(优选)线性代数矩阵的秩习题
(优选)线性代数矩阵的秩习题
矩阵A的秩,记作 r(A) 或 R(A)或 rank(A)或 秩(A) .
例1和例2综合 求矩阵A和B的秩 其中
A 421
2 3 7
531
B
2 0 0 0
1 3 0 0
0 1 0 0
3 2
4 0
0253 .
解 在A中 容易看出一个 B是一个有3个非零行的
x y ... 0 0
0 y ... 0 0
原式=x (1)11 ... ... ... ... ... y (1)12 ... ... ... ... ...
0 0 ... x y
0 0 ... x y
0 0 ... 0 x n-1 y ... 0 0
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 x
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 x
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 0 4
2 0 2 5
P21 ,2
解:D (1) (1)13 5 2 (1)23 3 0 1 (1)43 4
15
a11 a12 -1 a14
D= a21 a22 2 a24 a31 a32 0 a34
a41 a42 1 a44
(-1)1+1
P21 ,5(3)
P21 ,5(3)
解答:可能有 .
例如
A100
0 1 0
(精选)线性代数矩阵习题
(精选)线性代数矩阵习题习题课一.单项选择题1. 设A 为n 阶可逆矩阵,λ为A 的一个特征根,则A 的伴随矩阵的特征根之一为( )A.n A ||1-λB. ||1A -λC. ||A λD. n A ||λ2.设λ为非奇异矩阵A 的一个特征值,则矩阵12)31(-A 有一特征值为( )A.34B.43C.21D.413.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的( )A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件 4.设B A ,为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则( ) A. B E A E -=-λλB. A 与B 有相同的特征值与特征向量C. A 与B 都相似于一对角矩阵D. 对任意常数t ,有A tE -与B tE -相似二.填空题1.若四阶矩阵A 与B 相似,矩阵A 的特征值为51,41,31,21,则行列式=--||1E B 2.设n 阶方阵A 伴随矩阵为*A ,且,0||≠A 若A 有特征值λ,则E A +2*)(的特征值为3.矩阵=1111111111111111A 的非零特征值为 4.n 阶矩阵A 的元素全是1,则A 的n 个特征值为三、计算题1.设=0011100y xA 有三个线性无关的特征向量,求x 和y 应满足的条件. 2.设三阶实对称矩阵A 的特征值为1,2,3;矩阵A 的属于特征值1,2,的特征向量分别为,)1,2,1(,)1,1,1(21T T --=--=αα(1)求A 的属于特征值3的特征向量; (2)求矩阵A .3.设T)1,1,1(-=ξ为---=2135112b a A 的一特征向量. (1)求b a ,及特征值ξ; (2) A 可否对角化?4.设三阶矩阵 A 满足),3,2,1(==i i A i i αα其中,)2,1,2(,)1,2,2(,)2,2,1(321TT T --=-==ααα 试求矩阵A .5.设矩阵,3241223----=k k A 问k 为何值时,存在可逆矩阵P ,使得AP P 1-为对角矩阵?并求出P 和相应的对角矩阵.答案一.单项选择题 1、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则ξλξ**A A A =,即ξλξ*||A A =, 从而ξλξ|)|(1*A A -=.注:一般地,我们有:若λ为A 的一个特征根,则 (1)T A 的特征根为λ;(2)k A 的特征根为kλ; (3)aA 的特征根为λa ;(4)若A 可逆,则1-A 的特征根为λ1; (5)若0≠λ,则*A 的特征根为||1A -λ; (6)kE A +的特征根为k +λ.2、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则,,2222ξλξξλξa aA A ==(a 为实数), 所以, 12)31(-A 的一个特征值为12)231(-?=43. 3、解: B. 4、解: D. 二.填空题 1、解: 24.设ξλξξ(=A 为A 的属于λ的一个特征向量), A 可逆, 则ξλξ1 1--=A ,ξλξ)1()(11-=---E A ,即 E A--1的特征值为1-λ-1, 从而=--||1E A (2-1)(3-1)(4-1)(5-1)=24.另一方面, A 与B 相似,所以,存在可逆矩阵P 使得 B AP P =-1 , 即P A P B111---=,P E A P EP P P A P E B )(111111-=-=-------,所以E B--1与E A --1相似,相似矩阵有相同的行列式,因此, =--||1E B 24.2、解:.1||22+λA若A 的特征值为λ,则*A 的特征值为λ||A ,2*)(A 的特征值为22||λA ,所以, E A +2*)(的特征值为.1||22+λA3、解: 4.计算特征行列式λλλλλλλλλ01010010001)4(1111111111111111||-=----------------=-A E 0)4(3=-=λλ .所以,非零特征值为4.4、解:n,0,其中0为n-1重根.(计算方法如上)。
矩阵的秩的习题、行列式与矩阵综合习题
23. A 为 m n 的矩阵, O 为零矩阵,证明:线性方程组 Ax 0 与 A Ax 0 同解.
T
24. 任意的列向量 ,有 A 0 ,证明: A 反对称.
