特殊平行四边形:动点问题

合集下载

北师版九年级数学上册 第1章 特殊平行四边形中的旋转、最值、动点问题 专题训练 (含答案)

北师版九年级数学上册  第1章   特殊平行四边形中的旋转、最值、动点问题    专题训练  (含答案)
(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE= AC= ,∴BD=BE-DE= -1
6.解:(1)根据图形的对称性,本来DF和BF相等,但是“在正方形AEFG绕点A旋转的过程中,线段DF与BF始终相等”不正确.例如,当点F旋转到AB上时,BF最短(小于AB),而这时DF大于AD,即DF大于BF
(2)如图②,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段与DG始终相等,并以图为例说明理由.
二、最值问题
7.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
A.2 B.4
∴BD,EG互相平分,∴BO=OD,
∴点O为正方形的角平分线的交点,
∴直线EG必过正方形角平分线的交点
20.解:(1)BG=DE,BG⊥DE,证明如下:
延长BG交DE于点H,
∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴△BCG≌△DCE(SAS),
(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?
24.已知点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.
(1)如图①,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式是;
(2)如图②,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;

压轴题必备中考数学“动点坐标”问题,这个万能解法人人都能学会!

压轴题必备中考数学“动点坐标”问题,这个万能解法人人都能学会!

压轴题必备中考数学“动点坐标”问题,这个万能解法人人都能学会!中考数学压轴题考什么?“存在性问题”一定榜上有名。

而再深入研究,你就会发现:这些试题中,有近四分之一都是在考查“平行四边形的存在性问题(包括矩形和菱形)”。

滑动查看更多“平行四边形存在性”中考题所以,今天这篇文章,洋葱君就为你重点讲解这种特殊四边形的存在性问题(含平行四边形、矩形和菱形),该如何用一个“通法”来解决。

▲存在性问题专题第二讲之“特殊四边形”要想找到解题“通法”,就要找出这类特殊四边形存在性问题的共同点,进而归纳相应解题策略。

那么,这类问题有什么共同点呢?经过大量对比分析后,洋葱君终于发现:大多数这类问题,都是题目中已知四边形中两个固定的顶点坐标,求另外两个移动的顶点坐标。

那如果几何直观能力比较差,有什么其他的方法解答呢?别担心,今天洋葱君为你带来一个非常实用的解题“通法”——对角线平分求解法。

(其中,菱形和矩形需要以等腰三角形和直角三角形的方法为基础,建议先点击这里回顾“两圆一线”和“两线一圆”模型。

)对角线平分求解法首先,你需要了解的是,解决存在性问题的根本在于“将判定定理代数化”,即:先分析图形运动方式,然后用含未知数的式子表示出点和线,最后代入判定定理的代数表达,列方程求解。

那么问题来了,对于平行四边形来说,有五种判定定理呢,我们该选择哪种来作为“通法”呢?•两组对边分别平行?•两组对边分别相等?•一组对边平行且相等?•两组对角分别相等?•对角线互相平分?如果你想不出该用哪种,就看一下这个洋葱解题课视频的分析过程吧,相信看过之后,很快你就能得到答案了。

▲完整视频请在洋葱APP中观看,视频位置:初中数学人教版-中考二轮-存在性-平行四边形存在性问题-构成平行四边形没错,就是选择“对角线互相平分”来作为常用“通法”,根据视频可以看出这种判定方法有两个优点:(1)具有稳定性由于“对角线互相平分”是利用“中点坐标公式”来列方程,列出的方程是整式方程,次数不超过二次,所以它的计算量不依赖于题目条件。

专题训练八特殊四边形与动点问题PPT课件

专题训练八特殊四边形与动点问题PPT课件
(1)从运动开始,经过多长时间,四边形 OCPQ 是平行四边形? (2)在点 P,Q 运动的过程中,四边形 OCPQ 有可能成为矩形吗?若能,求出运动时间; 若不能,请说明理由. (3)在点 P,Q 运动的过程中,四边形 OCPQ 有可能成为菱形吗?若能,求出运动时间; 若不能,请说明理由.
第2页/共11页
(1)点 A 在移动的过程中,线段 AD 和 AE 有怎样的数量关系,并说明理由; (2)点 A 在移动的过程中,若射线 ON 上始终存在一点 F 与点 A 关于 OP 所在的直线对 称,判断并说明以 A,D,F,E 为顶点的四边形是怎样的特殊四边形? (3)若∠MON=45°,猜想线段 AC,AD,OC 之间有怎样的数量关系,只写出结果即可, 不用证明.
解:(1)设从运动开始,经过x s,四边形OCPQ是平行四边形,则OQ=CP,即10-3x=x, 解得x=2.5,即从运动开始,经过2.5 s,四边形OCPQ是平行四边形. (2)四边形OCPQ不可能成为矩形.理由:若四边形OCPQ能成为矩形,则四边形OCPQ的每 一个内角均为90°,而已知∠COA=60°,所以四边形OCPQ不可能成为矩形. (3)四边形OCPQ不可能成为菱形.理由:若四边形OCPQ成为菱形,则CO=QO=CP=4 cm.∵OA=10 cm,∴AQ=10-4=6(cm),则点Q运动的时间为6÷3=2(s),这时CP=2×1 =2(cm),∵CP≠4 cm,∴四边形OCPQ不可能成为菱形.
(2)存在,过点D作DM⊥AE交AB于点M,则此时点M使得四边形DMEP是 平行四边形.证明如下:∵DM⊥AE,∴∠ADM=90°-∠DAE.∵四边形 ABCD 为 正 方 形 , ∴AB = AD , ∠B = ∠BAD = 90° , ∴∠BAE = 90° - ∠DAE,∴∠BAE=∠ADM,∴△BAE≌△ADM,∴AE=DM.由(1)知AE= EP,∴DM=EP.∵DM⊥AE,AE⊥EF,∴DM∥EP,∴四边形DMEP是平 行四边形.

专题5 特殊平行四边形的动点问题

专题5  特殊平行四边形的动点问题

专题5特殊平行四边形的动点问题类型一、一般动点问题【例1】如图,在Rt ABC ∆中,90,60B AC ∠=︒=cm,60A ∠=︒,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm/s 的速度向点B 匀速运动.当其中一个点到达终点时,另一个点也随之停止运动.设点,D E 运动的时间是t s (015)t <≤.过点D 作DF BC ⊥于点F ,连接,DE EF .(1)求证:AE=DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由;(3)当t 为何值时,△DEF 为直角三角形?请说明理由.【解答】(1)证明:根据题意可知CD=4t ,AE=2t ,∵∠B=90°,∠A=60°,∴∠C=30°,∴DF=21DC=2t.∵AE=2t ,DF=2t ,∴AE=DF.(2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF.∵AE=DF ,AE ∥DF ,∴四边形AEFD 为平行四边形,∴要使平行四边形AEFD 为菱形,则需AE=AD ,即2t=60-4t ,解得t=10,∴当t=10时,四边形AEFD 为菱形.(3)根据题意可知需分∠EDF=90°或∠DEF=90°两种情况讨论.①当∠EDF=90°时,∵∠EDF=∠B=∠DFE=90°,∴四边形DEBF 是矩形,∴∠DEB=90°,∴∠AED=90°.∵∠AED=90°,∠A=60°,∴∠ADE=30°.∵∠AED=90°,∠ADE=30°,∴AD=2AE ,即60-4t=4t ,解得t=215.②当∠DEF=90°时,∵四边形AEFD 为平行四边形,∴EF ∥AD ,∴∠ADE=∠DEF=90°.∵∠ADE=90°,∠A=60°,∴AD=21AE ,即60-4t=21×2t ,解得t=12.综上所述,当t=215或12时,△DEF 为直角三角形.【例2】如图在平面直角坐标系中,A (16,0)、C (0,8),四边形OABC 是矩形,D 、E 分别是OA 、BC 边上的点,沿DE 折叠矩形,点A 恰好落往y 轴上的点C 处,点B 落B '处。

