 只,则需茶杯(30-x )只,根据题意得: (1分) 153[(30)]171x x x +--= (6分) 解得 x =9答:小王买了茶壶9只。
福建省漳州市七年级(上)期末数学试卷
13. 定义新运算“※“,对任意有理数 a,b,规定 a※b=ab-b,如:1※2=1×2-2=0,则 3※5 的值为______.
14. 时钟显示时间是 3 点 30 分,此时时针与分针的夹角为______°.
第 1 页,共 12 页
15. 有一数值转换器,原理如图所示,若开始输入 x 的值是 2,可发现第 1 次输出的结 果是 1,第 2 次输出的结果是 4,第 3 次输出的结果是 2,依次继续下去,则第 2018 次输出的结果是______.
第 4 页,共 12 页
第 5 页,共 12 页
答案和解析
1.【答案】B
B. −3x 的系数是 3 D. 多项式 x2−x+1 的次数是 3
3. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一
路”地区覆盖总人口约为 4 400 000 000 人,这个数用科学记数法表示为( )
A. 44×108
B. 4.4×109
C. 4.4×108
D. 4.4×1010
若商品的标价为 2200 元,那么它的成本为( )
A. 1600 元
B. 1800 元
C. 2000 元
D. 2100 元
9. 如图,把一个直径为 12 的半圆分成三个大小相同的扇形,则每 个扇形的面积是( )
A. 24π
B. 18π
C. 12π
D.
6π
10. 若 x=2 是关于 x 的一元一次方程 ax-b=1 的解,则 1-4a+2b 的值是( )
A. 2
B. 1
C. 0
D. −1
二、填空题(本大题共 6 小题,共低气温的变化情况,宜采用______统计图.(填“条形”“折 线”或“扇形”)
2018-2019学年七年级(上)期末数学试题(解析版)
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。
漳州市七年级上学期期末数学试卷
漳州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) -14的倒数是()A . 14B . -14C .D . -2. (2分)(2017·椒江模拟) 光速约为300000千米/秒,将数字300000用科学记数法表示为()A . 3×104B . 3×105C . 3×106D . 30×1043. (2分)(2018·惠山模拟) 下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B . 两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C . 抛掷一个正方体骰子,点数为奇数的概率是D . “打开电视,正在播放广告”是必然事件4. (2分)在如图所示的四个几何体中,左视图是四边形的几何体共有()A . 1个B . 2个C . 3个D . 4个5. (2分)一个长方形的长、宽分别是3x﹣4、x,则这个长方形的面积为()A . 3x﹣4B . 3x2﹣4C . 3x2﹣4x6. (2分)平面上有五个点,其中只有三点共线。
经过这些点可以作直线的条数是()A . 6条B . 8条C . 10条D . 12条7. (2分)(2017·乐陵模拟) 下列计算正确的是()A . a2•a3=a6B . 2a+3a=6aC . a2+a2+a2=3a2D . a2+a2+a2=a68. (2分)下列说法中:①过两点有且只有一条直线;②两点之间选段最短;③在平面内有一点P使得PA=PB,那么,点P就是线段AB的中点;④连接两点的线段叫两点之间的距离;其中正确的有()A . 1个B . 2个C . 3个D . 4个9. (2分)﹣3的绝对值等于()A . 3B .C . -D . -310. (2分) (2017七下·南安期中) 商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打()A . 9折B . 5折C . 8折D . 7.5折11. (2分) (2020七上·遂宁期末) 已知x是两位数,y是一位数,那么把y放在x的右边所得的三位数是()A . xyB . x+yD . 10y+x12. (2分)已知数轴上C、D两点的位置如图,那么下列说法错误的是()A . D点表示的数是正数B . C点表示的数是负数C . D点表示的数比0小D . C点表示的数比D点表示的数小二、填空题 (共4题;共7分)13. (2分) (2018七上·翁牛特旗期末) 单项式的系数是________;是________次多项式.14. (2分)为确保信息安全,信息需要加密传输,发送方由, 接收方由.已知加密规则为:当明文a³1时,a对应的密文为a2-2a+1;当明文a<1时,a对应的密文为-a2+2a-1. 例如:明文2对应的密文是 22-2×2+1=1;明文-1对应的密文是-(-1)2+2×(-1)-1=-4. 如果接收方收到的密文为4和-16,则对应的明文分别是________ 和________ .15. (2分)(2011·希望杯竞赛) 如图,平行四边形ABCD中,∠BAD的平分线交BC边于点M,而MD平分∠AMC,若∠MDC=45°,则∠BAD=________,∠ABC=________16. (1分) (2018七上·皇姑期末) 如图,找出其变化的规律,则第1345个图形中黑色正方形的数量是________.三、解答题 (共7题;共85分)17. (20分) (2016七上·滨州期中) 计算(1)﹣(+3.7)+(+ )﹣(﹣1.7)(2)(﹣﹣ + )×(﹣24)(4)﹣27÷2 × .18. (15分) (2017七上·简阳期末) 已知:b是最大的负整数,且a,b,c满足|a+b|+(4﹣c)2016=0,试回答问题:(1)请直接写出a,b,c的值;(2)若a,b,c所对应的点分别为A,B,C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1),请化简式子:|x+1|﹣|1﹣x|+2|x﹣4|;(3)在(1)、(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒后,若点B与点C之间的距离表示为BC,点A与B之间的距离表示为AB.请问:AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.19. (11分)我们规定,若x的一元一次方程ax=b的解为b﹣a,则称该方程的定解方程,例如:的解为,则该方程就是定解方程.请根据上边规定解答下列问题(1)若x的一元一次方程2x=m是定解方程,则m=________(2)若关于x的一元一次方程2x=ab+a是定解方程,它的解为a,求a,b的值.(3)若x的一元一次方程2x=mn+m和﹣2x=mn+n都是定解方程,求代数式的值.20. (12分)(2018·凉州) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按,,,四个等级进行统计,制成了如下不完整的统计图.(说明:级:8分—10分,级:7分—7.9分,级:6分—6.9分,级:1分—5.9分)根据所给信息,解答以下问题:(1)(1)在扇形统计图中,对应的扇形的圆心角是________度;(3)所抽取学生的足球运球测试成绩的中位数会落在________等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到级的学生有多少人?21. (5分)一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然一号队员以45千米/时的速度独自行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,一号队员从离队开始到与队员重新会合,经过了多长时间?22. (12分) (2019九上·瑞安开学考) 如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,∠OAC=30°,点D是BC的中点。
(word版)福建省20182019学年七年级(上)期末数学试卷
