中考动点问题专项训练(含详细解析)
中考动点问题专项训练(含详细解析)
8. 已知:如图,在平行四边形
中,
动,速度为
;点 从点 出发,沿
,
,
方向匀速运动,速度为
,点 从点 出发,沿
方向匀速运
,连接并延长
交 的延长线于点
,过 作
,垂足是 ,设运动时间为
.
( 1)当 为何值时,四边形
是平行四边形 ?
( 2)证明:在 , 运动的过程中,总有
;
( 3)是否存在某一时刻 ,使四边形
的面积为矩形
面积的 ;
( 4)是否存在某一时刻 ,使得点 在线段 的垂直平分线上.
6. 已知:如图①,在
速度为
;点
中, 由 出发沿
, 方向向点
,
,点
匀速运动,速度为
(
),解答下列问题:
由 出发沿 方向向点 匀速运动, ;连接 .若设运动的时间为
( 1)当 为何值时,
( 2)设
的面积为
? ,求 与 之间的函数关系式;
的面积是平行四边形
不存在,说明理由.
面积的一半 ?若存在,求出相应的 值;若
9. 如图,在梯形 方向向点
中,
,
匀速运动,速度为
,
,
;点 从点 出发,沿
, 方向向点
.点 从点 出发沿折线
匀速运动,速度为
,
, 同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点
, 运动的时间是
.
第 3 页(共 19 页)
因为
,
,
,
所以
,
所以
,
设点 , 运动的时间是
,
,
形,
有
,
所以
,
解得:
中考数学动点问题(含答案)
中考数学之动点问题一、选择题:1. 如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停顿,设点P运动的路程为*,△ABP的面积为y,如果y关于*的函数图象如图2所示,则△ABC的面积是〔〕A、10B、16C、18D、20二、填空题:1. 如上右图,C为线段AE上一动点〔不与点A,E重合〕,在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_______________________〔把你认为正确的序号都填上〕。
三、解答题:1.〔2008年大连〕如图12,直角梯形ABCD中,AB∥CD,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C作CH⊥AB,垂足为H.点P为线段AD上一动点,直线PM∥AB,交BC、C H于点M、Q.以PM为斜边向右作等腰Rt△PMN,直线MN交直线AB于点E,直线PN交直线A B于点F.设PD的长为*,EF的长为y.⑴求PM的长(用*表示);⑵求y与*的函数关系式及自变量*的取值范围(图13为备用图);⑶当点E在线段AH上时,求*的取值范围(图14为备用图).2.〔2008年福建宁德〕如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时0<x<,△DCQ的8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为*秒()8面积为y1平方厘米,△PCQ的面积为y2平方厘米.⑴求y1与*的函数关系,并在图2中画出y1的图象;⑵如图2,y2的图象是抛物线的一局部,其顶点坐标是〔4,12〕,求点P的速度及AC的长;⑶在图2中,点G是*轴正半轴上一点〔0<OG<6=,过G作EF垂直于*轴,分别交y1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<*<6时,求线段EF长的最大值.3.〔2008年白银〕如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为〔4,3〕.平行于对角线AC 的直线m 从原点O 出发,沿*轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t 〔秒〕. (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t=秒或秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?假设有,求出最大值;假设没有,要说明理由.参考答案一、选择 A二、填空:〔1〕〔2〕〔3〕〔5〕 三、解答: 2、解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =*, ∴x y 231=. 图象如下图.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*, ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是〔4,12〕,∴12444212=⋅+⋅-k k . 解得23=k .图1C Q → B图2则点P 的速度每秒23厘米,AC =12厘米. 方法二:观察图象知,当*=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得 12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过〔0,0〕,〔4,12〕,〔8,0〕,∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -*k ,CQ =*,∴kx kx y 42122+-=. ②比拟①②得23=k .则点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差〔或△PDQ 面积〕. ②由⑵得 x x y 64322+-=.〔方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=〕∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大. 3、解:(1)〔4,0〕,〔0,3〕; 2分 (2) 2,6; 4分 (3) 当0<t ≤4时,OM =t .由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. 8分S=矩形OABC 的面积-Rt △OAM 的面积- Rt △MBN 的面积- Rt △NCO 的面积=12-)4(23-t -21〔8-t 〕〔6-t 43〕-)4(23-t =t t 3832+-. ·························· 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t .7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t .8分 以下同方法一. (4) 有最大值.方法一: 当0<t ≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; 11分当4<t <8时, ∵ 抛物线S=t t 3832+-的开口向下,它的顶点是〔4,6〕,∴ S <6. 综上,当t=4时,S 有最大值6. 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如下图. 11分显然,当t=4时,S有最大值6. 12分说明:只有当第〔3〕问解答正确时,第〔4〕问只答复"有最大值〞无其它步骤,可给1分;否则,不给分.。
九年级中考数学几何动点问题专项训练(含答案)
九年级中考数学几何动点问题专项训练1如图,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm.如果点P 由B 出发沿BA 向点A 匀速运动,同时点Q 由A 出发沿AC 向点C 匀速运动,它们的速度均为2 cm/s.连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4).第1题图(1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.解:(1)由题意知BP =2t ,AP =10-2t ,AQ =2t ,∵PQ ∥BC ,∴△APQ ∽△ABC ,∴=,AP AB AQ AC即=,解得t =,10-2t 102t 8209即当t 为 s 时,PQ ∥BC ;209(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴AB 2=AC 2+BC 2,∴△ABC 为直角三角形,∴∠C =90°,如解图,过点P 作PD ⊥AC 于点D,第1题解图则PD ∥BC ,∴△APD ∽△ABC ,∴=,AP AB PD BC∴=,10-2t 10PD 6∴PD =(10-2t ),35∴S =AQ ·PD = ·2t ·(10-2t )=-t 2+6t =-(t -)2+7.5,121235656552∵-<0,抛物线开口向下,有最大值,65∴当t = 秒时,S 有最大值,最大值是7.5 cm 2;52(3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =S △ABC ,12即-t 2+6t =××8×6,651212整理得t 2-5t +10=0,∵b 2-4ac =(-5)2-4×10=-15<0,∴此方程无解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.2.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 以每秒1个单位长度的速度由点A 向点B 匀速运动,到达B 点即停止运动.M ,N 分别是AD ,CD 的中点,连接MN .设点D 运动的时间为t .(1)判断MN 与AC 的位置关系;(2)求在点D 由点A 向点B 匀速运动的过程中,线段MN 所扫过区域的面积;(3)若△DMN 是等腰三角形,求t的值.第2题图解:(1)MN ∥AC .证明:在△ADC 中,M 是AD 的中点,N 是DC 的中点,∴MN ∥AC ;(2)如解图①,分别取△ABC 三边中点E ,F ,G 并连接EG ,FG ,第2题解图①根据题意,可知线段MN 扫过区域的面积就是▱AFGE 的面积.∵AC =6,BC =8,∴AE =3,GC =4,∵∠ACB =90°,∴S ▱AFGE =AE ·GC =12,∴线段MN 扫过区域的面积为12;(3)依题意可知,MD =AD ,DN =DC ,MN =AC =3.121212分三种情况讨论:(ⅰ)当MD =MN =3时,△DMN 为等腰三角形,此时AD =AC =6,∴t =6.(ⅱ)当MD =DN 时,AD =DC .如解图②,过点D 作DH ⊥AC 于点H ,则AH =AC =3,12第2题解图②∵cos A ==,AB =10,AH AD AC AB即=.3AD 610∴t =AD =5.(ⅲ)当DN =MN =3时,AC =DC ,如解图③,连接MC ,则CM ⊥AD.第2题解图③∵cos A ==,即=,AM AC AC AB AM 6610∴AM =,185∴t =AD =2AM =.365综上所述,当t =5或6或时,△DMN 为等腰三角形.3653.如图,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 出发,沿△AED 的边按照A →E →D →A 的顺序运动一周.设点P 从点A 出发经x (x >0)秒后,△ABP 的面积是y .(1)若AB =8厘米,BE =6厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y =x ;当点P 在线段AD 125上时,y =32-4x .求y 关于x的函数表达式.第3题图解:(1)∵四边形ABCD 是矩形,∴∠ABE =90°,又∵AB =8,BE =6,∴AE ===10,22BE AB +2268+如解图①,过点B 作BH ⊥AE 于点H,第3题解图①∵S △ABE =AE ·BH =AB ·BE ,1212∴BH =,245又∵AP =2x ,∴y =AP ·BH =x (0<x ≤5);12245(2) ∵四边形ABCD 是矩形,∴∠B =∠C =90°,AB =DC , AD =BC ,∵E 为BC 中点,∴BE =EC ,∴△ABE ≌△DCE (SAS),∴AE =DE ,∵y =x (P 在ED 上), y =32-4x (P 在AD 上),125当点P 运动至点D 时,可联立得,,{y =125x y =32-4x )解得x =5,∴AE +ED =2x =10,∴AE =ED =5,当点P 运动一周回到点A 时,y =0,∴y =32-4x =0, 解得x =8,∴AE +DE +AD =16,∴AD =BC =6,∴BE =3,在Rt △ABE 中,AB ==4,22-BE AE 如解图②,过点B 作BN ⊥AE 于N ,则BN =,125第3题解图②∴y =x (0<x ≤2.5),125∴y =.{125x (0<x ≤5)32-4x (5≤x ≤8))4.如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连接CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G .(1)求证:△CDE ≌△CBF ;(2)当DE = 时,求CG 的长;12(3)连接AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.第4题图(1)证明:如解图,在正方形ABCD 中,DC =BC ,∠D = ∠CBA = ∠CBF = ∠DCB = 90°,第4题解图∴∠1+∠2= 90°,∵CF ⊥CE ,∴∠2+∠3= 90°,∴∠1= ∠3,在△CDE 和△CBF 中,,{∠D = ∠CBFDC =BC ∠1= ∠3)∴△CDE ≌△CBF (ASA);(2)解:在正方形ABCD 中,AD ∥BC ,∴△GBF ∽△EAF ,∴= ,BG AE BF AF由(1)知,△CDE ≌△CBF ,∴BF = DE = ,12∵正方形的边长为1,∴AF =AB +BF = ,32AE =AD -DE = ,12∴=,BG 121232∴BG =,16∴CG =BC -BG = ;56(3)解:不能.理由:若四边形CEAG 是平行四边形,则必须满足AE ∥CG ,AE = CG ,∴AD -AE =BC -CG ,∴DE =BG ,由(1)知,△CDE ≌△CBF ,∴DE =BF ,CE =CF ,∴△GBF 和△ECF 是等腰直角三角形,∴∠GFB = 45°,∠CFE = 45°,∴∠CFA = ∠GFB +∠CFE = 90°,此时点F 与点B 重合,点D 与点E 重合,与题目条件不符,∴点E 在运动过程中,四边形CEAG 不能是平行四边形.5. 如图,在正方形ABCD 中,点E ,G 分别是边AD ,BC 的中点,AF =AB .14(1)求证:EF ⊥AG ;(2)若点F ,G 分别在射线AB ,BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当S △PAB =S △OAB 时,求△PAB周长的最小值.第5题图(1)证明:∵四边形ABCD 是正方形,∴AD =AB =BC ,∠EAF =∠ABG =90°,∵点E ,G 分别是边AD ,BC 的中点,AF =AB ,14∴=,=,AE AB 12AF BG 12∴=,AE AB AF BG又∵∠EAF =∠ABC =90°,∴△AEF ∽△BAG ,∴∠AEF =∠BAG ,又∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°,∴∠EOA =90°,即EF ⊥AG ;(2)解:EF ⊥AG 仍然成立;(3)解:如解图,过点O 作MN ∥AB 分别交AD 、BC 于点M ,N ,连接PA,第5题解图∵P 是正方形ABCD 内一点,当S △PAB =S △OAB ,∴点P 在线段MN 上(不含端点),作点A 关于MN 的对称点A ′,连接BA ′交MN 于点P ,此时PA +PB =PA ′+PB =BA ′最小,即△PAB 的周长最小.∵正方形ABCD 的边长为4,∴AE =AD =2,AF =AB =1,1214∴EF ==,22AF AE 5OA ==,AE ·AF EF 255∵∠AMO =∠EOA ,∠EAO =∠EAO ,∴△EOA ∽△OMA ,∴=,AEOA OA AM ∴OA 2=AM ·AE ,∴AM ==,AE OA 225∴A ′A =2AM =,45∴BA ′==,22'AB A A 4265故△PAB 周长的最小值为4+.42656.如图,在Rt △ABC 中,∠ACB =90°,∠A =45°,AB =4cm.点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 运动.过点P 作PQ ⊥AB 交折线ACB 于点Q ,D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与△ABC 重叠部分图形的面积是y (cm 2),点P 的运动时间为x (s).(1)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值;(2)当0<x <2时,求y 关于x 的函数解析式;(3)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.第6题图解:(1)如解图①,延长FE 交AB 于点G ,由题意,得AP =2x ,∵D 为PQ 中点,∴DQ =DP =x ,∵四边形DEFQ 为正方形,∴DQ =DE =GP =x ,∵FG ⊥AB ,∠B =45°,∴△FGB 是等腰直角三角形,∴BG =FG =PQ =2x ,∴AP +PG +BG =AB ,即2x +x +2x =4,∴x =,45第6题解图①(2)当0<x ≤时,y =S 正方形DEFQ =DQ 2=x 2,45∴y =x 2,(0<x ≤)45如解图②,当<x ≤1时,设BC 交QF 于点M ,BC 交EF 于点N ,过点C 作CH 45⊥AB 于点H ,交FQ 于点K ,则CH =2,∵PQ =AP =2x ,∴CK =2-2x ,∴MQ =2CK =4-4x ,∴FM =x -(4-4x )=5x -4,∴y =S 正方形DEFQ -S △MNF =DQ 2-FM 2,12∴y =x 2-(5x -4)2=-x 2+20x -8,12232∴y =-x 2+20x -8 (<x ≤1) ,23245第6题解图②如解图③,当1<x <2时,PQ =PB =4-2x ,∴DQ =2-x ,∴y =S △DEQ =DQ 2,12∴y =(x -2)2,12∴y =x 2-2x +2(1<x <2),12第6题解图③(3)1<x <.32【解法提示】当Q 与C 重合时,E 为BC 的中点,2x =2,∴x =1;当Q 为BC的中点时,BQ =,PB =1,∴AP =3,∴2x =3,∴x =,∴x 的取值范围是2321<x <.327.如图,在平面直角坐标系中,直线y =-x +3与x 轴、y 轴分别交于A 、B 两34点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线;(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为点M ,若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切,若存在,请直接写出此时点C 的坐标,若不存在,请说明理由.第7题图(1)证明:如解图,连接QP ,∵y =-x +3交坐标轴于A ,B 两点,34∴A (4,0),B (0,3),∴OA =4,OB =3,AB ==5,22OB OA ∵AQ =5t ,AP =4t ,在△APQ 与△AOB 中,==t ,==t ,AQ AB 5t 5AP AO 4t 4∴=,AQ AB AP AO又∵∠PAQ =∠OAB ,∴△APQ ∽△AOB ,∴∠APQ =∠AOB =90°,又∵PQ 为⊙Q的半径,∴AB 为⊙Q 的切线;第7题解图①(2)解:①当直线CM 在⊙Q 的左侧与⊙Q 相切时,如解图①,连接DQ ,∵AP ⊥QP ,AP =4t ,AQ =5t ,∴PQ =3t ,∴易得四边形DQPM 为正方形,∴MP =DQ =QP =3t ,∴cos ∠BAO ===,MA AC PA QA 45又∵MA =MP +PA =3t +4t =7t ,AC =AO -CO =4-m ,∴=,∴m ==-t +4;7t 4-m 4516-35t 4354②当直线CM 在⊙Q 的右侧与⊙O 相切时,如解图②,连接DQ ,PQ ,由①易得MA =PA -PM =4t -3t =t,第7题解图②AC =4-m ,∴=,t 4-m 45∴m =-t +4;54综上所述,m 与t 的函数关系式为m =-t +4或m =-t +4;35454(3)解:存在,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).3827827232【解法提示】①如解图③,当⊙Q 在y 轴的右侧与y 轴相切,∴OQ =QP =3t ,∴OA =OQ +QA =3t +5t =8t =4,∴t =,12第1题解图③则m =-t +4=-,35438∴C 1(-,0);38m =-t +4=,54278∴C 2(,0);278②如解图④,当⊙Q 在y 轴的左侧与y 轴相切,OA =AQ -OQ =5t -3t =2t =4,∴t =2,第7题解图④则m =-t +4=-,354272∴C 3(-,0);272m =-t +4=,5432∴C 4(,0).32综上所述,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).38278272328.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =8,∠BAD =60°.点E 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.当点E 不与点A 重合时,过点E 作EF ⊥AD 于点F ,作EG ∥AD 交AC 于点G ,过点G 作GH ⊥AD 交AD (或AD 的延长线)于点H ,得到矩形EFHG .设点E 运动的时间为t 秒.(1)求线段EF 的长(用含t 的代数式表示);(2)求点H 与点D 重合时t 的值;(3)设矩形EFHG 与菱形ABCD 重叠部分图形的面积为S 平方单位,求S 与t 之间的函数关系式.第8题图解:(1)由题意可知AE =2t ,0≤t ≤4,∵EF ⊥AD ,∠BAD =60°,∴sin ∠BAD ==,EF AE 32∴EF =AE =t ;323(2)如解图①,∵点H 与点D 重合,菱形ABCD 中,∠DAC =∠BA =30°,AD 12=AB =8,∴在Rt △ADG 中,DG =AD ·tan30°=8×=,33833∴在矩形FEGD 中,EF =DG =,833由(1)知EF ==t ,8333∴t =;83第8题解图①(3)①当0<t ≤时,点H 在AD 上,83∵AE =2t ,∠BAD =60°,∠DAC =30°,∴EF =t ,AH =HG =EF =3t ,AF =t ,333∴FH =AH -AF =2t ,∴S =EF ·FH =t ·2t =2t 2;33②如解图②,当<t ≤4时,点H 在AD 的延长线上,83设GH 与CD 交于点M ,由(2)知∠DAC =30°,∴在菱形ABCD 中,∠BAC =30°,∵EG ∥AD ,∴∠AGE =∠DAC =30°,∴∠BAC =∠AGE ,∴AE =EG ,∵AE =2t ,EF =t ,∠BAD =60°,3∴在Rt △AFE 中,AF =AE ·cos60°=2t ×=t ,12∴DF =8-t ,∵AE =EG =FH =2t ,∴DH =2t -(8-t )=3t -8,∵AB ∥CD ,∴∠HDM =∠BAD =60°,∴在Rt △DHM 中,HM =DH ·tan60°=(3t -8),3则DH =3t -8,HM =(3t -8),3第8题解图②∴S =S 矩形HGEF -S △DHM =EF ·FH -DH ·HM =2t 2-(3t -8)·(3t -8)123123=2t 2-(9t 2-48t +64)332=2t 2-t 2+24t -32393233=-t 2+24t -32,53233∴S 与t 之间的函数关系为S=⎧<≤⎪⎪⎨⎪+-<≤⎪⎩2280383(4).3t t。
历年中考数学动点问题专集(全)【含答案】
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题例1 (2007年杭州市)在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1). 动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,两点运动时的速度都是1cm/s. 而当点P到达点A时,点Q正好到达点C. 设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm)2(如图2). 分别以t,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.(1)分别求出梯形中BA,AD的长度;(2)写出图3中M,N两点的坐标;(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y关于x的函数关系的大致图象.评析本题将点的运动过程中形成的函数解析式与其相应的函数图象有机的结合在一起,二者相辅相成,给人以清新、淡雅之感. 本题彰显数形结合、分类讨论、函数建模与参数思想在解题过程中的灵活运用. 解决本题的关键是从函数图象中确定线段AB、梯形的高与t的函数关系式,建立起y与t的函数关系式,进而根据函数关系式补充函数图象.2 以双动点为载体,探求结论开放性问题例2 (2007年泰州市)如图5,Rt△ABC中,∠B=90°,∠CAB=30°.它的顶点A的坐标为(10,0),顶点B的坐标为(5,53),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图6),求点P的运动速度.(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P 沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.解(1)∠BAO=60°.(2)点P的运动速度为2个单位/秒.评析本题是以双点运动构建的集函数、开放、最值问题于一体的综合题. 试题有难度、有梯度也有区分度,是一道具有很好的选拔功能的好题. 解决本题的关键是从图象中获取P 的速度为2,然后建立S与t的函数关系式,利用函数的性质解得问题(3).本题的难点是题(4),考生要从题目的信息中确定建立以B为直角顶点的三角形,以B为临界点进行分类讨论,进而确定点的个数问题.3 以双动点为载体,探求存在性问题例3 (2007年扬州市)如图8,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由. 评析 本题是以双动点为载体,矩形为背景创设的存在性问题.试题由浅入深、层层递进,将几何与代数知识完美的综合为一题,侧重对相似和梯形面积等知识点的考查,本题的难点主要是题(3),解决此题的关键是运用相似三角形的性质用t 的代数式表示PM ,进而利用梯形面积相等列等式求出t 与a 的函数关系式,再利用t 的范围确定的a 取值范围. 第(4)小题是题(3)结论的拓展应用,在解决此问题的过程中,要有全局观念以及对问题的整体把握. 4 以双动点为载体,探求函数最值问题例4 (2007年吉林省)如图9,在边长为82cm 的正方形ABCD 中,E 、F 是对角线AC 上的两个动点,它们分别从点A 、C 同时出发,沿对角线以1cm/s 的相同速度运动,过E 作EH 垂直AC 交Rt △ACD 的直角边于H ;过F 作FG 垂直AC 交Rt △ACD 的直角边于G ,连结HG 、EB.设HE 、EF 、FG 、GH 围成的图形面积为S 1,AE 、EB 、BA 围成的图形面积为S 2(这里规定:线段的面积为0).E 到达C ,F 到达A 停止.若E 的运动时间为x(s),解答下列问题: (1)当0<X(2)①若y 是S 1与S 2的和,求y 与x 之间的函数关系式; (图10为备用图) ②求y 的最大值.解 (1)以E 、F 、G 、H 为顶点的四边形是矩形,因为正方形ABCD 的边长为82,所以AC=16,过B 作BO ⊥AC 于O ,则OB=89,因为AE=x ,所以S 2=4x ,因为HE=AE=x ,EF=16-2x ,所以S 1=x(16-2x), 当S 1=S 2时, 4x=x(16-2x),解得x 1=0(舍去),x 2=6,所以当x=6时, S 1=S 2.(2)①当0≤x<8时,y=x(16-2x)+4x=-2x2+20x ,当8≤x≤16时,AE=x ,CE=HE=16-x ,EF=16-2(16-x)=2x-16,所以S 1=(16-x)(2x-16), 所以y=(16-x)(2x-16)+4x=-2x2+52x-256.②当0≤x<8时,y=-2x2+20x=-2(x-5)2+50,所以当x=5时,y 的最大值为50. 当8≤x≤16时,y=-2x2+52x-256=-2(x-13)2+82, 所以当x=13时,y 的最大值为82. 综上可得,y 的最大值为82.评析 本题是以双动点为载体,正方形为背景创设的函数最值问题.要求学生认真读题、领会题意、画出不同情况下的图形,根据图形建立时间变量与其它相关变量的关系式,进而构建面积的函数表达式. 本题在知识点上侧重对二次函数最值问题的考查,要求学生有扎实的基础知识、灵活的解题方法、良好的思维品质;在解题思想上着重对数形结合思想、分类讨论思想、数学建模等思想的灵活运用.专题四:函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
