PID控制实验报告,DOC

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二数字PID 控制

计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID 控制算法不能直接使用,需要采用离散化方法。在计算机PID 控制中,使用的是数字PID 控制器。

一、位置式PID 控制算法 按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式:

式中,D p d I p

i T k k T k k ==,,e 为误差信号(即PID 控制器的输入)

,u 为控制信号(即控制器的输出)。

在仿真过程中,可根据实际情况,对控制器的输出进行限幅。

二、连续系统的数字PID 控制仿真

连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。

1.Ex3设被控对象为一个电机模型传递函数Bs

Js s G +=21)(,式中J=0.0067,B=0.1。输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。采用ODE45方法求解连续被控对象方程。

因为Bs Js s U s Y s G +==21)()()(,所以u dt dy B dt

y d J =+22,另y y y y ==2,1,则⎪⎩

⎪⎨⎧+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下 functiondy=ex3f(t,y,flag,para)

u=para;

J=0.0067;B=0.1;

dy=zeros(2,1);

dy(1)=y(2);

dy(2)=-(B/J)*y(2)+(1/J)*u;

控制主程序ex3.m

clearall;

closeall;

ts=0.001;%采样周期

xk=zeros(2,1);%被控对象经A/D转换器的输出信号y的初值

e_1=0;%误差e(k-1)初值

u_1=0;%控制信号u(k-1)初值

fork=1:1:2000%k为采样步数

time(k)=k*ts;%time中存放着各采样时刻

rin(k)=0.50*sin(1*2*pi*k*ts);%计算输入信号的采样值

para=u_1;%D/A

tSpan=[0ts];

[tt,xx]=ode45('ex3f',tSpan,xk,[],para);%ode45解系统微分方程

%xx有两列,第一列为tt时刻对应的y,第二列为tt时刻对应的y导数xk=xx(end,:);%A/D,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1);%xk(1)即为当前系统输出采样值y(k)

e(k)=rin(k)-yout(k);%计算当前误差

de(k)=(e(k)-e_1)/ts;%计算u(k)中微分项输出

u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出

%控制信号限幅

ifu(k)>10.0

u(k)=10.0;

end

ifu(k)<-10.0

u(k)=-10.0;

end

%更新u(k-1)和e(k-1)

u_1=u(k);

e_1=e(k);

end

figure(1);

plot(time,rin,'r',time,yout,'b');%输入输出信号图

xlabel('time(s)'),ylabel('rin,yout');

figure(2);

plot(time,rin-yout,'r');

xlabel('time(s)'),ylabel('error');%误差图 程序运行结果显示表1所示。

表1程序运行结果

输入输出图 误差图

分析:输出跟随输入,PD 控制中,微分控制可以改善动态特性,调节时间缩短,允许加大比例控制,使稳态误差减小,提高了控制精度.

2.Ex4被控对象是一个三阶传递函数s

s s 1047035.8752350023++,采用Simulink 与m 文件相结合的形式,利用ODE45方法求解连续对象方程,主程序由Simulink 模块实现,控制器由m 文件实现。输入信号为一个采样周期1ms 的正弦信号。采用PID 方法设计控制器,其中05.0,2,5.1===d i p k k k 。

误差初始化由时钟功能实现,从而在m 文件中实现了误差的积分和微分。 控制主程序:ex4.mdl

控制子程序:ex4f.m

function[u]=ex4f(u1,u2)%u1为Clock ,u2为图2-1中Sum 模块输出的误差信号e 的采样值

persistenterrorierror_1

ifu1==0%当Clock=0时,即初始时,e(k)=e(k-1)=0

errori=0

error_1=0

end

ts=0.001;

kp=1.5;

ki=2.0;

kd=0.05;

error=u2;

errord=(error-error_1)/ts;%一阶后向差分误差信号表示的误差微分

errori=errori+error*ts;%累积矩形求和计算的误差的积分

u=kp*error+kd*errord+ki*errori;%由PID算式得出的当前控制信号u(k) error_1=error;%误差信号更新

图2-1Simulink仿真程序

其程序运行结果如表2所示。

Matlab输出结果

errori=

error_1=

表2例4程序运行结果

kp=1.5;ki=2.0;kd=0.05;kp=3.5;ki=2.0;kd=0.05;

相关文档
最新文档