中考数学 考点聚焦 第2章 方程与不等式 第7讲 一元二次方程及其应用1
中考复习之第7讲一元二次方程

C.2
【答案】 A
考点二 一元二次方程的解法 例 2 解方程: x2- 2x- 1= 0.
解: ∵ a= 1, b=- 2, c=- 1, ∴ b2- 4ac= (- 2)2- 4× 1× (- 1)= 8> 0,
D.- 2
∴ x= 2± 8= 2±2 2= 1± 2.
2× 1
2
即 x1= 1- 2, x2= 1+ 2. 考点三 一元二次方程根的判别式 例 3 若关于 x 的一元二次方程 kx2+ 4x+3= 0 有实数根,则 k 的非负整数值是 _______.
中考复习之 第 7 讲 考点一 一元二次方程的定义
只含有 一 个未知数,并且未知数的最高次数是
一元二次方程 2 ,这样的整式方程叫做一元二次方程,
一元二次方程的标准形式是 ax2+ bx+ c= 0(a, b, c 是常数,且 a≠ 0).
考点二 一元二次方程的解法 1.直接开平方法:如果 x2= a(a≥ 0),则 x= ± a,即 x1= a, x2=- a.
数值.
x1=- ef,
x2=-
n m.
温馨提示
解一元二次方程时,要根据方程的特点灵活选择合适的方法,一般顺序为:直接开平
方法、因式分解法、公式法、配方法 .公式法和配方法可以解所有判别式大于或等于
0 的一
元二次方程 .
考点三 一元二次方程根的判别式 关于 x 的一元二次方程 ax2+ bx+ c= 0(a≠ 0)的根的判别式为 b2- 4ac,一般用符号 Δ表示.
A. 1
B.- 1
C.0
D .无法确定
2.用配方法解一元二次方程 x2- 4x= 5 时,此方程可变形为 ( D )
A. (x+ 2)2= 1
二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。
2013届中考数学考前热点冲刺《第7讲 一元二次方程及其应用》课件 新人教版

解:(1)∵b2-4ac=[-(m+2)]2-4×1×(2m-1) =m2-4m+8 =(m-2)2+4>0, ∴方程恒有两个不相等的实数根. (2)①把x=1代入方程x2-(m+2)x+(2m-1)=0中,解得m=2, ∴原方程为x2-4x+3=0,解这个方程得:x1=1,x2=3, ∴方程的另一个根为x=3. ②当1、3为直角边时,斜边为 12+32= 10, ∴周长为1+3+ 10=4+ 10. 当3为斜边时,另一直角边为 32-12=2 2, ∴周长为1+3+2 2=4+2 2.
第7讲┃ 归类示例 ► 类型之二 一元二次方程的解法
命题角度: 1.直接开平方法; 2.配方法; 3.公式法; 4.因式分解法.
解方程:2 x-3=3xx-3.
第7讲┃ 归类示例
解:解法一(因式分解法):(x-3)(2-3x)=0, x-3=0或2-3x=0, 2 所以x1=3,x2= . 3 解法二(公式法): 2x-6=3x2-9x, 3x2-11x+6=0, a=3,b=-11,c=6, b2-4ac=121-72=49, 11± 49 x= , 2×3 2 ∴x1=3,x2= . 3
第7讲┃ 考点聚焦
公 式 法
配 方 法
求根公式 一元二次方程ax2+bx+c=0, 且b2-4ac≥0时,则 -b± b2-4ac x1, 2= 2a 公式法解 (1)将方程化成ax2+bx+c=0(a≠0)的形式;(2)确 方程的一 定a,b,c的值;(3)若b2-4ac≥0,则代入求根公 般步骤 式,得x1,x2,若b2-4ac<0,则方程无实数根 定义 通过配成完全平方的形式解一元二次方程 配方法解 ①化二次项系数为1;②把常数项移到方程的另一 方程的步 边;③在方程两边同时加上一次项系数一半的平 骤 方;④把方程整理成(x+a)2=b的形式;⑤运用直 接开平方解方程
中考数学总复习 基础知识梳理 第2单元 方程(组)与不等式(组)2.2 一元二次方程及其应用课件

③令每个因式为零得两个一元一次方程;④解这两个一元一次方程,
得原方程的两个根.
需要说明的是,四种公式的使用顺序:直接开方法,因式分解法, 配方法,公式法.
2021/12/9
第六页,共十四页。
要点 梳理 (yàodiǎn)
2.2.3 一元二次方程根的判别式(b2-4ac)与根的关系(guān xì)
2021/12/9
第五页,共十四页。
要点 梳理 (yàodiǎn)
3.公式法:(1)化一般形式;(2)确定a,b,c的值;(3)求出b2-
4ac的值;(4)当b2-4ac≥0时,将a,b,c的值代入得
x b
b2 2a
4ac.
4.因式分解法:①将方程右边化为0;②将方程左边进行(jìnxíng)因式分解;
对于(duìyú)一元二次方程ax2+bx+c=0(a≠0):
1.b2-4ac>0⇔方程有两个不相等的实数根. 2.b2-4ac=0⇔方程有两个相等的的实数根. 3.b2-4ac<0⇔方程无实数根. 4.b2-4ac≥0⇔方程有实数根.
2021/12/9
第七页,共十四页。
要点 梳理 (yàodiǎn)
第二 单元 (dìèr) 方程(组) 与不等式(组)
第7课时(kèshí) 一元二次方程及其应用
2021/12/9
第一页,共十四页。
考情分析(fēnxī)
1.能够根据具体问题中的数量关系(guān xì),列出一元二次方程. 2.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一 元二次方程.
3.会用一元二次方程根的判别式判别方程根的情况,了解一元二次方程根与
系数的关系.