2022-2023学年北师大版九年级数学上学期基础知识讲练1-13 特殊平行四边形动点问题

2022-2023学年北师大版九年级数学上学期基础知识讲练1-13 特殊平行四边形动点问题

专题1.13 特殊平行四边形动点问题(专项练习)一、单选题类型一、菱形动点问题1.如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E,PF⊥AB 于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4B.245C.6D.4852.如图,在菱形ABCD中,AB=4,点F是CD边上一点,且DF=1,点E是BC边上的一个动点,M、N分别是线段AE、AF的中点,连接EF和MN,当点E在BC边上从点B向点C移动时,线段MN的最小值是()A.1B.1.5C.2D.33.如图,在▱ABCD中,对角线BD⊥AD,AB=16,⊥A=60°,O为BD的中点,E为边AB上一动点,以2cm/s的速度从A点向B点运动,运动时间为ts,连接EO并延长交CD于点F,连接DE、BF,下列结论不成立的是()A.四边形DEBF为平行四边形B.若t=4,则四边形DEBF为菱形C.若t=2,则四边形DEBF为矩形D.若t=6,则四边形DEBF为正方形4.如图,点O为矩形ABCD的对称中心,动点P从点A出发沿AB向点B移动,移动到点B停止,延长PO交CD于点Q,则四边形APCQ形状的变化依次为()A.平行四边形—矩形—平行四边形—矩形B.平行四边形—菱形—平行四边形—矩形C.平行四边形—矩形—菱形—矩形D.平行四边形—菱形—平行四边形类型二、矩形动点问题5.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将⊥CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.2B.1C.2D.36.如图,矩形ABCD中,P为AB边上一动点(含端点),E为CD中点,F为CP中点,当点P由B向A运动时,下面对EF变化情况描述正确的是()A.由小变大B.由大变小C.先变大后边小D.先变小后变大7.如图,四边形ABCO是矩形,点D是BC边上的动点(点D与点B、点C不重合),则BAD DOCADO∠+∠∠的值为()A.1B.12C.2D.无法确定8.如图,在矩形ABCD中,AB=5,BC=6,点M,N分别在AD,BC上,且AM=BN,AD=3AM,E为BC边上一动点,连接DE,将⊥DCE沿DE所在直线折叠得到⊥DC′E,当C′点恰好落在线段MN上时,CE的长为()A.52或2B.52C.32或2D.32类型三、正方形动点问题9.如图,正方形ABCD的面积为225cm,点E为BC边上一动点,点F为CD边上一动点,连接AE、AF,点E和点F在运动的过程中始终保持45EAF∠=︒,则CEF∆的周长()A.10cm B.8cm C.6cm D.4cm10.如图,已知正方形ABCD边长是6,点P是线段BC上一动点,过点D作DE⊥AP 于点E.连接EC,若CE CD=,则⊥CDE的面积是()A.18B.413C.63D.14.411.如图,在边长为6的正方形ABCD中,P是边AD的中点,E是边AB上的一个动点(不与A重合),以线段AE为边在正方形内作等边⊥AEF,M是边EF的中点,连接PM,则在点E运动过程中,PM的最小值是()A.332B.532C.7D.312.如图,在正方形有ABCD中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG 的延长线于点H ,连接BH ,那么BHAE 的值为( )A .1B .2C .3D .2二、填空题类型一、菱形动点问题13.如图(1)是一张菱形纸片,其中135A ∠=︒,1AB =,点E 为BC 边上一动点.如图(2),将纸片沿AE 翻折,点B 的对应点为B ';如图(3),将纸片再沿AB '折叠,点E 的对应点为E '.当AE '与菱形的边垂直时,BE 的长为______.14.如图,在菱形ABCD 中,⊥ABC =120°,对角线AC 、BD 交于点O ,BD =4,点E 为OD 的中点,点F 为AB 上一点,且AF =3BF ,点P 为AC 上一动点,连接PE 、PF ,则PF ﹣PE 的最大值为 ___.15.如图,已知等边三角形ABC 绕点B 顺时针旋转60︒得到CBD ,E ,F 分别为线段AC 和线段CD 上的动点,且AE CF =,有以下结论:⊥四边形ABDC 为菱形;⊥≅ABE CBF ;⊥BEF 为等边三角形;⊥CFB CGE ∠=∠.其中正确结论有__________.(填序号)16.如图,点E 是菱形ABCD 边AB 的中点,点F 为边AD上一动点,连接EF ,将⊥AEF 沿直线EF 折叠得到⊥A 'EF ,连接A 'D ,A 'C .已知 BC =4,⊥B =120°,当⊥A 'CD 为直角三角形时,线段AF 的长为______.类型二、矩形动点问题17.如图,矩形ABCD 中,AB =3,AD =5.点E 是BC 边上一动点,连接AE .将⊥ABE沿AE 翻折得到⊥AEF ,连接DF .当⊥ADF 的面积为52时,线段BE 的长为______.18.已知矩形ABCD 中,AB =6.点E 为AD 上一个动点,连接CE ,将CDE △沿CE 折叠,点D 落在点F 处,当点F 为线段AB 的三等分点时,AE 的长为______.19.如图,矩形ABCD 中,6AB =,8AD =,动点E 、F 分别从点A 、C 同时出发,以相同的速度分别沿AD 、CB 向终点D 、B 移动,当点E 到达点D 时,运动停止,过点B 作直线EF 的垂线BP ,垂足为点P ,连接CP ,则CP 长的最小值为________.20.如图,矩形ABCD 中,AB =6,BC =8,点E 是CB 上的一个动点,把△DCE 沿DE 折叠,若点C 的对应点C ′刚好落在线段AB 的垂直平分线上,则CE 的长度为_____.类型三、正方形动点问题21.如图,在正方形ABCD 中,点P ,Q 分别是AB ,AD 的中点,点E 是CD 边上一个动点,连接PE ,将四边形PBCE 沿PE 折叠,得到四边形PEFH .(1)若P ,H ,Q 三点在同一条直线上,则BPE ∠的大小为______°;(2)若2AB =,则F ,Q 两点的连线段的最小值为______.22.如图,正方形ABCD 的边长为3,点G 在边AD 上,GD =1,GH ⊥BC 于点H ,点E 是边AB 上一动点(不与点A ,B 重合),EF ⊥CD 于点F ,交GH 于点Q ,点O 、P 分别是EH 和GQ 的中点,连接OP ,则线段OP 的长度为__________.23.如图,在边长为4的正方形ABCD 中,E 、F 分别是边BC 、DC 上的动点,且EF =4,Q 为EF 中点,P 是边AD 上的一个动点,则PQ +PB 的最小值是_____.24.如图,正方形ABCD 中,点E 为BC 边的中点,点P 为边AB上一个动点,连接PE ,以PE 为对称轴折叠PBE △得到PFE △,点B 的对应点为点F ,若2AB =,当射线EF 经过正方形ABCD 边的中点(不包括点E )时,BP 的长为_____________.三、解答题25.如图,将正方形AOBC 放在平面直角坐标系中,点O 是坐标系原点,A 点坐标为(-1,3).(1)求出点B 、C 的坐标:(2)在x 轴上有一动点Q ,过点Q 作PQ ⊥x 轴,交BC 于点P ,连接AP ,将四边形AOBP 沿AP 翻折,当点O 刚好落在y 轴上点E 处时,求点P 、D 的坐标.26.如图,在矩形ABCD 中,6cm AB =,4cm BC =,动点P从点A 出发,以2cm/s 的速度沿AB 向点B 移动,同时,点Q 从点C 出发,以lcm/s 的速度沿CD 向点D 移动(点P 到达点B 停止时,点Q 也随之停止运动),设点P 运动时间为t 秒.(1)试求当t 为何值时四边形APQD 为矩形;(2)P 、Q 两点出发多长时间,线段PQ 的长度为5cm .27.已知矩形ABCD 中,E 是AD边上的一个动点,点F ,G ,H 分别是BC ,BE ,CE 的中点.(1)求证:BGF FHC ≌;(2)当E 是AD 的中点时,四边形EHFG 是什么样的特殊四边形?请证明你的结论.28.如图,在菱形ABCD中,AB=6,⊥DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:⊥当AM的值为时,四边形AMDN是矩形;⊥当AM的值为时,四边形AMDN是菱形.参考答案1.B【分析】连接BP,通过菱形ABCD的周长为20,求出边长,菱形面积为24,求出SABC的面积,然后利用面积法,SABP+SCBP=SABC,即可求出PE PF的值.解:连接BP,如图,⊥菱形ABCD的周长为20,⊥AB=BC=20÷4=5,又⊥菱形ABCD的面积为24,⊥SABC=24÷2=12,又SABC= SABP+SCBP⊥SABP+SCBP=12,⊥111222AB PF BC PE += , ⊥AB =BC ,⊥()1122AB PE PF += ⊥AB =5,⊥PE +PF =12×25=245. 故选:B .【点拨】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系,求出PF +PE 的值.2.B【分析】利用三角形中位线性质求解即可.解:⊥M 、N 分别是线段AE 、AF 的中点,⊥12MN EF =, ⊥点E 在BC 边上从点B 向点C 移动,⊥当点E 运动到点C 的位置时,EF 最小,此时,EF =4-1=3,⊥线段MN 的最小值为1.5.故选:B【点拨】此题考查三角形的中位线的性质,知道当点E 运动到点C 的位置时EF 最小是解答此题的关键.3.D【分析】由▱ABCD ,得EB ∥FD ,再证⊥BOE ⊥△DOF (AAS ),得BE =DF ,即可得出四边形BEDF 是平行四边形,可以判定A ;当t =4时,则AE =2t =8,证⊥ADE 是等边三角形,DE =AE =8,再因四边形DEBF 是平行四边形,所以四边形DEBF 是菱形,可判定B ;当t =2时,则AE =2t =4,同理可得四边形DEBF 是菱形,可判定C ;当t =6时,则AE =2t =12,在AE 上截取AG =AD =8,连接DG ,证⊥BED >120°≠90°,所以四边形DEBF 不可能是正方形,可判定D .解:A 、⊥▱ABCD ,⊥AB ∥CD ,即EB ∥FD ,⊥⊥BEO =⊥DFO ,⊥EBO =⊥FDO ,⊥OB=OD,⊥⊥BOE⊥△DOF(AAS),⊥BE=DF,⊥四边形BEDF是平行四边形,故此选项正确,不符合题意;B、当t=4时,则AE=2t=8,⊥AD⊥BD,⊥⊥ADB=90°,在Rt△ABD中,⊥ADB=90°,⊥A=60°,⊥⊥ABC=30°,⊥AD=12AB=8,⊥AD=AE,⊥⊥ADE是等边三角形,⊥DE=AE=8,⊥四边形DEBF是平行四边形,⊥四边形DEBF是菱形;故此选项正确,不符合题意;C、当t=2时,则AE=2t=4,⊥4182AEAD==,81162ADAB==,AE ADAD AB=,⊥⊥A=⊥A,⊥⊥ADE⊥⊥ABD,⊥⊥AED=⊥ADB=90°,⊥⊥BED=90°,⊥四边形DEBF是平行四边形,⊥四边形DEBF是矩形;故此选项正确,不符合题意;D、当t=6时,则AE=2t=12,在AE上截取AG=AD=8,连接DG,如图,⊥⊥A=60°,⊥⊥ADG是等边三角形,⊥⊥AGD=60°,⊥⊥AED<60°,⊥⊥BED>120°≠90°,⊥四边形DEBF不可能是正方形;故此选错误,符合题意;故选:D.【点拨】本题考查平行四边形的判定与性质,矩形的判定,菱形的判定,正方形的判定,熟练掌握平行四边形的判定,矩形的判定,菱形的判定,正方形的判定是解题的关键.4.B【分析】根据对称中心的定义,矩形的性质,可得四边形APCQ的形状变化情况,这个四边形首先是平行四边形,当对角线互相垂直时,是菱形,然后又是平行四边形,最后点A、B重合时是矩形.解:观察图形可知,四边形APCQ形状的变化一次为:平行四边形—菱形—平行四边形—矩形故选:B.