(中考数学)动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
中考数学总复习《动点问题》专项提升训练(带答案)
中考数学总复习《动点问题》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________例题1.如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A B C D解:连接BD,过B作BE⊥AD于E,当0≤x<2时,点M在AB上在菱形ABCD中,∠A=60°,AB=4∴AB=AD∴△ABD是等边三角形∴AE=ED=12AD=2,BE=√3AE=2√3∵AM=2x,AN=x∴AMAN=ABAE=2∵∠A=∠A∴△AMN∽△ABE∴∠ANM=∠AEB=90°∴MN=√AM2−AN2=√3xx×√3x=√32x2∴y=12当2≤x≤4时,点M在BC上y=12AN⋅BE=12x×2√3=√3x综上所述,当0≤x<2时的函数图象是开口向上的抛物线的一部分,当2≤x≤4时,函数图象是直线的一部分故选:A.2.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC=.解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用两点之间线段最短,得到P A﹣PE≤AE.∴y的最大值为AE∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25设BE的长度为t则AB=t+1∴(t+1)2+t2=25即:t2+t﹣12=0∴(t+4)(t﹣3)=0解得t=﹣4或t=3由于t>0∴t=3∴AB=t+2=3+2=5,AD=BC=3×2=6.故答案为:6.3.如图①,在△ABC中,AB=AC,AD⊥BC于点D(BD>AD),动点P从B点出发,沿折线BA→AC方向运动,运动到点C停止,设点P的运动路程为x,△BPD的面积为y,y与x的函数图象如图②,则BC的长为.解:由题意得:AB+AC=2√13,△ABD的面积=3∵AB=AC∴AB=AC=√13∵AD⊥BC∴∠ADB=90°,BC=2BD∴AD2+BD2=AB2∴AD2+BD2=13∵△ABD的面积=3∴12AD•BD=3∴AD•BD=6∴(AD+BD)2=AD2+2BD•AD+BD2=13+2×6=25∴AD+BD=5或AD+BD=﹣5(舍去)∵AD2+BD2=AB2∴BD2+(5﹣BD)2=13∴BD=2或BD=3当BD=2时,AD=5﹣BD=3(舍去)当BD=3时,AD=5﹣BD=2∴BC=2BD=6故答案为:6.4.如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y 轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F 以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.(1)求直线AD的解析式;(2)连接MN,求△MDN的面积S与运动时间t的函数关系式;(3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.(1)解:解方程x2﹣4x﹣12=0得:x1=6,x2=﹣2∴OC=6∵四边形AOCB是菱形,∠AOC=60°∴OA=OC=6,∠BOC=1∠AOC=30°2∴CD=OC•tan30°=6×√3=2√33∴D(6,2√3)过点A作AH⊥OC于H∵∠AOH=60°OA=3,AH=OA•sin60°=6×√32=3√3∴OH=12∴A(3,3√3)设直线AD的解析式为y=kx+b(k≠0)代入A(3,3√3),D(6,2√3)得:{3k+b=3√36k+b=2√3解得:{k=−√3 3b=4√3∴直线AD的解析式为y=−√33x+4√3;(2)解:由(1)知在Rt△COD中,CD=2√3,∠DOC=30°∴OD=2CD=4√3,∠EOD=90°﹣∠DOC=90°﹣30°=60°∵直线y=−√33x+4√3与y轴交于点E∴OE=4√3∴OE=OD∴△EOD是等边三角形∴∠OED=∠EDO=∠BDF=60°,ED=OD=4√3∴∠OFE=30°=∠DOF∴DO=DF=4√3①当点N在DF上,即0≤t≤2√3时由题意得:DM=OD−OM=4√3−t,DN=4√3−2t过点N作NP⊥OB于P则NP=DN×sin∠PDN=DN×sin60°=(4√3−2t)×√32=6−√3t∴S=12DM×NP=12(4√3−t)×(6−√3t)=√32t2﹣9t+12√3;②当点N在DE上,即2√3<t≤4√3时由题意得:DM=OD﹣OM=√3−t,DN=2t﹣4√3过点N作NT⊥OB于T则NT =DN •sin ∠NDT =DN •sin60°=(2t ﹣4√3)×√32=√3t −6 ∴S =12DM ⋅NT =12(4√3−t)(√3t −6)=−√32t 2+9t −12√3; 综上,S ={√32t 2−9t +12√3(0≤t ≤2√3)−√32t 2+9t −12√3(2√3<t ≤4√3);(3)解:存在,分情况讨论:①如图,当AN 是直角边时,则CN ⊥EF ,过点N 作NK ⊥CF 于K∵∠NFC =30° OE =4√3 ∴∠NCK =60° OF =√3OE =12 ∴CF =12﹣6=6 ∴CN =12CF =3∴CK =CN ×cos60°=3×12=32 NK =CN ×sin60°=3×√32=3√32 ∴将点N 向左平移32个单位长度,再向下平移3√32个单位长度得到点C ∴将点A 向左平移32个单位长度,再向下平移3√32个单位长度得到点Q∵A(3,3√3) ∴Q (32,3√32); ②如图,当AN 是对角线时,则∠ACN =90°,过点N 作NL ⊥CF 于L∵OA =OC ,∠AOC =60° ∴△AOC 是等边三角形 ∴∠ACO =60°∴∠NCF=180°﹣60°﹣90°=30°=∠NFC∴CL=FL=12CF=3∴NL=CL•tan30°=3×√33=√3∴将点C向右平移3个单位长度,再向上平移√3个单位长度得到点N ∴将点A向右平移3个单位长度,再向上平移√3个单位长度得到点Q ∵A(3,3√3)∴Q(6,4√3);∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是(32,3√32)或(6,4√3).练习题1.如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP 长与运动时间t(单位:s)的关系如图2,则AC的长为()A.15√52B.√427C.17D.5√32.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为()A.(4,2√3)B.(4,4)C.(4,2√5)D.(4,5)3.如图,在正方形ABCD中,AB=4,动点M,N分别从点A,B同时出发,沿射线AB,射线BC 的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M运动的路程为x(0≤x≤4),△DMN的面积为S,下列图象中能反映S与x之间函数关系的是()A B C D4.如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A B C D5.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ 的面积为y,则能反映y与x之间函数关系的图象是()A B C D6.如图(1),在平面直角坐标系中,矩形ABCD在第一象限,且BC∥x轴,直线y=2x+1沿x轴正方向平移,在平移过程中,直线被矩形ABCD截得的线段长为a,直线在x轴上平移的距离为b,a、b间的函数关系图象如图(2)所示,那么矩形ABCD的面积为.7.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是平面内一个动点,且AP=3,Q 为BP的中点,在P点运动过程中,设线段CQ的长度为m,则m的取值范围是.8.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.=48cm2;③当14<t<22时,y 给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.9.如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,求AC•EF的值.10.在平面直角坐标系中,O为原点,菱形ABCD的顶点A(√3,0),B(0,1),D(2√3,1),矩形EFGH的顶点E(0,12),F(−√3,12),H(0,32).(1)填空:如图①,点C的坐标为点G的坐标为;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当2√33≤t≤11√34时,求S的取值范围(直接写出结果即可).11.已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求CFBG的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.12.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC 的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF 时,求线段CF的长;①当m=13②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y 与m的关系式.参考答案1.C.2.C.3.A.4.A.5.B.6.8.7.72≤m≤132.8.①③⑤.9.30.10.(1)(√3,2)(−√3,32);(2)当2√33≤t≤11√34时,则√316≤S≤√3.11.(1)√2;(2)BE=2MN MN⊥BE (3)9π.12.(1)①√23;②h=﹣m2+m=﹣(m−12)2+14,∴m=12时,h最大值是14;(2)y={1−12m−1−m2(1+m)+m2(0≤m≤12) 1+m22m2+2m(m>12).。
最新中考动点问题专项训练(含详细解析)
中考动点问题专项训练(含详细解析)一、解答题1. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是;同时,点从点出发沿方向,在射线上匀速运动,速度是,过点作交于点,连接,,交于点.设运动时间为,解答下列问题:(1)当为何值时,四边形是平行四边形;(2)设的面积为,求与之间的函数关系式;(3)是否存在某一时刻,使得的面积为矩形面积的;(4)是否存在某一时刻,使得点在线段的垂直平分线上.2. 已知:如图,在中,,,,点从点出发,沿向点匀速运动,速度为;过点作,交于点,同时,点从点出发,沿向点匀速运动,速度为;当一个点停止运动时,另一个点也停止运动,连接.设运动时间为,解答下列问题:(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,试确定与的函数关系式;?若存在,请说明理由,若存在,求出的(3)在运动过程中,是否存在某一时刻,使四边形值,并求出此时的距离.3. 已知:和矩形如图①摆放(点与点重合),点,,在同一条直线上,,,.如图②,从图①的位置出发,沿方向匀速运动,速度为;与交于点.同时,点从点出发,沿方向匀速运动,速度为.过作,垂足为,交于,连接,,当点停止运动时,也停止运动.设运动时间为,解答下列问题:(1)当为何值时,?(2)设五边形的面积为,求与之间的函数关系式;?若存在,求出的值;若不存在,请(3)在运动过程中,是否存在某一时刻,使五边形矩形说明理由;(4)在运动过程中,是否存在某一时刻,使点在的垂直平分线上?若存在,求出的值;若不存在,请说明理由.4. 如图,在中,,,点从点出发,在线段上以每秒的速度向点匀速运动.与此同时,点从点出发,在线段上以每秒的速度向点匀速运动.过点作,交于点,连接,.当点到达中点时,点与同时停止运动.设运动时间为秒().(1)当为何值时,.(2)设的面积为,求出与之间的函数关系式.(3)是否存在某一时刻,使?若存在,求出的值;若不存在,说明理由.5. 如图,在矩形中,,,点从点出发沿向点匀速运动,速度是,过点作交于点,同时,点从点出发沿方向,在射线上匀速运动,速度是,连接,,与交于点,设运动时间为.(1)当为何值时,四边形是平行四边形;(2)设的面积为,求与之间的函数关系式;(3)是否存在某一时刻,使得的面积为矩形面积的;(4)是否存在某一时刻,使得点在线段的垂直平分线上.6. 已知:如图①,在中,,,,点由出发沿方向向点匀速运动,速度为;点由出发沿方向向点匀速运动,速度为;连接.若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的面积为,求与之间的函数关系式;(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;(4)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.7. 已知:如图,是边长为的等边三角形,动点,同时从,两点出发,分别沿,方向匀速移动,它们的速度都是,当点到达点时,,两点停止运动,设点的运动时间(),解答下列各问题:(1)经过秒时,求的面积.(2)当为何值时,是直角三角形?(3)是否存在某一时刻,使四边形的面积是面积的三分之二?如果存在,求出的值;不存在请说明理由.8. 已知:如图,在平行四边形中,,,,点从点出发,沿方向匀速运动,速度为;点从点出发,沿方向匀速运动,速度为,连接并延长交的延长线于点,过作,垂足是,设运动时间为.(1)当为何值时,四边形是平行四边形?(2)证明:在,运动的过程中,总有;(3)是否存在某一时刻,使四边形的面积是平行四边形面积的一半?若存在,求出相应的值;若不存在,说明理由.9. 如图,在梯形中,,,,,.点从点出发沿折线方向向点匀速运动,速度为;点从点出发,沿方向向点匀速运动,速度为,,同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点,运动的时间是.(1)当点在上运动时,如图(1),,是否存在某一时刻,使四边形是平行四边形?若存在,求出的值;若不存在,请说明理由;(2)当点在上运动时,如图(2),设的面积为,试求出与的函数关系式;(3)是否存在某一时刻,使的面积是梯形的面积的?若存在,求出的值;若不存在,请说明理由;(4)在(2)的条件下,设的长为,试确定与之间的关系式.10. 已知:如图,在矩形中,,,点从点出发,沿边向点以的速度移动,与此同时,点从点出发沿边向点以的速度移动.如果、两点在分别到达、两点后就停止移动,回答下列问题:(1)运动开始后多少时间,的面积等于 ?(2)设运动开始后第时,五边形的面积为,写出与之间的函数表达式,并指出自变量的取值范围;(3)为何值时,最小?求出的最小值.11. 已知:如图①,在平行四边形中,,..沿的方向匀速平移得到,速度为;同时,点从点出发,沿方向匀速运动,速度为,当停止平移时,点也停止运动.如图②,设运动时间为.解答下列问题:(1)当为何值时, ?(2)设的面积为,求与之间的函数关系式;?若存在,求出的值;若不存在,请说明理由.(3)是否存在某一时刻,使四边形(4)是否存在某一时刻,使 ?若存在,求出的值;若不存在,请说明理由.12. 在直角梯形中,,是直角,,,点从点出发,以每秒的速度沿方向运动,点从点出发以每秒的速度沿线段方向向点运动,已知动点,同时出发,当点运动到点时,,运动停止,设运动时间为.(1)求长;(2)当四边形为平行四边形时,求的值;(3)在点,点的运动过程中,是否存在某一时刻,使得的面积为平方厘米?若存在,请求出所有满足条件的的值;若不存在,请说明理由.答案第一部分1. (1)当时,四边形是平行四边形,此时,四边形是平行四边形,则,即,解得,,即当时,四边形是平行四边形.(2),,,,,即,解得,,,则,四边形即与之间的函数关系式为:.(3)存在.矩形面积为:,由题意得,,解得,或.当或时,的面积为矩形面积的.(4)存在这样的使得点在线段的垂直平分线上.当点在线段的垂直平分线上时,,由勾股定理得,,解得,(舍去),,答:时,点在线段的垂直平分线上.2. (1),,,,,当时,四边形是平行四边形,,即,解得,,答:当时,四边形为平行四边形.(2)过点作,垂足为,, ,,,即, 解得, ,,, ,,,即, 解得,,四边形(3) 存在,若 四边形 ,则, ,, 解得, (舍去), ,则 为 时, 四边形 ,当 时, , ,作 于 ,则 , ,, 则. 3. (1) 若 ,则 .所以,即,解得:.(2)由可得,,又,所以,所以,即,所以.,(3)假使存在,使五边形矩形,即,则矩形整理得,解得,(舍去)..答:存在,使得五边形矩形(4)存在.易证,所以,即,所以,则,.作于点,则四边形为矩形,所以,,故:,若在的垂直平分线上,则,所以,所以,即:,整理得:,解得,(舍去).综上,存在使点在的垂直平分线上的,此时.4. (1)过点作于点,,,,,,,,,,,解得,当为时,.(2)过点作于点,交于点.如图所示,,,,,,,,由,可得,即,,,四边形是矩形,,,().(3)存在.由题意:,解得或.秒或秒时,.5. (1),,根据题意得:时,四边形是平行四边形,即,解得:;,(2)四边形因为,所以,所以,所以,则,则,,则,四边形即;,(3)矩形由题意得:,解得:或;(4)在中,,在中,,当点在线段的垂直平分线上时,,即,则,解得:或(舍去).则.6. (1)在中,.由题意知:,.若,则....(2)过点作于.,..,(3)不存在某一时刻,使线段恰好把的周长和面积同时平分.若把周长平分,则..解得:.若把面积平分,则..时方程不成立,不存在这一时刻,使线段把的周长和面积同时平分.(4)存在这样的时刻,使得四边形为菱形.过点作于,于.若四边形是菱形,那么.于,.于,......,解得.当时,四边形是菱形,此时,.在中,由勾股定理,得菱形边长为.7. (1)过点作,垂足为.由题意可知.为等边三角形,且边长为,,.().(2)①当时,由题意可知,..,,即.②当时,此时.,,即.当,时,是直角三角形.(3)不存在.由题意可知,,..,四边形的面积是面积的三分之二,.即.化简得..此方程无解.所以不存在某一时刻,使四边形的面积是面积的三分之二.8. (1)如图,连接,,四边形是平行四边形,,,解得,当时,四边形是平行四边形.(2)四边形是平行四边形,,,,,,,,,即在,运动的过程中,总有.(3)如图,过点作于,,,,,,,在中,由勾股定理得:,,,为等腰直角三角形,,.四边形是平行四边形,,,,设四边形的面积为,假设存在某一时刻,四边形的面积是平行四边形的面积的一半,,整理得:,解得:,(舍),当时,四边形的面积是平行四边形面积的一半.9. (1)不存在,理由如下:因为,,,所以,所以,设点,运动的时间是,,,使四边形是平行四边形,有,所以,解得:,此时点与点重合,不能构成平行四边形.(2)如图②,由题意可求:,,过点作,因为,所以,可求,所以.(3)如图3,过点作,由,,可求:,所以梯形的面积为:,当时,,此时,的面积为:,由题意得:,解得:(舍去);当时,由(2)知,的面积为:,由题意:,解得:或(舍去),所以当时,的面积是梯形的面积的.(4)如图②,由(2)知:,,过点作,因为,所以,,可求:,,由勾股定理可求:,当时,,解得:,所以.10. (1)运动开始后第时,的面积等于.根据题意,得即解得所以或时,的面积等于.(2)运动开始后第时,矩形(3).所以当时,最小,的最小值是.11. (1)在中,由勾股定理得:.由平移性质可得.因为,所以.所以,即.解得.(2)如图,作于点,于点.由,可得.则由勾股定理易求.因为,,所以.所以.所以.即.求得:,.因为,所以到的距离.所以,是面积.(3)因为,所以.,若四边形则.即:,整理得:.解得..答:当时,四边形(4)若,则.因为,所以.所以.所以.所以,即:.,所以.故.整理得.解得(舍),.答:当时,.12. (1)如图 1,过点作于点,则四边形是矩形,,,,,.(2)当四边形为平行四边形时,点在上,点在上,如图 2,由题意得:,,,解得.(3)①当点在线段上时,即时,如图 3,,解得.②当点在线段时,即时,如图 4,,,,化简得:,,方程无实数解;③当点在线段上时,若点在点的右侧,即时,则有,,解得(舍去),若点和点重合,则面积为,不合题意.若点在的左侧,即时,则有,,解得,综上,满足条件的的值存在,分别为或.。
2023中考数学-压轴专题训练之动点问题(含答案)
中考数学 压轴专题训练之动点问题1. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0).动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA -AB -BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,52(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值.(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图21. 【答案】【思维教练】(1)设一次函数解析式,将已知点A 、B 的坐标值代入求解即可;(2)S△CPQ=12·CP ·Q y ,CP =14-t ,点Q 在AB 上,Q y 即为当x =t 时的y 值,代入化简得出S 与t 的函数关系式,化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论,当Q 在OA 上时,过点C ;当Q 在AB 上时,过点A ;当Q 在BC 上时,过点C 和点B ,再列方程并求解.解图1解:(1)把A(3,33),B(9,53)代入y =kx +b , 得⎩⎪⎨⎪⎧3k +b =33,9k +b =53,解得⎩⎨⎧k =33,b =23,∴y=33x+23;(3分)(2)在△PQC中,PC=14-t,∵OA=32+(33)2=6且Q在OA上速度为3单位长度/s,AB=62+(23)2=43且Q点在AB上的速度为3单位长度/s,∴Q在OA上时的横坐标为t,Q在AB上时的横坐标为32 t,PC边上的高线长为33t+2 3.(6分)所以S=12(14-t)(32t+23)=-34t2+532t+143(2≤t≤6).当t=5时,S有最大值为8134.(7分)解图2(3)①当0<t≤2时,线段PQ的中垂线经过点C(如解图1).可得方程(332t)2+(14-32t)2=(14-t)2.解得t1=74,t2=0(舍去),此时t=74.(8分)解图3②当2<t≤6时,线段PQ的中垂线经过点A(如解图2).可得方程(33)2+(t-3)2=[3(t-2)]2.解得t1=3+572,∵t2=3-572(舍去),此时t=3+572.③当6<t≤10时,(1)线段PQ的中垂线经过点C(如解图3).可得方程14-t=25-52t,解得t=223.(10分)解图4(2)线段PQ的中垂线经过点B(如解图4).可得方程(53)2+(t-9)2=[52(t-6)]2.解得t1=38+2027,t2=38-2027(舍去).此时t=38+2027.(11分)综上所述,t的值为74,3+572,223,38+2027.(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论,在不同阶段列方程求解.2. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.2. 【答案】[分析] (1)将点A,D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)设出P点坐标,用参数表示PE,PF的长,利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A,D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A,D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0,-1),则直线l与x轴的夹角为45°,即∠OAC=45°,∵PE∥x轴,∴∠PEF=∠OAC=45°.又∵PF∥y轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF.设点P坐标为(x,-x2+3x+4),则点F(x,-x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0,∴当x=2时,PE+PF有最大值,其最大值为18.(3)由题意知N(0,4),C(0,-1),∴NC=5,①当NC是平行四边形的一条边时,有NC∥PM,NC=PM.设点P坐标为(x,-x2+3x+4),则点M的坐标为(x,-x-1),∴|y M-y P|=5,即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC是平行四边形的对角线时,线段NC与PM互相平分.由题意,NC的中点坐标为0,,设点P坐标为(m,-m2+3m+4),则点M(n',-n'-1),∴0==,解得:n'=0或-4(舍去n'=0),故点M(-4,3).综上所述,存在点M,使得以N,C,M,P为顶点的四边形为平行四边形,点M 的坐标分别为:(2+,-3-),(2-,-3+),(4,-5),(-4,3).3. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.3. 【答案】(1)212y x x =-+。
人教版九年级数学中考动点问题专项练习及参考答案
