线性代数 矩阵秩的性质(补充)
线性代数:矩阵秩的求法
6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次
线性代数 矩阵的秩
小结. 求m × n 矩阵A 的秩r(A), 可用以下方法: 1. 对于比较简单的矩阵, 直接用秩的定义 直接用秩的定义. .
∼
1 0 0 0
0 1 0 4
0 1 0 −1 0 0 5 0
2. 用有限次初等变换, 用有限次初等变换, 将矩阵A变为它的等价 标准形 , 则 r = r( A ) . O O 3. 用有限次行初等变换, 用有限次行初等变换,将矩阵A变为梯矩阵, 则 r(A)等于该梯矩阵的非零行的行数 等于该梯矩阵的非零行的行数. (方法2 与方法3 相比, 方法3 较为简单.)
例1 求下列矩阵的秩: 求下列矩阵的秩:
(1) A = 2 2
1 1
2 4 8 (2) B = 1 2 1
(3) C = 2
1 2 4 1 4 8 2 3 6 2 0
.
解 (1)因为
1 1 a = 1 ≠ 0 而 det A = 1 1 = 0 A= 11 , 2 2 2 2 故 r ( A) = 1
又B 并无3阶子式, 阶子式,故 r (B) =2.
8 2 2 0
故, 矩阵C 的秩不小于2.
= −3 ≠ 0
另外, 因为矩阵 C 不存在高于3阶的子式, 可知r (C) ≤ 3. 又因矩阵C 的第1, 2行元是对应成比例的, 行元是对应成比例的, 故C 的任一 3阶 子式皆等于零. 子式皆等于零.因此
0 0 1 0
4 3 −3 4
1 0 B= 0 0
0 1 0 0
−1 −1 2 0
0 0 1 0
4 3 −3 4
1 0 (2) 每个台阶只有一行, 每个台阶只有一行,台阶 A = 0 数即是非零行的行数, ,阶梯 数即是非零行的行数 0 线的竖线后面的第一个元素
线性代数§3.3矩阵的秩
设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n
秩知识点总结
秩知识点总结本文将就秩知识点进行总结,从不同角度来解释秩的概念、性质、应用及其相关定理。
秩是线性代数中的一个重要概念,它在矩阵的研究中有着重要的作用。
秩的概念和性质是线性代数的基础知识,对于理解线性代数的其他内容具有重要意义。
一、秩的定义1.1 矩阵的行秩和列秩在矩阵的行空间中,秩的定义是行空间的维数。
同样,在矩阵的列空间中,秩的定义是列空间的维数。
行秩和列秩都是矩阵的秩。
矩阵的秩是行秩和列秩中的较小者。
1.2 符号表示矩阵A的秩记作r(A)。
在文中,通常会简单地称呼为矩阵A的秩。
1.3 矩阵A的秩等于行秩和列秩行空间和列空间是等价的。
因此,矩阵A的行秩和列秩是相等的,即秩。
这个定理是线性代数中的重要定理。
二、秩的性质2.1 零矩阵的秩为0对于任意大小的零矩阵,其秩都是0。
这是秩的一个重要性质。
2.2 矩阵的秩不会超过其行数和列数中的较小者对于一个m×n的矩阵A,其秩r(A)不会大于m和n中的较小者。
2.3 等价矩阵的秩相等对于等价矩阵A和B,它们的秩是相等的。
2.4 矩阵的秩与矩阵的变换无关对于一个矩阵A,将其进行线性变换后得到的新矩阵B,矩阵A和B的秩是相等的。
秩只与原矩阵A有关,与其变换无关。
2.5 矩阵的秩与初等行变换有关通过初等行变换,矩阵的行秩是它所对应的行阶梯形矩阵的行秩。
这个性质对于计算矩阵的秩非常重要。
三、秩的应用3.1 矩阵的秩与方程组的解的个数有关当矩阵A的秩与矩阵的增广形式的秩相等时,方程组有唯一解;当矩阵A的秩小于矩阵的增广形式的秩时,方程组有无穷解;当矩阵A的秩小于矩阵的增广形式的秩时,方程组无解。
3.2 矩阵的秩与矩阵的逆的存在性有关当矩阵A是一个n×n的方阵,并且其秩等于n时,矩阵A存在逆矩阵。
3.3 矩阵的秩与矩阵的特征值有关关于特征值和特征向量的理论可以用秩来进一步分析特征值和特征向量的性质。
3.4 矩阵的秩与矩阵的奇异性有关当矩阵A的秩小于n时,矩阵A被称为奇异矩阵。
线性代数 矩阵的秩
所以R(A)=3. 对于B,显然
2 6 10
325 0 1 4 0 002
, 而所有的四阶子式全为零.