七年级〔上〕期末数学试卷一.选择题〔共10小题,总分值20分〕1.以下各数中,是负数的是〔〕A .﹣〔﹣2〕B .〔﹣2〕2C .|﹣2|2.第四届“世界互联网大会 ?乌镇峰会〞于2021年12月D .﹣223日﹣5日在浙江省乌镇举行.百度数据显示,共有2608337人为互联网大会点赞, 数2608337用科学记数法表示为〔〕A . × 104B .×105C .× 106D .×1073.以下方程:① ;②=1;③;④x 2﹣4x =3;⑤x =6;⑥x+2y=0.其中一元一次方程的个数是〔 〕A .2B .3C .4D .54.假设是同类项,那么m+n =〔〕A .﹣2B .2C .1D .﹣15.以下运算正确的选项是〔 〕A .﹣a 2b+2a 2b =a 2bB .2a ﹣a =2C .3a 2+2a 2=5a 4D .2a+b =2ab6.以下四个数中,是负数的是〔〕A .|﹣2|B .〔﹣2〕2C .﹣〔﹣2〕D .﹣|﹣2|7.有理数a 、b 在数轴上的位置如下列图,那么以下结论中正确的选项是〔〕A .a+b <0B .a ﹣b <0C .ab >0D .>08.﹣42的值是〔〕A.+16B.﹣4C.16D.-169.有理数 a 、b 、c 在数轴上的对应点的位置如下列图,那么下面结论正确的选项是〔〕A .|a|>4B .a+c >0C .c ﹣b >0D .ac >010.假设x =,那么代数式的值为〔〕A .0B .C .﹣D .﹣1二.填空题〔共6小题,总分值18分,每题3分〕11.化简:﹣ |﹣|=,﹣〔﹣〕=.12.单项式﹣的系数是,次数是.13.单项式x a y 3与﹣4xy 4﹣b 是同类项,那么a ﹣b 的值是.14.当k =时,多项式x 2+〔k ﹣1〕xy ﹣3y 2﹣2xy ﹣5中不含xy 项.15.某商品每件本钱 a 元,按高于本钱 20%的定价销售后滞销,因此又按售价的九折出售,那么这件商品还可盈利 元〔填最简结果〕.16.如果数轴上的点 A 对应的数为﹣1,那么与A 点相距3个单位长度的点所对应的有理数为 .三.解答题〔共 9小题,总分值 62分〕17.〔12分〕计算:﹣42÷〔﹣2〕3〔﹣〕218.〔8分〕化简:1〕3a 3+a 2﹣2a 3﹣a 2.2〕〔2x 2﹣+3x 〕﹣4〔x ﹣x 2+〕19.〔8分〕解方程:﹣1=.20.〔5分〕化简并求值:( 1〕〔m 2+2m 〕﹣2〔m 2+3m 〕,其中m =.( 2〕〔2ab 2﹣a 〕+〔b ﹣ab 2〕﹣〔a 2b+b ﹣a 〕,其中a ,b ,满足|a+3|+〔b ﹣2〕2=0.( 21.〔5分〕现在,红旗商场进行促销活动,出售一种优惠购物卡〔注:此卡只作为购物优 ( 惠凭证不能顶替货款〕,花300元买这种卡后,凭卡可在这家商场按标价的 8折购物. (1〕顾客购置多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?( 2〕小张要买一台标价为3500元的冰箱,如何购置合算?小张能节省多少元钱?〔3〕小按合算的方案,把台冰箱下,如果旗商能盈利 25%,台冰箱的价是多少元?22.〔5分〕有理数a 、b 、在数上的位置如所示.〔1〕用“>〞或“<〞填空: a+b 0,c b 0;2〕化:|a+b|+|c||cb|.23.〔4分〕察以下各式:1×5+4=32⋯⋯⋯⋯① 3×7+4=52⋯⋯⋯⋯② 5×9+4=72⋯⋯⋯⋯③⋯⋯探索以上式子的律: 〔1〕写出第 6个等式;〔2〕写出第 n 个等式〔用含 n 的式子表示〕,并用你所学的知明第 n 个等式成立.24.〔6分〕察以下式子:0×2+1=12⋯⋯① 1×3+1=22⋯⋯② 2×4+1=32⋯⋯③3×5+1=42⋯⋯④⋯⋯〔1〕第⑤个式子,第⑩个式子 ;〔2〕用含n 〔n 正整数〕的式子表示上述的律,并明:〔3〕求:〔1+〕〔1+〕〔1+ 〕〔1+〕⋯〔1+〕.25.〔9分〕如,数上点A 表示的数6,B 是数上一点,且AB =10.点P 从 点O 出,以每秒6个位度的速度沿数向右匀速运, 运t 〔t >0〕秒.〔1〕写出数上点B 表示的数;当t =3,OP =〔2〕点R 从点B 出,以每秒8个位度的速度沿数向右匀速运,假设点P ,R 同出,点R 运多少秒追上点P ?〔3〕点R 从点B 出,以每秒8个位度的速度沿数向右匀速运,假设点P ,R 同时出发,问点R运动多少秒时PR相距2个单位长度?参考答案一.选择题1.解:A 、﹣〔﹣2〕=2>0,故A 错误;B 、〔﹣2〕2=4>0,故B 错误;C 、|﹣2|=2>0,故C 错误;D 、﹣22=﹣4<0,故D 错误;应选:D .2.解:2608337=×106.应选:C .3.解:① 是分式方程,故 ①错误;② =1,即﹣1=0,符合一元一次方程的定义.故 ②正确; ③,即9x+2=0 ,符合一元一次方程的定义.故③正确;④ x 2﹣4x =3的未知数的 最高次数是2,它属于一元二次方程.故 ④错误;⑤ x =6 ,即x ﹣6=0,符合一元一次方程的定义.故 ⑤正确;⑥ x+2y =0中含有2个未知数,属于二元一次方程.故 ⑥错误.综上所述,一元一次方程的个数是3个.应选:B .4.解:由同类项的定义可知m+2=1且n ﹣1=1,解得m =﹣1,n =2,所以m+n =1.应选:C .5.解:A 、正确;B 、2a ﹣a =a ;C 、3a 2+2a 2=5a 2;D应选:A .6.解:A 、|﹣2|=2,是正数;B 、〔﹣2〕2=4,是正数;C 、﹣〔﹣2〕=2,是正数;D 、﹣|﹣2|=﹣2,是负数.应选:D .7.解:根据图示知:a <0<b ,|a|<|b|;∴a+b >0,a ﹣b <0,ab <0, <0.应选:B .8.解:∵〔﹣ 4〕2=42=16,16的平方根为±4,那么〔﹣4〕2的平方根是±4.应选:D .9.解:由数轴上 a 的位置知,a <b <0<c ,|a|<|c|<|b|∵a 离开原点的距离小于 4,应选项A 错误;a <0<c ,|a|>|c|,a+c <0,应选项B 错误;∵b <0<c ,c ﹣b >0,应选项C 正确;因为a <0,c >0,所以ac <0.应选项D 错误.应选:C .10.解:把 x = 代入 ==0,应选:A .二.填空题〔共 6小题,总分值 18分,每题 3分〕11.解:﹣|﹣ |=﹣ ,﹣〔﹣〕=.故答案为:﹣、.12.解:单项式﹣的系数是﹣ ,次数是 6,故答案为:﹣;6.13.解:∵单项式x a y 3与﹣4xy 4﹣b是同类项,a =1,3=4﹣b , 那么b =1, a ﹣b =1﹣1=0, 故答案为:0.14.解:整理只含xy 的项得:〔k ﹣3〕xy ,k ﹣3=0,k =3. 故答案为:3.15.解:根据题意列得:〔1+20%〕90%a ﹣a =〔元〕.故答案为:16.解:在A 点左边与A 点相距 3个单位长度的点所对应的有理数为﹣4;在A 点右边与A 点相距3个单位长度的点所对应的有理数为2. 故答案为﹣4或2.三.解答题〔共 9小题,总分值 62 分〕17.解:原式=﹣ 16÷〔﹣8 〕﹣×2﹣11.18.解:〔1〕3a 3+a 2﹣2a 3﹣a 2=〔3a 3﹣2a 3〕+〔a 2﹣a 2〕a 3;2〕〔2x 2﹣+3x 〕﹣4〔x ﹣x 2+〕=2x 2﹣+3x ﹣4x+4x 2﹣26x 2﹣x ﹣2.19.解:去分母,得 3〔1﹣2x 〕﹣21=7〔x+3〕,去括号,得 3﹣6x ﹣21=7x+21,移项,得﹣6x ﹣7x =21﹣3+21,合并,得﹣13x =39,系数化1,得x =﹣3,那么原方程的解是 x =﹣3. 20.解:〔1〕原式=m 2+2m ﹣m 2﹣6m =﹣4m ,当m = 时,原式=﹣ 3; 2〕原式=2ab 2﹣a+b ﹣ab 2﹣a 2b ﹣b+a =ab 2﹣a 2b ,∵|a+3|+〔b ﹣2〕2=0,∴a =﹣3,b =2,那么原式=﹣12﹣18=﹣30.21.〔1〕解:设顾客购置 x 元金额的商品时,买卡与不买卡花钱相等.根据题意,得 =x ,解得x =1500,所以,当顾客消费少于 1500元时不买卡合算; 当顾客消费等于 1500元时买卡与不买卡花钱相等;当顾客消费大于 1500元时买卡合算;〔2〕小张买卡合算,3500﹣〔300+3500×〕=400, 所以,小张能节省 400元钱;3〕设进价为y 元,根据题意,得300+3500×〕﹣y =25%y ,解得y =2480 答:这台冰箱的进价是 2480元.22.