七年级数学第一章有理数总复习

合集下载

人教版七年级数学上册第一章有理数知识点总结

人教版七年级数学上册第一章有理数知识点总结

第一章有理数期末复习一、正数:大于0的数叫做正数。

负数:正数前加上符号“—”(负)的数叫做负数。

注意:0既不是正数,也不是负数;0是正数和负数的分界。

考点题目:1.如果80m表示向东走80m,那么-60m表示_____________2.在跳远测试中,合格的标准是4.00m,小明跳出了3.96m,记做-0.04m,小强的成绩被记做+0.18m,则小强跳了______m3.洗衣粉包装袋上有:“净重:300±5g”,请说明这段文字的含义袋号 1 2 3 4 5净重 303 298 300 294 305根据上面的数据解释这5袋洗衣粉的净重是否合格。

4.飞机在距地面800m的高空做飞行表演,它第一次上升了200m,第二次下降了300m,第三次又上升了-100米,此时它距地面多高?二、有理数:整数和分数统称为有理数。

整数:正整数,0,负整数统称为整数;分数:正分数,负分数统称为分数注意:小数可以化为分数,所以把小数看成分数;百分数也是分数。

正有理数:正整数,正分数有理数{ 0负有理数:负整数,负分数有理数{整数:正整数负整数 0分数:正分数负分数含有“π”的数均不是有理数。

考点题目:1.“0”的意义:①0是整数,也是有理数。

②0不是正数也不是负数。

③0是自然数2.把下列各数填在相应的集合中:-22,-π,-5%,92 ,-0.66……,0.121121112……,3.14正整数集合:。

负整数集合:。

负分数集合:。

有理数集合:。

负有理数集合:。

三、数轴:规定了单位长度,原点,正方向的直线。

考点题目:1.数轴上表示表示3的点和表示-6的点之间的距离是_____2.数轴上-3与2之间有___个整数,有____个有理数。

3.点A为数轴上表示-2的点,当点A沿数轴移动4个单位长度时,它所表示的数是_____4.在数轴上到原点的距离等于2的点所表示的数为_______5.把数轴上表示2的点移动5个单位长度后,所得的对应的点表示的数是_______6.画出数轴并标出下列各数对应的点四、相反数:只有符号不同的两个数叫做互为相反数注意:a和-a互为相反数(a表示任意一个数,正数,负数,0)0的相反数是0;互为相反数的两个数相加得0考点题目:1.-3的相反数是_______;0的相反数是_______;2.化简各数的符号:-(-5)=_______ +(+5)=_______ +(-5)=_______(+5)=________3.如果a=-a,那么表示数a的点在数轴的位置是_______4.如果a+2的相反数是-8,那么a=_______如果a的相反数是-9,那么a=_______5.一个数在数轴上所对应的点向左移动8个单位后,得到表示他的相反数的点,这个数是_______6.若a+2的相反数是-8,那么a=_______五、绝对值:数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数1) 大于的数为正数。

2) 在正数前面加上负号“-”的数为负数。

3) 数既不是正数也不是负数,是正数与负数的分界。

4) 在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数1) 凡能写成分数形式的数,都是有理数,整数和分数统称有理数。

注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数:正整数、正分数。

负有理数:负整数、负分数。

零。

3) 自然数:和正整数;a>:a是正数;a<:a是负数;a≥0:a是正数或是非负数;a≤0:a是负数或是非正数。

3、数轴1) 用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:在直线上任取一个点表示数,这个点叫做原点;通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴的三要素:原点、正方向、单位长度。