江西中考近五年都考查了一元二次方程根与系数的关系.本节内容还与二次
中考数学第一轮复习(第二章《方程与不等式》第2节《一元二次方程及其应用》

第二节 一元二次方程及其应用课标呈现,指引方向1.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.3.能根据具体问题中的数量关系列出一元二次方程,体会一元二次方程是刻画现实世界数量关系的有效模型.能根据具体问题的实际意义,检验方程的解是否合理.4.*了解一元二次方程的根与系数的关系.考点梳理,夯实基础1.在整式方程中,只含有 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程,它的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项: 叫做二次项的系数. 叫做一次项的系数.2.一元二次方程的解法:(1)直接开平方法:形如x 2=a (a ≥0)或(x -b )2=a (a ≥0)的一元二次方程,就可用直接开平方的方法.(2)配方法的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数:②移项,使方程左边为二次项和一次项,右边为常数项:③配方,即方程两边都加上一次项系数一半的平方;④化原方程为(x+m )2=n 的形式:⑤如果n 是非负数,即n ≥0,就可以用直接开平方求出方程的解.如果n <0.则原方程无解.(3)公式法:一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是: .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积:③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程根的判别式:关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)(1) b 2-4ac >0一元二次方程ax 2+bx +c =0(a ≠0)有 的实数根,即x = . ( 2) b 2-4ac =0一元二次方程ax 2+bx +c =0(a ≠0)有 的实数根,即x 1= x 2= . (3) b 2-4ac <0一元二次方程ax 2+bx +c =0(a ≠0) 实数根.*4.一元二次方程根与系数的关系若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两实根分别为x 1,x 2,那么x 1+x 2= ,x 1·x 2= .第一课时考点精析,专项突破考点一 一元二次方程的解【例1】(2016攀枝花)若x =-2是关于x 的一元二次方程x 2+ax -a 2=0的一个根,则a 的值为 ( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4考点二 一元二次方程的解法【例2】解方程:(1)2(x -2)2-1=0 (2) x 2-2x -2=0(3) y 2-7y +10=0 (4) 4x 2-5x +2=0考点三 根的判别式和韦达定理【例3】(1)(2016白贡)已知关于x 的一元二次方程x 2+2x -(m -2)=0有实数根,则m 的取值范围是( )A .m >1B .m <1C .m ≥1D .m ≤1(2)(2016聊城)如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实根,那么k 的取值范围是 .⇔⇔⇔32(3)设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根.则m 2+3m +n = . 课堂训练,当堂检测1.(2016沈阳)一元二次方程x 2-4x =12的根是( )A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=62.(2016新疆)将一元二次方程x 2 -6x -5=0配方后可变形为 ( )A .(x -3)2=14B .(x -3)2=4C .(x +3)2=14D .(x +3)2=43.(1)(2016大连)若关于x 的方程2x 2+x -a =0有两个不相等的实根,则实数a 的取值范围是 .(2)(2016成都)已知关于x 的方程3x 2+2x -m =0没有实数解,则m 的取值范围是 .4.解下列方程:(1)2x 2+2x =1.( 2)x 2-+10=0.(3)x 2-10x +21=0.中考达标,模拟自测A 组 基础训练一、选择题1.(2016舟山)一元二次方程2x 2-3x +1=0根的情况是 ( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2016黄冈)若方程3x 2 -4x -4=0的两个实数根分别为x 1,x 2,则x 1+x 2的值是 ( )A .-4B .3C .-D . 3.(2016枣庄)若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是 ( )4.(2016福州)下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是 ( )A .a >0B .a =0C .c >0D .c =0二、填空题5.(2016菏泽)已知x =m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m = .6.(2015通辽)菱形ABCD 的一条对角线长为6,边AB 的长为方程x 2-7x +10=0的一个根,则菱形ABCD的周长为 .7.(1)(2016云南)如果关于x 的一元二次方程x 2+2ax +a +2=0有两个相等的实数根,那么实数a 的值为 .(2)(2016桂林)若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是 .三、解答题8.选择适当的方法解下列方程:(1)(x +3)2=2. (2)+1)x 2-x =0. 434312(3)x2-x+2=0.(4)2(3x-2)=(2-3x)(x+1)9.(2016东山)若t为实数,关于x的方程x2-4x+t-2=0的两个非负实数根为a、b,则代数式(a2-1)(b2-1)的最小值是多少?B组提高练习10.(2016大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1-ac,N=(ax0+1)2,则M与N 的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定11.(2016呼和浩特)已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-1)2+(n-1)2的最小值是.12.(2016鄂州)关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.第二课时考点精析,专项突破考点四、增长率问题【例4】(2016泰州)随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.考点五、销售问题【例5】(2015乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?考点六、几何问题【例6】(2015湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?课堂训练,当堂检测1.(2016年台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x-1)= 45 B.x(x+1)=45 C.x(x-1)=45 D.x(x+1)=452.(2015宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为602.两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列m关于x的方程是()21xx12xx1212A.x2+9x-8=0 B.x2-9x-8=0 C.x2-9x+8=0 D.2x2-9x+8=03.某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价0.5元,商场平均每天可多售出 1件,若商场平均每天要盈利1200元,为了减少库存,每件衬衫应降价元.4.(2016贺州)某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投人的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.1.1=1.2=1.3=1.4)中考达标,模拟自测A组基础训练一、选择题1.