人教版九年级数学中考动点问题专项练习例题1. 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y轴相交于点C ,顶点为D .⑴ 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;⑵ 连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为;① 用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?② 设BCF ∆的面积为S ,求S 与m 的函数关系式. 【答案】⑴()10A -,,()30B ,,()03C ,.抛物线的对称轴是:1x =.⑵①设直线BC 的函数关系式为:y kx b =+. 把()()3003B C ,,,分别代入得:303.k b b +=⎧⎨=⎩,解得:13k b =-=,. 所以直线BC 的函数关系式为:3y x =-+. 当1x =时,132y =-+=,∴()12E ,. 当x m =时,3y m =-+, ∴()3P m m -+,.在223y x x =-++中,当1x =时,4y =. ∴()14D ,当x m =时,223y m m =-++∴()223F m m m -++,.∴线段422DE =-=,线段()222333PF m m m m m =-++--+=-+. ∵PF DE ∥∴当PF ED =时,四边形PEDF 为平行四边形. 由232m m -+=解得:1221m m ==,.(不合题意,舍去). 因此,当2m =时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由()30B ,,()00O ,,可得:3OB OM MB =+=. ∵BPF CPE S S S ∆∆=+.即()11112222S PF BM PF OM PF BM OM PF OB =⋅+⋅=⋅+=⋅.∴()()221393303222S m m m m m =⨯-+=-+≤≤.例题2. 如图,已知抛物线(1)2)0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】(1)∵抛物线2(1))0y a x a =-+≠经过点()20A -,,∴09a =+a =∴二次函数的解析式为:2y =+(2)∵D 为抛物线的顶点∴(1D 过D 作DN OB ⊥于N ,则DN =,3AN =,∴6AD ==∴60DAO ∠=︒∵OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 ∴6OP =∴()6t s =②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =) ∴5OP DH ==,()5t s =③当PD OA =时,四边形DAOP 是等腰梯形 ∴2624OP AD AH =-=-=∴()4t s =综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)由(2)及已知,60OC OB COB OCB =∠=,,°△是等边三角形 则62OB OC AD OP t BQ t =====,,,∴()6203OQ t t =-<< 过P 作PE OQ ⊥于E,则PE =∴113322263(62)BCPQ t S t -=⨯⨯⨯-⨯=233633228t ⎛⎫-+⎪⎝⎭ 当32t =时,BCPQ S 的面积最小值为6338 ∴此时33324OQ OP OE ==,=,∴39334443PE QE ===- ∴222233933442PE QE PQ ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭=例题3. 已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,cos ∠BAO =13.设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图1,当⊙P 与⊙O 外切时,求y 与x 之间的函数关系式,并写出函数的定义域;(3)当∠OCA =∠OPC 时,求⊙P 的半径.图1 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2.(2)如图2,作CH ⊥AP ,垂足为H . 由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OCOC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154.②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO ACAC AP =.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6例题4. 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B 的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由.图1【答案】(1)直线AB的函数解析式为y=-x+4.(2)①如图2,∠BDE=∠CDE=∠ADP;②如图3,∠ADP=∠DEP+∠DPE,如图4,∠BDE=∠DBP+∠A,因为∠DEP=∠DBP,所以∠DPE=∠A=45°.所以∠DFE=∠DPE=45°.因此△DEF是等腰直角三角形.于是得到2y x=.图2 图3 图4(3)①如图5,当BD∶BF=2∶1时,P(2,2).思路如下:由△DMB∽△BNF,知122BN DM==.设OD=2m,FN=m,由DE=EF,可得2m+2=4-m.解得23m=.因此4(0,)3D.再由直线CD与直线AB求得交点P(2,2).②如图6,当BD∶BF=1∶2时,P(8,-4).思路同上.图5 图6例题5. 在Rt △ABC 中,∠C =90°,AC =6,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3【答案】(1) 在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离. 图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO==,所以158BO =.此时658OA =.图5 图6(3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y .在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45BF y =.在Rt △ONF 中,4105OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55x y x y y +=--+.整理,得2505040x y x -=+.定义域为0<x <5.图7 图8例题6. 如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行;(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1【答案】 (1)当M 、N 都在O 右侧时,24122OM t t OA-==-,642163ON t t OB-==-,所以OM ON OAOB≠.因此MN 与AB 不平行.(2)①如图2,当M 、N 都在O 右侧时,∠OMN >∠B ,不可能△OMN ∽△OBA .②如图3,当M 在O 左侧、N 在O 右侧时,∠MON >∠BOA ,不可能△OMN ∽△OBA .③如图4,当M 、N 都在O 左侧时,如果△OMN ∽△OBA ,那么ON OA OMOB=.所以462426t t -=-.解得t =2.图2 图3 图4(3)①如图2,24OM t =-,12OH t =-,2)MH t =-.(64)(12)52NH ON OH t t t =-=---=-.②如图3,42OM t =-,21OH t =-,1)MH t =-.(64)(21)52NH ON OH t t t =+=-+-=-.③如图4,42OM t =-,21OH t =-,1)MH t =-.(21)(46)52NH OH ON t t t =-=---=-.综合①、②、③,s 222MN MH NH ==+22221)(52)16322816(1)12t t t t t ⎤=-+-=-+=-+⎦. 所以当t =1时,甲、乙两人的最小距离为12千米.例题7. 已知点 (1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【解析】点(1,3)在函数k y x=的图像上,3k =.又E 也在函数k y x =的图像上,故设E 点的坐标为(m ,3m). 过E 点作EF x ⊥轴于F ,则3EF m=. 又E 是对角线BD 的中点,62AB CD EF m===. 故A 点的纵坐标为6m ,代入3y x =中,得A 点坐标为 (2m ,6m). 因此22m mBF OF OB m =-=-=.由45ABD ∠=︒,得45EBF ∠=︒,BF EF =. 即有32m m=.解得m =而0m >,故m =则E 点坐标为【答案】例题8. 如图,11POA ∆、212PA A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【解析】分别过点1P 、2P 做x 轴的垂线,根据题意易得1PC OC =,21P D A D =,14PC OC ⋅=,24P D OD ⋅=,得2OA =,所以2A(0).【答案】2A(0).例题9. 如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.【解析】由已知易得()133P ,,则13y =,点2P 横坐标为26y +, 那么可得()2269y y +=,解得23y =,同理点3P横坐标为3y,那么可得()339y y =,解得3y =依此类推,n P的纵坐标为n y =∴1233n y y y +++=+++……【答案】例题10. 如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F.求AF BE ⋅的值.【解析】设点P (x ,y ),过点E 、F 分别作x 轴的垂线,21AF BE xy ⋅==. 【答案】1例题11. 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与BC ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =. ∴1111122S x y k ==,2221122S x y k ==.∴12S S =,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,∵90EMN FMB FMB MFB ∠+∠=∠+∠= ∴EMN MFB ∠=∠.又∵90ENM MBF ∠=∠=, ∴ENM MBF △∽△. ∴EN EM MB MF= ∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭ ∴94MB =.222MB BF MF +=,解得218k =.∴21432k BF ==∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例题12. 如图,点()1A m m +,,()31B m m +-,都在反比例函数ky x=的图象上. (1)求m k ,的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.【解析】(1)由题意可知,()()()131m m m m +=+-.解,得3m =.∴()()3462A B ,,,;∴4312k =⨯=.(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设1M 点坐标为()10x ,,1N 点坐标为()10y ,. ∵ 四边形11AN M B 为平行四边形,∴线段11N M 可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 坐标为(3,4),B 坐标为(6,2),∴1N 点坐标为042(,-),即102N (,); 1M 点坐标为(6-3,0),即1M (3,0).设直线11M N 的函数表达式为12y k x =+,把30x y ==,代入,解得123k =-. ∴ 直线11M N 的函数表达式为223y x =-+.②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设2M 点坐标为20x (,),2N 点坐标为20y (,).∵11221122AB N M AB M N AB N M AB M N ∥,∥,=,=,∴1221122N M M N N M M N ∥,=. ∴线段22M N 与线段11N M 关于原点O 成中心对称. ∴2M 点坐标为(-3,0),2N 点坐标为(0,-2).设直线22M N 的函数表达式为22y k x =-,把30x y =-=,代入,解得223k =-,∴ 直线M 2N 2的函数表达式为223y x =--.所以,直线MN 的函数表达式为223y x =-+或223y x =--.【答案】(1)3m =,12k =;(2)223y x =-+或223y x =--。
专题 全等三角形的应用---动点运动问题(30题)(解析版)
八年级上册数学《第十二章 全等三角形》专题 全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB =8,BC =10,CD 为射线,∠B =∠C ,点P 从点B 出发沿BC 向点C 运动,速度为1个单位/秒,点Q 从点C 出发沿射线CD 运动,速度为x 个单位/秒;若在某时刻,△ABP 能与△CPQ 全等,则x = .【分析】设点P 、Q 的速度为ts ,分两种情形构建方程即可解决问题.【解答】解:设点P 、Q 的速度为ts ,分两种情形讨论:①当AB =PC ,BP =CQ 时,△ABP ≌△PCQ ,即8=10﹣t ,解得:t =2,∴2x =2×1,∴x =1;②当BP =PC ,AB =CQ 时,△ABP ≌△QCP ,即t =12×10=5,∴5x =8,x =85,综上所述,x =1或85,故答案为:1或85.【点评】本题考查全等三角形的判定、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.(2022秋•攸县期末)如图,在四边形ABCD 中,∠DAB =∠ABC ,AB =5cm ,AD =BC =3cm ,点E 在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.【分析】设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,由于∠DAB=∠ABC,则当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt;当AD=BF,AE=BE 时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,然后分别解方程求出x即可.【解答】解:设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,∵∠DAB=∠ABC,∴当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt,解得t=2,x=1;当AD=BF,AE=BE时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,解得t=2.5,x=1.2,综上所述,点F的运动速度为1或1.2cm/s.故答案为:1或1.2.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或3【分析】表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD 与CQ是对应边两种情况讨论即可.【解答】解:∵AB=AC=20cm,BC=16cm,点D为AB的中点,∴BD=12×24=12cm,设点P、Q的运动时间为t,则BP=2t,PC=(16﹣2t)c①当BD=PC时,16﹣2t=12,解得:t=2,则BP=CQ=2t=4,故点Q的运动速度为:4÷2=2(厘米/秒);②当BP=PC时,∵BC=16cm,∴BP=PC=8cm,∴t=8÷2=4(秒),故点Q的运动速度为12÷4=3(厘米/秒);故选:D.【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.5.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或23【分析】设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【解答】解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,2y=6−2y4=8−xy,解得,x=83 y=32,即点Q的运动速度83cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,2y=8−xy4=6−2y,解得:x=6 y=1,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度83或6cm/s时能使两三角形全等.故选:B.【点评】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.6.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.6【分析】分三种情况讨论得出关于t的方程,解方程求得t的值.【解答】解:当P在AC上,Q在BC上时,如图,过点P,Q,C分别作PE⊥直线l于点E,QF⊥直线l于点F,CD⊥AB于点D,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,∴6﹣2t=8﹣3t,解得t=2;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣2t=3t﹣8,解得t=2.8;当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,由题意得,2t﹣6=6,解得t=6.综上,当△CPE与△CQF全等时,t的值为2或2.8或6.∴t的值不可能是3.故选:C.【点评】本题考查了三角形全等的判定和性质、作图﹣基本作图、平行线之间的距离、勾股定理,根据题意得出关于t的方程是解题的关键.7.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或6【分析】当点E在射线CM上时,D在CB上,BD=CE,当点E在CM的反向延长线上时DB=CE,由全等三角形的性质求出其解即可.【解答】解:∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,当t=2或6时,△ABD≌△ACE,故选:D.【点评】本题考查了全等三角形的性质的运用,等腰三角形的性质的运用,三角形的面积公式的运用,解答时分类讨论是重点也是难点.8.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).【分析】三角形PEC和三角形QFC要全等,P的对应顶点是C,有两种情况:一种是点P在AC上,点P在BC上时;另一种是点Q到达终点,而P在BC上时,先把各线段的长度表示出来,再让对应边相等,即可构造方程解出t.【解答】解:①当点P在线段AC上,点P在线段BC上时;如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=7﹣t,BQ=3t,CQ=12﹣3t;∴7﹣t=12﹣3t,解得t=2.5.②当P在线段BC上,点Q到达终点时,如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=t﹣7,CQ=7,∴t﹣7=7,解得t=14.综上所述,t的值为2.5或14.【点评】本题考查全等三角形的性质,找到全等三角形的对应边是解题的关键.9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.【分析】(1)根据点F从点B出发、点E从点A出发的速度、结合图形解答;(2)根据题意列出方程,解方程即可;(3)分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.【解答】解:(1)当0<t≤2时,BF=4t,当2<t≤4时,BF=16﹣4t;(2)由题意得,16﹣4t=2t,解得t=8 3;(3)当0<t≤2时,△ADE≌△CDF,则AE=CF,即8﹣4t=2t,解得t=4 3,当2<t≤4时,△ADE≌△CDF,则AE=CF,即4t﹣8=2t,解得t=4,则t=43或4时,△ADE≌△CDF.【点评】本题考查的是全等三角形的性质的应用,根据题意求出函数关系式、掌握全等三角形的对应边相等是解题的关键.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,AP=BCPQ=AB∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,AP=ACPQ=AB,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?【分析】(1)根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD 与△CQP全等;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,BD=CP∠B=∠C,BP=CQ∴△BPD≌△CQP(SAS);(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?【分析】分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,利用三角形全等得PA=AQ,即22﹣2t=28﹣3t;当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,由PA=AQ,即2t﹣22=3t﹣28;当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,然后分别解方程求出t,再根据题意确定t的值.【解答】解:设P、Q点运动的时间为t,(1)当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,∵△PFA与△QAG全等,∴PA=AQ,即22﹣2t=28﹣3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;(2)当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,解得t=10,(3)当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,∵△PFA与△QAG全等,∴PA=AQ,即2t﹣22=3t﹣28,解得t=6(舍去);当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,解得t=22,舍去.综上所述:当t等于6秒或10秒时,△PFA与△QAG全等.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.对于动点问题常利用代数的方法解决.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.【分析】(1)证明△ABC≌△EDC(SAS),可得∠A=∠E,然后根据内错角相等两直线平行即可得出结论;(2)分两种情况讨论:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,可得AP=8﹣(2t﹣8)=(16﹣2t)cm,进而可以解决问题;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况列方程求解即可.【解答】(1)证明:在△ABC和△EDC中,AC=EC∠ACB=∠ECD,BC=DC∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ =tcm ,则EQ =(8﹣t )cm ,由(1)得:∠A =∠E ,ED =AB =8cm ,在△ACP 和△ECQ 中,∠A =∠E AC =EC ∠ACP =∠ECQ,∴△ACP ≌△ECQ (ASA ),∴AP =EQ ,当0≤t ≤4时,2t =8﹣t ,解得:t =83;当4<t ≤8时,16﹣2t =8﹣t ,解得:t =8;综上所述,当线段PQ 经过点C 时,t 的值为83或8.【点评】本题考查了全等三角形的判定与性质,列代数式,一元一次方程的应用,解决本题的关键是得到△ACP ≌△ECQ .14.如图,在等腰△ABC 中,AB =AC =6cm ,BC =10cm ,点P 从点B 出发,以2cm /s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC = cm .(用t 的代数式表示)(2)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /s 的速度沿CA 向点A 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)此题主要分两种情况①当BP =CQ ,AB =PC 时,△ABP ≌△PCQ ;当BA =CQ ,PB =PC 时,△ABP ≌△QCP ,然后分别计算出t 的值,进而得到v 的值.【解答】解:(1)依题意,得PC=(10﹣2t)(cm).故答案为:10﹣2t;(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6cm,∴PC=6(cm),∴BP=10﹣6=4(cm),2t=4,解得:t=2,CQ=BP=4(cm),v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5(cm),2t=5,解得:t=2.5,CQ=BP=6(cm),v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①△BPD≌△CQP,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQt=32=1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24×1.5=36,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.【分析】(1)经过1秒后,可得BP=CQ=3厘米,则PC=8﹣3=5厘米,可证明△BPE≌△CQP;(2)由△BPE与△CQP全等可知有△BEP≌△CQP或△BEP≌△CPQ,全等可得BP=CP或BP=CQ,或可求得BP的长,可求得P点运动的时间,由CQ=BE或CQ=BP可求得Q点运动的路程,可求得其速度.【解答】解:(1)△BPE与△CQP全等,理由如下:当运动1秒后,则BP=CQ=3厘米,∴PC=BC﹣BP=8﹣3=5厘米,∵E为AB中点,且AB=10厘米∴BE=5厘米,∴BE=PC,在△BPE和△CQP中BE=PC∠B=∠CBP=CQ∴△BPE≌△CQP(SAS);(2)∵△BPE与△CQP全等,∴△BEP≌△CQP或△BEP≌△CPQ,当△BEP≌△CQP时,则BP=CP,CQ=BE=5厘米,设P点运动的时间为t秒,则3t=8﹣3t,解得t=4 3,∴Q点的运动的速度=5÷43=154(厘米/秒),当△BEP≌△CPQ时,由(1)可知t=1(秒),∴BP=CQ=3厘米,∴Q点的运动的速度=3÷1=3(厘米/秒),即当Q点每秒运动154厘米或3厘米时△BEP≌△CQP.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定是解题的关键,即SSS、SAS、ASA、AAS和HL17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?【分析】(1)根据∠C=90°,PD⊥AB,QE⊥AB,于是得到∠A+∠APD=∠A+∠B=90°,证得∠APD =∠B,∠ADP=∠QEB=90°,即可得到结论;(2)分两种情况:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,求得t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,求得t=4.【解答】解:(1)△ADP≌△QBE,理由:∵∠C=90°,PD⊥AB,QE⊥AB,∴∠A+∠APD=∠A+∠B=90°,∴∠APD=∠B,∠ADP=∠QEB=90°,∵AP=BQ=t,在△ADP与△QBE中,∠APD=∠B∠ADP=∠QEB AP=BQ,∴△ADP≌△QBE;(2)①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.【点评】本题考查了全等三角形的判定,解方程,垂直的定义,熟练掌握全等三角形的判定定理是解题的关键.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.