3) 画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

4、相反数1) 只有符号不同的两个数叫做互为相反数。

注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。

2、设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a。

人教版七年级数学上册第一章至第四章知识总结复习课件

人教版七年级数学上册第一章至第四章知识总结复习课件

指数分别相等.
解:
mn=+25,=3,解得
m=-2, n=2.
所以 mn=(-2)2=4.
针对训练
3、若5x2 y与x m yn是同类项,则m=2( ) ,n=1( ) 若5x2 y与x m yn的和是单项式,则m=2( ) , n=1( )
只有同类项才 能合并成一项
考点三 去括号
例3 已知A=x3+2y3-xy2,B=-y3+x3+2xy2, 求:(1)A+B;(2)2B-2A. 【解析】 把A,B所指的式子分别代入计算. 解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)
5.绝对值 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
6.有理数大小的比较 (1)数轴上表示的两个数,右边的总比左边的大. (2)正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小.
三、有理数的运算 1.有理数的加法
例4 若A是一个三次多项式,B是一个四次多项式,
则A+B一定是( B )
A.三次多项式 B.四次多项式或单项式
C.七次多项式
D.四次七项式
【解析】A+B的最高次项一定是四次项,至于是否含 有其它低次项不得而知,所以A+B只可能是四次多项式或 单项式.故选B.
你能举出对应 的例子吗?
针对训练
5.若A是一个四次多项式,B是一个二次多项式, 则A-B( ) C
第一章 有理数
小结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、正数和负数 1.小学学过的除0以外的数都是正数. 在正数前面加上符号“-”(负)的数叫做负数. 2.用正、负数表示具有相反意义的量

浙教版七年级上册数学第一二单元总结复习及练习

浙教版七年级上册数学第一二单元总结复习及练习

第一、二单元阶段性复习第一章 有理数1.大于0的数叫做正数, 大于0的数前面放上负号“—”叫做负数。

0既不是正数, 也不是负数。

正整数、零、负整数统称为整数, 正分数、负分数统称为分数, 整数和分数统称为有理数。

⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫负分数正分数分数负整数自然数零正整数整数有理数 2.规定了原点、单位长度、正方向的直线叫做数轴。

如果两个数只有符号不同, 那么其中一个数为另一个数的相反数, 也称这两个数互为相反数。

0的相反数是0。

3、在数轴上, 表示互为相反数(0除外)的两个点, 位于原点的两侧, 并且到原点的距离相等。

4、一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

互为相反数的两个数的绝对值相等。

即|a|=⎪⎩⎪⎨⎧<-=>0,0,00,a a a a a4.在数轴上表示的两个数, 右边的数总比左边的数大。

正数都大于0, 负数都小于0, 正数大于负数。

两个正数比较大小, 绝对值大的数大;两个负数比较大小, 绝对值大的数反而小。

第二章 有理数的运算1.同号两数相加, 取与加数相同的符号, 并把绝对值相加。

异号两数相加, 取绝对值较大的加数的符号, 并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0;一个数同0相加, 仍得这个数。