(2016大连)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x) B.100(1+x)2 C.100(1+x2) D.100(1+2x)2.(2015衡阳)绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9003.(2015安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一,若2015年的快递业务量达到4.5亿件,设2015年与2014年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.54.(2015白贡)利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,则矩形的长是()米.A.25 B.50 C.25或50 D.以上都不正确二、填空题5.(2016十堰)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.6.(2015巴中)如图,某农场有一块长40m.宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,则小路的宽是.【答案】2m7.(2015兰州)股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是.三、解答题8.某校语文备课组为了增强学生写作兴趣创办刊物《萌芽》,得到了全校师生的欢迎.他们将刊物以适当的价格销售后所得利润资助贫困学生,已知印制100本《萌芽》的成本比印制40本的2倍还多440元.(1)求每本《萌芽》的成本是多少元?(2)经销售调查发现:每本《萌芽》售价定为33元,可售出 120本,若每本降价1元,可多售出 20本,为尽量增加销量让更多的人读到这本刊物,当每本降价多少元时,可获得1400元的利润资助贫困学生?9.(2016内江)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用周长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值:如果没有,请说明理由.B组提高练习10.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为56元/个时,每天能售出14个玩具.现需进一步调整销售方案.将每个玩具的售价提高了a%,从而每天的销售量降低了2a%,当每天的销售利润为147元时,则a的值为()A.12.5或20 B.12.5或25 C.20或25 D.25或7511.甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是.12.近期猪肉价格不断走高,引起丁民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的÷,两种猪肉销售的总金额比5月20日提高了二.%,求a的值.。
2020中考数学总复习 第二章 方程与不等式 2.2一元二次方程

2020中考数学总复习 第二章 方程与不等式2.1 一元二次方程课标解读1. 理解配方法,会用配方法、公式法和因式分解法解数字系数的一元二次方程.2. 会用一元二次方程根的判别式判别方程根的情况.了解一元二次方程根与系数的关系.3. 会解决与一元二次方程有关的实际问题,并根据实际意义,检验解的合理性. 知识梳理知识点一:一元二次方程1. 一元二次方程的定义:只含一个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做一元二次方程.2. 一元二次方程的一般形式:)0(02≠=++a c bx ax ,其中2ax 是二次项,bx 是一次项,c 是常数项.知识点二:一元二次方程的解法1. 直接开平方法:关于x 的方程)0(2≠=a b ax ,当0≥a b 时,两根分别为a b x =1,a b x -=2; 当0<ab 时,原方程没有实数根. 2. 配方法: 用配方法解方程)0(02≠=++ac bx ax 的过程:①化二次项系数为1:02=++ac x a b x ②移项:ac x a b x -=+2 ③配方:22222444a ac b a b x a b x -=++,即22244)2(a ac b a b x -=+ ④当042≥-ac b 时,=+a b x 2a ac b 242-±, =1x 于是a ac b b 242-+-,=2x aac b b 242---; 当042<-ac b 时,原方程无解.3. 公式法:对于方程)0(02≠=++a c bx ax ,如果042≥-ac b ,那么方程的求根公式为: =x aac b b 242-±-. 4. 因式分解法:把一元二次方程化成一般形式后,如果ac b 42-是某一有理数的平方,那么,一元二次方程02=++c bx ax 可变形为0))((21=--x x x x a 的形式,从而将一元二次方程转化为两个一元一次方程,进而得到原方程的两个实数根.知识点三:一元二次方程根的判别式及根与系数的关系1. 关于x 的一元二次方程)0(02≠=++a c bx ax ,称ac b 42-=∆为一元二次方程的根的判别式,当042>-=∆ac b 时,方程有两个不相等的实数根;当042=-=∆ac b 时, 方程有两个相等的实数根;当042<-=∆ac b 时,方程没有实数根.2. 一元二次方程的根与系数的关系:若关于x 的一元二次方程)0(02≠=++a c bx ax 有两个实数根21x x ,,则=+21x x a b -,=21x x ac . 知识点四:一元二次方程的应用解与一元二次方程有关的应用题的主要步骤为“审——设——列——解——验——答”, 在传播、增长(降低)率、商品销售、几何图形的面积等实际应用问题中经常涉及.因为所列一元二次方程往往有两个实数根,所以,必须检验所得结果是否完全符合题意.基础训练1. 下列所给出的方程中,属于一元二次方程的是( D )A. xx 1= B.x x = C.12=-x D.)1(2)1)(1(-=-+x x x x 2. 一元二次方程0222=+-x x 的根的情况是( D )A. 有两个不相等的实数根B.有两个相等的实数根B. 有且只有一个实数根 D.没有实数根3. 若n m ,是方程0442=--x x 的两根,则nm 11+的值是( B ) A.1 B.-1 C.4 D.-44. 若关于x 的方程0212=+-m x x 没有实数根,则m 的取值范围为( C ) A. 21<m B.21≤m C.21>m D.21≥m5. 方程012=--x x 的两根为.25125121-=+=x x , 6. 若关于x 的方程01122=+⋅+-x m mx 有两个不相等的实数根,则m 的取值范围是02121≠<≤-m m ,且 7. 用适当的方法解下列一元二次方程:(1) 022=+-x x解:,07214)1(2<-=⨯⨯--=∆Θ .原方程没有实数根∴(2) 762-=-x x解:,2)3(29622=-=+-x x x ,即 23±=-∴x由23=-x 得231+=x ;由23-=-x 得.232-=x(3) 0)12()12(32=+-+x x x解:0)1)(12(=-+x x,或01012=-=+∴x x .12121=-=∴x x ,8. 某社区老年人活动中心有一批中国象棋爱好者自发组织了一次中国象棋单循环赛(每两个人之间都要比赛1局,且只比赛1局),结果共比赛66局.(1)求参加象棋比赛的人数;(2)参加比赛的王爷爷说:“如果我组织我的几个好友举行单循环赛,那么总共只需赛19局”.王爷爷说的话是真的吗?解:(1)设有m 人参加象棋比赛,依题意可列方程:66)1(21=-m m , 解这个方程:01322=--m m分解因式:0)11)(12(=+-m m , 解得(不合题意,舍去),111221-==m m , 故有12人参加象棋比赛.(3)王爷爷说的话不正确,理由如下:设王爷爷有n 个好友参赛,则19)1(21=+n n ,解此方程:.21731±-=n经检验,21731±-=n 是所列方程的根,但都不是正整数. 故王爷爷说的不真实. 能力提升1.对于方程01322=+-x x ,下列变形错误的是( B )A.0)1)(12(=--x xB.161)4322=-x ( C.4124)3(32⨯⨯--±=x D.161)432=-x ( 2.关于x 的方程02=-+m x mx ,下列说法正确的是( D )A.该方程一定有两个不相等的实数根B.该方程可能有两个相等的实数根C.该方程没有实数根D.该方程至少有一个实数根3.若关于x 的方程0322=+-m mx x 有一根为2,则此方程的另一根为( A )A.6B.4C.2D.-64.若关于x 的方程0602=+-mx x 的两根q p ,满足7=-q p ,则代数式22q P +的值是( B )A.17B.13C.12D.55. 某机械厂七月份生产零件50万个,第三季度生产零件196万个,若该厂八、九月份平均每月的增长率为x ,则x 应满足的方程是.196)1(50)1(50502=++++x x6.