【分析】(1)①当t=1时,AP=BQ,∠A=∠B,AE=PB,从而可证明△EAP≌Rt△PBQ;②当t≤4时,AP=BQ=t,S=S梯形AEQB﹣S AEP﹣S PBQ;当4<t≤6时,点P与点B重合,S=2t;(2)如图3所示:因为△AEP≌△BQP,所以AP=PB=2,AE=BQ=3,从而可求得t=2,点Q运动的速度为=3÷2=1.5cm/秒.【解答】解:(1)①当t=1时,AP=1,BQ=1,∴AP=BQ.∵E是AD的中点,∴AE=12AD=3.∵PB=AB=AP=4﹣1=3,∴AE=PB.在Rt△EAP和Rt△PBQ中,AE=PB ∠A=∠B AP=BQ,∴Rt△EAP≌Rt△PBQ.∴∠APE=∠BQP,∵∠BQP+∠BPQ=90°,∴∠APE+∠BPQ=90°,∴∠EPQ=90°,∴PE⊥PQ;②如图1所示连接QE.图1Ⅰ、当t≤4时,AP=BQ=t,S梯形AEQB =12(AE+BQ)•AB=12×4×(3+t)=2t+6.S△AEP =12AE•PA=12×3t=32t,S△PBQ=12PB•BQ=12×(4﹣t)t=2t−12t2.∴S=2t+6−32t﹣(2t−12t2).整理得:S=12t2−32t+6,如图2所示:Ⅱ、当4<t≤6时,点P与点B重合,S=12QB•AB=12×4×t=2t.∴S与t的函数关系式为S=2−32t+6(0<t≤4)<t≤6);(2)如图3所示:∵△AEP≌△BQP,PA≠BQ,∴AP=PB=2,AE=BQ=3.∴t=AP=12AB=12×4=2.∴点Q运动的速度为=3÷2=1.5cm/秒时,△AEP≌△BQP.故答案为:1.5.【点评】此题是四边形综合题,主要考查的是全等三角形的性质和判定、相似三角形的性质和判定、矩形的性质、函数的解析式、一元一次方程的综合应用,根据题意画出符合题意的图形是解题的关键.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.【分析】(1)由AAS证明Rt△BDO≌Rt△ADC,根据对应边相等求得BO的长;(2)分情况讨论点F分别在BC延长线上或在BC之间时△AOP≌△FCQ,根据对应边相等求得t值.【解答】解:(1)∵∠BOD=∠AOE,∠CAD+∠ACD=∠CAD+∠AOE=90°,∴∠ACD=∠AOE,∴∠BOD=∠ACD.又∵∠BDO=∠ADC=90,AD=BD,∴Rt△BDO≌Rt△ADC(AAS),∴BO=AC=6.(2)①当点F在BC延长线上时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=6﹣4t,∴t=6﹣4t,解得t=1.2.②当点F在BC之间时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=4t﹣6,∴t=4t﹣6,解得t=2.综上,t=1.2或2.【点评】本题考查全等三角形的判定.这部分内容是初中几何中非常重要的内容,一定要深刻理解,做到活学活用.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.【分析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE时,分别根据AD=BE,AE=BF,列方程组可得结论.【解答】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,∴BE=AB﹣AD=7﹣2=5,∵AD=5,∴BE=AD,∵∠A=∠B=90°,∴△BEF≌△ADE;②由①得DE=EF,∠BEF=∠ADE,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°﹣(∠BEF+∠AED)=90°,∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则5=7−t t=xt∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则t=7−t 5=xt,∴x=107,t=72.(说明:每正确写出一对x、t的值,给1分.)【点评】本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.【分析】(1)由PD⊥BD、∠C=90°可推出∠PDA=∠CBD,即可根据ASA判定△PDA≌△DBC;(2)由PD⊥AB,AE⊥AC可推出∠APF=∠CAB,即可根据AAS判定△APD≌△CAB,再由全等三角形的性质即可得解.【解答】(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,∠PAD=∠CAD=CB,∠PDA=∠CBD∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,∠APD=∠CAB∠PAD=∠C,AD=CB∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.【点评】此题考查了全等三角形的判定与性质,根据ASA判定△PDA≌△DBC、根据AAS判定△APD≌△CAB是解题的关键.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?【分析】(1)①根据全等三角形的判定定理ASA证得结论;②利用①中全等三角形的性质得到:AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.【解答】解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,∠CAO=∠DEO OA=OE∠AOC=∠DOE,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=143(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、143、12秒时,△OPE与△OQF全等【点评】本题考查了全等三角形的判定,坐标与图形的性质,正确的理解题意是解题的关键.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P 在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12AB,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:112或192;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速度为154cm/s或9332cm/s.。
中考数学高频考点《动点综合问题》专项测试卷-带答案
中考数学高频考点《动点综合问题》专项测试卷-带答案(16道)一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .484.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x 菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C.D.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中O为原点35OA OB==点C为平面内一动点32BC=连接AC点M是线段AC上的一点且满足:1:2CM MA=.当线段OM取最大值时点M的坐标是()A.36,55⎛⎫⎪⎝⎭B.365,555C.612,55⎛⎫⎪⎝⎭D.6125,55510.(2023·广东深圳·统考中考真题)如图1 在Rt ABC△中动点P从A点运动到B点再到C点后停止速度为2单位/s 其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为()A155B427C.17D.5311.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中60A∠=︒4AB=动点M N同时从A 点出发点M以每秒2个单位长度沿折线A B C--向终点C运动点N以每秒1个单位长度沿线段AD向终点D运动当其中一点运动至终点时另一点随之停止运动.设运动时间为x秒AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A .B .C .D .12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C.D.13.(2023·河南·统考中考真题)如图1 点P从等边三角形ABC的顶点A出发沿直线运动到三角形内部一点再从该点沿直线运动到顶点B.设点P运动的路程为x PByPC图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.43D.23二解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC中①C=90° 点M从点C出发沿CB方向以1cm/s 的速度匀速运动到达点B停止运动在点M的运动过程中过点M作直线MN交AC于点N且保持①NMC=45° 再过点N作AC的垂线交AB于点F连接MF将①MNF关于直线NF对称后得到①ENF已知AC=8cm BC=4cm设点M运动时间为t(s)①ENF与①ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中能否使得四边形MNEF为正方形?如果能求出相应的t值如果不能说明理由(2)求y关于t的函数解析式及相应t的取值范围(3)当y取最大值时求sin①NEF的值.AB=点O是对角线AC的中点动点P 15.(2023·吉林·统考中考真题)如图,在正方形ABCD中4cmQ分别从点A B同时出发点P以1cm/s的速度沿边AB向终点B匀速运动点Q以2cm/s的速度沿折线-向终点D匀速运动.连接PO并延长交边CD于点M连接QO并延长交折线DA ABBC CD-于点N连接PQ QM MN NP得到四边形PQMN.设点P的运动时间为x(s)(04<<)四边形PQMN的x面积为y(2cm)(1)BP的长为__________cm CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时直接写出x的值.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .参考答案一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据菱形的性质求出各点坐标 分M 的横坐标x 在01 12 23~之间三个阶段 用含x 的代数式表示出PMN 的底和高 进而求出分段函数的解析式 根据解析式判断图象即可. 【详解】解:菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 ∴2AB AD == 3OA =∴()2222231OB AB OA --= ∴123OC OB BC =+=+=∴(3A ()10B , ()3,0C 设直线AB 的解析式为y kx b =+ 将(3A ()10B ,代入 得: 03k b b +=⎧⎪⎨=⎪⎩ 解得33k b ⎧=-⎪⎨=⎪⎩ ∴直线AB 的解析式为33y x =-MN y ∥轴∴N 的横坐标为x(1)当M 的横坐标x 在01之间时 点N 在线段AB 上 PMN 中MN 上的高为1x + ∴(,33N x x ∴(3333MN x x -+∴()()2113313122PMNS MN x x x x =⋅+=⋅+= ∴该段图象为开口向上的抛物线(2)当M 的横坐标x 在12之间时 点N 在线段BC 上 PMN 中3MN = MN 上的高为1x + ∴()()113313122PMNS MN x x x =⋅+=+=∴该段图象为直线(3)当M 的横坐标x 在23~之间时 点N 在线段BC 上 PMN 中MN 上的高为1x + 由(3D ()3,0C 可得直线CD 的解析式为333y x =-+∴(,333M x x + (),0N x ∴333MN x =-+ ∴()(()21133313331322PMN S MN x x x x =⋅+=-+⋅+=++ ∴该段图象为开口向下的抛物线观察四个选项可知 只有选项A 满足条件故选A .【点睛】本题考查动点问题的函数图象 涉及坐标与图形 菱形的性质 二次函数 一次函数的应用等知识点 解题的关键是分段求出函数解析式.2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .【答案】D【分析】根据速度与时间的关系即可得出答案.【详解】解:刚开始速度随时间的增大而增大 匀速跑一段时间后减速到① 然后再加速再匀速到① 由于体力原因 应该第一个50米速度快 用的时间少 第二个50米速度慢 用的时间多故他的速度大小v (m/s )随时间t (s )变化的图像可能是D .故选:D .【点睛】本题主要考查函数的图象 要根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件 结合实际意义得出正确的结论.3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .48【答案】B 【分析】根据点D 运动的路径长为x 在图中表示出来 设,25AE z BE z ==- 在直角三角形中 找到等量关系 求出未知数的值 得到BDE △的值.【详解】解:当10x =时 由题意可知10,5AD CD ==在Rt CDB △中 由勾股定理得22222520425BD CD BC =+=+=设,25AE z BE z ==-222(25)50625BE z z z ∴=-=-+在Rt ADE △中 由勾股定理得2222100DE AD AE z =-=-在Rt DEB △中 由勾股定理得222BD DE BE =+即2242510050625z z z =-+-+解得6z =6,19DE BE ∴==1198762BDE a S ∴==⨯⨯=当25x =时 由题意可知 10CD BD ==设,25BE q AE q ==-222(25)62550AE q q q =-=-+在Rt CDA △中 由勾股定理得222221510325AD AC CD =+=+=在Rt BDE △中由勾股定理得2222100DB BD BE q =-=-Rt DEA 中 由勾股定理得222AD DE AE =+即2232510062550q q q =-+-+解得8q =6DE ∴=168242BDE b S ∴==⨯⨯= 762452a b ∴-=-=.故选:B .【点睛】本题主要考查勾股定理 根据勾股定理列出等式是解题的关键 运用了数形结合的思想解题. 4.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】B【分析】求出MN 在O 点左侧时的两段图象 即可得出结论.【详解】解:当MN 在O 点左侧 即:2t <时:①当正方形EFGH 的边GH 在AOB 的外部时 重叠部分为矩形 如图:设,HE FG 分别交AB 于点,I K①垂直于BC 的直线MN 从AB 出发 沿BC 3 ①3IE FK t ==①在矩形ABCD 中 4AB =43BC =①228AC AB BC =+=①4OA OB AB ===①ABO 为等边三角形①60OAB OBA ∠=∠=︒①tan60AI BK IE t ==÷︒=①42IK t =- ①()23422343S IK IE t t t t =⋅=-=-+ 图象为开口向下的一段抛物线①当正方形EFGH 的边GH 在AOB 的内部时 与AOB 重叠部分即为正方形EFGH 如图:由①可知:42EF IK t ==-①()242S t =- 图象是一段开口向上的抛物线当MN 过点O 时 即2t =时 ,E F 重合 此时 0S =综上:满足题意的只有B 选项故选B .【点睛】本题考查动点的函数图象问题.解题的关键是确定动点的位置 利用数形结合和分类讨论的思想进行求解.5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】A【分析】分04t ≤< 48t ≤< 812t ≤<三种情况 分别求出函数解析即可判断.【详解】解:过点D 作DH CB ⊥于H①5DE DF == 8EF = ①142EH FH EF === ①223DH DE EH =-当04t ≤<时如图,重叠部分为EPQ △ 此时EQ t = PQ DH ∥①EPQ EDH ∽ ①PQ EQ DH EH= 即34PQ t = ①34PQ t = ①2133248S t t t =⨯= 当48t ≤<时如图,重叠部分为四边形PQC B '' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=- 8FC t '=-①PB DE '∥①PB F DCF '∽ ①2PB F DCF S B F SCF ''⎛⎫= ⎪⎝⎭又183122DCFS =⨯⨯=①212128PB F S t '-⎛⎫= ⎪⎝⎭ ①()231216PB F S t '=-①DH BC ⊥ 90A B C '''∠=︒①A C DH ''∥①C QF HFD '∽①2C QF HFD S C F S HF ''⎛⎫= ⎪⎝⎭ 即2814432C QF S t '-⎛⎫= ⎪⎝⎭⨯⨯ ①()2388C QF S t '=-①()()22233331283168162PB F C QF S S S t t t t ''=-=---=-++当 812t ≤<时如图,重叠部分为四边形PFB ' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=-①PB DE '∥①PB F DCF '∽①2PB F DCF S B F S CF ''⎛⎫= ⎪⎝⎭ 即212128PB FS t '-⎛⎫= ⎪⎝⎭①()231216PB F S S t '==-综上 ()()()()22230483334816231281216t t S t t t t t ⎧≤<⎪⎪⎪=-++≤<⎨⎪⎪-≤<⎪⎩①符合题意的函数图象是选项A .故选:A .【点睛】此题结合图像平移时面积的变化规律 考查二次函数相关知识根据平移点的特点列出函数表达式是关键 有一定难度.6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分三种情况分别求出S 与x 的函数关系式 根据函数的类型与其图象的对应关系进行判断即可.【详解】解:①60MAN ∠=︒ 6AC AB ==①ABC 是边长为6的正三角形①AD 平分MAN ∠①30MAD NAD ∠=∠=︒ AD BC ⊥ 3CD DB ==①当矩形EFGH 全部在ABC 之中 即由图1到图2 此时03x <≤①EG AC ∥①30MAD AGE ∠=∠=︒①30NAD AGE ∠=∠=︒①AE EG x ==在Rt AEF 中 60EAF ∠=︒ ①33EF AE =①23S = ①如图3时 当AE AF GE AF AF CF AC +=+=+= 则162x x += 解得4x = 由图2到图3 此时34x <≤如图4 记BC EG 的交点为Q ,则EQB △是正三角形①6EQ EB BQ x ===-①()626GQ x x x =--=- 而60PQG ∠=︒ ①)3326PG QG x ==-①PQG EFHG S S S =-矩形())231263262x x =-⨯-- 233123183x =+- ①如图6时 6x = 由图3到图6 此时46x <≤如图5 同理EKB △是正三角形①6EK KB EB x ===- 162FC AC AF x =-=- 3EF x = ①EKCF S S =梯形1136622x x ⎛⎫=-+- ⎪⎝⎭ 23333x x =+ 因此三段函数的都是二次函数关系 其中第1段是开口向上 第2段 第3段是开口向下的抛物线 故选:A .【点睛】本题考查动点问题的函数图象 求出各种情况下S 与x 的函数关系式是正确解答的前提 理解各种函数所对应的图象的形状是解决问题的关键.7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m【答案】C【分析】根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a = 作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F ,则可得33m AF AB == ))333m PE PB AB PA a t =-=- 从而得到22334216PBQa St a ⎛⎫=--+ ⎪⎝⎭ 根据PBQS的最大值为3求出a 的值 从而得到4m 43m 23m AB BC AF ===,, 最后由平行四边形的面积公式进行计算即可得到答案.【详解】解:根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a =作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F120ABC ∠=︒ 60ABF ∴∠=︒33m AF AB ∴== ))333m PE AB PA a t ==-=- )2221133333322444216PBQa SBQ PE t a t t at t a ⎛⎫∴=⋅⋅=-=-+=--+ ⎪⎝⎭ 由图象可得PBQS 的最大值为323316a ∴=解得:4a =或4a =-(舍去) 4a ∴=4m 43m 23m AB BC AF ∴===,,∴平行四边形ABCD 的面积为:2432324m BC AF ⋅=故选:C .【点睛】本题主要考查了平行四边形的性质 解直角三角形 二次函数的图象与性质 熟练掌握平行四边形的性质 二次函数的图象与性质 添加适当的辅助线构造直角三角形 是解题的关键.8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】先证明菱形PQMN 是边长为x 一个角为60︒的菱形 找到临界点 分情况讨论 即可求解. 【详解】解:作PD AC ⊥于点D 作⊥QE AB 于点E由题意得AP x = 3AQ x = ①3cos30AD AP =⋅︒= ①12AD DQ AQ ==①PD 是线段AQ 的垂直平分线 ①30PQA A ∠=∠=︒①60QPE ∠=︒ PQ AP x == ①132QE AQ x == PQ PN MN QM x ==== 当点M 运动到直线BC 上时此时 BMN 是等边三角形 ①113AP PN BN AB ==== 1x = 当点Q N 运动到与点C B 、重合时①1322AP PN AB === 32x = 当点P 运动到与点B 重合时 ①3AP AB == 3x = ①当01x <≤时 233y x x ==当312x <≤时 如图,作FG AB ⊥于点G 交QM 于点R则32BN FN FB x ===- 33FM MS FS x ===- )333FR x =- ①())2231373939333332y x x -⋅--=+当332x <<时 如图,作HI AB ⊥于点I则3BP PH HB x ===- )33HI x =- ①())21333393332y x x =⋅--= 综上 y 与x 之间函数关系的图象分为三段 当01x <≤时 是开口向上的一段抛物线 当312x <≤时 是开口向下的一段抛物线 当332x <≤时 是开口向上的一段抛物线 只有选项A 符合题意 故选:A .【点睛】本题主要考查了动点问题的函数的图象 二次函数的图形的性质 等边三角形的性质 菱形的性质 三角形的面积公式 利用分类讨论的思想方法解答和熟练掌握抛物线的性质是解题的关键.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中 O 为原点 35OA OB == 点C 为平面内一动点 32BC =连接AC 点M 是线段AC 上的一点 且满足:1:2CM MA =.当线段OM 取最大值时 点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555C .612,55⎛⎫⎪⎝⎭D .6125,555 【答案】D【分析】由题意可得点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫ ⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E 先证OAM DAC ∽ 得23OM OA CD AD == 从而当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时 CD 取得最大值 然后分别证BDO CDF ∽ AEM AFC ∽ 利用相似三角形的性质即可求解.【详解】解:①点C 为平面内一动点 32BC = ①点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E①35OA OB ==①AD OD OA =+=95①23OA AD = ①:1:2CM MA = ①23OA CMAD AC==①OAM DAC ∠∠= ①OAM DAC ∽ ①23OM OA CD AD == ①当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时CD 取得最大值①35OA OB == OD =35①BD =()222235153522OB OD ⎛⎫++ ⎪ ⎪⎝⎭①9CD BC BD =+= ①23OM CD = ①6OM =①y 轴x ⊥轴 CF OA ⊥ ①90DOB DFC ∠∠==︒ ①BDO CDF ∠∠= ①BDO CDF ∽①OB BDCF CD=153529=解得185CF =同理可得 AEM AFC ∽①23ME AM CF AC ==23185= 解得125ME =①22221256565OE OM ME ⎛⎫=-- ⎪ ⎪⎝⎭①当线段OM 取最大值时 点M 的坐标是65125⎝⎭,故选D .【点睛】本题主要考查了勾股定理 相似三角形的判定及性质 圆的一般概念以及坐标与图形 熟练掌握相似三角形的判定及性质是解题的关键.10.(2023·广东深圳·统考中考真题)如图1 在Rt ABC △中 动点P 从A 点运动到B 点再到C 点后停止 速度为2单位/s 其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为( )A 155B 427C .17D .53【答案】C【分析】根据图象可知0=t 时 点P 与点A 重合 得到15AB = 进而求出点P 从点A 运动到点B 所需的时间 进而得到点P 从点B 运动到点C 的时间 求出BC 的长 再利用勾股定理求出AC 即可. 【详解】解:由图象可知:0=t 时 点P 与点A 重合 ①15AB =①点P 从点A 运动到点B 所需的时间为1527.5s ÷= ①点P 从点B 运动到点C 的时间为11.57.54s -= ①248BC =⨯=在Rt ABC △中:2217AC AB BC += 故选C .【点睛】本题考查动点的函数图象 勾股定理.从函数图象中有效的获取信息 求出,AB BC 的长 是解题的关键.11.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD 中 60A ∠=︒ 4AB = 动点M N 同时从A 点出发 点M 以每秒2个单位长度沿折线A B C --向终点C 运动 点N 以每秒1个单位长度沿线段AD 向终点D 运动 当其中一点运动至终点时 另一点随之停止运动.设运动时间为x 秒 AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是( )A .B .C .D .【答案】A【分析】连接BD 过点B 作BE AD ⊥于点E 根据已知条件得出ABD △是等边三角形 进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒ 当04t <<时 M 在AB 上 当48t ≤<时 M 在BC 上 根据三角形的面积公式得到函数关系式【详解】解:如图所示 连接BD 过点B 作BE AD ⊥于点E 当04t <<时 M 在AB 上菱形ABCD 中 60A ∠=︒ 4AB = ①AB AD =,则ABD △是等边三角形 ①122AE ED AD === 33BE AE =①2,AM x AN x ==①2AM ABAN AE== 又A A ∠=∠ ①AMN ABE ∽ ①90ANM AEB ∠=∠=︒ ①223MN AM AN x - ①21332y x x x =当48t ≤<时 M 在BC 上①1123322y AN BE x x =⨯=⨯ 综上所述 04t <<时的函数图象是开口向上的抛物线的一部分 当48t ≤<时 函数图象是直线的一部分 故选:A .