解:〔1〕∵从数轴可知: c <﹣1<a <0<1<b ,|a|<|b|<|c|,a+b >0,c ﹣b <0,∴ 故答案为:>,<;∴ ∴∴ 〔2〕〕∵从数轴可知:c <﹣1<a <0<1<b ,|a|<|b|<|c|,∴ a +b >0,c ﹣b <0,|a+b|+|c||cb|=a+b+〔c 〕〔c+b 〕=a .3.解:〔1〕第6个等式11×15+4=132;2〕由意知〔2n1〕〔2n+3〕+4=〔2n+1〕2,理由:左=4n 2+6n 2n 3+4=4n 2+4n+1=〔2n+1〕2=右,∴〔2n 1〕〔2n+3〕+4=〔2n+1〕2.24.解:〔1〕第⑤个式子4×6+1=52,第⑩个式子9×11+1=102,故答案:4×6+1=52,9×11+1=102;〔2〕第n 个式子〔n 1〕〔n+1〕+1=n 2,明:左=n 2 1+1=n 2,右=n 2, ∴左=右,即〔n 1〕〔n+1〕+1=n 2.〔3〕原式= × × ×⋯×= ×××⋯⋯×==.25.解:〔1〕∵数上点 A 表示的数 6,B 是数上一点,且 AB =10,∴BO =4,∴数上点 B 表示的数: 4,∵点P 从点O 出,以每秒 6个位度的速度沿数向右匀速运,∴当t =3,OP =18;故答案:4,18;〔2〕如1,点R 运x 秒,在点 C 追上点P ,OC =6x ,BC =8x ,(word 版)福建省20212021学年七年级(上)期末数学试卷11 / 1111∵BC ﹣OC =OB , 8x ﹣6x =4, 解得:x =2, ∴点R 运动2秒时,在点C 处追上点P . 〔3〕设点R 运动x 秒时,PR =2. 分两种情况:如图2,一种情况是当点 R 在点P 的左侧时,8x =4+6x ﹣2,即x =1;如图3,另一种情况是当点 R 在点P 的右侧时,8x =4+6x+2, 即x =3.综上所述R 运动1秒或3秒时PR 相距2个单位.。
漳州市七年级数学上册期末测试卷及答案
漳州市七年级数学上册期末测试卷及答案一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1062.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .34.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线6.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3807.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 8.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1129.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④ 10.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -11.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6 D .3(x +1)﹣2×2x ﹣1=6 12.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=013.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠414.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105C .3.31×106D .3.31×10715.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯二、填空题16.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 17.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 18.9的算术平方根是________19.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.20.若3750'A ∠=︒,则A ∠的补角的度数为__________.21.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.22.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________23.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.24.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______. 25.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.26.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.27.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.28.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a=____.29.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意的4个数,设方框左上角第一个数是x,则这四个数的和为______(用含x的式子表示) 2230.如图,直线AB、CD相交于O,∠COE是直角,∠1=44°,则∠2=______.三、压轴题31.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数32.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.33.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.34.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.35.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.36.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少? 37.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)38.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.4.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.5.C解析:C 【解析】 【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可. 【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误. 故选C . 【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.6.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.7.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.8.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.9.A解析:A【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误; 根据客车数列方程,应该为2554045n n ++=,③正确,②错误; 所以正确的是①③.故选A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变. 10.C解析:C【解析】【分析】根据题意可以用代数式表示m 的2倍与n 平方的差.