若直角三角形的斜边长比两直角边长分别多cm 32和cm 34,则这个直角三角形斜边上的中线长为 cm 35. 7.已知关于x 的一元二次方程0)1(2)1(322=+++-k x k x .(1)求证:无论k 为何值,原方程都有两个实数根;(2)若该方程的两个实数根21x x ,为一菱形的两对角线之长,且36222121=++x x x x ,求k 值及该菱形的面积.解:(1)证明:[]222)1()1(214)1(3+=+⨯⨯-+-=∆k k k Θ, 无论k 为何值,都有0)1(2≥+k ,∴原方程总有两个实数根.(2)依题意,知.)1(2)1(322121+=+=+k x x k x x ,又36222121=++x x x x ,36)1(32)1(22=+⨯++∴k k ,解得7,221-==k k (不合题意,舍去),.2=∴k 此时,菱形的面积为.9)1(22121221=+⨯=k x x 8.恩施一特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现, 单价每降低2元,则平均每天的销售量可增加20 千克,若该专卖店销售这种核桃要想平均每天获得2240元的利润,请回答:(1) 每千克核桃应降价多少元?(2) 在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按售价的几折出售?解:(1)设每千克核桃降价x 元时,平均每天可获利2240元. 则可列方程:2240)4060)(100202(=--+⋅x x , 解得 .6,421==x x答:每千克核桃降价4元或6元时,专卖店每天可获利2240元.(2)在平均每天获利仍为2240元的情况下,为尽可能让利于顾客,每千克核桃应降价6元出售,此时10960660=-,故应按售价打九折出售. 中考真题1. (2019,恩施) 某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元, 4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( C )A.8%B.9%C.10%D.11%2.(2019,黄冈)若21x x ,是一元二次方程0542=--x x 的两根,则21x x ⋅的值为( A )A. -5B.5C.-4D.43.(2019,武汉)从1,2,3,4四个数中随机选取两个不同的数,分别记为c a ,,则关于x 的一元二次方程042=++c x ax 有实数解的概率是( C ) A.41 B.31 C.21 D.32 4.(2018,黄冈)一个三角形两边长分别为3和6,第三边长是方程021102=+-x x 的根,则三角形的周长为 16 . 5.(2016,恩施)已知一元二次方程01522=+-x x 的两根为n m ,,则=+22n m 421. 6.(2018,荆州)关于x 的一元二次方程0222=-+-k k kx x 的两个实数根分别是21x x ,,且42221=+x x ,则222121x x x x +-的值是 4 . 7.(2019,孝感)已知关于x 的一元二次方程02)1(222=--+--a a x a x 有两个不相等的实数根21,x x .(1)若a 为正整数,求a 的值;(2)若21,x x 满足16212221=-+x x x x .求a 的值.解:(1)由方程02)1(222=--+--a a x a x 有两个不相等的实数根21,x x .得0124)2(4)1(422>+-=----=∆a a a a ,.3<∴a又a Θ是正整数,.21或=∴a(2)16212221=-+x x x x 即163)(21221=-+x x x x而,2)1(222121--=-=+a a x x a x x , 16)2(3)1422=----∴a a a (,解得.1621-==a a ,但3<a ,.1-=∴a8.(2018,黔南)如图,已知矩形AOCB ,cm AB 6=,cm BC 16=,动点P 从点A 出发,以s cm /3的速度向点O 运动,直到点O 为止;动点Q 同时从点C 出发,以s cm /2的速度向点B 运动,与点P 同时结束运动.(1)点P 到达终点O 的运动时间是316 s,此时点Q 的运动距离是 332 cm ; (2)当运动时间为2s 时,P ,Q 两点的距离为 26 cm ;(3)请你计算出发多久时,点P 和点Q 之间的距离是10cm.解:(3)设运动时间为ts ,过点P 作BC PD ⊥于点D ,则,t AP BD 3==t CQ 2=, 在PDQ Rt ∆中,︒=∠90PDQ ,由勾股定理得222PQ QD PD =+,即222106)2316(=+--t t 解得.5245821==t t , 故P 、Q 两点同时出发.1052458cm s s 时,两点之间的距离是或。
2013届河北省中考复习讲座(第二单元方程组与不等式组)

命题角度: 1.一元一次方程及其解的概念; 2.解一元一次方程的一般步骤.
0.3x+0.5 2x-1 例2 [2011· 滨州]依据下列解方程 = 的过 0.2 3 程,请在前面的括号内填写变形步骤,在后面的括号内填写变 形依据.
第6课时┃ 冀考探究
3x+5 2x-1 分式的基本性质 解:原方程可变形为 = ;(______________) 2 3
第7课时┃分式方程及其应用
第7课时┃ 冀考解读
冀考解读
考点梳理 考纲要求 常考题型 2013热度预测
分式方程 的概念
分式方程 的解法 分式方程 的应用
了解
掌握 应用
填空选择
解答题 解答题
☆☆
☆☆☆☆ ☆☆☆☆☆
第7课时┃ 考点聚焦
考点聚焦
考点1 分式方程
概念 分 式 方 程
未知数 分母里含有________的方程叫做分式方程
第6课时┃ 考点聚焦
考点4
二元一次方程(组)的有关概念
含有两个未知数,并且所含有未知数的项的次数都是 1 的整式方程 适合一个二元一次方程的每一组未知数的值,叫 定义 做二元一次方程的一个解.任何一个二元一次方 程都有无数组解 二元一次方程组的两个方程的公共解,叫做二元 定义 一次方程组的解 防错 提醒
第6课时 一次方程(组)及其应用 第7课时 分式方程及其运用 第8课时 一元二次方程及其运用 第9课时 一元一次不等式(组)及其应用
第6课时┃一次方程(组)及其应用
第6课时┃ 冀考解读
冀考解读
考点梳理 等式的概念 及性质 一元一次方 程的解法 考纲要求 了解 掌握 掌握 应用 常考题型 填空选择 解答题 解答题 填空选择 解答题 2013热度预测 ☆ ☆☆☆☆☆ ☆☆☆☆☆ ☆☆☆☆☆
中考数学 第2章 方程与不等式 一元二次方程及其应用复习

4.一元二次方程的根与系数的关系 若 x2=一_元__二_-_次_ba_方__程,axx12x+2=bx_+___c=_ca_0__(a_≠_0.)的两根分别为x1,x2,则有x1+ 5.一元二次方程的应用:步骤及常见关系参看第6讲
1.使用一元二次方程的根的判别式及根与系数的关系时,必须将一 元二次方程转化为一般式ax2+bx+c=0,以便确定a,b,c的值. 2.正确理解“方程有实根”的含义.若有一个实数根则原方程为一 元一次方程;若有两个实数根则原方程为一元二次方程.在解题时, 要特别注意“方程有实数根”“有两个实数根”等关键文字,挖掘 出它们的隐含条件,以免陷入关键字的“陷阱”.
数学 第二章 方程与不等式
山西省
一元二次方程及其应用
1.定义 只含有_一__个__未__知__数___,并且未知数的最高次数是___2___,这样 的整式方程叫做一元二次方程.通常可写成如下的一般形式: ____ax_2_+__b_x_+__c_=__0_(_a,__b_,__c_是__已__知__数__,__a_≠_0_)_____,其中a,b,c分 别叫做二次项系数、一次项系数和常数项.
2.解法 (1)直接开平方法:方程符合x2=m(m≥0)或(x±m)2=n(n≥0)的形 式; (2)配方法:①二次项系数化1;②移项;③配方:方程两边都加 上一次项系数一半的平方;④原方程写成a(x+h)2=k的形式;⑤ 当k≥0时,直接开平方求解;
(3)公式法:①化一般形式;②确定a,b,c的值;③求出b2-4ac 的 值 ; ④ 当 b2 - 4ac≥0 时 , 将 a , b , c 的 值 代 入 得 x = _-__b_±__2b_a2_-__4_a_c_(b_2_-__4_a_c_≥__0_) _;
数学人教版九年级上册一元二次方程的定义、解法、应用小结

(3)注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:直接开平方法→因式分解法→公式法.
4.一元二次方程根的判别式是:△=;
(1)△>O ;
(2)△=O ;
(3)△>O 。
C.无实数根D.有一根为0
4.用配方法解方程 时,原方程应变形为()
A、 B、 C、 D、
5、方程 化成一般形式是,二次项系数是,一次项系数是,常数项是.