【点睛】本题考查了动点问题的函数图象 二次函数图象的性质 一次函数图象的性质 菱形的性质 勾股定理 等边三角形的性质与判定 相似三角形的性质与判定 熟练掌握以上知识是解题的关键. 12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据ADMDCNBMNABCD S S S SS=---正方形 求出S 与x 之间函数关系式 再判断即可得出结论.【详解】解:ADMDCNBMNABCD S S SSS=---正方形1114444(4)(4)222x x x x =⨯-⨯-⨯---21282x x =-+ 21(2)62x =-+ 故S 与x 之间函数关系为二次函数 图像开口向上 2x =时 函数有最小值6 故选:A .【点睛】本题考查了正方形的性质 二次函数的图像与性质 本题的关键是求出S 与x 之间函数关系式 再判断S 与x 之间函数类型.13.(2023·河南·统考中考真题)如图1 点P 从等边三角形ABC 的顶点A 出发 沿直线运动到三角形内部一点 再从该点沿直线运动到顶点B .设点P 运动的路程为x PBy PC= 图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A .6B .3C .43D .23【答案】A【分析】如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时 PB PC = 23AO = 易知30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为3 可知23AO OB == 过点O 作OD AB ⊥ 解直角三角形可得cos303AD AO =⋅︒= 进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时1PB PC= ①PB PC = 3AO =又①ABC 为等边三角形①60BAC ∠=︒ AB AC =①()SSS APB APC △≌△①BAO CAO ∠=∠①30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为43①3OB = 即23AO OB ==①30BAO ABO ∠=∠=︒过点O 作OD AB ⊥①AD BD =,则cos303AD AO =⋅︒=①6AB AD BD =+=即:等边三角形ABC 的边长为6故选:A .【点睛】本题考查了动点问题的函数图象 解决本题的关键是综合利用图象和图形给出的条件.2二 解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC 中 ①C =90° 点M 从点C 出发沿CB 方向以1cm /s的速度匀速运动 到达点B 停止运动 在点M 的运动过程中 过点M 作直线MN 交AC 于点N 且保持①NMC =45° 再过点N 作AC 的垂线交AB 于点F 连接MF 将①MNF 关于直线NF 对称后得到①ENF 已知AC =8cm BC =4cm 设点M 运动时间为t (s ) ①ENF 与①ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中 能否使得四边形MNEF 为正方形?如果能 求出相应的t 值 如果不能 说明理由(2)求y 关于t 的函数解析式及相应t 的取值范围(3)当y 取最大值时 求sin ①NEF 的值.【答案】(1)85(2)⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y (3310 【详解】试题分析:(1)由已知得出CN =CM =t FN ①BC 得出AN =8﹣t 由平行线证出①ANF ①①ACB 得出对应边成比例求出NF =12AN =12(8﹣t ) 由对称的性质得出①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t 由正方形的性质得出OE =ON =FN 得出方程 解方程即可(2)分两种情况:①当0<t ≤2时 由三角形面积得出2124y t t =-+ ①当2<t ≤4时 作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH 得出GH =23NF =13(8﹣t ) 由三角形面积得出21(8)12y t =-(2<t ≤4) (3)当点E 在AB 边上时 y 取最大值 连接EM ,则EF =BF EM =2CN =2CM =2t EM =2BM 得出方程 解方程求出CN =CM =2 AN =6 得出BM =2 NF =12AN =3 因此EM =2BM =4 作FD ①NE 于D由勾股定理求出EB 22EM BM +=25 求出EF =12EB 5 由等腰直角三角形的性质和勾股定理得出DF 的长 在Rt①DEF 中 由三角函数定义即可求出sin①NEF 的值.试题解析:解:(1)能使得四边形MNEF 为正方形 理由如下:连接ME 交NF 于O 如图1所示:①①C =90° ①NMC =45° NF ①AC ①CN =CM =t FN ①BC ①AN =8﹣t ①ANF ①①ACB ①84AN AC NF BC == =2 ①NF =12AN =12(8﹣t ) 由对称的性质得:①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t ①四边形MNEF 是正方形 ①OE =ON =FN ①t =12×12(8﹣t ) 解得:t =85即在点M 的运动过程中 能使得四边形MNEF 为正方形 t 的值为85(2)分两种情况:①当0<t ≤2时 y =12×12(8﹣t )×t =2124t t -+ 即2124y t t =-+(0<t ≤2) ①当2<t ≤4时 如图2所示:作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH ①GH =23NF =13(8﹣t ) ①y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t - 即21(8)12y t =-(2<t ≤4) 综上所述:⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y .(3)当点E 在AB 边上时 y 取最大值 连接EM 如图3所示:则EF =BF EM =2CN =2CM =2t EM =2BM ①BM =4﹣t ①2t =2(4﹣t ) 解得:t =2 ①CN =CM =2 AN =6 ①BM =4﹣2=2 NF =12AN =3 ①EM =2BM =4 作FD ①NE 于D ,则EB 22EM BM +2242+=5 ①DNF 是等腰直角三角形①EF =12EB 5 DF =22 NF 32 在Rt①DEF 中 sin①NEF =DF EF 3225310【点睛】本题是四边形综合题目 考查了正方形的判定与性质 相似三角形的判定与性质 勾股定理 三角函数 三角形面积的计算 等腰直角三角形的判定与性质等知识 本题综合性强 有一定难度. 15.(2023·吉林·统考中考真题)如图,在正方形ABCD 中 4cm AB = 点O 是对角线AC 的中点 动点P Q 分别从点A B 同时出发 点P 以1cm/s 的速度沿边AB 向终点B 匀速运动 点Q 以2cm/s 的速度沿折线BC CD -向终点D 匀速运动.连接PO 并延长交边CD 于点M 连接QO 并延长交折线DA AB -于点N 连接PQ QM MN NP 得到四边形PQMN .设点P 的运动时间为x (s )(04x <<) 四边形PQMN 的面积为y (2cm )(1)BP 的长为__________cm CM 的长为_________cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式 并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时 直接写出x 的值.【答案】(1)()4x - x(2)()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)43x =或83x = 【分析】(1)根据正方形中心对称的性质得出,OM OP OQ ON == 可得四边形PQMN 是平行四边形 证明ANP CQM ≌即可(2)分02x <≤ 24x <≤两种情况分别画出图形 根据正方形的面积 以及平行四边形的性质即可求解 (3)根据(2)的图形 分类讨论即可求解.【详解】(1)解:依题意 1AP x x =⨯=()cm ,则()4PB AB AP x cm =-=-①四边形ABCD 是正方形①,90AD BC DAB DCB ∠=∠=︒∥①点O 是正方形对角线AC 的中点①,OM OP OQ ON ==,则四边形PQMN 是平行四边形①MQ PN = MQ NP ∥①PNQ MQN ∠=∠又AD BC ∥①ANQ CQN ∠=∠①ANP MQC ∠=∠在,ANP CQM 中ANP MQC NAP QCM NP MQ ∠=∠⎧⎪∠=∠⎨⎪=⎩①ANP CQM ≌①()cm MC AP x ==故答案为:()4x - x .(2)解:当02x <≤时 点Q 在BC 上由(1)可得ANP CQM ≌同理可得PBQ MDN ≌①4,2,PB x QB x MC x =-== 42QC x =-则222MCQ BPQ y AB S S =--()()164242x x x x =--⨯--241216x x =-+当24x <≤时 如图所示则AP x = 224AN CQ x CB x ==-=-()244PN AP AN x x x =-=--=-+①()44416y x x =-+⨯=-+综上所述 ()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)依题意 ①如图,当四边形PQMN 是矩形时 此时90PQM ∠=︒①90PQB CQM ∠+∠=︒①90BPQ PQB ∠+∠=︒①BPQ CQM ∠=∠又B BCD ∠=∠①~BPQ CQM ①BP BQ CQ CM= 即4242x x x x-=- 解得:43x =当四边形PQMN 是菱形时,则PQ MQ =①()()()22224242x x x x -+=+-解得:0x =(舍去)①如图所示 当PB CQ =时 四边形PQMN 是轴对称图形424x x -=- 解得83x = 当四边形PQMN 是菱形时,则4PN PQ == 即44x -+= 解得:0x =(舍去)综上所述 当四边形PQMN 是轴对称图形时 43x =或83x =. 【点睛】本题考查了正方形的性质 动点问题 全等三角形的性质与判定 矩形的性质 平行四边形的性质与判定 菱形的性质 轴对称图形 熟练掌握以上知识是解题的关键.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .。
动点综合问题(共32题)(解析版)--2023年中考数学真题分项汇编(全国通用)
专题动点综合问题(32题)1(2023·四川遂宁·统考中考真题)如图,在△ABC 中,AB =10,BC =6,AC =8,点P 为线段AB 上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作PM ⊥AC 于点M 、作PN ⊥BC 于点N ,连接MN ,线段MN 的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为()A.5,5B.6,245C.325,245D.325,5【答案】C【分析】如图所示,过点C 作CD ⊥AB 于D ,连接CP ,先利用勾股定理的逆定理证明△ABC 是直角三角形,即∠C =90°,进而利用等面积法求出CD =245,则可利用勾股定理求出AD =325;再证明四边形CMPN 是矩形,得到MN =CP ,故当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =325,则点E 的坐标为325,245.【详解】解:如图所示,过点C 作CD ⊥AB 于D ,连接CP ,∵在△ABC 中,AB =10,BC =6,AC =8,∴AC 2+BC 2=62+82=100=102=AB 2,∴△ABC 是直角三角形,即∠C =90°,∴S △ABC =12AC ⋅BC =12AB ⋅CD ,∴CD =AC ⋅BC AB=245,∴AD =AC 2-CD 2=325;∵PM ⊥AC ,PN ⊥BC ,∠C =90°,∴四边形CMPN 是矩形,∴MN =CP ,∴当MN 最小时,即CP 最小,∴当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =AD =325,∴点E 的坐标为325,245,故选:C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.2(2023·广东深圳·统考中考真题)如图1,在Rt △ABC 中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为()B.427C.17D.53A.1552【答案】C【分析】根据图象可知t=0时,点P与点A重合,得到AB=15,进而求出点P从点A运动到点B所需的时间,进而得到点P从点B运动到点C的时间,求出BC的长,再利用勾股定理求出AC即可.【详解】解:由图象可知:t=0时,点P与点A重合,∴AB=15,∴点P从点A运动到点B所需的时间为15÷2=7.5s;∴点P从点B运动到点C的时间为11.5-7.5=4s,∴BC=2×4=8;在Rt△ABC中:AC=AB2+BC2=17;故选:C.【点睛】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出AB,BC的长,是解题的关键.3(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A 点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段AD 向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y 个平方单位,则下列正确表示y与x函数关系的图象是()A. B.C. D.【答案】A【分析】连接BD ,过点B 作BE ⊥AD 于点E ,根据已知条件得出△ABD 是等边三角形,进而证明△AMN ∽ABE 得出∠ANM =∠AEB =90°,当0<t <4时,M 在AB 上,当4≤t <8时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE ⊥AD 于点E ,当0<t <4时,M 在AB 上,菱形ABCD 中,∠A =60°,AB =4,∴AB =AD ,则△ABD 是等边三角形,∴AE =ED =12AD =2,BE =3AE =23∵AM =2x ,AN =x ,∴AM AN =AB AE =2,又∠A =∠A ∴△AMN ∽ABE∴∠ANM =∠AEB =90°∴MN =AM 2-AN 2=3x ,∴y =12x ×3x =32x2当4≤t <8时,M 在BC 上,∴y =12AN ×BE =12x ×23=3x ,综上所述,0<t <4时的函数图象是开口向上的抛物线的一部分,当4≤t <8时,函数图象是直线的一部分,故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.4(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中,AB =4,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为x 0≤x ≤4 ,△DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是()A. B.C. D.【答案】A【分析】先根据S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,求出S 与x 之间函数关系式,再判断即可得出结论.【详解】解:S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,=4×4-12×4x -12×4(4-x )-12x (4-x ),=12x 2-2x +8,=12(x -2)2+6,故S 与x 之间函数关系为二次函数,图像开口向上,x =2时,函数有最小值6,故选:A .【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出S 与x 之间函数关系式,再判断S 与x 之间函数类型.5(2023·河南·统考中考真题)如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBPC=y ,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.43D.23【答案】A【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB =PC ,AO =23,易知∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,可知AO =OB =23,过点O 作OD ⊥AB ,解直角三角形可得AD =AO ⋅cos30°=3,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PBPC=1,∴PB =PC ,AO =23,又∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC ,∴△APB ≌△APC SSS ,∴∠BAO =∠CAO ,∴∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,∴OB =23,即AO =OB =23,∴∠BAO =∠ABO =30°,过点O 作OD ⊥AB ,∴AD =BD ,则AD =AO ⋅cos30°=3,∴AB =AD +BD =6,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.6(2023·四川乐山·统考中考真题)如图,在平面直角坐标系xOy 中,直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,C 、D 是半径为1的⊙O 上两动点,且CD =2,P 为弦CD 的中点.当C 、D 两点在圆上运动时,△PAB 面积的最大值是()A.8B.6C.4D.3【答案】D【分析】根据一次函数与坐标轴的交点得出OA =OB =2,确定AB =22,再由题意得出当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,利用勾股定理求解即可.【详解】解:∵直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,∴当x =0时,y =-2,当y =0时,x =-2,∴A -2,0 ,B 0,-2 ,∴OA =OB =2,∴AB =OA 2+OB 2=22,∵△PAB 的底边AB =22为定值,∴使得△PAB 底边上的高最大时,面积最大,点P 为CD 的中点,当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,∵CD =2,⊙O 的半径为1,∴DP=22∴OP=OD2-DP2=22,∵OE⊥AB,∴OE=12AB=2,∴PE=OE+OP=322,∴S△PAB=12×22×322=3,故选:D.【点睛】题目主要考查一次函数的应用及勾股定理解三角形,垂径定理的应用,理解题意,确定出高的最大值是解题关键.7(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC和ABC均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是()A. B.C. D.【答案】D【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+2R,之后同时到达点A,C,两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+2R,∵两个人机器人速度相同,∴分别同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A,C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除C,故选:D.【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.8(2023·江苏苏州·统考中考真题)如图,在平面直角坐标系中,点A的坐标为9,0,点C的坐标为0,3,以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC⋅EF的值为()A.10B.910C.15D.30【答案】D【分析】根据题意,得出E4,0,勾股定理求得EF=10,AC=310,即可求解.,F5,3【详解】解:连接AC、EF∵点A的坐标为9,0,以OA,OC为边作矩形OABC.,点C的坐标为0,3∴B9,3,AC=32+92=310则OA=9,BC=OA=9依题意,OE=4×1=4,BF=4×1=4∴AE=9-4=5,则E4,0,∴CF=BC-BF=9-4=5∴F5,3,∴EF=5-42+32=10,∵C0,3,∴AC⋅EF=310×10=30故选:D.【点睛】本题考查了坐标与图形,勾股定理求两点坐标距离,矩形的性质,求得E,F的坐标是解题的关键.9(2023·山东滨州·统考中考真题)已知点P 是等边△ABC 的边BC 上的一点,若∠APC =104°,则在以线段AP ,BP ,CP 为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°【答案】B【分析】将△ABP 绕点A 逆时针旋转60°得到△ACQ ,可得以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,根据邻补角以及旋转的性质得出∠AQC =∠APB =76°,进而即可求解.【详解】解:如图所示,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,∴AP =AQ ,∠PAQ =60°,BP =CQ ,∠AQC =∠APB ,∴△APQ 是等边三角形,∴PQ =AP ,∴以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,∵∠APC =104°,∴∠APB =76°∴∠AQC =∠APB =76°∴∠PQC =76°-60°=16°,故选:B .【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键.10(2023·甘肃武威·统考中考真题)如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为()A.4,23B.4,4C.4,25D.4,5【答案】C【分析】证明AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,则当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,而运动路程为0或4,从而可得答案.【详解】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,运动路程为0或4,结合函数图象可得M 4,25 ,故选:C .【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.11(2023·浙江绍兴·统考中考真题)如图,在△ABC 中,D 是边BC 上的点(不与点B ,C 重合).过点D作DE ∥AB 交AC 于点E ;过点D 作DF ∥AC 交AB 于点F .N 是线段BF 上的点,BN =2NF ;M 是线段DE 上的点,DM =2ME .若已知△CMN 的面积,则一定能求出()A.△AFE 的面积B.△BDF 的面积C.△BCN 的面积D.△DCE 的面积【答案】D【分析】如图所示,连接ND ,证明△FBD ∽△EDC ,得出FB ED =FD EC ,由已知得出NF ME =BF DE ,则FDEC=NFME,又∠NFD =∠MEC ,则△NFD ∽△MEC ,进而得出∠MCD =∠NDB ,可得MC ∥ND ,结合题意得出S △EMC =12S △DMC =12S △MNC ,即可求解.【详解】解:如图所示,连接ND ,∵DE ∥AB ,DF ∥AC ,∴∠ECD =∠FDB ,∠FBD =∠EDC ,∠BFD =∠A ,∠A =DEC .∴△FBD ∽△EDC ,∠NFD =∠MEC .∴FB ED =FD EC .∵DM =2ME ,BN =2NF ,∴NF =13BF ,ME =13DE ,∴NF ME =BF DE .∴FD EC=NF ME .又∵∠NFD =∠MEC ,∴△NFD ∽△MEC .∴∠ECM =∠FDN .∵∠FDB =∠ECD ∴∠MCD =∠NDB .∴MC ∥ND .∴S △MNC =S △MDC .∵DM =2ME ,∴S △EMC =12S △DMC =12S △MNC .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ∥ND 是解题的关键.12(2023·安徽·统考中考真题)如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33【答案】A【分析】延长AD ,BC ,则△ABQ 是等边三角形,观察选项都是求最小时,进而得出当E 点与F 重合时,则Q ,P ,F 三点共线,各项都取得最小值,得出B ,C ,D 选项正确,即可求解.【详解】解:如图所示,延长AD ,BC ,依题意∠QAD =∠QBA =60°∴△ABQ 是等边三角形,∵P 是CD 的中点,∴PD =PC ,∵∠DEA =∠CBA ,∴ED ∥CQ∴∠PQC =∠PED ,∠PCQ =∠PDE ,∴△PDE ≌△PCQ ∴PQ =PE ,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设AQ ,BQ 的中点分别为G ,H ,则GP =12AE ,PH =12EB∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE =EB ,则Q ,P ,F 三点共线,PF 取得最小值,此时AE =EB =12AE +EB =2,则△ADE ≌△ECB ,∴C ,D 到AB 的距离相等,则CD ∥AB ,此时PF =32AD =3此时△ADE 和△BCE 的边长都为2,则AP ,PB 最小,∴PF =32×2=3,∴PA =PB =22+3 2=7∴PA +PB =27,或者如图所示,作点B 关于GH 对称点B ,则PB =PB ,则当A ,P ,B 三点共线时,AP +PB =AB此时AB =AB 2+BB =42+23 2=27故A 选项错误,根据题意可得P ,Q ,F 三点共线时,PF 最小,此时PE =PF =3,则PE +PF =23,故B 选项正确;△CDE 周长等于CD +DE +CE =CD +AE +EB =CD +AB =CD +4,即当CD 最小时,△CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵∠GHQ =60°,∠GHM =∠GDM =60°,则∠CHM =120°如图,延长DE ,HG ,交于点N ,则∠NGD =∠QGH =60°,∠NDG =∠ADE =60°∴△NGD 是等边三角形,∴ND =GD =HM ,在△NPD 与△HPC 中,∠NPD =∠HPC∠N =∠CHP =60°PD =PC∴△NPD ≌△HPC∴ND =CH∴CH =MH∴∠HCM =∠HMC =30°∴CM ∥QF ,则CM ⊥DM ,∴△DMC 是直角三角形,在△DCM 中,DC >DM∴当DC =DM 时,DC 最短,DC =GH =12AB =2∵CD =PC +2PC∴△CDE 周长的最小值为2+2+2=6,故C 选项正确;∵△NPD ≌△HPC∴四边形ABCD 面积等于S △ADE +S △EBC+S △DEC =S △ADE +S 平行四边NEBH∴当△BGD的面积为0时,取得最小值,此时,D,G重合,C,H重合∴四边形ABCD面积的最小值为3×34×22=33,故D选项正确,故选:A.