【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2,故选:C .【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.11.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.12.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.13.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b ,故不符合题意;C. ∠1+∠4=90°,不能判定a//b ,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.14.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.D解析:D【解析】【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.二、填空题16.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.17.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.18.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.19.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.20.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.21.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.23.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,,∴AB=1–(,则点C表示的数为,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.24.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.25.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.26.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.27.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x 的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键 解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x 的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键. 28.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.29.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()+++++++=+x x x x x1771416x+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.30.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.三、压轴题31.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.32.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,t=6;综上,t的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.33.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,34.(1)AC=4cm, BC=8cm;(2)当45t=时,AP PQ=;(3)当2t=时,P与Q第一次相遇;(4)35191cm.224t PQ=当为,,时,【解析】【分析】(1)由于AB=12cm,点C是线段AB上的一点,BC=2AC,则AC+BC=3AC=AB=12cm,依此即可求解;(2)分别表示出AP、PQ,然后根据等量关系AP=PQ列出方程求解即可;(3)当P与Q第一次相遇时由AP AC CQ=+得到关于t的方程,求解即可;。
福建省漳州市七年级上学期期末数学试卷
福建省漳州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·防城) 9的绝对值是()A . 9B . ﹣9C . 3D . ±32. (2分) (2015九下·海盐期中) 如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A .B .C .D .3. (2分)地球上的水的总储量约为 1.39×1018m3 ,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m3 ,因此我们要节约用水。
请将0.0107×1018m3用科学记数法表示是()A . 1.07×1016m3B . 0.107×1017m3C . 10.7×1015m3D . 1.07×1017m34. (2分)把弯曲的河道改直,能够缩短航程,这样做的道理是()A . 两点之间,射线最短B . 两点确定一条直线C . 两点之间,直线最短D . 两点之间,线段最短5. (2分)某厂去年产值是x万元,今年比去年增产40%,今年的产值是()A . 40%x万元B . (1+40%)x万元C . 万元D . 1+40%x万元6. (2分) (2019七上·大埔期末) 下列调查中,最适合采用全面调查(普查)方式的是()A . 对市辖区水质情况的调查B . 对电视台“商城聚焦”栏目收视率的调查C . 对某小区每天丢弃塑料袋数量的调查D . 对你校某班学生最喜爱的运动项目的调查7. (2分)(2017·河北) 用量角器测得∠MON的度数,下列操作正确的是()A .B .C .D .8. (2分)已知关于的不等式组的解集是3≤x≤5,则a+b的值为()C . 10D . 129. (2分)为了筹备班里的新年联欢会,班长以全班同学最爱吃哪几种水果做民意调查,以决定最终买什么水果.该次调查结果最终应该由数据的()决定.A . 平均数B . 中位数C . 众数D . 无法确定10. (2分)若,则=()A . -1B . 1C .D .11. (2分)若一个数与它的相反数在数轴上的对应点的距离是10个单位长度,那么这个数是()A . +10或-10B . +5或-5C . 20或-20D . 15或-1512. (2分)如图,等边三角形ABC的三条角平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,那么这个图形中的等腰三角形共有()A . 4个D . 7个二、填空题 (共4题;共4分)13. (1分) (2018七上·长春期中) 若向东走5米记作+5米,则向西走5米应记作________米。
七年级上册漳州数学期末试卷测试卷附答案