6、方程 的根是.
7、某旅行团每两位成员互相握手一次,共握了55次,则这个旅行社共有人.
8、(2016·四川眉山)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为.
(1)求证:方程有两个不相等的实数根。
(2)若方程的一个根是-1,求 的值及另一个根。
6、已知关于x的一元二次方程 ,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
5.一元二次方程根与系数的关系:设 为方程 的两个根,则 , 。
6.列一元二次方程解应用题的一般步骤:和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤可归纳为
(1)“审”是读懂题目,审清,明确哪些是已知的,哪些是未知的以及它们之间的.
(2)“设”是指设未知数,设未知数又分为和,要根据题目特点选择合适的设元方式.
中考专题复习第七讲二元一次方程(组)(含详细参考答案)

2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。
(中考数学)第07讲 一元二次方程(知识点梳理、记诵版)

第07讲 一元二次方程知识点梳理考点01 一元二次方程相关概念1.一元二次方程的定义:只含有1个未知数,并且未知数的最高次数是2的整式方程,叫作一元二次方程。
2.一元二次方程必须满足的3个条件:(1)必须是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2;3.一元二次方程的一般形式:我们把)0,,(02≠=++a c b a c bx ax 为常数,称为一元二次方程的一般形式,其中c bx ax ,,2分别称为二次项、一次项和常数项;b a ,分别称为二次项系数和一次项系数。
2.一元二次方程的特殊形式:(1)当0,0=≠b a 时,02=+c ax ;(2)当0,0=≠c a 时,02=+bx ax ;(3)当0,0==≠c b a 时,02=ax ;3.一元二次方程的根:使一元二次方程左右两边相等的未知数的值叫作一元二次方程的根。
4.方程根的定义在解题时的应用:(1)判断一个值是否是一元二次方程的根;(2)已知方程的根求一元二次方程中字母系数的值; 考点02 一元二次方程的解法一、直接开平方法1.概念:如果492=x ,那么749±=±=x ,像这种利用平方根的定义通过直接开平方求一元二次方程的解的方法叫作直接开平方法。
2.用直接开平方法解一元二次方程的步骤:(1)将方程化成q p x =+2)(的形式,它的一边是一个完全平方式,另一边是一个常数;(2)当0≥q 时,两边直接开平方即可求出它的根;当0<q 时,一元二次方程无实数根;二、配方法1.概念:先对原一元二次方程进行配方,使它出现完全平方式后,再用直接开平方法来求解的方法。
2.用配方法解一元二次方程的一般步骤:(1)把一元二次方程化成一般形式)0,,(02≠=++a c b a c bx ax 为常数,;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数,把二次项系数化为1;(4)配方:方程左右两边同时加上一次项系数一半的平方,把方程化成q p x =+2)(的形式;(5)用直接开平方法解一元二次方程;三、公式法1.求根公式的定义:一般地,对于一元二次方程)0,,(02≠=++a c b a c bx ax 为常数,,当042≥-ac b 时,一元二次方程的根是a ac b b x 242-±-=,这个式子称作一元二次方程的求根公式。
中考数学 热点专题二 方程与不等式

热点专题二方程与不等式【考点聚焦】“方程与不等式”包括方程与方程组、不等式与不等式组两方面内容.“方程与不等式”均存在标准形式,其解法具有程序式化的特点是一种重要的数学基本技能.此外,“方程与不等式”也是刻画现实世界的一个有效的数学模型,在现实生活中存在大量的“方程与不等式”问题.“方程与不等式”是初中数学的核心内容之一.就解法与自身的应用来说,“方程与不等式”是初中数学最重要的基础知识之一,同时也是学习函数等知识的基础;就所蕴含的“方程思想和转化思想”而言,它更是培养同学们分析问题和解决问题思想方面的重要源泉和场所.同时对“方程与不等式”的考查,一方面注重对其解法和与其它知识点联系的考查,另一方面更注重对其与现实生活的联系,加强对解决简单实际问题的数学考查.在学业考试中所有题型均可出现,题量不小,而且难度将随着题型变化而变化.【热点透视】热点1:设计重结果的问题考查方程与不等式的有关概念例1(1)二元一次方程组320x yx y-=-⎧⎨+=⎩的解是()(A)12xy=-⎧⎨=⎩(B)12xy=⎧⎨=-⎩(C)12xy=-⎧⎨=-⎩(D)21xy=-⎧⎨=⎩(2)不等式组24010xx-<⎧⎨+⎩≥的解集在数轴上表示正确的是()分析:(1)小题对二元一次方程组的解法多样,供同学们选择的解题途径较多,即使同学们只从方程组的解的概念出发通过验算也能够解决问题,因而题目的效度较高.(2)小题通过对不等式组解集的选择,考查了同学们解不等式组的基本功.解答:(1)(A );(2)(B ).点评:这样的问题由于只关心对同学们解答问题结果正确性的考查,具有较强的针对性,比较适合对理解方程(组)的解和不等式(组)解集的概念水平的考查.热点2:设置具体的情景考查同学们构建方程(不等式)模型的能力.例2 (2008湘潭)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为x cm ,那么x 满足的方程是( )(A)213014000x x +-= (B)2653500x x +-=(C)213014000x x --= (D)2653500x x --=分析:观察图形可知,金色纸边的面积与矩形风景画的面积之和为54002cm ,而矩形风景画的面积为40002cm ,设金色纸边的宽为x cm ,则可用含x 的代数式表示出金色纸边的面积为22[42(8050)]cm x x x ++.解:(B ).点评:从同学们所熟知的生活情景入手,考查同学们建立方程模型的能力,使考查的过程具有一定的趣味性,同时,建模的思想作为初中数学的重点和难点是需要师生在学习过程中有针对性突破的,而中考的命题毫无疑问在这方面给出了一种明显的导向,应当引起重视. 例3 (2008长沙)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.分析:工作总量÷工作时间=工作效率.解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:101120140x x ⎛⎫++⨯= ⎪⎝⎭, 解之得:60x =,经检验:60x =是原方程的解.答:乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y 天,根据题意得:1116040y ⎛⎫+=⎪⎝⎭, 解之得:24y =.答:两队合做完成这项工程所需的天数为24天.点评:本题背景取材于同学们所熟悉的“社会主义新农村建设”,巧妙将分式方程,一元一次方程的应用结合起来考查,符合新课程理念,并且层次分明,难度适中,考查要求达到课程标准所规定的毕业水平.热点3:设置与生活和社会实际相关的问题考查运用方程解决简单实际问题的能力. 例4 (2008湘潭)小刚、小明一起去精品文具店买同种钢笔和同种练习本,根据下面的对话解答问题:小刚:阿姨,我买3支钢笔,2个练习本,共需多少钱?售货员:刚好19元.