【点睛】本题考查了解直角三角形,等边三角形的性质,勾股定理,熟练掌握等边三角形的性质,得出当E点与F重合时得出最小值是解题的关键.二、填空题13(2023·四川达州·统考中考真题)在△ABC中,AB=43,∠C=60°,在边BC上有一点P,且BP= 12AC,连接AP,则AP的最小值为.【答案】213-2【分析】如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;结合圆周角定理及垂径定理易得AM=BM=CM=4,再通过圆周角定理、垂直及垂直平分线的性质、三角形内角和定理易得∠AMC=∠PNB,从而易证△AMC∼△PNB可得CMPN=ACPB=21即PN=12CM=2勾股定理即可求得AN=213在△APN中由三角形三边关系AP≥AN-PN即可求解.【详解】解:如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN ⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;∵∠C=60°,M为△ABC的外接圆的圆心,∴∠AMB=120°,AM=BM,∴∠MAB=∠MBA=30°,∴MD=12AM,∵MD⊥AB,∴AD=12AB=23,在Rt△ADM中,∵AM2=MD2+AD2,∴AM2=12AM2+232,∴AM=4,即AM=BM=CM=4,由作图可知BN⊥AB,N在BP的垂直平分线上,∴∠PBN=∠BPN=90°-∠ABC,∴∠PNB=180°-∠PBN+∠BPN=2∠ABC,又∵M为△ABC的外接圆的圆心,∴∠AMC=2∠ABC,∴∠AMC=∠PNB,∵CM PN =AMBN,∴△AMC∼△PNB,∴CM PN =ACPB,∵BP=12AC,∴CM PN =ACPB=21,即PN=12CM=2,∴PN=BN=2,在Rt△ABN中,AN=AB2+BN2=432+22=213,在△APN中,AP≥AN-PN=213-2,即AP最小值为213-2,故答案为:213-2.【点睛】本题考查了圆周角定理,垂径定理,勾股定理解直角三角形,相似三角形的判定和性质,垂直平分线的性质,30°角所对的直角边等于斜边的一半,三角形三边之间的关系;解题的关键是结合△ABC的外接圆构造相似三角形.14(2023·浙江宁波·统考中考真题)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连接AD,BE=3,BD=35.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.【答案】230或6【分析】连接OD,勾股定理求出半径,平行线分线段成比例,求出CD的长,勾股定理求出AC和AD的长,分AP=AD和AP=PD两种情况进行求解即可.【详解】解:连接OD,∵以AE为直径的半圆O与BC相切于点D,∴OD⊥BC,OA=OE=OD,∴∠ODB=90°设OA=OE=OD=r,则OB=OE+BE=3+r,在Rt△ODB中:OD2+BD2=OB2,即:r2+352=3+r2,解得:r=6,∴OA=OE=OD=6,∴OB=9,AB=15,AE=12,∵∠C=∠ODB=90°,∴OD∥AC,∴OB OA =DBDC=96=32,∵DB=35,∴CD=25,∴BC=DB+CD=55,∴AC=AB2-BC2=10,∴AD=AC2+CD2=230;∵△ADP为等腰三角形,当AD=AP时,AP=230,当PA=PD时,∵OA=OD,∴点P与点O重合,∴AP=OA=6,不存在PD=AD的情况;综上:AP的长为230或6.故答案为:230或6.【点睛】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性质,等腰三角形的定义,确定点P的位置,是解题的关键.15(2023·四川凉山·统考中考真题)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.【答案】1+3【分析】如图所示,取AB的中点D,连接OD,CD,先根据等边三角形的性质和勾股定理求出CD=3,再根据直角三角形的性质得到OD=12AB=1,再由OC≤OD+CD可得当O、C、D三点共线时,OC有最大值,最大值为1+3.【详解】解:如图所示,取AB的中点D,连接OD,CD,∵△ABC是边长为2的等边三角形,∴CD⊥AB,BC=AB=2,∴BD=AD=1,∴CD=BC2-BD2=3,∵OM⊥ON,即∠AOB=90°,∴OD =12AB =1,∵OC ≤OD +CD ,∴当O 、C 、D 三点共线时,OC 有最大值,最大值为1+3,故答案为:1+3.【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O 、C 、D 三点共线时,OC 有最大值是解题的关键.16(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上的动点,当PE +PF 取得最小值时,AP PC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP =27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.17(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A=90°,则BN=AB2+AN2=2,∴BN=ND=2∴AD=AN+ND=2+1,综上,AD的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.18(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.【答案】11-2【分析】根据折叠的性质得出B 在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC上时,当P在AD上时,即可求解.【详解】解:∵在矩形ABCD中,AB=2,AD=7,∴BC=AD=7,AC=BC2+AB2=7+4=11,如图所示,当点P在BC上时,∵AB =AB=2∴B 在A为圆心,2为半径的弧上运动,当A,B ,C三点共线时,CB 最短,此时CB =AC-AB =11-2,当点P在DC上时,如图所示,此时CB >11-2当P 在AD 上时,如图所示,此时CB >11-2综上所述,CB 的最小值为11-2,故答案为:11-2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19(2023·广西·统考中考真题)如图,在边长为2的正方形ABCD 中,E ,F 分别是BC ,CD 上的动点,M ,N 分别是EF ,AF 的中点,则MN 的最大值为.【答案】2【分析】首先证明出MN 是△AEF 的中位线,得到MN =12AE ,然后由正方形的性质和勾股定理得到AE =AB 2+BE 2=4+BE 2,证明出当BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,∵M ,N 分别是EF ,AF 的中点,∴MN 是△AEF 的中位线,∴MN =12AE ,∵四边形ABCD 是正方形,∴∠B =90°,∴AE =AB 2+BE 2=4+BE 2,∴当BE 最大时,AE 最大,此时MN 最大,∵点E 是BC 上的动点,∴当点E 和点C 重合时,BE 最大,即BC 的长度,∴此时AE =4+22=22,∴MN =12AE =2,∴MN 的最大值为2.故答案为:2.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.20(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【答案】29-2【分析】设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,证明∠DFA=90°,可知点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O的交点F 时,线段BF有最小值,据此求解即可.【详解】解:设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,∴当点F运动到OB与⊙O的交点F 时,线段BF有最小值,∵AD=4,AD=2,,∴AO=OF =12∴BO=52+22=29,BF的最小值为29-2,故答案为:29-2.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F的运动轨迹是解题的关键.21(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD中,AB=5,AD=12,对角线AC与BD交于点O,点E为BC边上的一个动点,EF⊥AC,EG⊥BD,垂足分别为点F,G,则EF+EG=.【答案】6013【分析】连接OE ,根据矩形的性质得到BC =AD =12,AO =CO =BO =DO ,∠ABC =90°,根据勾股定理得到AC =AB 2+BC 2=13,求得OB =OC =132,根据三角形的面积公式即可得到结论.【详解】解:连接OE ,∵四边形ABCD 是矩形,∴∠ABC =90°,BC =AD =12,AO =CO =BO =DO ,∵AB =5,BC =12,∴AC =AB 2+BC 2=13,∴OB =OC =132,∴S △BOC =S △BOE +S △COE =12×OB ⋅EG +12OC ⋅EF =12S △ABC =12×12×5×12=15,∴12×132EG +12×132EF =12×132(EG +EF )=15,∴EG +EF =6013,故答案为:6013.【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22(2023·山东烟台·统考中考真题)如图1,在△ABC 中,动点P 从点A 出发沿折线AB →BC →CA 匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则△ABC 的高CG 的长为.【答案】732【分析】过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴BC =7,BQ =4,QC =3在Rt △ABQ 中,AB =8,BQ =4∴AQ =AB 2-BQ 2=82-42=43∵S △ABC =12AB ×CG =12AQ ×BC ,∴CG =BC ×AQ AB=7×438=732,故答案为:732.【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.23(2023·新疆·统考中考真题)如图,在▱ABCD 中,AB =6,BC =8,∠ABC =120°,点E 是AD 上一动点,将△ABE 沿BE 折叠得到△A BE ,当点A 恰好落在EC 上时,DE 的长为.【答案】37-3【分析】过点C作CH⊥AD交AD的延长线于点H,根据平行四边形的性质以及已知条件得出∠ADC=∠ABC=120°,∠HDC=60°,进而求得DH,HC,根据折叠的性质得出CB=CE,进而在Rt△ECH中,勾股定理即可求解.【详解】解:如图所示,过点C作CH⊥AD交AD的延长线于点H,∵在▱ABCD中,AB=6,BC=8,∠ABC=120°,∴∠ADC=∠ABC=120°,∠HDC=60°,CD=AB=6,AD=CB=8,DC=3,∴DH=DC×cos∠HDC=12在Rt△ECH中,HC=CD2-DH2=62-32=33∵将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,∴∠AEB=∠CEB又AD∥BC∴∠EBC=∠AEB∴∠EBC=∠CEB∴CE=BC=8设ED=x,∴EH=x+3在Rt△ECH中,EC2=EH2+HC2∴82=x+322+33解得:x=37-3(负整数)故答案为:37-3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.24(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为【答案】M-8,6或M-8,2 3【分析】如图,由△AMN是以点N为直角顶点的等腰直角三角形,可得N在以AM为直径的圆H上,MN= AN,可得N是圆H与直线y=-2x-6的交点,当M,B重合时,符合题意,可得M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,证明△MNK≌△NAJ,设N x,-2x-6,可得MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB =8,则-2x-12-x=8,再解方程可得答案.【详解】解:如图,∵△AMN是以点N为直角顶点的等腰直角三角形,∴N在以AM为直径的圆H上,MN=AN,∴N是圆H与直线y=-2x-6的交点,当M,B重合时,∵B-8,6,则H-4,3,∴MH=AH=NH=4,符合题意,∴M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK= AB=8,∴∠NAJ+∠ANJ=90°,∵AN =MN ,∠ANM =90°,∴∠MNK +∠ANJ =90°,∴∠MNK =∠NAJ ,∴△MNK ≌△NAJ ,设N x ,-2x -6 ,∴MK =NJ =-x ,KN =AJ =-2x -6-6=-2x -12,而KJ =AB =8,∴-2x -12-x =8,解得:x =-203,则-2x -6=223,∴CM =CK -MK =223-203=23,∴M -8,23 ;综上:M -8,6 或M -8,23 .故答案为:M -8,6 或M -8,23.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.25(2023·四川自贡·统考中考真题)如图,直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,点D 是线段AB 上一动点,点H 是直线y =-43x +2上的一动点,动点E m ,0 ,F m +3,0 ,连接BE ,DF ,HD .当BE +DF 取最小值时,3BH +5DH 的最小值是.【答案】392【分析】作出点C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,此时BE +DF 的最小值为CD 的长,利用解直角三角形求得F 113,0 ,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG ⊥y 轴于点G ,此时3BH +5DH 的最小值是5DG 的长,据此求解即可.【详解】解:∵直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,∴B 0,2 ,A 6,0 ,作点B 关于x 轴的对称点B 0,-2 ,把点B 向右平移3个单位得到C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,过点B 作B E ∥CD 交x 轴于点E ,则四边形EFCB 是平行四边形,此时,BE =B E =CF ,∴BE +DF =CF +DF =CD 有最小值,作CP ⊥x 轴于点P ,则CP =2,OP =3,∵∠CFP =∠AFD ,∴∠FCP =∠FAD ,∴tan ∠FCP =tan ∠FAD ,∴PF PC =OB OA ,即PF 2=26,∴PF =23,则F 113,0 ,设直线CD 的解析式为y =kx +b ,则3k +b =-2113k +b =0,解得k =3b =-11 ,∴直线CD 的解析式为y =3x -11,联立,y =3x -11y =-13x +2 ,解得x =3910y =710,即D3910,710;过点D 作DG ⊥y 轴于点G ,直线y =-43x +2与x 轴的交点为Q 32,0 ,则BQ =OQ 2+OB 2=52,∴sin ∠OBQ =OQ BQ =3252=35,∴HG =BH sin ∠GBH =35BH ,∴3BH +5DH =535BH +DH =5HG +DH =5DG ,即3BH +5DH 的最小值是5DG =5×3910=392,故答案为:392.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.三、解答题26(2023·重庆·统考中考真题)如图,△ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.【答案】(1)当0<t≤4时,y=t;当4<t≤6时,y=12-2t(2)图象见解析,当0<t≤4时,y随x的增大而增大(3)t的值为3或4.5【分析】(1)分两种情况:当0<t≤4时,根据等边三角形的性质解答;当4<t≤6时,利用周长减去2AE即可;(2)在直角坐标系中描点连线即可;(3)利用y=3分别求解即可.【详解】(1)解:当0<t≤4时,连接EF,由题意得AE=AF,∠A=60°,∴△AEF是等边三角形,∴y=t;当4<t≤6时,y=12-2t;(2)函数图象如图:。
中考数学动点问题专项训练
25、〔12分〕如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=24cm,动点P从A开场沿AD向D以1cm/s速度运动;动点Q从点C开场向B以2cm/s速度运动。
P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停顿运动,设运动时间为ts.〔1〕当t为何值时,四边形PQCD是平行四边形;〔2〕当t为何值时,四边形PQCD是直角梯形;〔3〕当t为何值时,四边形PQCD是等腰梯形24、〔10分〕如图1,△ABD与△BDC都是边长为1等边三角形.〔1〕四边形ABCD是菱形吗?为什么?〔2〕如图2,将△BDC沿射线BD方向平移到△B1D1C1位置,那么四边形ABC1D1是平行四边形吗?为什么?〔3〕在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请求出点B移动距离〔写出过程〕;如果不是,请说明理由〔图3供操作时使用〕.28. 如图,直线y=x+1 (k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限,点C在第三象限.〔1〕求双曲线解析式;〔2〕求A点坐标;〔3〕假设S△AOB=2,在x轴上是否存在点P,使△AOP是等腰三角形?假设存在,请直接写出P点坐标;假设不存在,请说明理由.22、〔12分〕如图,:梯形ABCD中,AD∥BC,AB=CD,E、F、G、H 分别是AD、BC、BE、CE中点.〔1〕求证:△ABE≌△DCE〔2〕四边形EGFH是什么特殊四边形?并证明你结论.〔3〕连接EF,当四边形EGFH是正方形时,线段EF与BC有什么关系?请说明理由.〔总分值10分〕如以下图,直角梯形ABCD中,AD∥BC,AD=24,BC=26,∠B=90°,动点P从A开场沿AD边向D以1速度运动,动点Q从点C开场沿CB以3速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停顿运动,设运动时间为,问为何值时,〔1〕四边形PQCD是平行四边形.〔2〕当为何值时,四边形PQCD 为等腰梯形.7.〔6分〕如图,在等腰梯形中,、分别为、中点,、分别是、中点。
中考数学备考专题复习动点综合问题(含解析)
动点综合问题一、单选题(共12题;共24分)1、(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )A 、B、2C 、D 、2、(2016•台州)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )A、6B、2 +1C、9D 、3、(2016•十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y= 上(k>0,x>0),则k 的值为()A、25B、18C、9D、94、(2016•娄底)如图,已知在Rt△ABC中,∠ABC=90°,点D 沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A、不变B、增大C、减小D、先变大再变小5、(2016•宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A、4.8B、5C、6D、7.26、(2016•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A、1B、2C、3D、47、(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC 上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A、5个B、4个C、3个D、2个8、(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C 停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm2)关于x(cm)的函数关系的图象是()A 、B 、C 、D 、9、(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M 是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M 时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A 、B 、C 、D 、10、(2016•西宁)如图,在△ABC 中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )A、18cm2B、12cm2C、9cm2D、3cm211、(2016•西宁)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A 、B 、C 、D 、12、(2016•济南)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为( )A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•内江)如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是________.14、(2016•舟山)如图,在直角坐标系中,点A,B分别在x轴,y 轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P 从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为________.15、(2016•沈阳)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________16、(2016•龙东)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为________.17、(2016•日照)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是________.三、综合题(共7题;共95分)18、(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19、(2016•南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC= ?请说明理由.20、(2016•海南)如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证: ;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.21、(2016•梅州)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.22、(2016•兰州)如图1,二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,4)两点,动点P从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P作PD⊥y于点D,交抛物线于点C.设运动时间为t(秒).(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接BC,当t= 时,求△BCP的面积;(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA 上沿O→A的方向以1个单位长度的速度运动.当点P与B重合时,P、Q两点同时停止运动,连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系及t的取值范围.23、(2016•呼和浩特)已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(,﹣),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式,及顶点D的坐标;(2)求|PC﹣PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.24、(2016•遵义)如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2 时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE = S△ABC , 求BP的长.答案解析部分一、单选题【答案】B【考点】圆周角定理,点与圆的位置关系【解析】【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小, 在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC= =5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.【答案】C【考点】切线的性质【解析】【解答】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1 ,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1 ,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1= AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选C.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.【答案】C【考点】等边三角形的性质,反比例函数图象上点的坐标特征【解析】【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5 ),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴ .设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5 ﹣5 n).∵点C、D均在反比例函数y= 图象上,∴,解得:.故选C.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.【答案】C【考点】锐角三角函数的定义,锐角三角函数的增减性【解析】【解答】解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B→D运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.【分析】设CD=a,DB=b,∠DCF=∠DEB=α,易知BE+CF=BC•cosα,根据0<α<90°,由此即可作出判断.