七年级上册漳州数学期末试卷测试卷附答案 一、选择题1.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60°2.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元3.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+= D .x x 5204204+=+- 4.如图是我市十二月份某一天的天气预报,该天的温差是( )A .3℃B .7℃C .2℃D .5℃ 5.把一个数a 增加2,然后再扩大2倍,其结果应是( )A .22a +⨯B .()22a +C .24a a ++D .()222a a +++ 6.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b7.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-18.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通9.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D10.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A .﹣5x ﹣1B .5x+1C .13x ﹣1D .6x 2+13x ﹣1 11.下列叙述中正确的是( )①线段AB 可表示为线段BA; ② 射线AB 可表示为射线BA;③ 直线AB 可表示为直线BA; ④ 射线AB 和射线BA 是同一条射线.A .①②③④B .②③C .①③D .①②③12.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角 D .EOD ∠与BOC ∠是对顶角13.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .14.如图正方体纸盒,展开后可以得到( )A .B .C .D .15.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( )A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯二、填空题16.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.17.已知a +2b =3,则7+6b +3a =________.18.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.19.已知关于x 的方程2ax=(a+1)x+3的解是正整数,则正整数a=_____.20.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。
福建省漳州市七年级上学期数学期末试卷
福建省漳州市七年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2017七上·南涧期中) 已知与是同类项,则()A . x=2,y=1B . x=3,y=1C . x= ,y=1D . x=3,y=02. (2分) (2020八上·门头沟期末) 下列运算正确的是()A .B .C .D .3. (2分)下列各式计算正确的是()A . a0=1B . (﹣3)﹣2=﹣C . ﹣=﹣D . =﹣24. (2分) (2019八下·重庆期中) 下列方程是分式方程的是()A .B .C .D .5. (2分) (2017八下·山西期末) 以下五家银行行标中,既是中心对称图形又是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2019九上·河西期中) 如图,将等边三角形OAB放在平面直角坐标系中,A点坐标(1,0),将△OAB绕点A顺时针旋转60°,则旋转后点B的对应点B′的坐标为()A .B .C .D .二、填空题 (共14题;共14分)7. (1分) (2019七下·温州期中) 计算: =________.8. (1分)计算:(﹣ab2c3)2×(﹣a2b)3=________.9. (1分)计算:(14x3-21x2+7x)÷7x的结果是________10. (1分)计算(﹣2)0+ =________;计算:20112﹣2010×2012=________.11. (1分) (2019八上·长春月考) 因式分解: ________.12. (1分) 6m(x2﹣9)与9mx﹣27m的公因式为________13. (1分)已知空气的单位体积质量为1.24×10﹣3g/cm3 ,将1.24×10﹣3g/cm3用小数表示为________ .14. (1分) (2018八上·江海期末) 若分式的值为0,则x的值为 ________15. (1分)计算: =________.16. (1分) (2020七下·铜仁期末) 如果多项式是一个完全平方式,那么 ________.17. (1分) (2019九上·宝坻月考) 抛物线y=-2x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是________.18. (1分)关于中心对称的两个图形,对称点的连线经过________。
漳州市七年级上学期数学期末考试试卷
漳州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·海淀期中) 已知是关于的一元一次方程,则的值为()A .B . -1C . 1D . 以上答案都不对2. (2分)如果是关于的方程的解,则的值是()A . 1B . -1C . 2D . -23. (2分)下列运用等式的性质进行的变形中,正确的是()A . 如果,那么B . 如果,那么C . 如果,那么D . 如果,那么4. (2分)如图,是某种几何体表面展开图的图形.这个几何体是()A . 圆锥B . 球C . 圆柱D . 棱柱5. (2分) (2019七上·天台月考) 已知mx = my,下列结论错误的是()A . x = yB . a+mx=a+myC . mx-y=my-yD . amx=amy6. (2分)下列几何体中,主视图是圆的是()A . 圆柱B . 圆锥C . 球D . 立方体7. (2分)将图中的三角形绕虚线旋转一周,所得的几何体是()A .B .C .D .8. (2分)一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A . 106元B . 105元C . 118元D . 108元9. (2分) (2020·枣庄) 在下图的四个三角形中,不能由经过旋转或平移得到的是()A .B .C .D .10. (2分)方程|2x﹣4|=0的解是()A . 2B . ﹣2C . ±2D .11. (1分) (2019七上·栾川期末) 若单项式是同类项,则 =________.12. (3分)把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转________,转动的角叫做旋转________.如果图形上的点P经过旋转变为点P′,那么这两个点叫做旋转的________.二、填空题 (共8题;共8分)13. (1分)(2017·德州模拟) 请给出一元二次方程x2﹣x+________=0的一个常数项,使这个方程有两个相等的实数根.14. (1分) (2019七上·潘集月考) 若x =-3是方程 3(x-a) = 7的解, 则a = ________.15. (1分) (2019七上·道里期末) 某电台组织知识竞赛,共设道选择题,各题分值相同,每题必答,下标记录了个参赛者的得分情况.参赛者的得分情况.参赛者得分,它答对了________道题.参赛者答对题数答错题数得分16. (1分) (2019七上·南岗期末) 在一张普通的月历中,相邻三行里同一列的三个日期数之和为39,则这三个日期数分别为________.17. (1分) (2020七上·青岛期末) 一个两位数,十位数字是个位数字的2倍,将两个数对调后得到的两位数比原来的两位数小36,这个两位数是________.18. (1分) (2017七下·江阴期中) 如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为________cm2.19. (1分) (2019七下·侯马期中) 已知关于x的方程3x﹣2m=6的解是x=m,则m的值是________.20. (1分) (2020八下·黄石期中) 如图,正方形ABCD中,E是CD的中点,P是BC上一点,要使ΔABP与ΔECP相似,还需具备的一个条件是________.三、解答题 (共7题;共53分)21. (10分) (2018七下·深圳期末)(1)计算:2﹣1﹣()0+22015×(﹣0.5)2016(2)解方程:2x﹣(x+3)=﹣x+322. (10分) (2018七上·澧县期中) 小明用 3 天看完一本课外读物,第一天看了 a 页,第二天比第一天多看 50 页,第三天比第二天少看 85 页.