所以R(B)=3.
6
印象: 1. 一般的矩阵按定义求其秩,计算量相当大。
2. 行阶梯形矩阵按定义求其秩,非常方便,其秩为非零行的行数. 例2中的两矩阵A与B的秩相等, 且由例1知, 矩阵A与B等价. 由行列式的计算性质进一步有: 【定理2.4】 若矩阵A与B 等价,则R(A )=R(B ).
1
1 50
, 所以R(B)=2 .
05
3
结论:
1) n阶方阶A的秩 R(A) = n A 0 n方阵A可逆 2) n阶方阶A的秩 R(A) < n A 0 n方阵A不可逆
可见可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩 小于矩阵的阶数,因此,可逆矩阵又称满秩矩阵 不可逆矩阵又称降秩矩阵 行满秩矩阵 A的秩等于矩阵A的行数, 列满秩矩阵:A的秩等于矩阵A的列数,
2)若R(A)=r ,则A中至少有一个r阶子式非零,而所有阶 数大于r的子式全为零.
2
1 1 1 1
如矩阵: A 2 2 2 2
3 3 3 3
所有二、三阶子式为零,A中又有非零元素,
故R(A)=1;
又如:
1 2 1 0 0 B 0 0 5 3 6
0 0 0 0 0
由于B中所有三阶子式均为零,而二阶子式
第二章 矩阵
§6 矩阵的秩
矩阵的秩及其求法 矩阵的秩的性质
1
三、矩阵的秩
1.子矩阵和子式
定义2.10: 将矩阵 而成的矩阵
A
称
为
aij
矩
的某些行或某些列划去,余下的元素按原来的顺序排列 阵mAn 的子(矩)阵.矩阵A可以看做自身的一个子 (矩)
矩阵的秩的性质以及矩阵运算和矩阵的秩的关系
高等代数第二次大作业1120133839 周碧莹30011303班矩阵的秩的性质1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。
2.矩阵的初等行变换不改变矩阵的行秩。
证明:设矩阵A的行向量组是a1,…,as.设A经过1型初等行变换变成矩阵B,则B的行向量组是a1,…,ai,kai+aj,…,as.显然a1,…,ai,kai+aj,…,as可以由a1,…,as线性表处。
由于aj=1*(kai+aj)-kai,因此a1,…,as可以由a 1,…,ai,kai+aj,…,as线性表处。
于是它们等价。
而等价的向量组由相同的秩,因此A的行秩等于B的行秩。
同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。
3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。
证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式?第一个问题:设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。
而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。
显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。
B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!第二个问题以一个具体例子来说明。
例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。
矩阵秩的性质及矩阵秩与矩阵运算之间的联系
于是这个 r 阶子式的列向量组线性无关.从而它的延伸组,即 A 的第������1 , ⋯ , ������������ 列线性 无关.由于 A 的列秩为 r,因此 A 的第������1 , ⋯ , ������������ 列构成 A 的列向量组的一个极大无关组. 类似地可证明 A 的行向量的极大无关组的结论. █ 【定理8】 非零矩阵 A 不等于 0 的子式的最高阶数称为 A 的行列式秩,A 的行列式 秩与 A 的秩相等 证明 设������ × ������的矩阵的秩为 r,则 A 的行向量组的秩为 r,有 r 个行向量线性无关,设为 αi1 ,αi2 ,…,αir . 取此 r 个向量组成的������ × ������子矩阵������1 , 则rank A1 = r.于是������1 列向量组秩也为 r.同理 组成������1 的 r 级子矩阵������2 ,则������2 的列向量组线性无关.故 ������2 ≠ 0.而即是矩阵������1 的一个 r 阶子式 ������2 = ������ ������1 ������1 ������2 ������2 ⋯ ������������ ⋯ ������������
所以 A 存在一个 r 阶不等于 0 的子式. 另一方面,当������ < ������������������ ������, ������ 时,任取 A 的一个 k 阶子式i(������ ≤ ������ ≤ ������������������ ������, ������ ) ������ ������ ⋯ ������������ ������ = ������ 1 2 ������1 ������2 ⋯ ������������ 设 A 的列向量组为������1 ,������2 , ⋯ ,������������ , 其一个极大无关组为������������1 , ������������2 , ⋯ , ������������������ .则 A 的列 向量组������������ 1 , ������������ 2 , ⋯ , ������������ ������ 可由其线性表出.因������ > ������,故������������ 1 , ������������ 2 , ⋯ , ������������ ������ 相性相关. ∵子式 M 恰在此列向量组上 ∴M 的列向量组即其缩短组. 所以由������������ 1 , ������������ 2 , ⋯ , ������������ ������ 相性相关可得 M 列向量组也线性相关.因此������ = 0
线性代数-矩阵的秩
ri krj
r1 ri , r2 rj , r1 kr2 , r1 ri , r2 rj
第 1 步: A 经过一次初等行变换变为 B,则R(A)≤R(B) .
证明(续):分两种情形讨论: (1) D 中不包含 r1 中的元素
这时 D 也是 B 的 r 阶非零子式,故 R(B) ≥ r . (2) D 中包含 r1 中的元素
1 2 3
A
2
3
5
4 7 1
2 1 0 3 2
B
0
3
1 2
5
0 0 0 4 3
0
0
0
0
0
12
解:在 A 中,2 阶子式
0.
23
A 的 3 阶子式只有一个,即|A|,而且|A| = 0,因此 R(A) = 2 .
例:求矩阵 A 和 B 的秩,其中
解:因为
R(A)
=
n,
所以
A
的行最简形矩阵为
En O
,
mn
设
m
阶可逆矩阵
P
,满足
PA
En O
mn
.
于是
PC
PAB
En O
B
B
O
因为 R(C)
= R(PC),而 R(B)
B
R
O
,故R(B)
= R(C) .
矩阵的秩
一、矩阵的秩的概念
定义:在 m×n 矩阵 A 中,任取 k 行 k 列( k ≤ m,k≤n), 位于这些行列交叉处的 k2 个元素,不改变它们在 A中所处 的位置次序而得的 k 阶行列式,称为矩阵 A 的 k 阶子式.
线性代数矩阵的秩
几个简单结论 (1) 若 矩 阵 A 中 有 某 个 s 阶 子 式 不 为 0 则 R(A)s 若A中所有t 阶子式全为0 则R(A)t (2)若A为mn矩阵 则0R(A)min{m n} (3)R(AT)R(A) (4)对于n阶矩阵A 当|A|0时 R(A)n 当 |A|0时 R(A)n 可逆矩阵又称为满秩矩阵 不可逆矩阵(奇 异矩阵)又称为降秩矩阵
则
R( 1 , 2 , 3 , 4 ) 3
也就式说矩阵A的秩和它行向量组和列向量组 的秩是相等的。 那么这到底是巧合还是必然呢?下面我们就来 研究这个问题
二、矩阵与向量组秩的关系
定理1 矩阵的秩等于它的列向量组的秩,也等于
它的行向量组的秩.