T
6
A.3 B.. 2 C.1 D. 0
)
1 2 2 x ,三阶矩阵 B 0 ,且满足 AB 0 ,则( 8. 设 A 2 6 3 0 6
A. x 8, r ( B ) 1 C. x 8, r ( B ) 1 B. x 8, r ( B ) 2 D. x 8, r ( B ) 2
cos 20. 求 sin
sin cos , cos sin
1
sin cos
n
21. A 为方阵, O 为零矩阵,证明: A O 当且仅当 A A O .
T
5
22. A 为对称矩阵,且 A O ,其中 O 为零矩阵,证明: A O .
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 an1 x1 an 2 x2 ann xn bn
(1)
4
闫浩教你线性代数 2015 秋季学期(北京邮电大学)11 月 5 日用
a 1 a a
a a 1 a
... a ... a ... a 的秩为 n-1,求 a. ... 1
a b 3 13. 3 阶矩阵 A= 2 0 2 3 2 1
和 r(AB).
b 1 a 1 , B= 1 1 0 , 已知 r(AB)小于 r(A)和 r(B),求 a,b 0 2 1
利用秩的性质解题练习题
利用秩的性质解题练习题秩(Rank)是线性代数中的一个重要概念,它可以帮助我们解决各种实际问题。
本文将通过一系列练习题来演示如何利用秩的性质来解题。
1. 练习题1已知矩阵A为一个3×3的方阵,其秩为2。
现有线性方程组Ax=b,其中b为3维向量。
请问是否存在唯一解?若存在解,求出解的表达式。
解题思路:根据秩的定义,我们知道秩等于矩阵中非零行的最大数目。
由于A的秩为2,说明A的两行(或两列)线性无关。
因此,方程组Ax=b必然存在解。
设解为x=(x1, x2, x3),则Ax=b可以表示为:a11*x1 + a12*x2 + a13*x3 = b1a21*x1 + a22*x2 + a23*x3 = b2a31*x1 + a32*x2 + a33*x3 = b3我们可以将A的两行取出来组成一个新的矩阵B,将b的两个元素取出来组成一个新的向量C,即:B = [a11 a12 a13;a21 a22 a23]C = [b1;b2]由于B的秩为2,所以存在唯一解。
解可以通过求解Bx=C得到:x = inv(B) * C2. 练习题2已知矩阵A为一个4×4的方阵,其秩为3。
现有线性方程组Ax=b,其中b为4维向量。
请问是否存在解?若存在解,求出解的表达式。
解题思路:同样根据秩的定义,我们知道秩等于矩阵中非零行的最大数目。
由于A的秩为3,说明A的三行(或三列)线性无关。
因此,方程组Ax=b必然存在解。
设解为x=(x1, x2, x3, x4),则Ax=b可以表示为:a11*x1 + a12*x2 + a13*x3 + a14*x4 = b1a21*x1 + a22*x2 + a23*x3 + a24*x4 = b2a31*x1 + a32*x2 + a33*x3 + a34*x4 = b3a41*x1 + a42*x2 + a43*x3 + a44*x4 = b4通过观察我们可以发现,方程组的个数多于未知数的个数,所以我们可以得出结论:该线性方程组有无穷多组解。
线性代数练习题(有答案)
《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。
矩阵的秩练习题
矩阵的秩练习题一、选择题1. 设矩阵A为3阶方阵,若r(A)=2,则A的行向量组()。
A. 线性相关B. 线性无关C. 可以构成空间D. 不能确定2. 若矩阵A的秩为r,则A的行秩和列秩()。
A. 相等B. 不相等C. 大于rD. 小于r3. 设矩阵A为m×n矩阵,若r(A)=m,则()。
A. A的列向量组线性无关B. A的行向量组线性相关C. A为满秩矩阵D. A为可逆矩阵4. 设矩阵A为n阶方阵,若r(A)=n,则A()。
A. 可逆B. 不可逆C. 对角线元素全为0D. 对角线元素全为1二、填空题1. 设矩阵A为4×5矩阵,若r(A)=3,则矩阵A的列向量组中线性无关的向量个数为______。
2. 若矩阵A为3×4矩阵,r(A)=2,则矩阵A的行向量组中线性相关的向量个数为______。
3. 设矩阵A为5阶方阵,若r(A)=4,则矩阵A的秩的补为______。