解答下列问题:(1)用含a的代数式表示这本书的页数;(2)当 a=30 时,这本书的页数是多少?23. (5分)解方程:.24. (5分) (2016九上·海南期中) 目前我省小学和初中在校生共136万人,其中小学在校生人数比初中在校生人数的2倍少2万人.问目前我省小学和初中在校生各有多少万人?25. (5分) (2015七上·南山期末) 看图解答26. (8分) (2016九下·巴南开学考) 如果10b=n,那么称b为n的劳格数,记为b=d (n),由定义可知:10b=n与b=d (n)所表示的是b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=________,d(10﹣2)=________;劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=________(a为正数).(2)下表中与数x对应的劳格数d (x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5356891227d(x)3a﹣b+c2a﹣b a+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b27. (10分) (2020七上·鄞州期末) 如图,点A,B在数轴上表示的数分别为-2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动。
漳州市七年级上册数学期末考试试卷
漳州市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·淮安模拟) ﹣6的相反数是()A . ﹣6B . ﹣C .D . 62. (2分)下列计算正确的是()A .B .C .D .3. (2分) (2019七上·荔湾期末) 下列等式变形正确的是()A . 若3x+2=0,则x=B . 若﹣ y=﹣1,则y=2C . 若ax=ay则x=yD . 若x=y ,则x﹣3=3﹣y4. (2分) (2016七上·莒县期末) 多项式2﹣3xy+4xy2的次数及最高此项的系数分别是()A . 2,﹣3B . ﹣3,4C . 3,4D . 3,﹣35. (2分)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为A . πB . 4πC . π或4πD . 2π或4π6. (2分)某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店()A . 不赚不亏B . 赚5元C . 亏5元D . 赚10元7. (2分)下列说法中错误的个数是()①线段有两个端点,直线有一个端点;②角的大小与我们画出的角的两边的长短无关;③线段上有无数个点;④同角或等角的补角相等;⑤两锐角的和一定大于直角.A . 1个B . 2个C . 3个D . 4个8. (2分)(2017·营口模拟) 若 +|2a﹣b+1|=0,则(b﹣a)2016的值为()A . ﹣1B . 1C . 52015D . ﹣520159. (2分) (2015高二上·太和期末) 如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A . a户最长B . b户最长C . c户最长D . 三户一样长10. (2分)(2018·重庆) 下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A . 11B . 13C . 15D . 17二、填空题 (共8题;共10分)11. (1分) (2018七上·大石桥期末) 若5x2m y2和-7x6 yn是同类项,则m +n=________ .12. (1分)(2018·无锡模拟) 在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为________.13. (1分)如图,∠AOC和∠DOB都是直角,如果∠DOC=35°,那么∠AOB的补角=________ °.14. (1分) (2018九上·雅安期中) 若=,则=________15. (1分)若方程3x+2a=13和方程2x﹣4=2的解互为倒数,则a的值为________.16. (3分)∠α=15°12′,∠β=1512″,∠γ=15.12°,那么∠α、∠β、∠γ的大小关系是________ 、________ 、________17. (1分)(2012·梧州) 方程x﹣5=0的解是x=________.18. (1分)某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人;若每组8人还缺少6人.若设该班分成x个小组,可列方程为________ .三、解答题 (共11题;共101分)19. (5分)用简便算法计算99x(-13)20. (10分)若a、b是有理数,定义一种新运算“*”:.例如:.试计算:(1) 3*(-2)(2)21. (5分) (2020八上·镇赉期末) 先化简,再求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy ,其中x=4,y =0.5.22. (5分)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)23. (5分) (2017七上·龙湖期末) 当x取什么值时,式子与 +1的值相等.24. (25分)解下列方程(1) x﹣4=2﹣5x(2) 1﹣ =(3) y﹣ =2﹣.(4)(2t﹣6)﹣(2t﹣4)=4.(5)﹣ = .25. (5分) (2016七上·连州期末) 解方程:x+2=6﹣3x.26. (10分) (2016八上·盐城期末) 计算题(1)计算:|﹣3|+(π+1)0﹣;(2)已知:(x+1)2=16,求x.27. (5分) (2017八下·武进期中) 如图,在四边形ABCD中,AD∥BC,,点E是BC的中点,连接AE、BD.若EA⊥AB,BC=26,DC=12,求△ABD的面积.28. (16分) (2017七下·肇源期末) 如图①,已知线段AB=12cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE=________cm;(2)若AC=4cm,求DE的长;(3)试说明无论AC取何值(不超过12cm),DE的长不变;(4)如图②,已知∠AOB=120°,过角的内部任一点C画射线OC.若OD,OE分别平分∠AOC和∠BOC.试说明∠DOE的度数与射线OC的位置无关.29. (10分)联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共11题;共101分)19-1、20-1、20-2、21-1、22-1、23-1、24-1、24-2、24-3、24-4、24-5、25-1、26-1、26-2、27-1、28-1、28-2、28-3、28-4、29-1、29-2、。
漳浦七年级期末数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. -√3D. 0.1010010001……2. 下列各数中,绝对值最大的是()A. -3B. 3C. -4D. 43. 若a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 < b - 2C. a + 2 > b + 2D. a - 2 > b - 24. 下列图形中,对称轴最多的是()A. 等边三角形B. 等腰三角形C. 平行四边形D. 长方形5. 若一个长方形的长是4cm,宽是3cm,那么它的面积是()A. 6cm²B. 12cm²C. 15cm²D. 18cm²6. 在一次函数y=kx+b中,若k > 0,b < 0,那么该函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限7. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 2x² + 3D. y = 3x - 28. 若一个等腰三角形的底边长是6cm,腰长是8cm,那么这个三角形的面积是()A. 24cm²B. 32cm²C. 36cm²D. 48cm²9. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)10. 若a²+b²=50,ab=12,那么a-b的值为()A. 2B. 4C. 6D. 8二、填空题(每题5分,共20分)11. (1)若x²-5x+6=0,则x的值为______。