【点拨】本题考查中心对称、矩形的性质、平行四边形的判定与性质、菱形的判定等知识,在重要考点,掌握相关知识是解题关键.5.B【分析】由矩形的性质得出⊥B=⊥C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.解:⊥四边形ABCD是矩形,⊥⊥B=⊥C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,⊥DC'E=⊥C=90°,⊥⊥AC'D=90°,⊥AC,设CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故选:B.【点拨】本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解题的关键.6.B【分析】连接DP,则EF为⊥CDP的中位线,当点P由B向A运动时,DP由大变小,利用中位线的性质即可得到结论.解:连接DP,⊥E为CD中点,F为CP中点,⊥EF为⊥CDP的中位线,DP,⊥EF=12在Rt⊥DAP中,由勾股定理得,DP当点P由B向A运动时,AP的长度逐渐减小,⊥DP减小,⊥EF由大变小,故选:B.【点拨】本题考查了矩形的性质和中位线的性质,解题的关键是连接DP,构造三角形中位线.7.A【分析】过点D 作//DE AB 交AO 于点E ,由平行的性质可知,BAD ADE DOC ODE ∠=∠∠=∠,等量代换可得BAD DOC ADO∠+∠∠的值. 解:如图,过点D 作//DE AB 交AO 于点E ,四边形ABCO 是矩形//AB OC∴//DE AB //,//AB DE DE OC ∴,BAD ADE DOC ODE ∴∠=∠∠=∠1BAD DOC BAD DOC BAD DOC ADO ADE ODE BAD DOC∠+∠∠+∠∠+∠∴===∠∠+∠∠+∠故选:A. 【点拨】本题主要考查了平行线的性质,灵活的添加辅助线是解题的关键.8.B【分析】由矩形的性质得到CD =AB =5,AD =BC =6,⊥A =90°,根据已知条件推出四边形MNCD的矩形,得到⊥DMN =⊥MNC =90°,MN =CD =5,根据折叠的性质得到C ′D =CD =5,C′E=CE ,根据勾股定理得到MC ′3,再由勾股定理即可得到结论.解:设CE =x ,则C ′E =x ,⊥矩形ABCD 中,AB =5,BC =6,⊥CD =AB =5,AD =BC =6,AD ⊥BC ,⊥点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,⊥DM =CN =4,⊥四边形CDMN 为平行四边形,⊥⊥NCD =90°,⊥四边形MNCD 是矩形,⊥⊥DMN =⊥MNC =90°,MN =CD =5由折叠知,C ′D =CD =5,⊥MC ′3,⊥C ′N =5﹣3=2,⊥EN =CN ﹣CE =4﹣x ,⊥C ′E 2﹣NE 2=C ′N 2,⊥x 2﹣(4﹣x )2=22,解得,x =52,即CE =52. 故选:B .【点拨】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,正确的识别图形是解题的关键.9.A【分析】先根据正方形的性质得AB =AD =5cm ,⊥BAD =⊥B =90°,把⊥ADF 绕点A 顺时针旋转90°可得到⊥ABG ,接着利用“SAS ”证明 EAG EAF ≌,得到EG =EF =BE +DF ,然后利用三角形周长的定义得到△CEF 的周长=CE +CF +BE +DF =CB +CD ,由此即可解决问题.解:⊥四边形ABCD 为正方形,⊥AB =AD ,⊥BAD =⊥B =90°,又正方形ABCD 的面积为225cm ,⊥5cm AB BC CD DA ====⊥把△ADF 绕点A 顺时针旋转90°可得到△ABG ,如图,⊥AG =AF ,BG =DF ,⊥GAF =90°,⊥ABG =⊥B =90°,⊥点G 在CB 的延长线上,⊥⊥EAF =45°,⊥⊥EAG =⊥GAF -⊥EAF =45°,⊥⊥EAG =⊥EAF ,在△EAG 和△EAF 中,AE AE EAG EAF AG AF ⎧⎪∠∠⎨⎪⎩===,⊥ EAG EAF ≌(SAS ),⊥EG =EF ,而EG =BE +BG =BE +DF ,⊥EF =BE +DF ,⊥CEF △的周长=CE +CF +BE +DF =CB +CD =5+5=10cm .故选:A .【点拨】本题考查了全等三角形的判定与性质、正方形的性质等知识,解题的关键是利用旋转添加辅助线构造全等三角形解决问题.10.D【分析】根据正方形的性质和全等三角形的判定可以得到△ADE 和△DCF 全等,然后即可得到CF 和DE 的关系,根据等腰三角形的性质可以得到DF 和DE 的关系,再根据勾股定理可以得到DF 2的值,然后即可计算出△CDE 的面积.解:作CF ⊥ED 于点F ,如图所示,⊥四边形ABCD 是正方形,⊥AD =DC ,⊥CDA =90°,⊥⊥ADE +⊥FDC =90°,⊥CF ⊥DE ,CD =CE ,⊥EF =DF =12DE ,⊥CFD =90°,⊥⊥FDC +⊥DCF =90°,⊥⊥ADE =⊥DCF ,在△ADE 和△DCF 中,AED DFC ADE DCF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩ ,⊥⊥ADE⊥⊥DCF(AAS),⊥DE=CF,⊥DF=12CF,⊥⊥CFD=90°,CD=6,⊥DF2+CF2=CD2,即DF2+(2DF)2=62,解得DF2=7.2,⊥S△CDE=2222DE CF DF DF⋅⋅==2DF2=2×7.2=14.4,故选:D.【点拨】本题考查正方形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,解答本题的关键是求出DF2的值.11.A【分析】连接PF,由已知,M在⊥F AE的平分线上,当PM⊥AM时,PM最小,于是得到当P,F,M三点共线时,PM的值最小,连接AM,根据等边三角形的性质得到AM⊥EF,⊥EAM=30°,求得⊥P AM=60°,根据三角函数的定义即可得到结论.解:如图,连接AM,⊥P是边AD的中点,AD=6,⊥AP=3,连接PF,由已知,M在⊥F AE的平分线上,当PM⊥AM时,PM最小⊥此时P,F,M三点共线时连接AM,⊥⊥AEF是等边三角形,M是边EF的中点,⊥AM⊥EF,⊥EAM=30°,⊥⊥P AM=60°,⊥PM AP = 故选 A . 【点拨】本题考查了正方形的性质,等边三角形的性质,解直角三角形,正确的理解题意是解题的关键.12.B【分析】作辅助线,构建全等三角形,证明⊥DAE ⊥⊥ENH ,得AE =HN ,AD =EN ,再说明⊥BNH 是等腰直角三角形,可得结论.解:如图,在线段AD 上截取AM ,使AM =AE ,,⊥AD =AB ,⊥DM =BE ,⊥点A 关于直线DE 的对称点为F ,⊥⊥ADE ⊥⊥FDE ,⊥DA =DF =DC ,⊥DFE =⊥A =90°,⊥1=⊥2,⊥⊥DFG =90°,在Rt ⊥DFG 和Rt ⊥DCG 中,⊥DF DC DG DG=⎧⎨=⎩, ⊥Rt ⊥DFG ⊥Rt ⊥DCG (HL ),⊥⊥3=⊥4,⊥⊥ADC =90°,⊥⊥1+⊥2+⊥3+⊥4=90°,⊥2⊥2+2⊥3=90°,⊥⊥2+⊥3=45°,即⊥EDG =45°,⊥EH ⊥DE ,⊥⊥DEH =90°,⊥DEH 是等腰直角三角形,⊥⊥AED +⊥BEH =⊥AED +⊥1=90°,DE =EH ,⊥⊥1=⊥BEH ,在⊥DME 和⊥EBH 中,⊥1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,⊥⊥DME ⊥⊥EBH (SAS ),⊥EM =BH ,Rt ⊥AEM 中,⊥A =90°,AM =AE ,⊥EM =,⊥BH ,即BHAE. 故选:B .【点拨】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.13【分析】分AE BC '⊥和AE AB '⊥两种情况求解即可.解:⊥当AE BC '⊥时,如图1,⊥四边形ABCD 是菱形,⊥135C BAD ∠=∠=︒,180C B ∠+∠=︒,BC //AD ,⊥45B ∠=︒,90DAF ∠=︒,⊥1359045BAF ∠=︒-︒=︒,⊥45B BAF ∠=∠=︒,⊥AF =BF ,在Rt BAF ∆中,222,1AB AF BF AB =+=,⊥1)AF BF AB ==== 由折叠得,⊥114515,33BAE EAB B AE BAE ''''︒︒=∠=∠=∠=⨯= ⊥⊥151530EAE EAB B AE ︒︒︒''+'=∠+∠==, 又tan ,EF EAF AF∠=⊥tan EF AF EAF =⋅∠=,⊥BE BF EF =-== ⊥当AE AB '⊥时,如图2,即⊥90BAE '︒=,⊥⊥''30B AE B AE BAE ︒∠'=∠==',过点E 作EG AB ⊥于点G ,则,EG BG AG ==,又⊥AB BG AG =+,1EG =,⊥1EG =, ⊥BE ==综上,BE【点拨】本题主要考查了菱形的性质,折叠的性质,用正切值求边长,勾股定理等知识,熟练掌握相关知识是解答本题的关键.14.1【分析】取OB 中点E ',连接PE ',作射线FE '交AC 于点P '.则PE =PE ',当P 与P '重合,P '、E '、F 三点在同一直线上时,PF ﹣PE '有最大值,即为FE '的长.解:如图,取OB 中点E ',连接PE ',作射线FE '交AC 于点P '.则PE =PE ',⊥PF﹣PE=PF﹣PE'≤FE',当P与P'重合,P'、E'、F三点在同一直线上时,PF﹣PE'有最大值,即为FE'的长,⊥在菱形ABCD中,⊥ABC=120°,⊥⊥ABD=60°,⊥DAB=60°,⊥⊥ABD为等边三角形.⊥AB=BD=AD=4.⊥OD=OB=2.⊥点E'为OB的中点,E'B=1,AF=3BF,⊥BF1AB=1,4⊥⊥ABD=60°,⊥⊥BE'F为等边三角形,⊥E'F=FB=1.故PF﹣PE的最大值为1.故答案为:1.【点拨】本题考查了轴对称﹣最大值问题、菱形的性质、等边三角形的判定与性质,熟练运用轴对称的性质和三角形三边关系是解题的关键.15.⊥⊥⊥⊥【分析】⊥由等边三角形旋转的性质可知AB=AC=BD=CD即可判断;⊥利用SAS即可判定△ABE⊥⊥CBF;⊥由全等三角形的性质可知BE=BF,⊥ABE=⊥CBF,再结合⊥ABC=⊥ABE+EBC=60°,即可求出⊥EBF=60°,即证明△BEF为等边三角形;⊥由⊥CFB=⊥CFG+⊥BFG,⊥CGE=⊥CFG+FCG即可判断.解:由等边三角形旋转的性质可知AB=AC=BD=CD,即四边形ABCD为菱形故⊥正确.⊥在△ABE和△CBF中,AB CB BAE BCF AE CF ⎧⎪∠∠⎨⎪⎩===,⊥⊥ABE ⊥⊥CBF (SAS ),故⊥正确;⊥⊥ABE ⊥⊥CBF ,⊥BE =BF ,⊥ABE =⊥CBF ,⊥⊥ABC =⊥ABE +⊥EBC =60°,⊥⊥CBF +⊥EBC =60°,即⊥EBF =60°,⊥⊥BEF 为等边三角形,故⊥正确;⊥⊥CFB =⊥CFG +⊥BFG ,⊥CGE =⊥CFG +FCG ,⊥FCG =⊥BFG =60°,⊥⊥CFB =⊥CGE ,故⊥正确;综上,⊥⊥⊥⊥都正确,故答案为:⊥⊥⊥⊥.【点拨】本题考查了等边三角形的判定与性质,图形旋转的性质,菱形的判定,全等三角形的判定与性质,三角形外角性质,熟练掌握这些知识并利用数形结合的思想解题的关键.16.2或2【分析】分当=90CA D '︒∠时和当=90A DC '︒∠时两种情况讨论求解即可.