定理1说明求向量组的秩可以转化为求矩阵的 秩
例1 求矩阵
1 0 A 0 0 1 1 2 1 4 0 0 5 0 0 0 3
的秩
解
显然A的四阶子式 A 0
1 1 1
而A的一个三阶子式 D 0 2 4 10 0 因此R(A)=3
0 0 5
注意A是一个行阶梯矩阵,而它的秩恰好是非 零行的行数。
E 0
0 0
但是在第一章中我们不能确定E的阶数, 而学习完矩阵的秩的有关知识以后我们知道E 的阶就是矩阵A的秩 由此我们也知道对于一个可逆矩阵它的等价标 准形就是与它同阶的单位矩阵。
说明
(1)初等变换不改变矩阵的秩
(2)用初等行(列)变换把矩阵化成行(列) 阶梯时,非零行(列)的个数就是矩阵的秩 (3)把矩阵A化成行(列)阶梯矩阵B,则B的 列(行)向量组中任意最大无关组所对应的A的 列(行)向量组构成A的一个最大无关组。
三、矩阵秩的求法
1、用定义
线性代数中的秩与矩阵变换解读
线性代数中的秩与矩阵变换解读在线性代数中,秩是一个非常重要的概念。
它可以帮助我们理解矩阵的性质和变换的本质。
本文将探讨线性代数中的秩与矩阵变换的关系,并解读其背后的数学原理和几何意义。
一、秩的定义与性质在线性代数中,矩阵的秩是指矩阵中线性无关的行(或列)向量的最大个数。
我们用r(A)表示矩阵A的秩。
秩的定义可以通过高斯消元法得到,即将矩阵A进行初等行变换,化为行阶梯形矩阵,秩就是矩阵中非零行的个数。
秩具有以下性质:1. 对于任意矩阵A,秩满足0 ≤ r(A) ≤ min(m, n),其中m和n分别是矩阵A的行数和列数。
2. 对于任意矩阵A,其秩与其转置矩阵的秩相等,即r(A) = r(A^T)。
3. 对于任意矩阵A和B,r(AB) ≤ min(r(A), r(B))。
当r(A) = r(B) = n时,r(AB) = r(A) = r(B) = n。
二、秩与矩阵变换的关系矩阵变换是线性代数中的一个重要概念,它描述了一个向量空间中的向量在某种变换下的映射关系。
而秩则是描述矩阵的性质的一个指标。
秩与矩阵变换之间有着密切的联系。
1. 矩阵变换的线性性质矩阵变换必须满足线性性质,即对于任意向量x和y以及标量c,有T(x + y) = T(x) + T(y)和T(cx) = cT(x)。
线性性质保证了矩阵变换的可加性和标量倍乘性。
2. 矩阵变换的表示对于一个线性变换T,我们可以用一个矩阵A来表示它。
具体而言,对于任意向量x,有T(x) = Ax。
其中,A是一个m×n的矩阵,m是变换后向量的维度,n是变换前向量的维度。
3. 矩阵变换与秩的关系矩阵变换与秩的关系可以通过矩阵的列空间和零空间来解释。
对于一个m×n的矩阵A,其列空间是所有由A的列向量线性组合而成的向量的集合,记作Col(A);其零空间是所有满足Ax = 0的向量x的集合,记作Nul(A)。
根据秩的定义,我们可以得到以下结论:- 矩阵A的列空间的维度等于A的秩,即dim(Col(A)) = r(A)。
Ch3-2线性代数矩阵的秩
rt,
故有
R ( A, B) R ( A) R ( B).
6 0 R( A+B ) R( A) +R( B) . c i c n i ( , ) 证 ( A B , B) A B , , n i 1, R ( A B ) R ( A B , B ) R ( A, B) R ( A) R (B) .