(2)若sin∠A=0.6,则∠A的大小为______度。
(3)若一个圆的半径是5cm,那么它的周长是______cm。
漳浦七年级期末数学试卷
一、选择题(每题4分,共40分)1. 下列各数中,属于整数的是()A. -2.5B. 0.3C. 3.14D. 52. 已知a=-3,那么a的相反数是()A. -3B. 3C. -aD. 2a3. 下列各数中,绝对值最大的是()A. -2B. -3C. 2D. 34. 下列等式中,正确的是()A. (-3)² = -9B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = -2435. 下列各数中,有理数是()A. √4B. √-4C. √0D. √16. 下列图形中,不是轴对称图形的是()A. 矩形B. 正方形C. 平行四边形D. 圆7. 已知等腰三角形ABC中,AB=AC,且底边BC=6cm,那么腰AB的长度是()A. 3cmB. 4cmC. 5cmD. 6cm8. 下列函数中,一次函数是()A. y = 2x + 3B. y = x² + 2x + 1C. y = 3x³ - 4x² + 5x - 6D. y = √x9. 已知一次函数y=kx+b(k≠0),当x=-1时,y=2;当x=1时,y=-2,那么该函数的解析式是()A. y = 2x + 4B. y = -2x - 4C. y = -2x + 4D. y = 2x - 410. 下列方程中,无解的是()A. 2x + 3 = 5B. 3x - 4 = 5C. 4x + 5 = 9D. 5x - 6 = 11二、填空题(每题4分,共40分)11. 5的倒数是______,-4的倒数是______。
12. 有理数a的绝对值是______,如果a<0,那么-a的值是______。
13. 等腰三角形ABC中,AB=AC=5cm,那么BC的长度是______cm。
14. 如果a=3,那么a²的值是______。
15. 已知一次函数y=kx+b(k≠0),如果k=2,那么该函数图象的斜率是______。
漳浦县初一期末考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,是整数的是()A. √4B. -√9C. 3.14D. 0.0012. 若a > b,则下列不等式中错误的是()A. a + 2 > b + 2B. 2a > 2bC. a - 2 < b - 2D. a/2 > b/23. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x - 1C. y = 1/xD. y = 3x + 44. 下列各数中,是正数的是()A. -5B. 0C. √(-1)D. 3/25. 若x + y = 5,x - y = 3,则x的值为()A. 4B. 3C. 2D. 16. 下列各图中,是平行四边形的是()A. ①B. ②C. ③D. ④7. 下列各式正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 下列各式中,是完全平方公式的是()A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^29. 下列各数中,是勾股数的是()A. 3, 4, 5B. 5, 12, 13C. 6, 8, 10D. 7, 24, 2510. 下列各式中,正确的是()A. √(16/25) = 4/5B. √(9/16) = 3/4C. √(4/9) = 2/3D. √(16/9) = 4/3二、填空题(本大题共10小题,每小题3分,共30分)11. -3的相反数是__________。
12. 若a = -5,则|a|的值为__________。
13. 下列各数中,是偶数的是__________。
14. 若x^2 = 25,则x的值为__________。
漳浦县七年级数学期末试卷
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3.14B. 0.001C. -1/2D. -√22. 如果一个数的平方是9,那么这个数是()A. 3B. -3C. 3或-3D. ±33. 下列各图中,不是平行四边形的是()A. ①B. ②C. ③D. ④4. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)5. 如果a=3,b=-2,那么a²+b²的值是()A. 1B. 5C. 7D. 96. 下列方程中,不是二元一次方程的是()A. 2x+3y=6B. x-y=1C. x²+y=5D. 3x-2y=07. 如果一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm²B. 32cm²C. 36cm²D. 40cm²8. 下列函数中,是反比例函数的是()A. y=2x+1B. y=x²C. y=1/xD. y=x³9. 下列各式中,正确的是()A. 3²=9B. (-3)²=9C. (-3)³=-9D. (-3)⁴=910. 在等差数列中,如果第一项是2,公差是3,那么第10项的值是()A. 28B. 29C. 30D. 31二、填空题(每题5分,共25分)11. 2的平方根是______,-2的平方根是______。
12. 如果一个数的倒数是1/5,那么这个数是______。
13. 下列各数中,有理数是______。
14. 在直角坐标系中,点B(4,-3)关于x轴的对称点是______。
15. 下列各式中,绝对值最大的是______。
三、解答题(共45分)16. (10分)计算下列各式的值:(1)-2×(-3)+√16-1/2(2)(3/4)²-(-2)³÷217. (10分)解下列方程:(1)3x-5=2x+4(2)2(x-3)=x+618. (10分)已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
福建省漳州市七年级上学期期末数学试卷
福建省漳州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·东莞期中) 的绝对值是()A .B .C .D .2. (2分)如果a是有理数,下列各式一定为正数的()A . aB . a+1C .D . a2+13. (2分)(2019·临沂) 如图,,若,则的度数是()A .B .C .D .4. (2分)下列运算正确的是()A . a8÷a2=a4B . a5﹣(﹣a)2=a3C . a3•(﹣a)2=a5D . 5a+3b=8ab5. (2分)下列计算正确的是()A .B .C .D .6. (2分) (2016八上·抚宁期中) 下列各组数中,互为相反数的是()A . ﹣2与B . ﹣2与﹣C . ﹣2与﹣D . ﹣2与7. (2分)下列计算中,正确的是()A .B .C .D .8. (2分)课堂上,某同学拿出下面的四幅图形,其中能折叠成一个正方体的是()A .B .C .D .9. (2分)如图,已知直线AB和CD相交于O点,是直角,OF平分,,则的大小为()A .B .C .D .10. (2分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的4倍()A . 3年前B . 3年后C . 9年后D . 