解:如图1所示,当=90CA D '︒∠时,取CD 中点H ,连接A H ', ⊥1=2A H CD DH '=, ⊥四边形ABCD 是菱形,E 为AB 中点, ⊥1122AE AB CD A H '===,⊥A =180°-⊥B =60°,AB CD , 由折叠的性质可知AE A E '=,AF A F '=,AEF A EF '∠=∠⊥A E A H AB AD ''+==,连接EH ,⊥=AE DH A H '=,AE DH ∥⊥四边形AEHD 是平行四边形,⊥=120AEH B =︒∠∠,AD EH =,⊥由三角形三边的关系可知,当点A '不在线段EH 上时,必有A E A H EH AD ''+>=,这与A H A E CD AD ''+==矛盾,⊥E 、A '、H 三点共线,⊥=60AEF A EF '=︒∠∠,⊥⊥AEF 为等边三角形, ⊥11222AF AE AB BC ====; 如图2所示,当=90A DC '︒∠时,连接BD ,ED ,过点F 作FG ⊥AB 于G ,⊥⊥ABC =120°,四边形ABCD 是菱形,⊥AB =AD ,⊥A =60°,⊥⊥ABD 是等边三角形,⊥E 是AB 中点,⊥DE ⊥AB ,⊥⊥ADE =30°,⊥⊥EDC =90°,⊥此时D A E '、、三点共线,由翻折的性质可得==45AEF A EF '︒∠∠,⊥FG ⊥AE ,⊥A =60°,⊥AEF =45°,⊥⊥AFG =30°,⊥GFE =45°,⊥AF =2AG ,EG =FG ,⊥FG AF ==, ⊥11222AE AG GE AB BC =+===,⊥122AF AF +=,⊥2AF =,故答案为:2或2.【点拨】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形三边的关系,含30度角的直角三角形的性质,平行四边形的性质与判定,直角三角形斜边上的中线等等,利用分类讨论的思想求解是解题的关键.17.2【分析】过点F作AD的垂线,交AD于M,交BC于N,求出AM长,再根据勾股定理列出方程求解即可.解:过点F作AD的垂线,交AD于M,交BC于N,由翻折可知,AB=AF=3,BE=EF,⊥⊥ADF的面积为52,⊥15 22 AD FM=,⊥AD=5,⊥1FM=,⊥AM==⊥⊥ABN=⊥BAN=⊥AMN=90°,⊥四边形AMNB是矩形,⊥AM BN==⊥BNM=90°,AB=MN=3,⊥FN=MN-FM=2,⊥222)2BE BE=+,解得,BE=【点拨】本题考查了矩形的判定与性质,勾股定理,解题关键是根据面积求出线段长,利用勾股定理列方程.18【分析】 根据题意可求出123BF AB ==,243AF AB ==.再根据折叠的性质和矩形的性质可得出6CF CD AB ===,DE EF =,从而可利用勾股定理求出AD BC ==AE x =,则DE EF x ==.在Rt AEF 中,再次利用勾股定理即可列出关于x 的等式,解出x 即得出答案.解:⊥AB =6,点F 为线段AB 的三等分点, ⊥123BF AB ==,243AF AB ==, 根据折叠和矩形的性质可得出6CF CD AB ===,DE EF =,⊥AD BC ===设AE x =,则DE EF x ==.⊥在Rt AEF 中,222AE AF EF +=,⊥2224)x x +=, 解得:x = ⊥AE =【点拨】本题考查矩形与折叠,勾股定理等知识.利用数形结合的思想是解题关键. 19.4【分析】因为EF 不论如何运动,EF 的中点始终在矩形的对角线的交点上,所以当EF ⊥BC 时,即,E 、F 分别是AD 、BC 的中点时,CP 取得最小值,此时P 与F 重合,即可求解.解:⊥动点E 、F 分别从点A 、C 同时出发,以相同的速度分别沿AD 、CB 向终点D 、B 移动,⊥AE =CF⊥EF 不论如何运动,EF 的中点始终在矩形的对角线的交点上,⊥当EF ⊥BC 时,即,E 、F 分别是AD 、BC 的中点时,CP 取得最小值,此时P 与F 重合,⊥CP =142BC = 故答案为:4【点拨】本题考查了矩形的性质,弄清题意找到P 的位置是解题的关键.20.【分析】利用垂直平分线的性质得出CC '=DC '= DC ,则⊥D C 'C 是等边三角形,进而利用勾股定理得出答案.解:如下图,连接 ,⊥点C '在AB 的垂直平分线上,⊥点C '在DC 的垂直平分线上,⊥CC '=DC '= DC ,则⊥D C 'C 是等边三角形,设CE = x ,易得DE = 2x ,由勾股定理得: (2x )2 -x 2= 62,解得: x =(负值舍去)故答案为:【点拨】本题考查了矩形的性质、翻折变换的性质、勾股定理,等边三角形的性质,解题的关键是证明⊥DC C '是等边三角形.21. 67.5-【分析】(1)易得45APQ ∠=︒,利用翻折的性质得到67.5BPE HPE ∠∠==︒;(2)连接PQ ,PE ,PC ,易证PBC PHF △△≌,得到PF PC ==PQ =P ,Q ,F 在同一条直线上时,FQ 最小,计算可得.解:(1)如图1,易得45APQ ∠=︒,⊥67.5BPE HPE ∠∠==︒,故答案为:67.5;(2)如图2,连接PQ ,PE ,PC ,易证PBC PHF △△≌,⊥PF PC ==PQ =当P ,Q ,F 在同一条直线上时,FQ 最小,--【点拨】此题考查了正方形的性质,全等三角形的判定及性质,勾股定理,正确掌握翻折的性质是解题的关键.22【分析】取QH 的中点M ,连接OM ,由正方形及矩形的性质得出AG =EQ ,GH =CD =3,⊥EQH =90°,求出QE =2,由三角形中位线定理得出OM =12QE =1,OM∥EQ ,求出PM 的长,根据勾股定理可得出答案.解:取QH 的中点M ,连接OM , ⊥四边形ABCD 是正方形,⊥⊥A =⊥B =⊥C =⊥D =90°,⊥EF ⊥CD ,GH ⊥BC ,⊥四边形AEQG ,四边形GHCD 为矩形,⊥AG =EQ ,GH =CD =3,⊥EQH =90°,⊥DG=1,⊥AG=EQ=2,⊥O,M分别为EH,QH的中点,⊥OM=12QE=1,OM∥EQ,⊥⊥OMP=90°,⊥P为GQ的中点,M为QH的中点,⊥PQ=12GQ,QM=12QH,⊥PM=PQ+QM=1113 2222 QG QH GH+==,⊥OP.【点拨】本题主要考查了正方形和矩形的性质,勾股定理的应用,正确作出辅助线是解题得关键.23.2【分析】延长BA到B′,使B′A=AB,PB+PQ=PB′+PQ,当B′,P,Q三点共线时,PB′+PQ的值最小,根据题意,点Q的轨迹是以C为圆心,2为半径的圆弧上,圆外一点B′到圆上一点Q距离的最小值B′Q=B′C﹣2,根据勾股定理即可得到结论.解:如图所示:要,延长BA到B′,使B′A=AB,PB+PQ=PB′+PQ,当B′,P,Q三点共线时,PB′+PQ的值最小,根据题意,点Q的轨迹是以C为圆心,2为半径的圆弧上,圆外一点B′到圆上一点Q距离的最小值B′Q=CB′﹣2,⊥BC=AB=4,⊥BB′=8,⊥B ′C B ′Q =B ′C ﹣2=2,⊥PB ′+PQ 的值最小是2,即PQ +PB 的最小值是2,故答案为:2.【点拨】本题考查了正方形的性质、轴对称-最短路线问题,勾股定理,正确的找到P 点的位置是解题的关键.24.11【分析】分EF 经过正方形ABCD 另三边三种情况求解即可解:⊥EF 经过CD 边中点O 时,⊥四边形ABCD 是正方形,⊥AB=BC=CD=DA ,90C B ∠=∠=︒,⊥点O 是CD 边中点,点E 是BC 边中点, ⊥11,22OC CD EC BC ==. ⊥CE=CO =1,⊥45CEO ∠=︒, 由折叠得11(180)((18045)67.522FEP BEP CEO ∠=∠=︒-∠=︒-︒=︒, ⊥22.5FPE BPE ∠=∠=︒.⊥45FPB FPE BPE ∠=∠+∠=︒,作FG ⊥AB 于G ,作EH ⊥FG 于H ,如图,设FH=x ,则BG=EH=FH=x ,⊥45BPF ∠=︒,⊥PG =FG=x +1,⊥BP =2x +1,由勾股定理得1)PF x =+,由折叠得PB=PF ,⊥211)x x +=+,解得x =.⊥12BP =>,⊥点P 在AB 外,不符合题意;⊥EF 经过AD 边中点O ',如图, 此时,190452FEP BEP ∠=∠=⨯︒=︒, ⊥BP=BE =1;⊥EF 经过AB 中点O '',如图,⊥O ''B=BE ,⊥45EO B ''∠=︒.由折叠得90PFE B ∠=∠=︒,设PF=x ,则,O P PB x ''==,1x +=,⊥1,即1,综上,BP 的长为11,故答案为:11.【点拨】此题考查了正方形的性质,折叠的性质,勾股定理,灵活运用分类讨论思想是解答本题的关键.25.(1)B (3,1)、C (2,4) (2)D (3,5)、P (73,3) 【分析】(1)分别过点A、B做x轴的垂线,垂足为G、H∥证明⊥AGO⊥⊥OHB,根据三角形全等的性质可得出结论;(2)根据对称性和全等的性质可得D(3,5),再求出BC的解析式y=-3x+10,从而可求出点P坐标.解:(1)分别过点A、B做x轴的垂线,垂足为G、H;⊥四边形AOBC是正方形⊥AO= BO,⊥AOB =90°⊥⊥AGO⊥⊥OHB⊥ AG= OH,OG= BH⊥A点坐标为(-1,3)⊥ AG =3,OG=1⊥ OH =3,BH=]⊥B(3,1)同理可得C(2,4)(2)⊥点O与点E关于AP成轴对称⊥AO=AE,AP⊥OE且平分OE⊥E(0,6)根据上面全等可以得到D(3,5)⊥点P的纵坐标是3⊥点P在直线BC上⊥设直线BC为y = kx + b,由条件可得20 30k bk b+=⎧⎨+=⎩,解之得-310k b =⎧⎨=⎩ ⊥y =-3x +10当y =3时,73x =⊥P (73,3) 【点拨】本题主要考查了坐标与图形,一次函数图象上点的坐标特征,正确作出辅助线构造全等三角形是解答本题的关键.26.(1)2;(2)当出发1s 或3s 时,线段PQ 的长度为5cm .【分析】(1)由矩形的性质,得AP DQ =,继而列出关于t 的一元一次方程即可解题; (2)过点P 作PE CD ⊥于点E ,先证明四边形APED 是矩形,再根据矩形的性质解得EQ 的长,最后在Rt PQE △中,根据勾股定理解题即可.解:(1)四边形APQD 为矩形.AP DQ ∴=,26t t ∴=-,36t =,2t ∴=,∴当2t =时四边形APQD 为矩形;(2)过点P 作PE CD ⊥于点E ,90A D DEP ∠∠∠===︒,∴四边形APED 是矩形.2AP DE t ∴==,63EQ CD DE CQ t ∴=--=-,在Rt PQE △中,222PE EQ PQ +=,2(63)9t -=,1t =,3t =,答:当出发1s或3s时,线段PQ的长度为5cm.【点拨】本题考查矩形的判断与性质、勾股定理,涉及解一元一次方程、解一元二次方程等知识,是重要考点,难度较易,掌握相关知识是解题关键.27.(1)详见分析;(2)当E是AD的中点时,四边形EHFG是菱形,证明详见分析【分析】(1)根据三角形中位线定理和全等三角形的判定解答即可;(2)根据菱形的判定解答即可.解:(1)⊥点F,G,H分别是BC,BE,CE的中点,⊥FH⊥BE,12FH BE=,BF=FC,⊥⊥CFH=⊥FBG,FH=BG,⊥⊥BGF⊥⊥FHC;(2)当E是AD的中点时,四边形EHFG是菱形.当E是AD的中点时,AE=ED,⊥四边形ABCD是矩形,⊥AB=CD,⊥A=⊥D=90︒,⊥⊥ABE⊥⊥DCE,⊥BE=CE,⊥BE=2FH,CE=2FG,⊥FH=FG =1122BE CE EG EH===,⊥EH=HF=FG=GE,⊥四边形EGFH是菱形.【点拨】本题考查了菱形的判定,全等三角形的判定和性质,三角形中位线定理,关键是根据全等三角形的判定和菱形的判定解答.28.(1)见分析(2)⊥3;⊥6【分析】(1)利用AAS证△NDE⊥⊥MAE,得出NE=ME,进而得出结论;(2)⊥当四边形AMDN是矩形时⊥AMD=90°,由菱形的性质得AD=6,进而求出AM的值;⊥当四边形AMDN是菱形时,AM=DM,由⊥DAB=60°,得出△AMD为等边三角形,进而求出AM的值.解:(1)证明:⊥四边形ABCD是菱形⊥AB⊥CD⊥⊥DNE=⊥AME,⊥NDE=⊥MAE⊥点E是AD边的中点⊥AE=DE⊥△NDE⊥⊥MAE(AAS)⊥NE=ME⊥四边形AMDN是平行四边形(2)解:⊥当四边形AMDN是矩形时⊥AMD=90°在菱形ABCD中AD=AB=6⊥⊥DAB=60°⊥⊥ADM=30°⊥AM=12AD=3故答案为:3.⊥当四边形AMDN是菱形时,AM=DM⊥⊥DAB=60°⊥⊥AMD为等边三角形⊥AM=AD在菱形ABCD中AD=AB=6⊥AM=6故答案为:6.【点拨】本题考查平行四边形的判定,矩形和菱形的性质,等边三角形的性质,30°的直角三角形的性质,熟练地掌握平行四边的判定方法和矩形菱形的性质是解决问题的关键.。