本题考查三角函数的定义、三角函数的增减性等知识,利用三角函数的定义,得到BE+CF=BC•cosα,记住三角函数的增减性是解题的关键,属于中考常考题型.【答案】A【考点】三角形的面积,矩形的性质【解析】【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD = S矩形ABCD=24,∴S△AOD = S△ACD=12,∵S△AOD=S△AOP+S△DOP = OA•PE+ OD•PF= ×5×PE+ ×5×PF= (PE+PF)=12,解得:PE+PF=4.8.故选:A.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP = OA•PE+OD•PF求得答案.此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.【答案】C【考点】菱形的性质,轴对称-最短路线问题【解析】【解答】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP 的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【分析】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.【答案】C【考点】等腰三角形的性质,勾股定理【解析】【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE= BC=4,∴AE= =3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴点D的个数共有3个,故选:C.【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.【答案】A【考点】一次函数的图象,三角形的面积,与一次函数有关的动态几何问题【解析】【解答】解:当P点由A运动到B点时,即0≤x≤2时,y= ×2x=x,当P点由B运动到C点时,即2<x<4时,y= ×2×2=2,符合题意的函数关系的图象是A;故选:A.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.【答案】A【考点】函数的图象,正方形的性质【解析】【解答】解:分两种情况:①当0≤t<4时,作OM⊥AB于M,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD的中心,∴AM=BM=OM= AB=2cm,∴S= AP•OM= ×t×2=t(cm2);②当t≥4时,作OM⊥AB于M,如图2所示:S=△OAM的面积+梯形OMBP的面积= ×2×2+ (2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A.【分析】本题考查了动点问题的函数图象、正方形的性质;熟练掌握正方形的性质,求出S与t的函数关系式是解决问题的关键.分两种情况:①当0≤t<4时,作OM⊥AB于M,由正方形的性质得出∠B=90°,AD=AB=BC=4cm,AM=BM=OM= AB=2cm,由三角形的面积得出S= AP•OM=t(cm2);②当t≥4时,S=△OAM的面积+梯形OMBP的面积=t(cm2);得出面积S(cm2)与时间t(s)的关系的图象是过原点的线段,即可得出结论.【答案】C【考点】二次函数的最值,解直角三角形【解析】【解答】解:∵tan∠C= ,AB=6cm,∴ = = ,∴BC=8,由题意得:AP=t,BP=6﹣t,BQ=2t,设△PBQ的面积为S,则S= ×BP×BQ= ×2t×(6﹣t),S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2;故选C.【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可本题考查了有关于直角三角形的动点型问题,考查了解直角三角形的有关知识和二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.【答案】A【考点】函数的图象【解析】【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示, 由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB 的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.【答案】D【考点】分段函数,三角形的面积,矩形的性质,与一次函数有关的动态几何问题,与二次函数有关的动态几何问题【解析】【解答】解:∵AD=5,AN=3,∴DN=2,如图1,过点D作DF⊥AB,∴DF=BC=4,在RT△ADF中,AD=5,DF=4,根据勾股定理得,AF= =3,∴BF=CD=2,当点Q到点D时用了2s,∴点P也运动2s,∴AP=3,即QP⊥AB,∴只分三种情况:①当0<t≤2时,如图1,过Q作QG⊥AB,过点D作DF⊥AB,QG∥DF,∴,由题意得,NQ=t,MP=t,∵AM=1,AN=3,∴AQ=t+3,∴ ,∴QG= (t+3),∵AP=t+1,∴S=S△APQ = AP×QG= ×(t+1)× (t+3)= (t+2)2﹣,当t=2时,S=6,②当2<t≤4时,如图2,∵AP=AM+t=1+t,∴S=S△APQ = AP×BC= (1+t)×4=2(t+1)=2t+2,当t=4时,S=8,③当4<t≤5时,如图3,由题意得CQ=t﹣4,PB=t+AM﹣AB=t+1﹣5=t﹣4,∴PQ=BC﹣CQ﹣PB=4﹣(t﹣4)﹣(t﹣4)=12﹣2t,∴S=S△APQ = PQ×AB= ×(12﹣2t)×5=﹣5t+50,当t=5时,S=5,∴S与t的函数关系式分别是①S=S△APQ = (t+2)2﹣,当t=2时,S=6,②S=S△APQ=2t+2,当t=4时,S=8,③∴S=S△APQ=﹣5t+50,当t=5时,S=5,综合以上三种情况,D正确故选D.【分析】先求出DN,判断点Q到D点时,DP⊥AB,然后分三种情况分别用三角形的面积公式计算即可.此题是动点问题的函数图象,考查了三角形的面积公式,矩形的性质,解本题的关键是分段画出图象,判断出点Q在线段CD时,PQ⊥AB是易错的地方.二、填空题【答案】10【考点】轴对称-最短路线问题【解析】【解答】解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC 的周长=DE+EC+CD=EC′+ED+DC″=C′C″= =10.故答案为10.【分析】点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.本题考查轴对称﹣最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.【答案】4【考点】解直角三角形【解析】【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO= = ,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°= ∴AQ= =2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为:4【分析】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.【答案】或【考点】三角形中位线定理【解析】【解答】解:如图作EF⊥BC于F,DN′⊥BC于N′交EM 于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE= BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴ = ,∴ = ,∴DO′= .当∠MON=90°时,∵△DOE∽△EFM,∴ = ,∵EM= =13,∴DO= ,故答案为或.【分析】分两种情形讨论即可①∠MN′O′=90°,根据= 计算即可②∠MON=90°,利用△DOE∽△EFM,得= 计算即可.本题考查三角形中位线定理、矩形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.【答案】2【考点】圆周角定理,轴对称—最短路线问题【解析】【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴ = ,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2 ,即PA+PB的最小值2 .故答案为:2 .【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知= ,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.本题考查的是轴对称﹣最短路线问题,圆周角定理及勾股定理,解答此题的关键是根据题意作出辅助线,构造出直角三角形,利用勾股定理求解.【答案】【考点】切线的性质【解析】【解答】解:过点C作CP⊥直线AB与点P,过点P作⊙C 的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线AB的解析式为y=﹣,即3x+4y﹣12=0,∴CP= = .∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ= = .故答案为: .【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,由点到直线的距离求出CP的长度,再根据勾股定理即可求出PQ的长度.本题考查了切线的性质、点到直线的距离以及勾股定理,解题的关键是确定P、Q点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ取最小值时点P、Q的位置是关键.三、综合题【答案】(1)证明:连接BC、OC,∵AB是⊙O的直径,∴∠OCD=90°,∴∠OCA+∠OCB=90°,∵∠OCA=∠OAC,∠B=∠OCB,∴∠OAC+∠B=90°,∵CD为切线,∴∠OCD=90°,∴∠OCA+∠ACD=90°,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,∴∠DPC=∠ACD,∴AP=DC;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.【考点】垂径定理,切线的性质【解析】【分析】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.(1)连接BC、OC,利用圆周角定理和切线的性质可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代换可得∠DPC=∠ACD,可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF 均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【答案】(1)证明:如图一中∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠P BC, ,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴ ,∴ ,∵AB=BC,∴AN=AM.(2)解:①仍然成立,AP⊥BN和AM=AN.理由如图二中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC,,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴ ,∴∵AB=BC,∴AN=AM.②这样的点P不存在.理由:假设PC= ,如图三中,以点C为圆心为半径画圆,以AB为直径画圆, CO= = >1+ ,∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾,∴假设不可能成立,∴满足PC= 的点P不存在【考点】正方形的性质,相似三角形的判定与性质,相似三角形的应用【解析】【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出= = ,由△BAP∽△BNA,推出= ,得到= ,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC= ,推出矛盾即可.本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.【答案】(1)解:解:设抛物线解析式为y=a(x+5)(x+1),把C(0,﹣5)代入得a•5•1=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x+5)(x+1),即y=﹣x2﹣6x﹣5 (2)解:解:设直线AC的解析式为y=mx+n,把A(﹣5,0),C(0,﹣5)代入得,解得,∴直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S△APC=S△APQ+S△CPQ = •PQ•5= ×6×5=15;(3)解:①证明:∵∠APE=∠CPE,而PH⊥AD,∴△PAD为等腰三角形,∴AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,∵PH∥OC,∴△PHD∽△COD,∴PH:OC=DH:OD,即(﹣x2﹣6x﹣5):5=DH:(﹣x﹣DH),∴DH=﹣x﹣,而AH+OH=5,∴﹣x﹣x﹣=5,整理得2x2+17x+35=0,解得x1=﹣,x2=﹣5(舍去),∴OH= , ∴AH=5﹣= ,∵HE∥OC,∴ = = ;②能.设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,则PH=HE,即|﹣x2﹣6x﹣5|=|﹣x﹣5|,解﹣x2﹣6x﹣5=﹣x﹣5得x1=﹣5(舍去),x2=0(舍去);解﹣x2﹣6x﹣5=x+5得x1=﹣5(舍去),x2=﹣2,此时P点坐标为(﹣2,3);当E′A=E′P,如图2,AE′= E ′H′=(x+5),P′E′=﹣x﹣5﹣(﹣x2﹣6x﹣5)=x2+5x,则x2+5x=(x+5),解得x1=﹣5(舍去),x2= ,此时P点坐标为( ,﹣7﹣6 ),综上所述,满足条件的P点坐标为(﹣1,0),(﹣2,3),(,﹣7﹣6 )【考点】二次函数的应用,二次函数图象上点的坐标特征【解析】【分析】(1)设交点式为y=a(x+5)(x+1),然后把C 点坐标代入求出a即可;(2)先利用待定系数法求出直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,由P点坐标得到Q(﹣2,﹣3),则PQ=6,然后根据三角形面积公式,利用S△APC=S△APQ+S△CPQ进行计算;(3)①由∠APE=∠CPE,PH⊥AD可判断△PAD为等腰三角形,则AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,通过证明△PHD∽△COD,利用相似比可表示出DH=﹣x﹣,则﹣x﹣x﹣=5,则解方程求出x可得到OH和AH 的长,然后利用平行线分线段成比例定理计算出= ; ②设P (x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),分类讨论:当PA=PE,易得点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,利用PH=HE得到|﹣x2﹣6x﹣5|=|﹣x﹣5|,当E′A=E′P,如图2,AE′= E′H′= (x+5),P′E′=x2+5x,则x2+5x=(x+5),然后分别解方程求出x可得到对应P点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和等腰三角形的判定;会运用待定系数法求函数解析式;理解坐标与图形性质,能运用相似比计算线段的长;会运用方程的思想和分类讨论的思想解决问题.【答案】(1)解:∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5 .由题意知:BM=2t,CN= t,∴BN=5 —t,∵BM=BN,∴2t=5 —t解得:.(2)解:分两种情况:①当△MBN∽△ABC时,则,即,解得:t= .②当△NBM∽△ABC时,则,即,解得:t= .综上所述:当t= 或t= 时,△MBN与△ABC相似.(3)解:过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴ ,即,解得:MD=t.设四边形ACNM的面积为y,∴y= = =.∴根据二次函数的性质可知,当t= 时,y的值最小.此时, .【考点】二次函数的性质,相似三角形的性质【解析】【分析】(1)由已知条件得出AB=10,BC=5 .由题意知:BM=2t,CN= t,BN=5 - t,由BM=BN得出方程2t=5 —t,解方程即可;(2)分两种情况:①当△MBN∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;②当△NBM∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;(3)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形ACNM的面积y=△ABC的面积﹣△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.【答案】(1)解:把A(3,0),B(0,4)代入y=﹣x2+bx+c中得:解得,∴二次函数y=﹣x2+bx+c的表达式为:y=﹣x2+ x+4(2)解:如图1,当t= 时,AP=2t,∵PC∥x轴,∴ ,∴ ,∴OD= = × = ,当y= 时,=﹣x2+ x+4,3x2﹣5x﹣8=0,x1=﹣1,x2= ,∴C(﹣1,),由得,则PD=2,∴S△BCP = ×PC×BD= ×3× =4(3)解:如图3,当点E在AB上时,由(2)得OD=QM=ME= ,∴EQ= ,由折叠得:EQ⊥PD,则EQ∥y轴∴ ,∴ ,∴t=,同理得:PD=3﹣,∴当0≤t≤ 时,S=S△PDQ = ×PD×MQ= ×(3﹣)× , S=﹣t2+ t; 当<t≤2.5时,如图4,P′D′=3﹣,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,),∵AB的解析式为:y=﹣x+4,D′E的解析式为:y= x+ t,则交点N(,),∴S=S△P′D′N = ×P′D′×FN= ×(3﹣)(﹣),∴S= t2﹣t+ .【考点】二次函数的应用【解析】【分析】(1)直接将A、B两点的坐标代入列方程组解出即可;(2)如图1,要想求△BCP的面积,必须求对应的底和高,即PC和BD;先求OD,再求BD,PC是利用点P和点C的横坐标求出,要注意符号;(3)分两种情况讨论:①△DPE完全在△OAB中时,即当0≤t≤ 时,如图2所示,重合部分的面积为S就是△DPE的面积;②△DPE有一部分在△OAB中时,当<t≤2。
初三数学几何动点问题专题练习及答案
动点问题专题训练1、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC 所夹锐角的正切值.5在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.α7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使P M N △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.图16(备用图)C M AD EB FC 图4(备用) ADE BF C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M图3 A DE BF C P NM (第8题)9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.A D F C GB 图1 A D FC G B 图2 AD F CG B 图312问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示)联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AM BN 的值等于 .(用含m n ,的式子表示)参考答案1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ·····················(4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒.··················(7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. ········· (12分) 2.解(1)A (8,0)B (0,6) · 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒)1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2) AB C D EF M 图(1) A B C DE F M N当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······· 1分 21324255S OQ PD t t ∴=⨯=-+···················· 1分 (自变量取值范围写对给1分,否则不给分.) (3)82455P ⎛⎫ ⎪⎝⎭, ·························· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ·············· 3分3.解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =PA =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P 在线段OB 上时,作PE⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB ,∴2,AO PE AB PB PB =,∴PB =∴8PO BO PB =-=∴8)P -,∴8k =. 当圆心P 在线段OB 延长线上时,同理可得P (0,-8), ∴k =-8, ∴当k-8或k =-8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.4.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =,得45QF t =.∴45QF t =.∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°. 由△AQP∽△ABC ,得 AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC . ∴AO =12AC ……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形 ∴3KH AD ==. ·······················1分在Rt ABK △中,sin 4542AK AB =︒==.2cos 45424BK AB =︒== ················2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ··············3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD ==∴1037GC =-= ·····················4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△ ∴CN CMCD CG = ·······················5分 即10257t t -= 图4图5(图①) A D C B K H (图②) A D C B G M N解得,5017t =······················· 6分 (3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t = ························· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ························ 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△ ∴NC EC DC HC = 即553t t -= ∴258t = ························· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025t FC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC =即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··9分8.解(1)如图1,过点E 作EG BC ⊥于点G . ··· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ·· 2分∴112BG BE EG ====,即点E 到BC ········· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·······················4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠. ∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ··········6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ·······················7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ·········8分A DC B M N (图③) (图④) AD C B M NH E (图⑤)A D CB H N MF 图1A DEB FC G图2ADEBF CPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(5时,PMN △为等腰三角形. ·· 10分 9解:(1)Q (1,0) ······················· 1分 点P 运动速度每秒钟1个单位长度. ················ 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB == 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH .∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF .∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==. 设△OPQ 的面积为S (平方单位) ∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10)············ 5分 说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ·····6分 此时P 的坐标为(9415,5310) . ··················7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ············9分10.解:(1)正确. ··········· (1分)证明:在AB 上取一点M ,使AM EC =,连接ME .