0 3 2 4 A 0 3 1 1 6 2
1 2 1 3
3 1 4 2
1 3 1 4
2 0 2 1
2 0 1 3 4 3 1 2 4
2 1 3 4
一般地: m×n 矩阵A 的 k
2 阶子式 3 阶子式 k C k 个. 阶子式共有 Cm n
k 阶子式、矩阵的子块、余子式、代数余子式的区别!
定义3(P66) 设 A 为 n 阶方阵,若 R(A)= n, 则称 A 为 满秩矩阵;若 R(A)< n,则称 A 为降秩矩阵.
单位阵 E 是满秩矩阵, 1 2 2
A 0 3 1 是降秩矩阵. 0 0 0
① n 阶满秩阵化为行阶梯形时有多少非零行? — n 行. ② 满秩阵的行列式 ≠ 0
左乘列满秩阵秩不变 Bnl , 证明: 若 A mn, 且 R ( A) n , R ( AB ) R ( B ) . A的秩等于其列数 A列满秩
,
行满秩阵——矩阵的秩等于其行数. 上面的结论可以相应地推广到右乘行满秩阵. 请自证. 满秩矩阵——方阵,且既列满秩又行满秩. AB = O时,本题结论为:设 AB = O,若 A为列满秩矩阵,则B = O. 原本仅对可逆阵成立的零因子性质,可以推广到列(行)满秩矩阵. 由此可以体会到列(行)满秩矩阵概念的重要性.
西安交大西工大 考研备考期末复习 线性代数 秩
(a a2 a12
ij
) mn
a22
有n个m维列向量
aj a1 j
a2 j
an a1n a2n
am1 am2 amj amn
向量组a1, a2 ,, an 称为矩阵A的列向量组.
类似地,
矩阵A
(aij
) mn
又有m个n维行向量
a11 a21
a12 a22
a1n a2n
解 对A施行初等行变换变为 行阶梯形矩阵
~ A 初等行变换
知R( A) 3,
1 1 2 1 4
0 0
1 0
1 0
1 1
0 3
,
0 0 0 0 0
故列向量组的最大无关 组含3个向量. 而三个非零行的非零首元在1、2、4三列,
故 a1, a2 , a4 ,为列向量组的一个最大无关组.
事实上
定理 矩阵的秩等于它的列向量组的秩,也等于 它的行向量组的秩.
定理 设向量组B能由向量组A线性表示,则向量 组B的秩不大于向量组A的秩.
推论1 等价的向量组的秩相等.
推论2 设 C mn Ams Bsn ,则 R(C ) R( A), R(C ) R(B).
推论3(最大无关组的等价定义) 设向量组 B是向量组 A 的部分组,若向量组
1 0 1 初等行变换 1 0 1
A 2 2 0 ~ 0 2 2
3 5 2
0 0 0
R( A) 2 3,
故向量组 1, 2 , 3线性相关.
求向量组的最大无关组
例3 设矩阵
2 1 1 1 2
A
1 4 3
1 6 6
2 2 9
1 2 7
4 94
线性代数矩阵的秩
bn1n )
k p (b1 p1 b2 p2
(k1bn1
k pb1 p )1 (k1b21
k pb2 p )2
span1,2 ,
, n .
因此, Col ( AB) ColA,
有 即
dim Col ( AB) dim ColA,
由(1),B的行秩=B的列秩=r, 则B的行极大无关组构成A的一个非零r阶子式. 因此
rankA r.
另一方面,若 rankA rA , 则A有一个r阶非零子式.
该子式的r列线性无关,且可扩充为A中的r个列向量,
由性质4.2.3,A中的这r个列向量线性无关. 所以有 A的列秩 rA . 因此,必有 A的列秩 = rankA.
rA r n,则齐次 定理4.6.6 设A是m n矩阵, 线性方程组Ax=0存在基础解系,且基础解系 含n-r个解向量.