初二数学《平行四边形中的动点问题》(附练习及答案)

初二数学《平行四边形中的动点问题》(附练习及答案)

四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。

解决这类问题关键是动中求静,灵活运用有关数学知识。

数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。

这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。

解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。

1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题

人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题

难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE=90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EF =3 3.在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP =90°.∵AC为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP=10,∴PM =12AP =5.由勾股定理得AM =P A 2-PM 2=5 3.在△ANP 和△AMP 中,⎩⎪⎨⎪⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3.∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF =10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°. 3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎪⎨⎪⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。

特殊平行四边形专题训练

特殊平行四边形专题训练

专训一:矩形的性质与判定灵活运用名师点金:1.矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,同时还具有一些独特的性质,可归结为三个方面:(1)从边看:矩形的对边平行且相等;(2)从角看:矩形的四个角都是直角;(3)从对角线看:矩形的对角线互相平分且相等.2.判定一个四边形是矩形可从两个角度进行:一是判定它有三个角为直角;二是先判定它为平行四边形,再判定它有一个角为直角或两条对角线相等.利用矩形的性质与判定求线段的长(转化思想) 1.如图,将矩形纸片ABCD的四个角向内折起,点A,点B落在点M处,点C,点D落在点N处,恰好拼成一个无缝隙不重叠的四边形EFGH,若EH=3 cm,EF=4 cm,求AD的长.(第1题)利用矩形的性质与判定证明线段相等2.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连结OE.求证:OE=BC.(第2题)利用矩形的性质与判定判断图形形状3.如图,在矩形ABCD中,AB=2,BC=5,E,P分别在AD,BC上,且DE=BP=1,连结AP,EC,分别交BE,PD于H,F.(1)判断△BEC的形状,并说明理由.(2)判断四边形EFPH是什么特殊的四边形?并证明你的判断.(第3题)利用矩形的性质与判定求面积4.如图,已知E是▱ABCD中BC边上的中点,连结AE并延长AE交DC的延长线于点F.(1)连结AC,BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积.(第4题)专训二:菱形的性质与判定灵活运用名师点金:1.菱形具有一般平行四边形的所有性质,同时又具有一些特性,可以归纳为三个方面:(1)从边看:对边平行,四边相等;(2)从角看:对角相等,邻角互补;(3)从对角线看:对角线互相垂直平分,并且每一条对角线平分一组对角.2.判定一个四边形是菱形,可先判定这个四边形是平行四边形,再判定一组邻边相等或对角线互相垂直,也可直接判定四边相等.利用菱形的性质与判定证明角的关系1.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.(第1题)利用菱形的性质与判定证明线段的位置关系2.(中考·兰州)如图,在四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相垂直平分.(第2题)利用菱形的性质与判定解决周长问题3.(中考·贵阳)如图,在Rt△ABC中,∠ACB=90°,D,E分别为AB,AC边上的中点,连结DE,将△ADE绕点E旋转180°,得到△CFE,连结AF.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.(第3题)利用菱形的性质与判定解决面积问题4.如图,已知等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E,F,作PM∥AC,交AB于点M,连结ME.(1)求证:四边形AEPM为菱形.(2)当点P在何处时,菱形AEPM的面积为四边形EFBM面积的一半?请说明理由.(第4题)专训三:正方形的性质与判定灵活运用名师点金:正方形既是矩形,又是菱形,它具有矩形、菱形的所有性质,判定一个四边形是正方形,只需保证它既是矩形又是菱形即可.利用正方形的性质证明线段位置关系1.如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连结DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.(第1题)利用正方形的性质解决线段和差倍分问题2.已知:在正方形ABCD中,∠MAN=45°,∠MAN绕点A 顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)如图①,当∠MAN绕点A旋转到BM=DN时,易证:BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图②,请问图①中的结论是否还成立?如果成立,请给予证明,如果不成立,请说明理由.(2)当∠MAN绕点A旋转到如图③的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.(第2题)正方形性质与判定的综合运用3.如图,P,Q,R,S四个小球分别从正方形的四个顶点A,B,C,D同时出发,以同样的速度分别沿AB,BC,CD,DA的方向滚动,其终点分别是B,C,D,A.(1)不管滚动时间多长,求证:连结四个小球所得的四边形PQRS总是正方形.(2)四边形PQRS在什么时候面积最大?(3)四边形PQRS在什么时候面积为原正方形面积的一半?并说明理由.(第3题)正方形中的探究性问题4.如图①,在正方形ABCD和正方形CGEF中,点B、C、G 在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连结FM,易证:DM=FM,DM⊥FM(无需写证明过程);(1)如图②,当点B、C、F在同一条直线上,DM的延长线交EG 于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图③,当点E、B、C在同一条直线上,DM的延长线交CE 的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.(第4题)专训四:利用矩形的性质巧解折叠问题名师点金:折叠问题往往通过图形间的折叠找出线段或角与原图形之间的联系,从而得到折叠部分与原图形或其他图形之间的关系,即折叠前后的图形全等,且关于折痕或所在直线成轴对称;在计算时,常常通过设未知数列方程求解.利用矩形的性质巧求折叠中的角1.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形纸片ABCD(矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在边AD上,折痕与BC交于点E;(2)将纸片平展后,再一次折叠纸片,以点E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.求∠AFE的度数.(第1题)利用矩形的性质巧求折叠中的线段的长2.如图,有矩形纸片ABCD,长AD为4 cm,宽AB为3 cm,把矩形折叠,使相对两顶点A,C重合,然后展开.求折痕EF的长.(第2题)利用矩形的性质巧证线段的位置关系3.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE 交AD 于F ,连结AE.证明:(1)BF =DF ;(2)AE ∥BD.(第3题)利用矩形的性质巧求线段的比(面积法)4.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MN DN 的值.(第4题)专训五:用特殊四边形的性质巧解动点问题名师点金:利用特殊四边形的性质解动点问题,一般将动点看作特殊点解决问题,再运用从特殊到一般的思想,将特殊点转化为一般点(动点)为条件解答.平行四边形中的动点问题1.如图,在▱ABCD 中,E ,F 两点在对角线BD 上运动,且保持BE =DF ,连结AE ,CF.请你猜想AE 与CF 有怎样的数量关系和位置关系,并对你的猜想加以证明.(第1题)矩形中的动点问题2.在矩形ABCD 中,AB =4 cm ,BC =8 cm ,AC 的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图①,连结AF、CE,求证:四边形AFCE为菱形,并求AF的长;(2)如图②,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5 cm,点Q的速度为每秒4 cm,运动时间为t秒,当以A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.(第2题)菱形中的动点问题3.如图,在菱形ABCD中,∠B=60°,点E在边BC上,点F 在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.(第3题)正方形中的动点问题4.如图,正方形ABCD的边长为8 cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由.(第4题)专训六:特殊四边形中的最值问题名师点金:求特殊四边形中的最值问题,一般都要用它们的轴对称的性质把几条线段转移到一条直线上,利用两点之间线段最短解决问题.矩形中的最值问题1.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,求点D到点O 的最大距离.(第1题)菱形中的最值问题2.如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上任意一点,求PK+QK的最小值.(第2题)正方形中的最值问题(第3题)3.(中考·宿迁)如图,正方形ABCD的边长为2,点E为边BC 的中点,点P在对角线BD上移动,则PE+PC的最小值是________.4.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连结EN,AM,CM.(1)求证:△AMB≌△ENB.(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由.(第4题)专训七:思想方法荟萃名师点金:本章中,由于涉及内容是各种特殊四边形,解决这类问题时,常将它们与三角形、直角坐标系、方程等知识结合在一起进行研究.而转化思想、分类讨论思想、方程思想、数形结合思想是解决四边形问题常要用到的思想方法.数形结合思想(第1题)1.如图,用8块相同的长方形地砖拼成一个矩形,则每块长方形地砖的面积为()A.200 cm2B.300 cm2C.600 cm2D.2 400 cm2方程思想2.