高峰模式下高层办公楼电梯调度改善方案(A较严谨)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高峰模式下高层办公楼电梯调度改善方案
田震李文鹏李媖
摘要
电梯调度方案是指在特定的交通状况下,电梯系统应遵循的一组确定控制策略的规则。对于配有多台电梯的现代高层办公楼,如何建立合适的电梯运行方式至关重要。本文的目的就是建立合理的调度方案,主要运用概率,运筹学等理论对问题建立相关的数学模型,用matlab 等软件对问题进行求解,最终得出最合理的安排及优化方案,已解决高层办公楼电梯拥挤的情况。
本题的评价指标有三个,一是排队等待时间,二是电梯运行时乘客在电梯内等待的时间,三是6部电梯将全部员工运送到指定楼层所用的时间,三个评价指标中,排队等待时间与电梯运行时乘客在电梯内等待的时间可以综合为乘客的满意度。
对于问题一,首先考虑最简单的情形建立模型一,采用极端假设的方法,不考虑乘客到来的随机性,不考虑乘客的等待时间,在规定的时间内,电梯每次都是满载的,且运送的都是同一层的员工。这样得到一个简化模型,此模型运送完员工所花费的时间是最短的,同时求解出在确定的电梯数量确定的办公人数分布前提下电梯调度的最大运载能力。将所有的人都运到的最短的时间为:1955.5秒。
接着对于理想模型实际化建立模型二,以“最后被运送的乘客的等待时间最短”为评价标准,以“电梯运行周期与运行总时间之比等于电梯在一个周期内运送的乘客数与乘客总数之比”的“比例”云则为依据,对几种常见电梯运行方案建立数学模型,比较其运行效率,得出分段运行方案是符合要求的最优方案。
在极端假设条件下的模型的基础上进行改进建立模型三,对所有的楼层进行分段,每个电梯负责特定的楼层,以概率的方法,得出非线性规划方程组,求得最优的分段数,并求出一些表征参数如:总运行时间及运载能力。
确定方案的基本分段数后,对于分段运行方案的具体分段方式进行优化计算,建立模型四。由模型三的结果将楼层分为六段为最优,通过模型四可找出了各个区的具体分区点,以电梯运行一次的往返时间为目标函数,建立模型,通过matlab软件对于分段模型分段方法进行模拟运行,以枚举法求解,最终得出多组最优分区,但是各组分区方式的差别并不是很大。
问题二要求将数学模型进一步实际化首先应考虑电梯上行下行时的加速度最大速度、乘客上下电梯所用时间和开关电梯门的平均时间。运用物理基础在模型四的基础上,对模型进行了进一步优化。
关键字:电梯分段运行方案;计算机模拟电梯运行;非线性规划;matlab软件
一、问题重述
1.问题背景:
随着社会经济的发展,电梯在人们的日常生活工作中的作用越来越大,特别在人口高度集中的城市,电梯成为人们生活中不可或缺的一种交通工具。然而,与此同时,在办公场所每天早晚高峰时期,拥挤的人潮中总能听到对电梯运行速度和调度安排的抱怨,也就是说人们对电梯的服务质量要求越来越高。对于配套有多台电梯的商务楼,如何安排好各
电梯的运行方式,尽量使乘客排队等待时间以及在在电梯内等待时间最短、同时使电梯运送的总时间最短至关重要,成为目前备受关注的问题。
2、实际问题探讨:
现商业中心有一写字楼,层高22层,设有6部电梯。员工上班前,上班的人员陆续到达,从电梯开始运行,等电梯的大厅非常拥挤,人们等电梯的时间明显增加,为此,写字楼的物业要求一个合理有效的电梯调度方案以满足写字楼内各层员工的需要。基本条件和待解决的问题如下:
表1:该写字楼各层办公人数
楼层人数楼层人数楼层人数
1 无9 236 17 200
2 208 10 139 18 200
3 177 11 272 19 200
4 222 12 272 20 200