4. 若矩阵A为2×3矩阵,且r(A)=2,则矩阵A的列空间维数为______。
三、计算题1. 已知矩阵A如下,求矩阵A的秩:A = \(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8& 9 \end{bmatrix}\)2. 设矩阵B如下,求矩阵B的秩:B = \(\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0& 1 \end{bmatrix}\)3. 已知矩阵C如下,求矩阵C的秩:C = \(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8\\ 3 & 6 & 9 & 12 \end{bmatrix}\)4. 设矩阵D如下,求矩阵D的秩:D = \(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8\\ 0 & 0 & 0 & 0 \end{bmatrix}\)四、应用题1. 设矩阵E为3×4矩阵,r(E)=3,证明E的列向量组线性无关。
线性代数B-2.5矩阵的秩+习题s
• 矩阵的秩的定义与性质 • 矩阵秩的应用 • 习题讲解 • 矩阵秩的扩展知识 • 总结与展望
01
矩阵的秩的定义与性质
定义
矩阵的秩是其行向量组和列向量组中线性无关向 量的最大数量。 矩阵的秩记作r(A),其中A是给定的矩阵。
零矩阵的秩定义为0。
性质
若矩阵A经过有限次初等行变 换得到矩阵B,则r(A) = r(B)。
子式法
根据定义,求出矩阵所有不为零的子 式的阶数,取其中最大的一个数即为 矩阵的秩。
行空间维数法
利用行空间维数的概念求出矩阵的秩。
02
矩阵秩的应用
在线性方程组中的应用
线性方程组的解空
间
矩阵的秩等于系数矩阵的秩,也 等于增广矩阵的秩,这些秩都等 于线性方程组解空间的维数。
判断方程组是否有
解
如果系数矩阵的秩小于增广矩阵 的秩,则线性方程组无解;如果 相等,则有唯一解;如果前者大 于后者,则有无穷多解。
首先,将矩阵$A$进行初等行变换,得到行阶梯形矩阵 。通过初等行变换,我们可以将矩阵$A$变为行阶梯形 矩阵,从而得到矩阵$A$的秩。
答案
矩阵$A$的秩为3。
题目2
给定矩阵$B = begin{bmatrix} 1 & 2 0 & 0 end{bmatrix}$,求矩阵$B$的秩。
解析
观察矩阵$B$,可以发现第二行全为0,因此矩阵$B$的 秩为1。
答案
矩阵$C$的秩为3。
题目4
给定矩阵$D = begin{bmatrix} 1 & -1 & 2 & -1 2 & 0 & -1 & 2 -1 & 2 & 1 & -1 end{bmatrix}$,求矩阵$D$的 秩。
线性代数-矩阵的秩
设A
=
2 −2 3
−4 4 −6
8 −2 0
−036 , b
=
2 43
求矩阵A及矩阵B = ( A b)的秩. 解 分析:设 B 的行阶梯形矩阵为 B~ = ( A~,b~),
则 A~ 就是 A 的行阶梯形矩阵, 故从 B~ = ( A~,b~) 中可同时看出 R( A) 及 R(B).
1 − 2 2 − 1 1
故 R(AT A) = R(A).
又由于 B 也可经一次初等变换变为 A, 故也有 R(B) ≤ R( A).
因此 R( A) = R(B).
经一次初等行变换矩阵的秩不变,即可知经 有限次初等行变换矩阵的秩仍不变.
设A经初等列变换变为 B,也有R( A) = R(B).
设 A 经初等列变换变为 B, 则 AT 经初等行变换变为 BT , R( AT ) = R(BT ),
6 11
则这个子式便是A 的一个最高阶非零子式.
设 n 阶可逆矩阵 A, A ≠ 0, ∴ A 的最高阶非零子式为 A, R( A) = n, 故 A 的标准形为单位阵 E, A ~ E.
可逆矩阵的秩等于阶数 ,故称可逆矩阵 为满秩矩阵. 奇异矩阵为降秩矩阵 .
1 − 2 2 − 1 1
例5
− 2 0 1 5
解
13 02 −2 0
1 0
3 = 2 ≠ 0, 2
计算A的3阶子式,
−2
1 3 2 1 −2 2
− 1 = 0, 0 2 3 = 0, 0 − 1 3 = 0,
1
−2 0 5 −2 1 5
3 −2 2
2 − 1 3 = 0, ∴ R(A) = 2.