已知平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F.(1)若AE=3 cm,AF=4 cm,AD=8 cm,求CD的长;(2)若平行四边形ABCD的周长为36 cm,AE=4 cm,AF=5 cm,求平行四边形ABCD的面积.转化思想3.如图,矩形ABCD中,对角线AC,BD相交于O点,点P 是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.连结BP,DQ.(1)求证:四边形PBQD为平行四边形.(2)若AB=3 cm,AD=4 cm,P从点A出发,以1 cm/s的速度向点D匀速运动.设点P运动的时间为t s,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(第3题)4.如图,已知六边形ABCDEF的六个内角均为120°,且CD=2 cm,BC=8 cm,AB=8 cm,AF=5 cm.试求此六边形的周长.(第4题)分类讨论思想①图形的位置不确定5.四边形ABCD是正方形,△ADE是等边三角形,求∠BEC 的度数.②等腰三角形的腰与底边不确定6.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为(10,0),(0,4),点D是OA 的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.(第6题)答案解码专训一1.解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=12×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∴HG∥EF,HG=EF,∴∠GHN=∠EFM.又∵∠HNG=∠FME=90°,∴△HNG≌△FME,∴HN=MF.又∵HN=HD,∴HD=MF,∴AD=AH+HD=HM+MF=HF.又∵HF=EH2+EF2=32+42=5(cm),∴AD=5 cm.点拨:此题利用折叠提供的角相等,可证明四边形EFGH为矩形,然后利用三角形全等来证明HN=MF,进而证明HD=MF,从而将AD转化为直角三角形的斜边HF,进而得解,体现了转化思想.2.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,即∠COD=90°.∴四边形OCED是矩形.∴OE=CD.∵四边形ABCD是菱形,∴BC=CD.∴OE=BC.点拨:线段CD既是菱形ABCD的边,又是四边形OCED的对角线,可以用等量代换推出OE=BC.3.解:(1)△BEC是直角三角形.理由如下:∵四边形ABCD是矩形,∴∠ADC=∠ABP=90°,AD=BC=5,CD=AB=2.∵DE=BP=1,∴AE=PC=4.由勾股定理得CE=5,BE=25,∴CE2+BE2=5+20=25.∵BC2=52=25,∴BE2+CE2=BC2.∴∠BEC=90°.∴△BEC是直角三角形.(2)四边形EFPH为矩形,证明:∵四边形ABCD是矩形,∴AD=BC ,AD ∥BC.∵DE =BP ,∴四边形DEBP 是平行四边形.∴BE ∥DP.∵AD ∥BC ,AE =PC ,∴四边形AECP 是平行四边形.∴AP ∥CE.∴四边形EFPH 是平行四边形.∵∠BEC =90°,∴平行四边形EFPH 是矩形.4.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥DC ,∴∠ABE =∠ECF.又∵E 为BC 的中点,∴BE =CE ,在△ABE 和△FCE 中,∵⎩⎪⎨⎪⎧∠ABE =∠FCE ,BE =CE ,∠AEB =∠FEC ,∴△ABE ≌△FCE.∴AB =CF.又AB ∥CF ,∴四边形ABFC 为平行四边形,∴BE =EC ,AE =EF ,∵∠AEC 为△ABE 的外角,∴∠AEC =∠ABC +∠EAB.又∵∠AEC =2∠ABC ,∴∠ABC =∠EAB ,∴AE =BE ,∴AE +EF =BE +EC ,即AF =BC ,∴四边形ABFC 为矩形.(2)解:∵四边形ABFC 是矩形,∴AC ⊥DF.又∵△AFD 是等边三角形,∴CF =CD =DF 2=2,∴AC =42-22=23,∴S矩形ABFC =23×2=4 3.解码专训二1.(1)证明:∵在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC ,∴∠BAC =∠DAC.∵在△ABF 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF ,∴∠AFB =∠AFD.∵∠AFB =∠CFE ,∴∠AFD =∠CFE.(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD.又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD.∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形.(3)解:当EB ⊥CD 时,∠EFD =∠BCD.理由:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF ,在△BCF 和△DCF 中,⎩⎪⎨⎪⎧BC =DC ,∠BCF =∠DCF ,CF =CF ,∴△BCF ≌△DCF ,∴∠CBF =∠CDF.∵BE ⊥CD ,∴∠BEC =∠DEF =90°,∴∠EFD =∠BCD.(第2题)2.证明:(1)如图,过点B 作BM ∥AC 交DC 的延长线于点M , ∵AB ∥CD ,∴四边形ABMC 为平行四边形.∴AC =BM =BD ,∴∠BDC =∠M =∠ACD.在△ACD 和△BDC 中⎩⎪⎨⎪⎧AC =BD ,∠ACD =∠BDC CD =DC ,,∴△ACD ≌△BDC ,∴AD =BC.(2)如图,连结EH ,HF ,FG ,GE ,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12AD ,∴四边形HFGE 为平行四边形.由(1)知AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.3.(1)证明:∵将△ADE 绕点E 旋转180°得到△CFE ,∴AE =CE ,DE =FE ,∴四边形ADCF 是平行四边形.∵D ,E 分别为AB ,AC 边上的中点,∴DE 是△ABC 的中位线,∴DE ∥BC.∵∠ACB =90°,∴∠AED =90°,∴DF ⊥AC ,∴四边形ADCF 是菱形.(2)解:在Rt △ABC 中,BC =8,AC =6,∴AB =10.∵D 是AB 边上的中点,∴AD =5.∵四边形ADCF 是菱形,∴AF =FC =AD =5,∴四边形ABCF 的周长为8+10+5+5=28.4.(1)证明:∵EF ∥AB ,PM ∥AC ,∴四边形AEPM 为平行四边形.∵AD 平分∠CAB ,∴∠CAD =∠BAD.∵EP ∥AB ,∴∠BAD =∠EPA ,∴∠CAD =∠EPA ,∴EA =EP ,∴四边形AEPM 为菱形.(第4题)(2)解:当点P 为EF 的中点时,S 菱形AEPM =12S 四边形EFBM .理由如下:∵四边形AEPM 为菱形,∴AP ⊥EM.∵AB =AC ,∠CAD =∠BAD ,∴AD ⊥BC ,∴EM ∥BC.又∵EF ∥AB ,∴四边形EFBM 为平行四边形.过点E 作EN ⊥AB 于点N ,如图,则S 菱形AEPM =AM·EN =EP·EN =12EF·EN =12S 四边形EFBM .解码专训三1.证明:∵AC ,BD 是正方形ABCD 的两条对角线,∴AC ⊥BD ,OA =OD =OC =OB.∵DE =CF ,∴OE =OF.在Rt △AOE 与Rt △DOF 中,⎩⎪⎨⎪⎧OA =OD ,∠AOE =∠DOF =90°,OE =OF ,∴Rt △AOE ≌Rt △DOF , ∴∠OAE =∠ODF.∵∠DOF =90°,∴∠DFO +∠FDO =90°,∴∠DFO +∠FAE =90°.∴∠AMF =90°,即AM ⊥DF.2.解:(1)仍有BM +DN =MN 成立.证明如下:过点A 作AE ⊥AN ,交CB 的延长线于点E,易证△ABE ≌△ADN ,∴DN =BE ,AE =AN.又∵∠EAM =∠NAM =45°,AM =AM ,∴△EAM ≌△NAM.∴ME =MN.∵ME =BE +BM =DN +BM ,∴BM +DN =MN .(第2题)(2)有DN -BM =MN.证明如下:如图,在DN 上截取DE =BM ,连结AE.∵四边形ABCD 是正方形,∴∠ABM =∠D =90°,AB =AD.又∵DE =BM ,∴△ABM ≌△ADE.∴AM =AE ,∠BAM =∠DAE.∵∠DAB =90°.∴∠MAE =90°.∵∠MAN =45°,∴∠EAN =45°=∠MAN.又∵AM =AE ,AN =AN ,∴△AMN ≌△AEN.∴MN =EN.∴DN =DE +EN =BM +MN ,∴DN -BM =MN.3.(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =DA.又∵在任何运动时刻,AP =BQ =CR =DS ,∴PB =QC =RD =SA ,∴△ASP ≌△BPQ ≌△CQR ≌△DRS , ∴PS =QP =RQ =SR ,∠ASP =∠BPQ ,∴在任何运动时刻,四边形PQRS 是菱形.又∵∠APS +∠ASP =90°,∴∠APS +∠BPQ =90°, ∴∠QPS =180°-(∠APS +∠BPQ)=180°-90°=90°.∴在任何运动时刻,四边形PQRS 总是正方形.(2)解:当P ,Q ,R ,S 在出发时或在到达终点时面积最大,此时的面积就等于原正方形ABCD 的面积.(3)解:当P ,Q ,R ,S 四点运动到正方形四边中点时,四边形PQRS 的面积是原正方形ABCD 面积的一半.理由:设原正方形ABCD 的边长为a.当PS 2=12a 2时,在Rt △APS 中,AS =a -SD =a -AP.由勾股定理,得AS 2+AP 2=PS 2,即(a -AP)2+AP 2=12a 2, 解得AP =12a.同理可得BQ =CR =SD =12a.∴当P ,Q ,R ,S 四点运动到正方形ABCD 各边中点时,四边形PQRS 的面积为原正方形面积的一半.(第4题)4.解:(1)DM =FM ,DM ⊥FM.证明:如图,连结DF 、NF.∵四边形ABCD 和四边形CGEF 都是正方形,∴AD ∥BC ,BC ∥GE ,∴AD ∥GE ,∴∠DAM =∠NEM. ∵M 是AE 的中点,∴AM =EM.∵∠AMD =∠EMN ,∴△MAD ≌△MEN ,∴DM =MN ,AD =NE.∵AD =CD ,∴CD =NE.∵CF =EF ,∠FCD =∠FEN =90°,∴△DCF ≌△NEF ,∴DF =FN ,∠CFD =∠EFN. ∵∠EFN +∠CFN =90°,∴∠CFD +∠CFN =90°,即∠DFN =90°,∴DM =FM ,DM ⊥FM.(2)DM =FM ,DM ⊥FM.解码专训四(第1题)1.解:如图,由折叠性质得∠AEF =∠A′EF ,∠BEA =∠AEB′,BE =B′E ,AE =EA′,∵∠BAB′=∠BEB′=∠ABE =∠AB′E =90°,∴AE 为∠BAB′的平分线,∴∠BEA =∠BAE =45°,又∠BEA +∠AEF +∠FEA′=180°,∴∠FEA′=67.5°,∵在矩形ABCD 中,AD ∥BC ,∴∠AFE =∠FEA′=67.5°.2.解:易得EF 为AC 的垂直平分线.∴AE =EC ,AF =FC. ∵AE ∥FC ,∴∠AEO =∠CFO.又∵OA =OC ,∠AOE =∠COF ,∴△AEO ≌△CFO ,∴AE =FC.∴四边形AECF 是菱形.设BF 为x cm ,则AF =FC =(4-x)cm .由勾股定理,得32+x 2=(4-x)2,∴x =78,∴FC =258 cm .∵AB =3 cm ,BC =4 cm ,∴AC =32+42=5(cm ).∴OC =52 cm .在Rt △FOC 中,OF =FC 2-OC 2=⎝ ⎛⎭⎪⎫2582-⎝ ⎛⎭⎪⎫522=158(cm ). ∴EF =2OF =154 cm .即折痕EF 的长为154 cm .3.