加法交换律: 两个数相加, 交换加数的位置, 和不变。

3、加法结合律: 三个数相加, 先把前两个数相加, 或者先把后两个数相加, 和不变。

2.减去一个数, 等于加上这个数的相反数。

两数相乘, 同号得正, 异号得负, 并把绝对值相乘。

任何数与零相乘, 积为零。

有多个不为0的有理数相乘时, 可以先确定积的符号, 再将绝对值相乘, 若其中一个乘数为0, 则积为0。

若两人有理数的乘积为1, 就称这两个有理数互为倒数。

乘法交换律: 两个数相乘, 交换因数的位置, 积不变。

2022年新湘教版七年级数学上知识点总结

2022年新湘教版七年级数学上知识点总结

新湘教版七年级数学上册知识点总结第一章:有理数总复习一、有理数旳基本概念1.正数:不小于0旳数叫做正数;例如:3, 32,0.32负数:不不小于0旳数叫做负数。

例如:51,04.0,2---备注:在正数前面加“-”旳数是负数;“0”既不是正数,也不是负数。

(我们把正数和0统称为非负数)2.有理数:整数和分数统称有理数。

(有理数是指有限小数和无限循环小数。

牢记:不是有理数π)3.数轴:规定了原点、正方向和单位长度旳直线。

性质:(1)在数轴上表达旳两个数,右边旳数总比左边旳数大;(2)正数都不小于0,负数都不不小于0;正数不小于一切负数;(3)所有有理数都可以用数轴上旳点表达。

4.相反数:只有符号不同旳两个数,其中一种是另一种旳相反数。

例如:5与-5 。

性质:(1)数a 旳相反数是-a (a 是任意一种有理数) 。

例如: )1()1+-+x x 的相反数是((2)0旳相反数是0;(3)若a 、b 互为相反数,则a+b=0;5.倒数 :乘积是1旳两个数互为倒数 。

性质:(1)a 旳倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;6、倒数与相反数旳区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数; (2)符号上:互为相反数(除0外)旳两数旳符号相反;互为倒数旳两数符号相似;(3)a 、b 互为相反数,则 a+b=0;a 、b 互为倒数则 ab=1;(4)相反数是自身旳数是0,倒数是自身旳数是±1 。

7.绝对值:一种数a 旳绝对值就是数轴上表达数a 旳点与原点旳距离。

性质:(1)数a 旳绝对值记作︱a ︱。

例如:1212-的绝对值表示为-(2)若a >0,则︱a ︱= a ;即正数旳绝对值是它自身。

若a <0,则︱a ︱= -a ;负数旳绝对值是它旳相反数;若a =0,则︱a ︱=0;0旳绝对值是0.(3) 对任何有理数a,总有︱a ︱≥0.8.有理数大小旳比较:(1)可通过数轴比较:在数轴上旳两个数,右边旳数总比左边旳数大;正数都不小于0,负数都不不小于0;正数不小于一切负数;(2)两个负数,绝对值大旳反而小。

人教版七年级数学上册期末复习大纲【五篇】

人教版七年级数学上册期末复习大纲【五篇】

关注我谢谢你
人教版七年级数学上册期末复习大纲【五篇】
【篇一】第一章有理数
--------------1.1正数与负数
①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。

整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

-------------1.2数轴
①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表
15。

有理数全章复习(按知识点分类复习)

有理数全章复习(按知识点分类复习)

第一章 有理数全章复习考点一:用正负数表示相反意义的量1、 七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分2、如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( ) A .-500元B .-237元C .237元D .500元3.有4包真空小包装火腿,每包以标准克数〔450克〕为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的( )A .+2B .-3C .+3D .+44.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差 ( )A .B .C .D .考点二:有理数的分类1、_______、_______和_________成为整数,__________和__________统称为分数。

___________和_________统称为有理数。

练习稳固:1、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………〔 〕 A 、l 个 B 、2个 C 、3个 D 、4个2、不超过3)23(-的最大整数是………………………………………〔 〕 A 、–4 B –3 C 、3 D 、43.在数8.3、-4、0、-〔-5〕、+6、-|-10|、1中,正数有____ 个; 4、以下说法中正确的个数有 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A 1B 2C 3D 45、在数+8.3,-4,-0.8,0,90,-|-24|中,__________是正数,____________不是整数。

6、比132-大而比123小的所有整数的和为 __________ 。

七年级数学上册第一章《有理数》经典复习题

七年级数学上册第一章《有理数》经典复习题

1.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.4.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.5.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++ 7=,故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 6.下列说法中,正确的是( )A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.7.在数轴上距原点4个单位长度的点所表示的数是().A.4 B.-4 C.4或-4 D.2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.8.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+ B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.9.绝对值大于1小于4的整数的和是( )A .0B .5C .﹣5D .10A 解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A .10.下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 11.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.12.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12A 解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.13.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.14.按键顺序是的算式是()A.(0.8+3.2)÷45=B.0.8+3.2÷45=C.(0.8+3.2)÷45=D.0.8+3.2÷45=B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.15.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.3.33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.此题主要考查近似数,解题的关键是熟知有理数的运算法则.4.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.5.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点A,B对应的数分别为0和1点C所对应的数为1,则再翻转3次后,点C所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.6.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.7.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 8.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 9.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 10.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.11.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可; (3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.1.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.2.计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.3.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.4.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