015
1 3 − 2 2 另解 对矩阵 A = 0 2 − 1 3 做初等变换,
[全]线性代数之矩阵秩的相关题型总结[下载全]
线性代数之矩阵秩的相关题型总结
一、考察题型
1、求数字型矩阵的秩
2、求抽象矩阵的秩
3、已知矩阵及其秩的信息,求其待定常数或其所满足的关系
上面的3种考察题型,前2个题型,在考研数学一近几年的真题中考得都是填空题。
但是题型2在2008年考察了一道证明题。
可以把重点放在求抽象矩阵的秩这种题型。
二、求抽象矩阵的秩知识
对于抽象矩阵的秩,常利用有关矩阵的秩的下述结论求即可。
题型一:求数字型矩阵的秩
例1(2007年考研真题)
分析:本题考察了矩阵幂的求法。
解:
总结:
题型二:求抽象矩阵的秩
例2:(2008年考研真题)
证明:
总结:本题主要考察r(A+B)<=r(A)+r(B).
题型三:已知矩阵及其秩的信息,求其待定常数或其所满足的关系例3:
分析:矩阵A是4阶矩阵,且r(A)=3<4,则|A|=0
解:
以上为求矩阵的秩常考题型分析,通过“题型—真题—解题思路——考查知识点”这一过程的学习,使考生详细了解到每一考点中已考过的题型,这种题型以前考过什么样的题目,常与哪些知识点联合,角度等等,从而使考生更好、更快地掌握重点和规律,快速提高解题能力。
线性代数习题及解答完整版
线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数试题库(矩阵)
1.对任意n阶方阵A,B总有()A.AB=BAB.AB=BAC.(AB)T=ATBT答案:B D. (AB)2=A2B2AB==AB2.在下列矩阵中,可逆的是()⎛000⎫⎪A. 010⎪001⎪⎝⎭⎛110⎫⎪C. 011⎪121⎪⎝⎭答案:D ⎛110⎫⎪B. 220⎪ 001⎪⎝⎭⎛100⎫⎪D. 111⎪ 101⎪⎝⎭-13.设A是3阶方阵,且A=-2,,则A=()A.-2C. B.-D.2 1 21 2答案:B1⎫⎛11 ⎪1⎪的秩为2,则λ=() 4.设矩阵A= 1223λ+1⎪⎝⎭A.2B.1C.0D.-1答案:B提示:显然第三行是第一行和第二行的和⎛101⎫⎪25.设A= 020⎪,矩阵X满足方程AX+E=A+X,求矩阵X. 101⎪⎝⎭⎛201⎫⎪答案:X= 030⎪102⎪⎝⎭解: AX+E=A+X⇒(A-E)X=A-E 22⎛101⎫⎛001⎫⎪⎪A= 020⎪⇒A-E= 010⎪101⎪ 100⎪⎝⎭⎝⎭显然A-E可逆,所以:(A-E)-1(A-E)X=X=(A-E)-1(A2-E) =(A-E)-1(A-E)(A+E)=A+E⎛201⎫⎪∴X= 030⎪102⎪⎝⎭6.求下列矩阵的秩⎛01-1-12⎫⎪02-2-20⎪ A= 0-1111⎪⎪1101-1⎝⎭答案:3⎛-1-4⎫⎛-10⎫-157.设矩阵P= ⎪,D= ⎪,矩阵A由矩阵方程PAP=D确定,试求A. ⎝11⎭⎝02⎭答案:⎛-511/3127/3⎫⎪⎝127/3-31/3⎭P-1AP=D⇒A=PDP-1⇒A5=PD5P-1⎛-1-4⎫⎛1/3-1/3⎫5⎛-10⎫-1P= ⇒P=⎪⎪,D= ⎪⎝11⎭⎝4/3-1/3⎭⎝032⎭所以:A5=PD5P-1= ⎛-1-4⎫⎛-10⎫⎛1/3-1/3⎫⎛-511/3127/3⎫⎪. ⎪⎪= ⎪110324/3-1/3127/3-31/3⎝⎭⎝⎭⎝⎭⎝⎭*-1-18.设矩阵A可逆,证明(A)=AA 证明:因为AA=AA=AE,矩阵A可逆,所以A≠0 **⇒AA*=A*A=E AA又因为A-1=1*-1-1,所以:(A)=AA A9若A是( ),则A必为方阵.A. 分块矩阵C. 转置矩阵答案:B B. 可逆矩阵 D. 线性方程组的系数矩阵10.设n阶方阵A,且A≠0,则(A*)-1= ( ). AA. A A*B. AD. A-1C. A A *A答案:A11若( ),则A B A. A=B B. 秩(A)=秩(B)C. A与B有相同的特征多项式D. n阶矩阵A与B有相同的特征值,且n个特征值各不相同答案:B⎛1⎫⎪T12.设A= 2⎪,则AA=______.3⎪⎝⎭⎛123⎫⎪答案: 246⎪369⎪⎝⎭13.设m⨯n矩阵A,且秩(A)=r,D为A的一个r+1阶子式,则D=_____. 答案:0 14已知PAP=B,且B≠0,则答案:115.已知 -1AB______. ⎛20⎫⎛31⎫⎪X= ⎪,求矩阵X。
线性代数(第二版)第七节矩阵的秩
例 1 求矩阵 A 的秩,其中
1 2 3 A 2 3 5
4 7 1 解 在 A 中,容易看出2阶子式
12 1 0,
23 而 A 的三阶子式只有一个 |A|
单击这里计算 | A | 0, 因 此 r ( A) 2.