不可能二、填空题 (共6题;共7分)11. (1分) (2016七上·龙湖期末) 过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为________.12. (1分)在梯形面积公式S= 中,若S=24,a=6,h=3,则b=________.13. (1分)如果点A,B,C在一条直线上,线段AB=6cm,线段BC=8cm,则A、C两点间的距离是________.14. (1分) (2018七上·宁城期末) 宁城县出租车收费标准为:起步价格5元,3千米后每千米价格1.2元,则某人乘坐出租车走x(x﹥3)千米应付________元.15. (1分) (2017七上·洱源期中) 已知2a﹣3b2=2,则8﹣6a+9b2的值是________.16. (2分)(2020·遵化模拟) 将一列有理数-1,2,-3,4,-5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,(1)“峰6”中D的位置是有理数________;(2) 2018应排在A,B,C,D,E中的________位置.三、解答题 (共9题;共64分)17. (10分) (2018七上·翁牛特旗期末) 计算:(1)(2)18. (5分) (2017七下·温州期中) 已知方程组的解是方程的一个解,求n的值.19. (5分)(2017·黔东南模拟) 先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a= ,b= .20. (5分)先化简下面代数式,再求值:(x+2)(x﹣2)+x(3﹣x),其中x=+1.21. (5分)如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.22. (5分) (2015七上·龙岗期末) 某种商品因换季准备打折出售,如果按标价的7.5折出售将赔25元,而按标价的9折将赚20元,问这种商品的标价是多少元?23. (11分)国庆节即将来临,张华高兴地看着2015年10月的日历,发现其中有很有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a、b、c、d、k,如图:试回答下列问题:日一二三四五六12345678910111213141516171819202122232425262728293031(1)此日历中能画出________个十字框?(2)若a+b+c+d=76,求k的值.(3)是否存在k的值,使得a+b+c+d=68,请说明理由.24. (10分) (2016七下·盐城开学考) 若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.25. (8分) (2019七上·南通月考) 某新店开业宣传,进店有礼活动,店员们需准备制作圆柱体礼品纸盒(如图①),每个纸盒由1个长方形侧面和2个圆形底面组成,现有100张正方形纸板全部以A或者B方法截剪制作(如图②),设截剪时x张用A方法.(1)根据题意,完成以下表格:裁剪法A裁剪法B长方形侧面x________圆形底面________0(2)若裁剪出的长方形侧面和圆形底面恰好用完,问能做多少个纸盒?(3)按以上制作方法,若店员们希望准备300个礼盒,那至少还需要正方形纸板________张.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共9题;共64分)17-1、17-2、18-1、19-1、20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年福建省漳州市漳浦县七年级(上)期末数学试卷
(考试时间:120分钟满分:150分)
一、选择题(本大题共10小题,每小题4分,共40分)
1.如图,数轴上有A,B,C,D四点,其中表示互为相反数的点是()
A.点A和B B.点B和C C.点C和D D.点A和D
2.下列说法正确的是()
A.2是单项式
B.﹣3x的系数是3
C.x的指数是0
D.多项式x2﹣x+1的次数是3
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()
A.44×108B.4.4×109C.4.4×108D.4.4×1010
4.下列调查中,最适合采用普查方式的是()
A.调查一批圆珠笔芯的使用寿命
B.调查乘坐飞机的旅客是否携带违禁物品
C.调查某市每天丢弃塑料袋数量
D.调查电视台某栏目的收视率
5.下列运算正确的是()
A.2a﹣a=2 B.2a+3b=5ab
C.4a2b﹣5ba2=﹣a2b D.a+a=a2
6.下列几何体中,从正面,左面、上面分别看到的几何体形状图都相同的是()
A.圆柱B.球体C.圆锥D.五棱柱
7.下列说法错误的是()
A.符号不同的两个数互为相反数
B.两点确定一条直线
C.两点之间,线段最短
D.最小的正整数是1
8.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为()
A.1600元B.1800元C.2000元D.2100元
9.如图,把一个直径为12的半圆分成三个大小相同的扇形,则每个扇形的面积是()
A.24πB.18πC.12πD.6π
10.若x=2是关于x的一元一次方程ax﹣b=1的解,则1﹣4a+2b的值是()
A.2 B.1 C.0 D.﹣1
二、本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置
11.要反映我市某月每天的最低气温的变化情况,宜采用统计图.(填“条形”“折线”或“扇形”)12.用一个平面截下列几何体:①长方体,②六棱柱,③球,④圆柱,⑤圆锥,截面能得到三角形的是(填写序号即可)
13.定义新运算“※“,对任意有理数a,b,规定a※b=ab﹣b,如:1※2=1×2﹣2=0,则3※5的值为.14.时钟显示时间是3点30分,此时时针与分针的夹角为°.
15.有一数值转换器,原理如图所示,若开始输入x的值是2,可发现第1次输出的结果是1,第2次输出的结果是4,第3次输出的结果是2,依次继续下去,则第2018次输出的结果是.
16.若关于x的方程kx+a=2x﹣bk,无论k为何值,它的解总是1,则b a的值为.
三、解答题(本大题共9小题,共86分,请在答题卡的相应位置解答
17.(8分)计算:
(1)9×;(2)(﹣+)×16
18.(8分)解方程
(1)2﹣3x=x+1 (2)
19.(8分)先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.
20.(8分)如图,已知点C为线段AB的中点,点D为BC的中点,AB=10cm,求AD的长度,请你把下面的解答补充完整:
解:因为点C为AB的中点
所以AC=CB=AB=5cm
因为点D为BC的中点,
所以CD==cm,
所以AD=AC+ =cm.
21.(8分)如图,某同学在制作正方体模型时,在方格纸上画出几个小正方形(图中阴影部分),但由于流忽少画了一个,请你用两种不同的方法,在下面两个方格纸上分别用阴影补上,使之可以折叠成正方体.
22.(10分)我市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅不完整的统计图,其中“一般”和“优秀”均被视为达标成绩,请你根据图中所给的信息解答下列问题:
(1)请将以上两幅统计图补充完整;
(2)求被抽取的学生中达标人数;
(3)若该校学生有1200人,请你估计全校学生中达标人数;
23.(10分)某校七年级学生乘车去参加社会实践话动,若每辆客车乘50人,还有12人不能上车;若每辆客车乘55人,则最后一辆空了8个座位,求该校租了多少辆客车?七年级学生多少人?
根据题意,小明、小红分别列出了尚不完整的方程如下:
小明:50x口()=55x口();小红:
【其中“口”表示运算符号,“()”表示数字】
(1)小明所列方程中x表示的意义是:;小红所列方程中y表示的意义是:;
(2)请你把小明或小红所列方程补充完整,并相应解答.
24.(12分)已知(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程.
(1)求m的值;
(2)若|y﹣m|=3,求出y的值;
(3)若数a满足|a|≤|m|,试化简:|a+m|+|a﹣m|.
25.(14分)将一副三角尺OAB与OCD进行如下按摆放,其中两三角尺的一顶点重合于点O,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB.
(1)当点D在OB边上时(如图1),求∠MON的度数;
(2)当点D不在OB边上时(如图2或3),其中∠BOD=a,求∠MON的度数.。