例:求下列齐次方程组的通解.
x1 (1) 2 x1 3 x 1
2 x2
4 x3 8 x3 2 x3
x4
0 0 0
4 x2 6 x2
例4.6.3
1 7 2 6 求矩阵 A 3 1
的秩、行秩和列秩.
1 7 0, A没有三阶子式, 解:A的二阶子式 D 2 6 rA 2. 故
A的两个列向量线性无关,A的列秩=2. 三个二维行向量线性相关, A的1、2行线性无关,
§4.6 矩阵的秩
定义4.6.1 设A是m×n矩阵,A的行空间 RowA是A的行向量的所有可能的线性组 合构成的集合.
1 A 2 , m
记
线代秩的相关总结
线代秩的相关总结在线性代数中,矩阵的秩是一个重要的概念,它可以提供关于矩阵的重要信息。
以下是线性代数中秩的一些相关总结:1. 定义:矩阵的秩是指矩阵的列(或行)向量的线性无关的最大组数。
换句话说,秩是指矩阵中的独立列(或行)的数量。
2. 矩阵性质:任何一个矩阵的列秩和行秩是相等的,因此我们可以简单地称之为矩阵的秩。
3. 矩阵秩的性质:a. 矩阵的秩不能超过其维度较小的一侧的大小。
例如,一个m x n的矩阵的秩不能超过m和n中的较小者。
b. 若矩阵A是m x n的,则它的秩r满足1 ≤ r ≤ min(m, n)。
c. 若矩阵A是m x n的,并且矩阵的秩为r,则矩阵的零空间(即Ax=0的解空间)的维度为n-r。
d. 对于方阵A,如果它的秩等于其维度,即r = n(或者r = m),则该矩阵被称为满秩矩阵。
4. 计算秩的方法:a. 利用消元法(高斯消元法)求解矩阵的行最简形式,通过观察矩阵中非零行的数量来确定秩。
b. 利用矩阵的特征值和特征向量来确定秩。
5. 秩的应用:a. 判断矩阵是否可逆:如果一个方阵是一个满秩矩阵,则它是可逆的,即逆矩阵存在。
b. 解线性方程组:当一个线性方程组的系数矩阵的秩等于常数向量的秩时,方程组有解。
c. 确定矩阵的维度:矩阵的秩可以告诉我们矩阵所在向量空间的维度。
d. 判断线性相关性:如果一个向量集合的秩等于向量的数量,则向量集合线性独立;否则,它们是线性相关的。
e. 数据降维:在数据分析中,秩可以被用来识别数据中的冗余信息或降维操作。
以上是在线性代数中关于矩阵秩的一些相关总结,它们是我们理解和应用线性代数中秩的重要性和方法的基础。
矩阵的秩在线性代数中的应用
解:对增广矩阵 k1, k2, k3,ks 施行初等行变换
1 1 2 1 3 1 1 1 2 1 3 1
A 2 1 2 2 6 3 0 3 6 0 0 0
3 2 4 3 9 3 0 1 2 6 18 0
1 1 2 1 0 3 6 0
为,0 1 0 0 0 0T 而导出组的基础解系为
0
0
2
0
1
1
,
2
0
,故原方程组的通解为
0
k1 2
k2 2
.
0
3
0
1
9
6.矩阵的秩在向量组的线性相关性问题中的应用
10
11
7. 用矩阵的秩判定二次型正定问题
设二次型
,其中
的正惯性指数与秩都等于
正定
的负惯性指数与秩都等于 正定
am1
am2
amn
a11x1 a12x2 a1n xn 0
2.齐次线性方程组
a21x1 a22x2
a2n
xn
0,有非零解(或无穷多个解)
am1x1 am2x2 amnxn 0
r(A) n
6
a11
3.令
A
a21
am1
a12 a22
am2
a1n
a2n
,
amn
a11 a12 a1n b1
1
a21
,2
a22
,n
a2n
,
b
b2
am1 am2 amn bm
则非其次线性方程
a11x1 a12x2 a1nxn b1
组 a21x1