0 0 1 3
0
0
0
5
1 3 1 0 0 1 0 2 4 0 1 0
0 0
0 0
0 0
3 0
3 0
0 0
.
的第竖台方
第 一 个 非 零 元
,
一 个 元 素 为 非 也 零 就 元 是 非
)
(
线 每 段 竖 线 的 长 度 为 后 一
,
阶 数 即 是 非 零 行 的 阶 行 梯 数
;
的 元 素 全 为 每 零 个 台 阶 只
1 0
0 1
3 3
0 0 0 0 0
1 0 0 0 0
B3
0 0
1 0
0 1
0 0
0 0
0 0 0 0 0
行阶梯形矩阵
其特点是:阶梯线以下 的元素全是0,台阶数即为 非零行数, 竖线后面的第一个 元素为非零元 .
行最简形矩阵
其特点是:非零行的第 一个非零元为1,且这些非 零元所在的列的其它元素都 为0.
m n 矩阵
A的
k 阶子式共有
C
k m
C
k n
个.
利用这个概念,可以给出矩阵
的秩的定义.
定义 1.16 如果数域 F 上的 m n 矩阵
a11
A
a21
《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答
例 3.10
求齐次线性方程组
⎧ ⎪ ⎨
x1 x1
− −
x2 x2
− +
x3 x3
+ x4 = 0 − 3x4 = 0
的通解.
⎪⎩x1 − x2 − 2x3 + 3x4 = 0
解 系数矩阵经过初等变换得
⎡1 −1 −1 1 ⎤
⎡1 −1 0 −1⎤
A = ⎢⎢1 −1 1 −3⎥⎥ ⎯r⎯→ ⎢⎢0 0 1 −2⎥⎥
阶梯形的非零行数判断矩阵的秩.
2
⎛1 3 1 4⎞
解
A
⎯r⎯→
⎜ ⎜
0
6
−4
4
⎟ ⎟
,故
R(
A)
=
2
.
⎜⎝ 0 0 0 0⎟⎠
⎡1 1 2 2 3 ⎤
例 3.2
设A=
⎢⎢0 ⎢2
1 3
1 a+2
−1 3
−1 a+6
⎥ ⎥ ⎥
,则
A
的秩
R(
A)
=
(
).
⎢⎣4 0 4 a + 7 a +11⎥⎦
(A) 必为 2
6
⎡ 1 1 0 −2 1 −1⎤
⎡1 0 0 2 −1 −1⎤
( A | b) = ⎢⎢−2 −1
1
−4 2
1
⎥ ⎥
⎯r⎯→
⎢⎢0
1
0
−4
2
0
⎥ ⎥
⎢⎣−1 1 −1 −2 1 2 ⎥⎦
⎢⎣0 0 1 −4 2 −1⎥⎦
R( A) = R( A | b) = 3 < 5 ,所以方程组有无穷多解,令 x4 = c1, x5 = c2 ,得
求矩阵的秩例题
求矩阵的秩例题矩阵秩(Rank)是线性代数中常用的概念,在很多应用中都具有重要的意义。
如果你正在学习线性代数,那么一定要好好掌握矩阵秩的相关内容。
本文将介绍如何计算矩阵的秩,以及一些常见的例题。
1. 矩阵秩的定义在线性代数中,矩阵秩的定义是矩阵中线性无关行或列的最大个数。
也就是说,矩阵秩指的是矩阵中可以通过线性组合得到的最大独立行或列的数量。
2. 矩阵秩的计算计算矩阵秩有两种方法:高斯消元法和矩阵的行列式。
2.1 高斯消元法高斯消元法是一种常用的计算矩阵秩的方法。
具体步骤如下:(1)用矩阵的行变换将矩阵化为行最简阶梯矩阵。
(2)计算矩阵中非零行的数量,即为矩阵的秩。
2.2 矩阵的行列式矩阵的行列式也可以用于计算矩阵的秩。
具体步骤如下:(1)将矩阵化为阶梯矩阵。
(2)计算矩阵的行列式,去掉其中的0元素。
(3)非零元素的个数,即为矩阵的秩。
3. 矩阵秩的例题下面是一些常见的矩阵秩的例题。
例题1:已知矩阵A=2 3 41 2 33 5 7求矩阵A的秩。
解:将矩阵A化为行最简阶梯矩阵,可以得到:1 2 30 1 10 0 0矩阵的非零行有两行,因此矩阵A的秩为2。
例题2:已知矩阵B=1 2 34 5 67 8 9求矩阵B的秩。
解:将矩阵B化为行最简阶梯矩阵,可以得到:1 2 30 -3 -60 0 0矩阵的非零行只有一行,因此矩阵B的秩为1。
以上就是关于矩阵秩的介绍和常见例题的解答。
掌握了矩阵秩的相关知识,可以更好地理解线性代数的许多内容,同时也能够更轻松地解决涉及到矩阵秩的问题。
上海交大线性代数习题答案
上海交大线性代数习题答案上海交大线性代数习题答案线性代数作为数学的一个重要分支,是大多数理工科学生必修的一门课程。
而上海交通大学作为中国著名的高等学府,其线性代数课程更是备受关注。