小明:阿姨,那我买1支钢笔,3个练习本,需多少钱呢?售货员:正好需11元.(1)求出1支钢笔和1个练习本各需多少钱?(2)小明现有20元钱,需买1支钢笔,还想买一些练习本,那么他最多可买练习本多少个?分析:第(1)问利用二元一次方程组求钢笔和练习本的单价,第(2)问通过一元一次不等式求出最多可买多少个练习本.解:(1)设买一支钢笔需x 元,买一个练习本需y 元,依题意:3219311x y x y +=⎧⎨+=⎩解之得52x y =⎧⎨=⎩.(2)设买的练习本为z 个,则15220z ⨯+≤,得7.5z ≤.因为z 为非负整数,所以z 的最大值为7.答:(1)买1支钢笔需5元,1个练习本需2元.(2)小明最多可买7个练习本. 点评:这类问题的解答遵循“问题←→数学问题←→解数学问题←→解决问题”,不仅对于考查“数学化”具有较高的效度,而且考查了同学们在生活中用数学的意识. 热点4:考查同学们综合运用方程(组)与不等式(组)解决数学问题的能力. 例5(2008长沙)某班到毕业时共结余经费1 800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足? 分析:本例第(1)问通过列二元一次方程组解决,第(2)问利用不等式解题,而后在(1),(2)的基础上作出决策分析,较好地考查了学生综合运用数学知识解决简单问题的能力.解:(1)设文化衫和相册的价格分别为x 元和y 元,则925200x y x y -=⎧⎨+=⎩解得3526x y =⎧⎨=⎩.答:一件文化衫和一本相册的价格分别为35元和26元.(2)设购买文化衫t 件,则购买相册(50)t -本,则15003526(50)1530t t +-≤≤,解得200230 99t≤≤.∵t为正整数,∴t=23,24,25,即有三种方案.第一种方案:购文化衫23件,相册27本,此时余下资金293元;第二种方案:购文化衫24件,相册26本,此时余下资金284元;第三种方案:购文化衫25件,相册25本,此时余下资金275元;所以第一种方案用于购买教师纪念品的资金更充足.点评:决策型问题最大特点是其所对应的问题的答案具有不确定性,尽管其中相当多的一部分可归结为利用“方程与不等式”来解决,也是“方程(不等式)思想”的应用与体现,但是利用“方程与不等式”不能够直接求出问题的最终解答.要最终解决这样的问题,涉及到解决问题的策略,以及需要其他的数学知识.好的决策型问题在考查同学们运用知识解决实际问题能力方面具有较好的效度,因而,决策型问题成为近年来较为常见的考查同学们运用“方程与不等式”思想和知识解决实际问题能力的题目.热点5:考查同学们综合运用方程(组)、不等式(组)与其它数学知识结合解决数学问题的能力.例6(2008长沙)如图2,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.(1)求A B,两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图3,取与线段AB等长的一根橡皮筋,端点分别固定在A B,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A B,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.分析:(1)联立两个函数解析式得方程组,可求出A B,两点的坐标.(2)先作出AB 的垂直平分线,利用解直角三角形或者是三角形相似的知识,可求出AB的垂直平分线与坐标轴的交点坐标,从而求得直线的解析式.(3)由于线段AB的长度确定,要使PAB△的面积最大,只要点P到AB的距离最大即可,故点P既要在抛物线上,又必须在与AB平行的直线上.解:(1)依题意得216412y xy x⎧=-+⎪⎪⎨⎪=-⎪⎩解之得116 3x y =⎧⎨=-⎩,2242xy=-⎧⎨=⎩.∴(63)A-,,(42)B-,.(2)作AB的垂直平分线交x轴,y轴于C D,两点,交AB于M(如图4),由(1)可知:OA=,OB=,∴AB =,∴12OM AB OB =-= 过B 作BE x ⊥轴,E 为垂足,由BEO CMO △∽△,得:OC OM OB OE =,∴54OC =, 同理:52OD =,∴550042C D ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,, 设CD 的解析式为y kx b =+(0k ≠),∴50452k b b ⎧=+⎪⎪⎨⎪-=⎪⎩ ∴252k b =⎧⎪⎨=-⎪⎩. ∴AB 的垂直平分线的解析式为:522y x =-. (3)若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交点的直线12y x m =-+上,并设该直线与x 轴,y 轴交于G 、H 两点. ∴212164y x m y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩ ∴2116042x x m -+-=, ∵抛物线与直线只有一个交点, ∴2114(6)024m ⎛⎫--⨯-= ⎪⎝⎭, ∴254m =,∴2314P ⎛⎫ ⎪⎝⎭,. 在直线125:24GH y x =-+中, ∴25250024G H ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,. 设O 到GH 的距离为d ,∴1122GH d OG OH = ,∴1125252224=⨯⨯,∴d = ∵AB GH ∥,∴P 到AB 的距离等于O 到GH 的距离d .∴111252224S AB d ==⨯= 最大面积. 点评:本题的背景对同学们既现实又亲切,考查同学们经历建立函数关系和解方程组的过程意图明显,有较好的效度、可推广性和教育价值.【考题预测】1.方程组3520x y x y +=⎧⎨-=⎩的解是____________. 2.分式方程532x x=-的解为x =____________. 3.不等式组2450x x >-⎧⎨-⎩≤的解集是( ) (A)2x >- (B)25x -<≤(C)5x ≤ (D)无解4.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( )(A )50005000 3.06x -=⨯%(B )5000205000(1 3.06)x +⨯=⨯+%%(C )5000 3.06205000(1 3.06)x +⨯⨯=⨯+%%%(D )5000 3.06205000 3.06x +⨯⨯=⨯%%%5. 已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b --的值. 6.为净化空气,美化环境,市冷水滩区在许多街道和居民小区都种上了玉兰和樟树,冷水滩区新建的某住宅区内,计划投资1.8万元种玉兰树和樟树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:玉兰树300元/棵,樟树200元/棵,问可种玉兰树和樟树各多少棵?7.某商场用36万元购进A B ,两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1)该商场购进A B ,两种商品各多少件;(2)商场第二次以原进价购进A B ,两种商品.购进B 种商品的件数不变,而购进A种商品的件数是第一次的2倍,A 种商品按原售价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81 600元,B 种商品最低售价为每件多少元?8.市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株,甲种树苗每株50元,乙种树苗每株80元.有关统计表明:甲、乙两种树苗的成活率分别为90%和95%.(1)若购买树苗共用了28 000元,求甲、乙两种树苗各多少株?(2)若购买树苗的钱不超过34 000元,应如何选购树苗?(3)若希望这批树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗.9.已知抛物线2y x kx b =++经过点(23)P -,,(10)Q -,.(1)求抛物线的解析式.(2)设抛物线顶点为N (如图5),与y 轴交点为A .求sin AON ∠的值.(3)设抛物线与x 轴的另一个交点为M ,求四边形OANM 的面积.。