人教版七年级数学上册各章知识点总结(最新最全)

人教版七年级数学上册各章知识点总结(最新最全)

第一章:有理数总复习一、有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。

备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。

2.有理数:整数和分数统称有理数。

3.数轴:规定了原点、正方向和单位长度的直线。

性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。

4.相反数 :只有符号不同的两个数,其中一个是另一个的相反数。

性质:(1)数a 的相反数是-a (a 是任意一个有理数);(2)0的相反数是0;(3)若a 、b 互为相反数,则a+b=0;若a 、b 互为相反数且a 、b 都不等于零,则1-=ba ; 5.倒数 :乘积是1的两个数互为倒数 。

性质:(1)a 的倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;若a 与b 互为负倒数,则ab=-1。

倒数与相反数的区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数;(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数 →→ a+b=0;a 、b 互为倒数 →→ ab=1;(4)相反数是本身的数是0,倒数是本身的数是±1 。

6.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

性质:(1)数a 的绝对值记作︱a ︱;(2)若a >0,则︱a ︱= a ;若a <0,则︱a ︱= -a ;若a =0,则︱a ︱=0;(3) 对任何有理数a,总有︱a ︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。

即:若a <0,b <0,且︱a ︱>︱b ︱,则a < b.二、有理数的运算1、运算法则:(1)有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加;② 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0; ③ 一个数同0相加,仍得这个数。

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。

第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。

二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。

三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。

四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。

其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。

在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。

另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。

一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。

2.使学生提高区分概念的能力,正确运用概念解决问题。

3、能正确比较两个有理数的大小。

二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。

三、教学难点:对绝对值概念的理解与应用。

四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。

)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。

七年级数学上册第一章《有理数》知识点复习

七年级数学上册第一章《有理数》知识点复习

七年级数学上册第一章《有理数》知识点复习一、选择题1.(0分)下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.2.(0分)下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.3.(0分)下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.4.(0分)下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 5.(0分)正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以6.(0分)用计算器求243,第三个键应按( )A .4B .3C .y xD .=C解析:C【解析】用计算器求243,按键顺序为2、4、y x 、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能. 7.(0分)若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12A 解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.8.(0分)下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数D 解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误;B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误;C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误;D. a -可以表示任何有理数,故该选项正确.故选:D .【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.9.(0分)若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3 B .﹣1C .2D .1D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.10.(0分)6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B . 二、填空题11.(0分)把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数 解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.12.(0分)在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.13.(0分)小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 14.(0分)若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.15.(0分)观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.16.(0分)一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.17.(0分)下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b 与a﹣b,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.18.(0分)若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3ab,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b -进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b、a 的形式 ∴0b ≠,∴a b +=0, ∴3a 3b=-, ∴b =3-,a =3,∴4a b -=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b =-3是解答本题的关键.19.(0分)如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.20.(0分)已知4a a =>,6b =,则+a b 的值是________.2或-10【分析】利用绝对值的代数意义确定出a 与b 的值即可求出所求【详解】解:∵|a|=4>a|b|=6∴a=-4b=6或-6当a=-4b=6时a+b=-4+6=2;当a=-4b=-6时a+b=-4 解析:2或-10【分析】利用绝对值的代数意义确定出a 与b 的值,即可求出所求.【详解】解:∵|a|=4>a ,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题21.(0分)阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(0分)计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.(0分)计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(0分)计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.25.(0分)以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.26.(0分)计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.27.(0分)给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维. 28.(0分)计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可. ③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可.⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-.②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

人教版七年级上册数学课件:第一章有理数复习(共98张PPT)

人教版七年级上册数学课件:第一章有理数复习(共98张PPT)