在学习过程中,习题是巩固知识、提高技能的重要途径。
因此,本文将为大家提供上海交大线性代数习题的答案。
1. 矩阵的秩矩阵的秩是线性代数中一个基本概念,它描述了矩阵的行(列)向量组的线性无关程度。
在上海交大线性代数课程中,关于矩阵的秩的习题是必不可少的。
例如,题目可能会给出一个矩阵A,要求求解其秩。
这时,我们可以使用高斯消元法或者矩阵的行列式等方法来解决。
具体的计算过程可以参考教材中的相关知识点,或者通过搜索引擎来获取详细的步骤和示例。
2. 线性方程组的解线性方程组是线性代数中的重要内容之一,也是上海交大线性代数课程中的重点内容。
在解线性方程组的过程中,我们需要运用矩阵的运算和求解方法。
例如,题目可能会给出一个线性方程组,要求求解其解集。
我们可以使用高斯消元法、矩阵的逆等方法来解决。
同样,具体的计算过程可以参考教材中的相关知识点,或者通过搜索引擎来获取详细的步骤和示例。
3. 特征值和特征向量特征值和特征向量是矩阵理论中的重要概念,也是上海交大线性代数课程中的重要内容。
在求解特征值和特征向量的过程中,我们需要使用矩阵的特征方程等方法。
例如,题目可能会给出一个矩阵A,要求求解其特征值和特征向量。
我们可以通过求解矩阵的特征方程来得到特征值,然后通过代入特征值求解特征向量。
同样,具体的计算过程可以参考教材中的相关知识点,或者通过搜索引擎来获取详细的步骤和示例。
4. 线性变换线性变换是线性代数中的重要内容之一,也是上海交大线性代数课程中的重点内容。
在解线性变换的问题中,我们需要理解线性变换的定义和性质,并运用矩阵的运算和求解方法。
例如,题目可能会给出一个线性变换的矩阵表示,要求求解其性质或者进行相关计算。
我们可以通过矩阵的运算和性质来解决这类问题。
线性代数 第二章 矩阵的秩与线性方程组 参考答案
3 2 0 5 0 1 3 −2 2 3 6 − 1 3 −2 (3) A = 0 2 − 1 3 ; (4) . A = 2 0 1 5 −3 −2 0 1 5 1 6 −4 −1 4
1 0 → 0 0
r3 + 3r2 r4 + 5 r2
6 −4 4 0 0
4 1 −3 −2 3 r4 + r3 0 → 0 0 1 −2 0 −1 2 0
−1
6 −4
4 4 −3 − 2 3 0 0 1 −2 0 0 0 0
其中 x2 , x4 , x5 为自由未知量,令
x2 = c1 , x 4 = c 2 , x 5 = c 3 ,
可得通解为
5
2 1 x1 = − 3 c1 − 3 c2 x 2 = c1 1 x3 = − c3 , ( c1 , c 2 为任意常数) . 3 x 4 = c2 x5 = c3
解 (1)系数矩阵
3
1 −3 2 1 −3 2 行 A = 2 −5 3 → 0 1 −1 , 3 −8 2 0 0 −3 x1 = 0 由于 r ( A) = 3 = n ,故方程组只有唯一零解,即 x2 = 0 . x = 0 3
x3 = c1, x 4 = c 2 ,
可得通解为
x1 = c1 + 2c2 x = c + 3c 2 2 1 , ( c1 , c 2 为任意常数) . x = c 3 1 x4 = c2
2021年10月04184线性代数真题及答案
2021年10月《线性代数》真题说明:在本卷中,A T表示矩阵A的转置矩阵,A∗表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.第一部分选择题一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.已知2阶行列式D的第1行元素及其余子式都为a,则D的值为()A.0B.a2C.−a2D.2a2【答案】A2.若A,B,C均是n阶矩阵,且满足ABC=E,则B−1=()A.ACB.CAC.A−1C−1D.C−1A−1【答案】B【解析】ABC=E,B=(AC)−1,B−1=CA.3.设向量组(1,1,1)T,(a,1,0)T,(1,b,0)T线性相关,则数a,b可取值为()A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1,b=1【答案】D4.设非齐次线性方程组Ax=b,其中A为m×n阶矩阵,r(A)=r,则()A.当r=n时,Ax=b有惟一解B.当r<n时,Ax=b有无穷多解C.当r=m时,Ax=b有解D.当m=n时,Ax=b有惟一解【答案】C5.设矩阵A=(1111),B=(2000),则A与B的关系为()A.相似且合同B.相似但不合同C.不相似但合同D.不相似且不合同【答案】A第二部分非选择题二、填空题:本大题共10小题,每小题2分,共20分。