证明:(1)由折叠可知,∠FBD =∠CBD ,因为AD ∥BC ,所以∠FDB =∠CBD ,所以∠FBD =∠FDB ,所以BF =DF.(2)因为四边形ABCD 是矩形,所以AB =DC ,AD =BC ,由折叠可知DC =ED =AB ,BC =BE =AD ,又因为AE =AE ,所以△AEB ≌△EAD ,所以∠AEB =∠EAD ,所以∠AEB =12(180°-∠AFE),而∠DBE =12(180°-∠BFD),∠AFE=∠BFD ,所以∠AEB =∠DBE ,所以AE ∥BD.4.(1)证明:由折叠的性质可得:∠ENM =∠DNM ,即∠ENM =∠ENA +∠ANM ,∠DNM =∠DNC +∠CNM ,∵∠ENA =∠DNC ,∴∠ANM =∠CNM ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ANM =∠CMN ,∴∠CMN =∠CNM ,∴CM =CN.(2)解:过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形,∴HC =DN ,NH =DC ,∵△CMN 的面积与△CDN 的面积比为3∶1,∴S △CMN S △CDN =12·MC·NH 12·DN·NH =MC ND =3, ∴MC =3ND =3HC ,∴MH =2HC.设DN =x ,则HC =x ,MH =2x ,∴CM =3x =CN.在Rt △CDN 中,DC =CN 2-DN 2=22x ,∴NH =22x ,在Rt △MNH 中,MN =MH 2+HN 2=23x ,∴MN DN =23x x =2 3.解码专训五1.解:猜想:AE =CF ,AE ∥CF.证明如下:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,在△ABE 和△CDF 中,∵AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF ,∴AE =CF ,∠AEB =∠CFD.∵∠AEB +∠AED =∠CFD +∠CFB =180°,∴∠AED =∠CFB ,∴AE ∥CF.2.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠CAD =∠ACB 、∠AEF =∠CFE.∵EF 垂直平分AC ,垂足为O ,∴OA =OC ,∴△AOE ≌△COF ,∴OE =OF ,∴四边形AFCE 为平行四边形. 又∵EF ⊥AC ,∴四边形AFCE 为菱形.设菱形的边AF =CF =x cm ,则BF =(8-x)cm ,(第2题)在Rt △ABF 中,AB =4 cm ,由勾股定理得42+(8-x)2=x 2,解得x =5,∴AF =5 cm .(2)解:显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形,如图,当以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC =QA.∵点P 的速度为每秒5 cm ,点Q 的速度为每秒4 cm ,运动时间为t 秒,∴PC =5t ,QA =12-4t ,∴5t =12-4t ,解得t =43,∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,t =43.3.证明:(1)连结AC.∵在菱形ABCD 中,∠B =60°,∴AB =BC =CD ,∠BCD =180°-∠B =120°,∴△ABC 是等边三角形.∵E 是BC 的中点,∴AE⊥BC.∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°,∴∠CFE=180°-∠FEC-∠BCD=180°-30°-120°=30°,∴∠FEC=∠CFE,∴EC=CF.∴BE=DF.(2)连结AC.由(1)知△ABC是等边三角形,∴AB=AC,∠ACB=∠BAC=∠EAF=60°,∴∠BAE=∠CAF.∵∠BCD=120°,∠ACB=60°,∴∠ACF=60°=∠B,∴△ABE≌△ACF,∴AE=AF,∴△AEF是等边三角形.(第4题)4.(1)证明:∵四边形ABCD为正方形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=BC=CD=AD.∵AE=BF=CG=DH,∴BE=CF=DG=AH,∴△AEH≌△BFE≌△CGF≌△DHG,∴EH=EF=FG=GH,∠1=∠2.∴四边形EFGH为菱形.∵∠1+∠3=90°,∠1=∠2,∴∠2+∠3=90°,∴∠HEF=90°.∵四边形EFGH为菱形,∴四边形EFGH为正方形.(2)解:直线EG必经过一定点.理由如下:如图,连结BD、EG,BD与EG交于O点,连结ED,BG.∵BE綊DG,∴四边形BGDE为平行四边形,∴BD、EG互相平分,易知O为正方形中心,∴EG必过正方形中心O.解码专训六(第1题)1.解:如图,取AB的中点E,连结OE、DE、OD,则OE=1 2AB=1,AE=1,所以DE=2,当D,E,O三点共线时,OD=OE+DE,否则OD<OE+DE,所以OD长的最大值是2+1.点拨:在这个问题中,关键是运用三角形三边的不等关系确定点D到点O的距离何时最大,具体做法是取AB的中点E,连结OE、DE、OD后,通过分情况讨论得出OD≤OE+DE,所以OD的最大值等于OE+DE.(第2题)2.解:∵四边形ABCD是菱形,∴AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°.如图,作点P关于直线BD的对称点P′,连结P′Q,P′C,则P′Q 的长即为PK+QK的最小值,当P′Q⊥AB时,P′Q最短.假设点Q 与点C重合,CP′⊥AB,此时CP′的长即为PK+QK的最小值.连结AC.∵BC=AB=2,∠ABC=60°,∴△ABC为等边三角形.∵CP′⊥AB,∴BP′=AP′=12AB=1,∴CP′=BC2-BP′2= 3.即PK+QK的最小值为 3.3.54.(1)证明:∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB;(2)解:①当M点落在BD的中点时,AM+CM的值最小;②连结CE,当M点位于BD与CE的交点处时,AM+BM+CM 的值最小.理由如下:由(1)知△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形,∴BM=MN,∴AM+BM+CM=EN+MN+CM,根据“两点之间线段最短”,得EN+MN+CM=EC最短.∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.解码专训七1.B 点拨:设每块长方形地砖的长为x cm ,宽为y cm ,由题意可得⎩⎪⎨⎪⎧x +y =40,2x =x +3y ,即⎩⎪⎨⎪⎧x +y =40,x -3y =0,解之得⎩⎪⎨⎪⎧x =30,y =10, 所以每块长方形地砖的面积是300 cm 2.故选B .2.解:(1)∵四边形ABCD 是平行四边形,AD =8 cm ,∴BC =AD =8 cm .∵S平行四边形ABCD =BC·AE =CD·AF ,∴8×3=4CD ,∴CD =6 cm .(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD.∵平行四边形的周长为36 cm ,∴BC +CD =18 cm ,由平行四边形的面积公式得:4BC =5CD ,则⎩⎪⎨⎪⎧BC +CD =18,4BC =5CD ,解得:BC =10 cm ,CD =8 cm ,∴平行四边形ABCD 的面积是4×10=40(cm 2).3.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,OD =OB ,∴∠PDO =∠QBO.在△POD 与△QOB 中,⎩⎪⎨⎪⎧∠PDO =∠QBO ,OD =OB ,∠POD =∠QOB ,∴△POD ≌△QOB ,∴OP =OQ ,∴四边形PBQD 为平行四边形;(2)解:能.点P 从点A 出发运动t s 时,AP =t cm ,PD =(4-t) cm . 当四边形PBQD 是菱形时,PB =PD =(4-t) cm .∵四边形ABCD 是矩形,∴∠BAP =90°.在直角三角形ABP 中,AB =3 cm ,AP 2+AB 2=PB 2,即t 2+32=(4-t)2,解得:t =78,∴当点P 运动的时间为78 s 时,四边形PBQD 能够成为菱形.4.解:延长ED ,BC 交于点N ,延长EF ,BA 交于点M.∵∠EDC =∠BCD =120°,∴∠NDC =∠NCD =60°,∴∠N =60°.同理,∠MFA =∠MAF =60°,∴∠M =60°,∴△DCN 、△FMA 均为等边三角形,∵∠E +∠N =180°,∠E +∠M =180°,∴EM ∥BN ,EN ∥MB ,∴四边形EMBN 是平行四边形,∴BN =EM ,MB =EN.∵CD =2 cm ,BC=8 cm,AB=8 cm,AF=5 cm,∴CN=DN=2 cm,AM=FM=5 cm,∴BN=EM=8+2=10(cm),MB=EN=8+5=13(cm),∴EF+FA+AB+BC+CD+DE=EF+FM+AB+BC+DN+DE=EM+AB+BC+EN=10+8+8+13=39(cm),∴此六边形的周长为39 cm.5.解:当等边三角形ADE在正方形ABCD外部时,如图①所示.∵AB=AE,∠BAE=90°+60°=150°,∴∠AEB=(180°-150°)÷2=15°.同理,∠DEC=15°,∴∠BEC=60°-15°-15°=30°;当等边三角形ADE在正方形ABCD内部时,如图②所示.∵AB=AE,∠BAE=90°-60°=30°,∴∠AEB=(180°-30°)÷2=75°.同理∠DEC=75°,∴∠BEC=360°-75°-75°-60°=150°.(第5题)(第6题)6.解:易知OD=5.当OP=OD时,OP=5,CO=4,易得CP =3,所以P(3,4).当OD=PD时(如图所示),有两种情况.①过P0作P0M⊥OD于M,在Rt△P0MD中,P0D=5,P0M=4,易知MD=3,所以OM=OD-MD=5-3=2,从而可知CP0=2,所以P0(2,4);②过P1作P1M1⊥OA于M1,在Rt△P1M1D中,P1D=5,P1M1=4,易知M1D=3,所以OM1=OD+M1D=5+3=8,从而CP1=8,所以P1(8,4).当OP=PD时,易知OP≠5,不符合题意.综上,满足题意的点P的坐标为(3,4),(2,4),(8,4).点拨:本题运用了分类讨论思想.根据△ODP是腰长为5的等腰三角形进行分类讨论是解决问题的关键.【此课件下载可自行编辑修改,供参考,感谢你的支持!】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊四边形:动点问题题型一:1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( )A 、17172B 、17174C 、 17178D 、32.如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.3.如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=045,点P 是BC 边上一动点,设PB 长为x.(1)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形.(2)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形.(3)点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.4.在一个等腰梯形ABCD 中,AD//BC ,AB=CD ,AD=10cm ,BC=30cm ,动点P 从点A 开始沿AD 边向点D 以每秒1cm 的速度运动,同时动点Q 从点C 开始沿CB 边向点B 以每秒3cm 的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.(1).t 为何值时,四边形ABQP 为平行四边形?(2).四边形ABQP 能为等腰梯形吗?如果能,求出t 的值,如果不能,请说明理由。