中考总复习一元二次方程分式方程的解法及应用--知识讲解

中考总复习一元二次方程分式方程的解法及应用--知识讲解一、一元二次方程的解法一元二次方程是指一个未知数的平方最高次数为2的方程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,且a≠0。
解一元二次方程的方法有以下几种:1.因式分解法:对方程进行因式分解,然后令每个因式等于0,求解得到方程的解。
2. 公式法:利用求根公式(-b±√(b^2-4ac))/2a,计算出方程的根。
3.完全平方式:对一元二次方程进行配方处理,将其化为完全平方的形式,然后求解。
4.图像法:将方程的解与图像相结合,通过观察图像的交点来确定方程的解。
二、一元二次方程的应用1.抛物线问题:一元二次方程常用来描述抛物线的形状与运动轨迹。
在物理学、工程学等领域中,抛物线的特性与运动轨迹有很多应用。
2.几何问题:一元二次方程可以用来解决与几何问题相关的计算和推理。
如求解一个平面图形的面积、找到一个图形的对称轴等。
3.速度问题:一元二次方程可以用来描述具有变速度的运动过程。
在物理学和运动学中,可以通过一元二次方程来计算运动物体的速度、加速度等相关参数。
4.财务问题:一元二次方程可以用来解决与财务相关的问题,如计算利润、成本和销售量之间的关系等。
5.人口增长问题:一元二次方程可以用来描述人口增长的模型。
通过一元二次方程的解,可以预测人口增长的趋势和规律。
总结:一元二次方程是数学中常见的一种方程形式,掌握解一元二次方程的方法对于提高数学学习的能力和解决实际问题具有重要意义。
在解题过程中,要根据具体情况选择合适的方法,并灵活运用数学知识解决问题。
中考数学 第一部分 教材知识梳理 第二单元 第7课时 一元二次方程及其应用课件

(1)【思路分析】先化简整理一元二次方程 ,列 出根的判别式,再根据绝对值的非负性 ,判断根的 判别式与0的大小关系,即可得证 .
设方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则
x1+x2=
⑥__ _ba___,x1·x2=
⑦
c
_a __.
考点4 一元二次方程的应用 1. 用一元二次方程解实际问题的一般步骤
实际问题
找等量关系
列一元二次方程 设未知数
解一元二次方程
检验 答
一元二次方程的根
2.一元二次方程实际问题的常见类型
关系求代数式的值,常用到的几个关系式:
( 1 ) x 1 2 x 2 2 (x 1 x 2 )2 2 x 1 x 2 ;
(2)1 1 = x1+x2 ; x1 x2 x1 x2
(3) x112 x122=(x1( +xx21) x22-) 22x1x2;
(4) x2 x1=(x1+x2) 2-2x1x2;
解:把 x=1代入原方程,得(1-3)(1-2)=|m|,即 |m|=2,∴m=±2, 把|m|=2代入原方程,得 x2-5x+4=0, ∴ x1=1,x2 =4, ∴m的值为±2,方程的另一根是4.
拓展2 (’15连云港)已知关于x的方程x2-2x+3k
=0有两个不相等的实数根,则k的取值范围是( A )
(2)由题意得: x1+x2=4 , 解得 x1= -2 ,
中考数学总复习 第二章 方程与不等式(组)8 一元二次方程及其应用课件(1)

考点一
考点聚焦
一元二次方程的概念
考点二 一元二次方程的解法
考点三 一元二次方程的实际应用
真题探源
第1部分 基 础 篇
第二章 方程与不等式(组)
8 一元二次方程及其应用
ቤተ መጻሕፍቲ ባይዱ
目标方向
进一步了解一元二次方程的基本概念,更熟 练地掌握用配方法、公式法、因式分解法解简单 的数字系数的一元二次方程.深刻领会“降次”思 想、“转化”思想在解方程中的应用;能根据实际 问题中的数量关系列出一元二次方程并求解,根 据问题的实际意义,检验所得的结果是否合理.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[对应训练] 2.(1)(2016·福州)下列选项中,能使关于x的一元二次方程ax2-4x+c =0一定有实数根的是( D ) A.a>0 B.a=0 C.c>0 D.c=0 (2)(2016·巴中)定义新运算:对于任意实数m、n都有m☆n=m2n+n,等 式 右 边 是 常 用 的 加 法 、 减 法 、 乘 法 及 乘 方 运 算 . 例 如 : - 3☆2 = ( - 3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程 :2x2-bx+a=0的根的情况. 解:∵2☆a的值小于0,∴22a+a=5a<0,解得:a<0.在方程2x2-bx +a=0中,Δ=(-b)2-8a≥-8a>0,∴方程2x2-bx+a=0有两个不相 等的实数根.
【点评】 ①先利用一元二次方程的根的判别式Δ=b2-4ac来求出m
的取值范围;②根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利 用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用①中的 结论可确定满足条件的m的取值范围.
[对应训练]
3.(1)(2016·威海)已知 x1,x2 是关于 x 的方程 x2+ax-2b=0 的两
数学
第二章 方程与不等式
第7讲 一元二次方程及其应用
1.定义 只含有一_个__未__知__数___,并且未知数的最高次数是_2___,这样的整式方程 叫做一元二次方程.通常可写成如下的一般形式: _a_x_2_+__b_x_+__c=__0_(_a_,__b_,__c_是__已__知__数__,__a_≠_0_)__,其中a,b,c分别叫做二次项 系数、一次项系数和常数项. 2.解法 首先考虑_直__接__开__平__方__法_,_因__式__分__解__法___;其次考虑_配__方__法__,_公__式__法___ .
1.(2016·新疆)一元二次方程x2-6x-5=0配方可变形为( A ) A.(x-3)2=14 B.(x-3)2=4 C.(x+3)2=14 D.(x+3)2=4 2.(2016·邵阳)一元二次方程2x2-3x+1=0的根的情况是( B ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根
【点评】 (1)现实生活中存在大量的实际应用问题,需要用一元二 次方程的知识去解决,解决这类问题的关键是在充分理解题意的基础上 ,寻求问题中的等量关系,从而建立方程.(2)解出方程的根要结合方 程和具体实际选择合适的根,舍去不合题意的根.