5 130 13 272 21 200
6 181 14 270 22 207
7 191 15 300
8 236 16 264
基本条件:(1)、楼层参数:共22层;
(2)、电梯参数:该写字楼共设有6部电梯,每层楼之间电梯的平均运行时间为
3s,每部电梯的容量为20人;
(3)、在底层的停留时间为20s,其他楼层平均停留时间为10s,电梯在各层的相
应停留时间年内乘梯人员能够完成出入电梯;
(4)、分析每个楼层办公人数得出各层人数相差不是很大,假设各层楼办公人数相
等,均为218人。
问题:(1)、设计一个尽量最优的电梯调度方案,是得在上班前尽可能把各楼
层的人快速送到各个目标层楼,提高乘客满意度及电梯运送总时间;
(2)、将所建立的模型实际化,使其尽量适用于解决现实的电梯调度问
题。
二、问题分析
考虑到上班时人群由底层分别分散到其他各层的过程与下班时人群由各层集中至底层的过程对称,仅通过对上班高峰时段的电梯运行情况建立数学模型进行描述即可。对高层楼宇人员流动高峰时段的几种电梯运行方案进行比较,找到电梯停靠楼层的最佳安排。
本题的评价指标有三个,一是排队等待时间,二是电梯运行时乘客在电梯内等待的时间,三是6部电梯将全部员工运送到指定楼层所用的时间,三个评价指标中,排队等待时间与电梯运行时乘客在电梯内等待的时间可以综合为乘客的满意度。
首先考虑最简单的情形,不考虑乘客到来的随机性,不考虑乘客的等待时间,在规定的时间内,电梯每次都是满载的,且运送的都是同一层的员工。这样得到了一个简化模型,此模型运送完员工所花费的时间是最短的,同时求解出在确定的电梯数量确定的办公人数分布前提下电梯调度的最大运载能力。根据题目将最理想的条件实际化,分别对于生活中几个常见的电梯运行模式(即:随机运行方案、奇偶层运行方案、分段运行方案、随机与分段相结合)进行分析比较,得出最优类别电梯运行模型。在人流高峰的时候,我们采用分段运行的方案。采用分段运行方案,我们需要将整个楼层分为多段,六部电梯依据服务时间大致相同的原则平均分配
到每个分段,这样花费的时间较少,而电梯运行一个周期的时间也将减少,这时乘客的满意度将大大提高,在各个组内每层都有乘客下的假设前提下,建立模型。
问题二要求将数学模型进一步实际化首先应考虑电梯上行下行时的加速度最大速度、乘客上下电梯所用时间和开关电梯门的平均时间。运用物理基础在模型四的基础上,对模型进行进一步优化。
三、模型的基本假设
1、因为是上班高峰期,假设员工以足够密集的时间到达;
2、早晨上班高峰期,所有乘坐电梯的员工均为从大厅上行;
3、当某一电梯到达时,电梯开门关门和所有准备下电梯的乘客全部走出电梯一 共需要10s(一楼20s),不考虑特殊情况发生;
4、电梯无任何故障,始终按额定参数运行;
5、进入电梯的乘客不存在个体差异,并且进入的乘客不超过额定得承载人数;
6、对于这6部同类型的电梯,每个电梯的运行相对独立。
四、定义符号及说明
r T ,1,2,3,...,22r =
电梯从第一层启动到第r 层停靠,再下行到第一层所需的时;
,(1,2,...,6)j RTT j =
电梯往返一周的运行时间 C 电梯最大载客量,为常数20 1b +
楼层总数 m
每层的办公人数
0t 电梯在相邻楼层间的运行时间,为常数3s 1t
电梯停靠时供乘客出入电梯的时间,为常数10s T
运送所有乘客的总时间
电梯运行的关于层数r 的时间函数
关于电梯运行的关于距离s 的时间函数 j fd ,j=1,2,…,6
楼层分点数,为整数,且属于(2,21)之间 j tk , j=1,2,…,6 第j 个区域内电梯停靠次数 j cs , j=1,2,…,6
第j 个区域内楼层的个数