(2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ···················(5分) AE EF ∴=. ·························(6分) (2)正确. ············· (7分) 证明:在BA 的延长线上取一点N .使AN CE =,连接NE . ········ (8分) BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ·················· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. 图3A D E BFCPN M 图4A D EBF CPM N 图5A DEBF (P ) CMN GGRGA D F C GB M A D FC GB N∴点C 的坐标为302⎛⎫⎪⎝⎭,. ······················ 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ·························· 6分由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ··················7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·················· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =.由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016. ················· 10分12解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称. ∴MN 垂直平分BE .∴BM EM BN EN ==,. ········ 1分∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ·········· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+. ················· 5分设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ·················· 6分∴15AM BN =.······················· 7分 方法二:同方法一,54BN =. ················ 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形.∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,. 在BCE △与NGM △中90E B CM N G B C N G C N G M ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ······ 5分 ∵114AM AG MG AM =--=5,=.4 ·············· 6分AEF M N 图(1-2)A B C DE FM G∴15AM BN =.······················ 7分 类比归纳25(或410);917; ()2211n n -+ ················· 10分 联系拓广2222211n m n n m -++ ························ 12分。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考动点问题专项训练(含详细解析)一、解答题1. 如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发沿AD向点D匀速运动,速度是1cm/s;同时,点Q从点C出发沿CB方向,在射线CB上匀速运动,速度是2cm/s,过点P作PE∥AC交DC于点E,连接PQ,QE,PQ交AC于点F.设运动时间为t(s)(0<t<8),解答下列问题:(1)当t为何值时,四边形PFCE是平行四边形;(2)设△PQE的面积为s(cm2),求s与t之间的函数关系式;;(3)是否存在某一时刻t,使得△PQE的面积为矩形ABCD面积的932(4)是否存在某一时刻t,使得点E在线段PQ的垂直平分线上.2. 已知:如图,在Rt△ABC中,∠C=90∘,AC=3cm,BC=4cm,点P从点B出发,沿BC向点C匀速运动,速度为1cm/s;过点P作PD∥AB,交AC于点D,同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动,连接PQ.设运动时间为t(s)(0<t<2.5),解答下列问题:(1)当t为何值时,四边形ADPQ为平行四边形?(2)设四边形ADPQ的面积为y(cm2),试确定y与t的函数关系式;:S△PQB=13:2?若存在,请说明理由,若存在,求出t的(3)在运动过程中,是否存在某一时刻t,使S四边形ADPQ值,并求出此时PQ的距离.3. 已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一条直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90∘.如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s;EP与AB交于点G.同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过Q作QM⊥BD,垂足为H,交AD于M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,PQ∥BD?(2)设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形AFPQM :S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使点M在PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.4. 如图,在△ABC中,AB=AC=10cm,BC=12cm,点P从点C出发,在线段CB上以每秒1cm的速度向点B匀速运动.与此同时,点M从点B出发,在线段BA上以每秒1cm的速度向点A匀速运动.过点P作PN⊥BC,交AC于点N,连接MP,MN.当点P到达BC中点时,点P与M同时停止运动.设运动时间为t秒(t>0).(1)当t为何值时,PM⊥AB.(2)设△PMN的面积为y(cm2),求出y与x之间的函数关系式.(3)是否存在某一时刻t,使S△PMN:S△ABC=1:5?若存在,求出t的值;若不存在,说明理由.5. 如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发沿AD向点D匀速运动,速度是1cm/s,过点P作PE∥AC交DC于点E,同时,点Q从点C出发沿CB方向,在射线CB上匀速运动,速度是2cm/s,连接PQ,QE,PQ与AC交于点F,设运动时间为t(s)(0<t<8).(1)当t为何值时,四边形PFCE是平行四边形;(2)设△PQE的面积为s(cm2),求s与t之间的函数关系式;(3)是否存在某一时刻t,使得△PQE的面积为矩形ABCD面积的932;(4)是否存在某一时刻t,使得点E在线段PQ的垂直平分线上.6. 已知:如图①,在Rt△ACB中,∠C=90∘,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQPʹC,那么是否存在某一时刻,使四边形PQPʹC 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.7. 已知:如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P,Q两点停止运动,设点P的运动时间t(s),解答下列各问题:秒时,求△PBQ的面积.(1)经过25(2)当t为何值时,△PBQ是直角三角形?(3)是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.8. 已知:如图,在平行四边形ABCD中,AD=3cm,CD=1cm,∠B=45∘,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t s(0<t<1).(1)当t为何值时,四边形AQDM是平行四边形?(2)证明:在P,Q运动的过程中,总有CQ=AM;(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD面积的一半?若存在,求出相应的t值;若不存在,说明理由.9. 如图,在梯形ABCD中,AD∥BC,DC=6cm,AD=4cm,BC=20cm,∠C=60∘.点P从点A出发沿折线AD→DC方向向点C匀速运动,速度为1cm/s;点Q从点B出发,沿BC方向向点C匀速运动,速度为2cm/s,P,Q同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点P,Q运动的时间是t(s).(1)当点P在AD上运动时,如图(1),DE⊥CD,是否存在某一时刻t,使四边形PQED是平行四边形?若存在,求出t的值;若不存在,请说明理由;(2)当点P在DC上运动时,如图(2),设△PQC的面积为S,试求出S与t的函数关系式;若存在,求出t的值;若不存在,请说明理(3)是否存在某一时刻t,使△PQC的面积是梯形ABCD的面积的29由;(4)在(2)的条件下,设PQ的长为x cm,试确定S与x之间的关系式.10. 已知:如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B出发沿边BC向点C以2cm/s的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后多少时间,△PBQ的面积等于8cm2(2)设运动开始后第t s时,五边形APQCD的面积为S cm2,写出S与t之间的函数表达式,并指出自变量t的取值范围;(3)t为何值时,S最小?求出S的最小值.11. 已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm.AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动.如图②,设运动时间为t(s)(0<t<4).解答下列问题:(1)当t为何值时,PQ∥MN ?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4 ?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ ?若存在,求出t的值;若不存在,请说明理由.12. 在直角梯形ABCD中,AB∥CD,∠BCD是直角,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒3cm的速度沿A→B→C→D方向运动,点Q从点D出发以每秒2cm的速度沿线段DC方向向点C运动,已知动点P,Q同时出发,当点Q运动到点C时,P,Q运动停止,设运动时间为t s.(1)求CD长;(2)当四边形PBQD为平行四边形时,求t的值;(3)在点P,点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20平方厘米?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.答案第一部分1. (1) 当 PQ ∥CD 时,四边形 PFCE 是平行四边形,此时,四边形 PQCD 是平行四边形,则 PD =CQ ,即 8−t =2t ,解得,t =83,即当 t =83 时,四边形 PFCE 是平行四边形.(2) ∵ PE ∥AC ,∴ ∠DPE =∠DAC ,∠DEP =∠DCA ,∴ △DPE ∽△DAC ,∴ DP DA =DE DC =PE AC ,即8−t 8=DE 6=PE 10, 解得,DE =6−34t ,PE =10−54t , 则 CE =6−DE =34t ,∴s=S 四边形PQCD −S △PDE −S △ECQ =12×(8−t +2t )×6−12×(8−t )×(6−34t)−12×2t ×34t =−98t 2+9t,即 s 与 t 之间的函数关系式为:s =−98t 2+9t . (3) 存在.矩形 ABCD 面积为:6×8=48(cm 2),由题意得,−98t 2+9t =48×932,解得,t =2 或 6.∴ 当 t =2 或 t =6 时,△PQE 的面积为矩形 ABCD 面积的 932.(4) 存在这样的 t 使得点 E 在线段 PQ 的垂直平分线上.当点 E 在线段 PQ 的垂直平分线上时,EP =EQ ,由勾股定理得,(2t)2+(34t)2=(8−t )2+(6−34t)2, 解得,t 1=−25−5√736(舍去),t 2=−25+5√736, 答:t =−25+5√736 时,点 E 在线段 PQ 的垂直平分线上. 2. (1) ∵∠C =90∘,AC =3 cm ,BC =4 cm ,∴AB =√AC 2+BC 2=5(cm ),∵PD ∥AB , ∴ 当 PQ ∥AC 时,四边形 ADPQ 是平行四边形,∴QB AB =BP BC ,即5−2t 5=t 4, 解得,t =2013,答:当 t =2013 时,四边形 ADPQ 为平行四边形.(2) 过点 P 作 PE ⊥AB ,垂足为 E ,∵∠PEB=∠C=90∘,∠B=∠B,∴△BPE∽△BAC,∴PEAC =BPBA,即PE3=t5,解得,PE=35t(cm),∵PD∥AB,∴∠DPC=∠B,∠C=∠C,∴△CPD∽△CBA,∴PDAB =CPCB,即PD5=4−t4,解得,PD=20−5t4(cm),∴y=S四边形ADPQ=12×(PD+AQ)×PE=12×(20−5t4+2t)×35t=940t2+32t.(3)存在,若S四边形ADPQ :S△PQB=13:2,则y=132S△PQB,∵S△PQB=12×QB×PE=−35t2+32t,∴940t2+32t=132(−35t2+32t),解得,t1=0(舍去),t2=2,则t为2时,S四边形ADPQA:S△PQB=13:2,当t=2时,BP=2cm,BQ=5−4=1(cm),作QH⊥BC于H,则QH=35cm,BH=45cm,∴PH=65cm,则PQ=√PH2+QH2=3√55(cm).3. (1)若PQ∥BD,则△CPQ∽△CBD.所以CPCB =CQCD,即8−t8=t6,解得:t =247.(2) 由 ∠MQD +∠CDB =∠CBD +∠CDB =90∘ 可得,∠MQD =∠CBD , 又 ∠MDQ =∠C =90∘,所以 △MDQ ∽△DCB ,所以MD CD =DQ BC , 即 MD 6=6−t 8,所以 MD =34(6−t ).y=12AB ×BF +AB ×BC −12PC ×CQ −12MD ×DQ =12×6×(8−t )+6×8−12(8−t )×t −12×34(6−t )×(6−t )=18t 2−52t +1172(0<t <6).(3) 假使存在 t ,使 S 五边形AFPQM :S 矩形ABCD =9:8, 则 y =89S 矩形ABCD =54,即 18t 2−52t +1172=54,整理得 t 2−20t +36=0,解得 t 1=2,t 2=18>6(舍去).答:存在 t =2,使得 S 五边形AFPQM :S 矩形ABCD =9:8.(4) 存在.易证 △PBG ∽△PFE ,所以 BP BG =FP FE,即 t BG =86, 所以 BG =34t ,则 AG =6−34t ,AM =AD −MD =8−34(6−t )=34t +72. 作 MN ⊥BC 于 N 点,则四边形 MNCD 为矩形,所以 MN =CD =6,CN =MD =34(6−t ),故:PN =(8−t )−34(6−t )=72−t 4, 若 M 在 PG 的垂直平分线上,则 GM =PM ,所以 GM 2=PM 2,所以 AG 2+AM 2=PN 2+MN 2,即:(6−34t)2+(34t +72)2=(72−t 4)2+62,整理得:17t 2−32t =0,解得 t 1=3217,t 2=0(舍去).综上,存在使点 M 在 PG 的垂直平分线上的 t ,此时 t =3217.4. (1)过点A作AD⊥BC于点D,∵AB=AC,∠ADB=90∘,∴BD=CD=6,∴AD=√AB2−BD2=8,∵MP⊥AB,∴∠BMP=∠ADB=90∘,∵∠B=∠B,∴△BMP∽△BDA,∴BMBD =PBAB,∴t6=12−t10,解得t=154,∴当t为154时,PM⊥AB.(2)过点M作ME⊥NP于点E,交AD于点F.如图所示,∵BC⊥NP,∴∠ADC=∠NPC=90∘,∵∠C=∠C,∴△CPN∽△CDA,∴PNAD =CPCD,∴PN8=t6,∴PN=43t,由△AMF∽△ABD,可得MFBD =AMAB,即MF6=10−t10,∴MF=35(10−t),∵∠BPN=∠ADP=∠MEP=90∘,∴四边形DPEF是矩形,∴EF=DP=6−t,∴ME=MF+EF=35(10−t)+6−t=12−85t,∴S△MPN=12PN⋅ME=12⋅43t⋅(12−85t)=−1615t2+8t(0<t≤6).(3)存在.由题意:−1615t2+8t=15×12×12×8,解得t=32或6.∴t=32秒或6秒时,S△PMN:S△ABC=1:5.5. (1)PD=(8−t)cm,CQ=2t cm,根据题意得:PD=CQ时,四边形PFCE是平行四边形,即8−t=2t,解得:t=83;(2)S四边形PDCQ =12(PD+CQ)⋅CD=12×(8−t+2t)×6=3t+24,因为PE∥AC,所以△DPE∽△DAC,所以PDAD =DEDC,所以DE=−34t+6,则EC=DC−DE=6−(−34t+6)=34t,则S△PDE=12PD⋅DE=12(8−t)⋅(−34t+6),S△CQE=12CQ⋅EC=12×2t⋅34t=34t2,则s=S四边形PDCQ −S△PDE−S△CQE=3t+24−12(8−t)⋅(−34t+6)−34t2,即s=−98t2+9t;(3)S矩形ABCD=6×8=48,由题意得:−98t2+9t=932×48,解得:t=2或t=6;(4)在Rt△PDE中,PE2=PD2+DE2=(8−t)2+(−34t+6)2,在Rt△ECQ中,QE2=QC2+EC2=(2t)2+(34t)2,当点E在线段PQ的垂直平分线上时,PE=QE,即PE2=QE2,则(8−t)2+(−34t+6)2=(2t)2+(34t)2,解得:t=−25+5√736或t=−25−5√736(舍去).则t=−25+5√736.6. (1)在Rt△ABC中,AB=√BC2+AC2=5.由题意知:AP=5−t,AQ=2t.若PQ∥BC,则△APQ∽△ABC.∴AQAC =APAB.∴2t4=5−t5.∴t=107.(2)过点P作PH⊥AC于H.∵△APH∽△ABC,∴PHBC =APAB.∴PH3=5−t5.∴PH=3−35t,∴y=12×AQ×PH=12×2t×(3−35t)=−35t2+3t.(3)不存在某一时刻,使线段PQ恰好把Rt△ACB的周长和面积同时平分.若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ.∴(5−t)+2t=t+3+(4−2t).解得:t=1.若PQ把△ABC面积平分,则SΔAPQ=12SΔABC.∴−35t2+3t=3.∵t=1时方程不成立,∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.(4)存在这样的时刻,使得四边形PQPʹC为菱形.过点P作PM⊥AC于M,PN⊥BC于N.若四边形PQPʹC是菱形,那么PQ=PC.∵PM⊥AC于M,∴QM=CM.∵PN⊥BC于N,∴PN∥AC.∴△PBN∽△ABC.∴PNAC =BPAB.∴PN4=t5.∴PN=4t5.∴QM=CM=4t5.∴45t+45t+2t=4,解得t=109.∴当t=109时,四边形PQPʹC是菱形,此时PM=3−35t=73,CM=45t=89.在Rt△PMC中,由勾股定理,得PC=√PM2+CM2=√499+6481=√5059.∴菱形PQPʹC边长为√5059cm.7. (1)过Q点作QD⊥AB,垂足为D.由题意可知AP=BQ=25.∵△ABC为等边三角形,且边长为3,∴DQ=15√3,BP=135.∴S△PBQ=1350√3(cm2).(2)①当∠PQB=90∘时,由题意可知AP=BQ,BP=2BQ.∴BP=2AP.∵AB=3,∴AP=BQ=1,即t=1.②当∠QPB=90∘时,此时BQ=2BP=AP.∵AB=3,∴AP=2,即t=2.∴当t1=1,t2=2时,△PBQ是直角三角形.(3)不存在.由题意可知,BP=3−t,BQ=t.∴S△PBQ=12×(3−t)×√32t=√34(3−t)t.∵S△ABC=94√3,四边形APQC的面积是△ABC面积的三分之二,∴S△PBQ=13×94√3=34√3.即√34(3−t)t=34√3.化简得t2−3t+3=0.Δ=9−12=−3<0.此方程无解.所以不存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二.8. (1)如图1,连接AQ,MD,∵四边形AQDM是平行四边形,∴AP=PD,∴3t=3−3t,解得t=12,∴当t=12时,四边形AQDM是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MAD=∠CDA,∠BMQ=∠DQP,∴△AMP∽△DQP,∴AMDQ =APPD,∴AM1−t =3t3−3t,∴AM=t,∴AM=CQ,即在P,Q运动的过程中,总有CQ=AM.(3)如图2,过点A作AW⊥BC于W,∵MN⊥BC,∴∠MNB=90∘,∵∠B=45∘,∴∠BMN=45∘=∠B,∴BN=MN,∵BM=AB+AM=1+t,∴在Rt△BMN中,由勾股定理得:BN=MN=√22(1+t),∵AW⊥BC,∠B=45∘,∴△ABW为等腰直角三角形,∵AB=1,∴AW =√22. ∵ 四边形 ABCD 是平行四边形,∴AD ∥BC ,∵MN ⊥BC ,∴MN ⊥AD ,设四边形 ANPM 的面积为 y ,∴y=12×AP ×MN =12×3t ×√22(1+t )=3√24t 2+3√24t (0<t <1). 假设存在某一时刻 t ,四边形 ANPM 的面积是平行四边形 ABCD 的面积的一半, ∴3√24t 2+3√24t =12×3×√22, 整理得:t 2+t −1=0, 解得:t 1=−1+√52,t 2=−1−√52(舍), ∴ 当 t =−1+√52 时,四边形 ANPM 的面积是平行四边形 ABCD 面积的一半.9. (1) 不存在,理由如下:因为 DE ⊥CD ,∠C =60∘,DC =6 cm ,所以 ∠CED =30∘,所以 CE =2CD =12,设点 P ,Q 运动的时间是 t (s ),PD =4−t ,QE =BC −CE −BQ =20−12−2t =8−2t ,使四边形 PQED 是平行四边形,有 PD =QE ,所以 4−t =8−2t ,解得:t =2,此时点 P 与点 D 重合,不能构成平行四边形.(2) 如图②,由题意可求:PC =10−t ,QC =20−2t ,过点 P 作 PM ⊥BC ,因为 ∠C =60∘,所以 PM PC =sin60∘=√32, 可求 PM =√32(10−t ), 所以 S =12×(20−2t )×√32(10−t )=√32t 2−10√3t +50√3.(3) 如图3,过点D作DN⊥BC,由DC=6,∠DCB=60∘,可求:DN=3√3,所以梯形ABCD的面积为:(4+20)×3√3÷2=36√3,当t≤4时,QC=20−2t,此时,△PQC的面积为:(20−2t)×3√3÷2,由题意得:(20−2t)×3√3÷2=36√3×29,解得:t=223(舍去);当4<t≤10时,由(2)知,△PQC的面积为:√32t2−10√3t+50√3,由题意:√32t2−10√3t+50√3=36√3×29,解得:t=6或t=14(舍去),所以当t=6时,△PQC的面积是梯形ABCD的面积的29.(4)如图②,由(2)知:PC=10−t,QC=20−2t,过点P作PM⊥BC,因为∠C=60∘,所以PMPC =sin60∘=√32,PM=√32(10−t),可求:CM=12(10−t),QM=QC−CM=32(10−t),由勾股定理可求:PQ=√3(10−t),当PQ=x时,√3(10−t)=x,解得:t=10−√33x,所以S=12×(20−2t)×√32(10−t)=√36x2.10. (1)运动开始后第x s时,△PBQ的面积等于8cm2.根据题意,得12⋅2x⋅(6−x)=8,即x2−6x+8=0.解得{x 1=2,x 2=4.所以 2 s 或 4 s 时,△PBQ 的面积等于 8 cm 2.(2) 运动开始后第 t s 时,S =S 矩形ABCD −S △PBQ=12×6−12×(6−t )×2t =t 2−6t +72(0≤t ≤6).(3) S =t 2−6t +72=(t −3)2+63.所以当 t =3 时,S 最小,S 的最小值是 63 cm 2.11. (1) 在 Rt △ABC 中,由勾股定理得:AC =√BC 2−AB 2=4.由平移性质可得 MN ∥AB .因为 PQ ∥MN ,所以 PQ ∥AB .所以CP CA =CQ CB , 即 4−t 4=t 5. 解得 t =209. (2)如图,作 PD ⊥BC 于点 D ,AE ⊥BC 于点 E .由 S △ABC =12AB ×AC =12AE ×BC ,可得 AE =125.则由勾股定理易求 CE =165.因为 PD ⊥BC ,AE ⊥BC ,所以 AE ∥PD .所以 △CPD ∽△CAE .所以 CP CA =CD CE =PD AE . 即 4−t 4=CD 165=PD 125.求得:PD =12−3t 5,CD =16−4t 5.因为 PM ∥BC , 所以 M 到 BC 的距离 ℎ=PD =12−3t 5. 所以,△QCM 是面积 y =12×t ×12−3t 5=−310t 2+65t . (3) 因为 PM ∥BC ,所以 S △PQC =S △MQC .若S△QMC:S四边形ABQP=1:4,则S△QMC:S△ABC=1:5.即:−310t2+65t=15×6,整理得:t2−4t+4=0.解得t=2.答:当t=2时,S△QMC:S四边形ABQP=1:4.(4)若PQ⊥MQ,则∠MQP=∠PDQ=90∘.因为MP∥BC,所以∠MPQ=∠PQD.所以△MQP∽△PDQ.所以PMPQ =PQDQ.所以PQ2=PM×DQ,即:PD2+DQ2=PM×DQ.∵CD=16−4t5,所以DQ=CD−CQ=16−9t5.故(12−3t5)2+(16−9t5)2=5×16−9t5.整理得2t2−3t=0.解得t1=0(舍),t2=32.答:当t=32时,PQ⊥MQ.12. (1)如图 1,过A点作AM⊥CD于点M,则四边形AMCB是矩形,∴AM=BC=8cm,MC=AB=10cm,∵AD=10cm,∴DM=√AD2−AM2=√102−82=6cm,∴CD=DM+CM=6+10=16cm.(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图 2,由题意得:BP=(10−3t)cm,DQ=2t cm,∴10−3t=2t,解得t=2s.(3)①当点P在线段AB上时,即0≤t≤103s时,如图 3,S△BPQ=12BP⋅BC=12(10−3t)×8=20cm2,解得t=53s.②当点P在线段BC时,即103s<t≤6s时,如图 4,BP=(3t−10)cm,CQ=(16−2t)cm,∴S△BPQ=12BP⋅CQ=12(3t−10)×(16−2t)=20cm2,化简得:3t2−34t+100=0,∵Δ=(−34)2−4×3×100=−44<0,∴方程无实数解;③当点P在线段CD上时,若点P在点Q的右侧,即6s<t<345s时,则有PQ=(34−5t)cm,S△BPQ=(34−5t)×8=20cm2,解得t=295s<6s(舍去),若点P和点Q重合,则面积为0,不合题意.若点P在Q的左侧,即345s<t≤8s时,则有PQ=(5t−34)cm,S△BPQ=12(5t−34)×8=20cm2,解得t=395s,综上,满足条件的t的值存在,分别为53s或395s.。