6.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。

已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。

假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?(3)t为何值时,四边形PQCD是直角梯形?(4)t为何值时,四边形PQCD是等腰梯形?(5) t为何值时, APQ是等腰三角形?7.如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=8cm,DC=10cm。

若动点P从点A出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点以每秒5cm的速度沿CB向B点运动。

当Q点到达B点时,动点P、Q同时停止运动。

设P、Q同时出发,并运动了t秒。

(1)直角梯形ABCD的面积为__________cm的平方.(2)当t=________秒时,四边形PQCD为平行四边形。

(3)当t=________秒时,PQ=DC(4)是否存在t,使得P点在线段DC上,且PQ⊥DC(如图2所示)?若存在,列出方程求出此时的t;若不存在,请说明理由。

8.如图,在直角梯形ABCD中,∠B=90°,AB‖CD,且AB=4cm,BC=8cm,DC=10cm。

若动点P从点A出发,以每秒1cm的速度沿线段AB、BC向C点运动;动点Q从C点以每秒1cm的速度沿CB向B点运动。

当Q点到达B点时,动点P、Q同时停止运动。

设P、Q同时出发,并运动了t秒。

(1)直角梯形ABCD的面积为__________cm的平方.(2)当t=________秒时,四边形PBCQ为平行四边形。

(3)当t=________秒时,PQ=BC.10. 如图,在等腰梯形ABCD中,AB∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P从开始沿AB边向点B以每秒3cm的速度移动,点Q从开始沿CD边向点D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。

设运动时间为t秒。

(1)求证:当t为何值时,四边形APQD是平行四边形;(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。

11.如图,在直角梯形ABCD中,AB//CD,∠C=RT∠,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒3cm的速度沿线段AB方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动。

已知动点P、Q同时出发,当点Q运动到点C时,P、Q运动停止,设运动时间为t(s).(1)求CD的长。

(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P,点Q的运动过程中,是否存在某一时刻,使得ΔBPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由。

13. 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式. 14.已知:如图,在梯形ABCD 中,AB ∥DC ,∠B=90°,BC=8cm ,CD=24cm ,AB=26Cm ,点P 从C 出发,以1cm/s 的速度向D 运动,点Q 从A 出发,以3cm/s 的速度向B 运 动,其中一动点达到端点时,另一动点随之停止运动.从运动开始.(1)经过多少时间,四边形AQPD 是平行四边形?(2)经过多少时间,四边形AQPD 成为等腰梯形?(3)在运动过程中,P 、Q 、B 、C 四点有可能构成正方形吗?为什么?如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=16cm ,AB=12cm ,BC=21cm ,动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动的时间为t (秒).①当t 为何值时,四边形PQDC 是平行四边形;②当t 为何值时,以C ,D ,Q ,P 为顶点的梯形面积等于60cm 2?③是否存在点P ,使△PQD 是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.A BC D E F 图10-1 O 图10-2 AC D E P备用图A C D E P15.如图,在梯形ABCD中,AD∥BC,AD=6,DC=10,AB=65,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长.(2)当MN∥AB时,求t的值.(3)△MNC可能为等腰三角形吗?若能,请求出t的值;若不能,请说明理由.(4)△MNC可能为直角三角形吗?若能,请求出t的值;若不能,请说明理由.(5)△MNC为20时,请求出t的值.如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=34,AD=4,DC=234 ,点P从点A出发沿折线段AD-DC-CB以每秒3个单位长的速度向点B匀速运动,同时,点Q从点A出发沿射线AB方向以每秒2个单位长的速度匀速运动,当点P与点B重合时停止运动,点Q也随之停止,设点P,Q的运动时间是t秒(t>0).(1)当点P到达终点B时,求t的值;(2)设△APQ的面积为S,分别求出点P运动到AD、CD上时,S与t的函数关系式;(3)当t为何值时,能使PQ∥DB;(4)当t为何值时,能使P、Q、D、B四点构成的四边形是平行四边形。

16.如图,在等腰梯形ABCD中,AD∥BC,AB=DC=60,AD=75,BC=135.点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQ∥DC;(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.17.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=33,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形?(3)当t为何值时,射线QN恰好将△ABC的面积平分?并判断此时△ABC的周长是否也被射线QN平分.19.如图,已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,AB=8,CD=10.(1)求梯形ABCD 的面积S ;(2)动点P 从点B 出发,以2cm/s 的速度、沿B →A →D →C 方向,向点C 运动;动点Q 从点C 出发,以2cm/s 的速度、沿C →D →A 方向,向点A 运动.若P 、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P 在B →A 上运动时,是否存在这样的t ,使得直线PQ 将梯形ABCD 的周长平分?若存在,请求出t 的值,并判断此时PQ 是否平分梯形ABCD 的面积;若不存在,请说明理由;②在运动过程中,是否存在这样的t ,使得以P 、D 、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.20.在直角梯形ABCD 中,∠C=90°,高CD=6cm ,底BC=10cm (如图1).动点Q 从点B 出发,沿BC 运动到点C 停止,运动的速度都是1cm/s .同时,动点P 也从B 点出发,沿BA →AD 运动到点D 停止,且PQ 始终垂直BC .设P ,Q 同时从点B 出发,运动的时间为t (s ),点P 运动的路程为y (cm ).分别以t ,y 为横、纵坐标建立直角坐标系(如图2),已知如图中线段为y 与t 的函数的部分图象.经测量点M 与N 的坐标分别为(4,5)和(2, 25).(1)求M ,N 所在直线的解析式;(2)求梯形ABCD 中边AB 与AD 的长;(3)写出点P 在AD 边上运动时,y 与t 的函数关系式(注明自变量的取值范围),并在图2中补全整运动中y 关于t 的函数关系的大致图象.22.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3 3,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t 秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;已知:如图,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O为原点建立平面直角坐标系,点D为线段BC的中点,动点P从点A出发,以每秒4个单位的速度,沿折线AOCD向终点C运动,运动时间是t秒.(1)D点的坐标为;(2)当t为何值时,△APD是直角三角形;(3)如果另有一动点Q,从C点出发,沿折线CBA向终点A以每秒5个单位的速度与P点同时运动,当一点到达终点时,两点均停止运动,问:P、C、Q、A四点围成的四边形的面积能否为28?如果可能,求出对应的t;如果不可能,请说明理由.在梯形ABCO 中,OC ∥AB ,以O 为原点建立平面直角坐标系,A 、B 、C 三点的坐标分别是A (8,0),B (8,10),C (0,4).点D (4,7)为线段BC 的中点,动点P 从O 点出发,以每秒1个单位的速度,沿折线OAB 的路线运动,运动时间为t 秒.(1)求直线BC 的解析式;(2)设△OPD 的面积为s ,求出s 与t 的函数关系式,并指出自变量t 的取值范围;(3)当t 为何值时,△OPD 的面积是梯形OABC的面积的83?如图,在直角梯形COAB 中,CB ∥OA ,以O 为原点建立直角坐标系,A 、C 的坐标分别为A (10,0)、C (0,8),CB=4,D 为OA 中点,动点P 自A 点出发沿A →B →C →O 的线路移动,速度为1个单位/秒,移动时间为t 秒.(1)求AB 的长,并求当PD 将梯形COAB 的周长平分时t 的值,并指出此时点P 在哪条边上;(2)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,并指出t 的取值范围;(3)几秒后线段PD 将梯形COAB 的面积分成1:3的两部分?求出此时点P 的坐标?已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN 的长度也刚好最小,求动点P的速度.如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB 向B运动,设运动时间为t.(1)当t=4秒时,判断四边形COEB是什么样的四边形?(2)当t为何值时,四边形COEF是直角梯形?(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B 运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).①求当t为多少时,四边形PQAB为平行四边形?②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式.(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.如图,在平面直角坐标系中,直角梯形ABCO的变OC落在x轴的正半轴上,且AB//OC,BC⊥OC,AB=4,BC=7,OC=10.正方形ODEF的两边分别坐落在坐标轴上,且它的面积等于直角梯形ABCO面积,将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO 的重叠部分面积为S。

相关文档
最新文档