6.行列式|a11a12a21a22|中元素a ij的代数余子式为A ij(i,j=1,2),则a11A21+ a12A22=_________。
【答案】07.设α1,α2,β1,β2是3维列向量,且3阶行列式|α1,α2,β3|=m,|α2,β2,α1|=n,则|α2,α1,β1+β2|=_________。
【答案】−m−n8.若a=(1,2,3,4)T,则a T a=_________。
【答案】309.设A为2阶矩阵,将A的第1行与第2行互换得到矩阵B,再将B的第2行加到第1行得到单位矩阵A,则A=_________。
25矩阵的秩及习题处理
T34(4):解: 2
3 2 2 3 令A 1 1 0 ,则 | A | 1 1 0 1 0,且: 1 2 1 1 2 1 2
A11
1 0 2 1
2 3 2 1
2 3
1, A12
4, A22
1
3
0
1 1
1, A13
T
3)当r ( A) min{ m , n}时,称矩阵 A为满秩矩阵。
注: (1) 非奇异矩阵(可逆矩阵)A,有 | A | 0,
A的秩就等于它的阶数,A为满秩矩阵。
(2) 奇异矩阵A,也称为降秩矩阵。
3 2 2 1 0 3 1 2 5 0 观察: 求矩阵 B 的秩. 0 0 0 4 3 0 0 0 0 0
1 已知 A 0 例1: 2 1 3 2 0, 解 0 2
1 0 3 2 1 1 , 2 1 00 3 2
3 2 2 2 1 3 ,求秩. 0 1 5
计算A的3阶子式,
2 2
3 2 2 1 0 , 2 3 2 , 1 3 00 0 1 5 2
§2.5 矩阵的秩
1. k 阶子式
定义 : 设A (a ij )是m n矩阵,从 A中任取 k行k列 ( k min{ m , n}), 把位于这些行和列的相 保持它们原来的相对位 矩阵 A的一个 k阶子式。
1 0 A 0 2 0 0
交处的元素,
置所构成的 k阶行列式,称为
B , A
1 - 2 A 1 BA1 1 1 ,且 A 则D 0 1 , 1 A 0 1 - 2 3 4 1 - 2 1 1 1 A BA 0 1 2 3 0 1 2 1 , 1 0 1 2 1 2 1 0 1 所以 A . 0 0 1 2 0 0 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=xn +(1)n+1 yn
0 ... x y n2
根据这一定理 为求矩阵的秩 只要把矩阵用初等(行)变换变成行阶梯形矩阵 行阶梯形矩阵中非零行的行数即是该矩阵的秩.
例4 求矩阵A的秩 并求A 所以r(A)3.
的一个最高阶非零子式 其中
为求A的最高阶非零子式
A 2331
2 2
0 6
0 3 1 4
5 6 5 1
4031 .
解 因为
A
3 3
21
2 2
2 05
所以这个子式是A的最高阶非 零子式.
例5 即AB与B等价
例6
小结
1. 矩阵的秩的概念 2. 求矩阵的秩的方法
(1)定义法 寻找矩阵中非零子式的最高阶数;
(2)初等变换法 把矩阵用初等行变换化为行阶梯形矩阵, 行阶梯形矩阵中非零行的行数就是矩阵的秩.
P67:31
练习题 P67:31,32
规定 零矩阵的秩 等于0. 故r(A) =0 A=O.
矩阵A的秩,记作 r(A) 或 R(A)或 rank(A)或 秩(A) .
例1和例2综合 求矩阵A和B的秩 其中
A 421
2 3 7
531
B
2 0 0 0
1 3 0 0
0 1 0 0
3 2
4 0
0253 .
解 在A中 容易看出一个 B是一个有3个非零行的
(4)对于n阶矩阵A 当|A|0时 r(A)n 当|A|0时 r(A)n.
A
a21
a22
a2n
可逆矩阵(非奇异矩阵),又称为满秩矩阵 am1 am2
amn
不可逆矩阵(奇异矩阵),又称为降秩矩阵.