[对应训练] 4.(1)(导学号:01262186)(2015·毕节)一个容器盛满纯药液 40 L, 第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时 容器里只剩下纯药液 10 L,则每次倒出的液体是_2_0__L. 点拨:设每次倒出液体 xL,由题意得:40-x-404-0 x·x=10,解 得:x=60(舍去)或 x=20.答:每次倒出 20 升
(2)(导学号:01262187)(2016·包头)一幅长 20 cm、宽 12 cm 的图案, 如图,其中有一横两竖的彩条,横、竖彩条的宽度比为 3∶2.设竖彩条的 宽度为 x cm,图案中三条彩条所占面积为 y cm2.
①求 y 与 x 之间的函数关系式; ②若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.
5.(2016·衡阳)随着居民经济收入的不断提高以及汽车业的快速发展 ,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底 某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆, 设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列 方程得( A )
一元二次方程根与系数的关系
【例 3】 (1)(2016·黄冈)若方程 3x2-4x-4=0 的两个实数根分别
为 x1,x2,则 x1+x2=( D )
A.-4
B.3
C.-34
4 D.3
(2)(导学号:01262184)(2016·南充)已知关于x的一元二次方程x2-6x +(2m+1)=0有实数根.
解:(1)设增长率为x,根据题意2015年为2 900(1+x)万元,2016年为 2 900(1+x)2万元.则2 900(1+x)2=3 509,解得x=0.1=10%,或x=- 2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.
(2)2018年该地区投入的教育经费是3 509×(1+10%)2=4 245.89(万元 ).4 245.89<4 250,答:按(1)中教育经费投入的增长率,到2018年该地 区投入的教育经费不能达到4 250万元.
解:①当 k=1 时,原方程可化为 2x+2=0,解得:x=-1,此时
该方程有实根;当 k≠1 时,方程是一元二次方程,∵Δ=(2k)2-4(k-
1)×2=4k2-8k+8=4(k-1)2+4>0,∴无论 k 为何值,方程总有实数根,
综上所述,无论 k 为何值,方程总有实数根.②由根与系数关系可知,
[对应训练] 1.用指定的方法解下列方程: (1)(2x-1)2=9;(直接开平方法) (2)2x2+1=3x;(配方法) (3)(2016·山西)2(x-3)2=x2-9;(因式分解法) (4)x(x+1)+2(x-1)=0.(公式法)
解:(1)(2x-1)2=9,2x-1=±3,∴x=1±23,x1=2,x2=-1 (2)移项, 得 2x2-3x=-1,二次项系数化为 1,得 x2-32x=-12,配方 x2-32x+(34)2 =-21+(34)2,(x-34)2=116,由此可得 x-43=±14,∴x1=1,x2=12 (3)方 程变形得:2(x-3)2-(x+3)(x-3)=0.分解因式得:(x-3)(2x-6-x-3) =0,解得 x1=3,x2=9 (4)x(x+1)+2(x-1)=0,x2+3x-2=0,x= -23×±117,∴x1=-3-2 17,x2=-3+2 17
解:(1)x2-2x=0,x(x-2)=0,∴x1=0,x2=2 (2)∵x2+4x-1 =0,∴x2+4x=1,∴x2+4x+4=1+4,∴(x+2)2=5,∴x=-2± 5,
∴x1=-2+ 5,x2=-2- 5 (3)(y+3)(1-3y)=1+2y2,y-3y2+3-9y=1+2y2,∴5y2+8y
5.一元二次方程的根与系数的关系
若一元二次方程 ax2+bx+c=0(a≠0)的两根分别为 x1,x2,则有 x1+x2 =_-__ba___,x1x2=__ca__.
6.一元二次方程的应用 (1)列一元二次方程解应用题的步骤和列一元一次方程(组)解应用 题的步骤一样.
增长量 (2)①增长率=基础量×100%; ②设 a 为原来量,当 m 为平均增长率,n 为增长次数,b 为增长以 后的量,则有 a(1+m)n=b;当 m 为平均下降率,n 为下降次数,b 为 下降以后的量,则有 a(1-m)n=b. (3)利润问题: ①利润=售价-成本 ②利润率=利成润本×100%
实数根,且 x1+x2=-2,x1·x2=1,则 ba 的值是( A )
11
(2) (导学号:01262185)(2016·鄂州)关于 x 的方程(k-1)x2+2kx+2 =0.
①求证:无论 k 为何值,方程总有实数根. ②设 x1,x2 是方程(k-1)x2+2kx+2=0 的两个根,记 S=xx12+xx21+ x1+x2,S 的值能为 2 吗?若能,求出此时 k 的值;若不能,请说明理由.
一元二次方程根的判别式
【例2】 (2016·泸州)关于x的一元二次方程x2+2(k-1)x+k2-1=0 有实数根,则k的取值范围是( D )
A.k≥1 B.k>-1 C.k<1 D.k≤1 【点评】 对于一元二次方程ax2+bx+c=0(a≠0)的根的情况的描述 ,必须借助根的判别式,Δ≥0方程有两个实数根,Δ>0方程有两个不相 等的实数根,Δ=0方程有两个相等的实数根,Δ<0方程没有实数根, 反之亦然.另外,切记不要忽略一元二次方程二次项系数不为零这一隐 含条件.
①求m的取值范围; ②如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值 范围. 解:①根据题意得Δ=(-6)2-4(2m+1)≥0,解得m≤4; ②根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以 2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.
解:①根据题意可知,横彩条的宽度为 x cm,∴y=20×23x+2×12·x -2×32x·x=-3x2+54x,即 y 与 x 之间的函数关系式为 y=-3x2+54x; ②根据题意,得:-3x2+54x=52×20×12,整理,得:x2-18x+32=0, 解得:x1=2,x2=16(舍),∴32x=3,答:横彩条的宽度为 3 cm,竖彩条 的宽度为 2 cm.
A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1-x)2=16.9 D.10(1-2x)=16.9
一元二次方程的解法
【例 1】 解下列方程: (1)x2-2x=0; (2)(2016·淄博)x2+4x-1=0; (3)(y+3)(1-3y)=1+2y2; (4)(3x+5)2-5(3x+5)+4=0.
-2=0,y=-82±×5104=-4±5
26
-4+
,∴y1= 5
26
-4-
,y2= 5
26
(4)(3x+5)2-5(3x+5)+4=0,(3x+5-1)(3x+5-4)=0,(3x+
4
1
4)(3x+1)=0,3x+4=0 或 3x+1=0,∴x1=-3,x2=-3
【点评】 解一元二次方程要根据方程的特点选择合适的方法解题,但 一般顺序为:直接开平方法→因式分解法→公式法.
x1
+
x2
=
-
2k k-1
,