补充例3 在秩是r 的矩阵中,有没有等于0的r1阶子式? 有没有等于0的 r 阶子式?
解答:可能有 .
3、矩阵的秩的性质
(1)若矩阵A中有某个 s 阶子式不为0 则r(A) s
若A中所有 t 阶子式全为0 则r(A)t.
(2) 若A为mn矩阵 则 0 r(A) min{m n}.
r(Am×n) min{m n} 可叫做满秩矩阵,否则叫做降秩矩阵。
(3) r(A)r(AT),
a11 a12
a1n
位于这些行 列 交叉处 的 k2 个元素 不改变它们在A中所 处的位置次序而得的k阶行列式 称为矩阵A的k阶子式.
例如
A
1 2 2
1 1 3
2 1 1
1 1 1
4 2 2
3 6 9 7 9
11 3 1
是 A的一个二阶子式.
说明
mn矩阵的k阶子式有
C
k m
C
k n
个.
2、矩阵的秩
定义2 设在mn矩阵A中有一个不等于零的r阶子式 D 且所有r1阶子式(如果存在的话)全等于0 那么数 r 称为 矩阵A的秩 D 称为矩阵A的最高阶非零子式.
2阶子式
行阶梯形矩阵 其所有4阶子
1 2
2 3
1
0
式全为零. 以3个非零行的首 非零元为对角元的3阶子式
A的3阶子式只有一个|A| 经计 算可知|A|0 因此r(A)2.
2 1 3 0 3 2
提示 对于行阶梯形矩阵 它的
秩就等于非零行的行数.
00 4 是一个上三角行列式 它显然 =24不等于0 因此r(B)3.
(优选)线性代数矩阵的秩习题
课本§2.6 矩阵的秩
一、矩阵的秩的概念 二、矩阵的秩的求法
一、矩阵的秩的概念
矩阵常用的三种特殊的等价形式:
Amn
r ~ 行阶梯形矩阵
(形式不唯一)
r ~ 行最简形矩阵
(形式唯一)
c ~ 标准形
F Er O O O mn
标准形由数r完全确定,r也就是A的行阶梯形中非零行 的行数 这个数便是矩阵A的秩.
P67:32
练习题 P67:31,32
1 2 3 1
2 1 k 2 32.设A为5 4的矩阵,A 0 1 1 3,且A的秩为3,求k.
1 1 0 4
2 0 2 5
P67:32
练习题 P67:31,32
1 2 3 1
2 1 k 2 32.设A为5 4的矩阵,A 0 1 1 3,且A的秩为3,求k.
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 x
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 x
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 x
继续讨论x的值的变化对矩阵A的秩的影响,结果同解法一。
一、矩阵的秩的概念
矩阵常用的三种特殊的等价形式:
Amn
r ~ 行阶梯形矩阵
(形式不唯一)
r ~ 行最简形矩阵Er O O O mn
由于矩阵的等价标准形的唯一性没有给出证明,也可 以借助行列式来定义矩阵的秩.
1、k 阶子式
定义1 在mn矩阵A中 任取 k 行 k 列 (1 k m,1 k n)
x y ... 0 0
0 y ... 0 0
原式=x (1)11 ... ... ... ... ... y (1)12 ... ... ... ... ...
0 0 ... x y
0 0 ... x y
0 0 ... 0 x n-1 y ... 0 0
y 0 ... 0 x n-1
=xn +y (1)12 y (1)n-11 ... ... ... ... ... ... ... ...
例如
A100
0 1 0
0 0 1
000
r(A)3.
000
0 0
0 0
是等于0的2阶子式
1 0 0 是等于0的3阶子式. 010
二、矩阵的秩的求法
任何矩阵都可以经过初等行变换变成行阶梯形矩阵。 问题:经过初等变换后,矩阵的秩 变 吗? ❖定理1 若A与B等价 则 r(A)r(B).
即初等变换不改变矩阵的秩 .
0 6
0 3 1 4
5 6 5 1
01 43
~ 行变换
1 0
6 4
行阶梯形矩00 阵00
4 3 0 0
1 1 4 0
41 08
考虑由A的 1、2、4 列构成的
矩阵
3
A0
3 2 1
2 2
0 6
65 51
.~
1 0 0 0
6 4 0 0
1
1
4
0
可见r(A0 )=3,
又因A0的子式
3 25 3 2 6 0
1 1 0 4
2 0 2 5
P21 ,2
解:D (1) (1)13 5 2 (1)23 3 0 1 (1)43 4
15
a11 a12 -1 a14
D= a21 a22 2 a24 a31 a32 0 a34
a41 a42 1 a44
(-1)1+1
P21 ,5(3)
P21 ,5(3)