则a= ±5 ,b= -8 。
科学记数法、近似数
1. 把一个大于10的数记成a×10n的形式,其中a是整数 数位只有一位的数,这种记数法叫做科学记数法 .
2..与实际完全符合的数是准确数,接近实际但又与实际 数值有差别的数叫近似数。
3.精确度: 一个近似数四舍五入到哪一位,就称这个数
精确到哪一位.
2)0的相反数是0.
3)若a、b互为相反数,则a+b=0.
-4
4
-2 2
-4 -3 –2 –1 0 1 2 3 4
相反数
1、-5的相反数是 5 ; 2、-((-17))如的果相a反=数-是1-37,那;么-a=__1__3__;
(2)如果-x=-6,那么x=___6___; 3、 a+2的相反数是_-_(_a__+_2;)或-a-2
分数有:-3.14,- 2 , -(- 2 ), 1 ,- 1 5 924
正整数有:12,|-8|
非负整数集有
负分数有:-3.14,- 2 ,- 1 54
非负数有:12,0,-(- 2 ),|-8|, 1 92
数轴定义及性质
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1) 在数轴上表示的两个数,右边的数总比左边的数大;
(2)原式=(-3)+(-18)=-21 (3)原式=0 +(+3)= 3 (4)原式= (-3) +(+18)= 15
加减法可以统一成加法
把下式写成省略加号的和的形式,并把它读出来 (-3)+(-8)-(-6)+(-7)
解:原式=-3-8+6-7 读作“-3,-8,+6,-7的和 或负3减8加6减7

七年级上第1章有理数复习教案(5篇材料)

七年级上第1章有理数复习教案(5篇材料)

七年级上第1章有理数复习教案(5篇材料)第一章有理数复习教学目标:1:识记有理数的基本概念;2:能够运用相关基础知识,解决简单的数学问题;3.掌握并运用有理数的运算规则和规律进行计算。

教学中的重点和难点:有理数的基本概念和算法。

教学过程:(一)有理数的基本概念一:正数和负数1、正数:大于0的数叫做正数。

2、负数:在正数前面加上负号“-”的数,比0小的数叫做负数。

3、0:既不是正数也不是负数,是正数和负数的分界。

4.同一个问题中,正数和负数分别代表意义相反的量。

二:有理数:可以写成分数的形式,这样的数叫做有理数。

有理数的两种分类三:数轴:定义原点、正方向、单位长度的直线称为数轴。

数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常直线上的右(或上)方向为正方向,选择合适的长度作为单位长度。

数轴上表示的两个数中,右边的数总是大于左边的数;所有有理数都可以用数轴上的点来表示。

关于有理数和数轴的练习4:倒数绝对值相等,只有符号不同的两个数叫做互为相反数。

其中一个是另一个的相反数。

数a的相反数是-a,(a是任意一个有理数);0的相反数是0.若a、b互为相反数,则a+b=0.相反数的相关练习题五:倒数乘积是1的两个数互为倒数.a的倒数是;0没有倒数;若a与b互为倒数,则ab=1.倒数相关练习题倒数、相反数区别:1:互为倒数的两个数符号相同,互为相反数的两个数符号相反。

2:0没有倒数,0的相反数是0。

3:倒数对于本身的数是1或-1。

4:两个相反数之和为0,两个倒数之积为1。

示例:六:绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

a一个正数的绝对值是它本身;若a>0,则︱a︱= a;一个负数的绝对值是它的相反数;若a<0,则︱a︱=-a;0的绝对值是0.若a =0,则︱a︱= 0;对任何有理数a,总有︱a︱≥0.绝对值知识的相关练习题例题:七:有理数大小的比较:1)数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;2)两个负数,较大的绝对值较小。

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章

七年级数学上册知识点总结第一章第一章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数留意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(假如出推断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简洁推断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与削减;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,削减降低了的数一般记为负数。

3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

留意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;(2)有理数的分类: ①按正、负分类:②按有理数的意义来分:总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数;a0 ? a是正数;a0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级数学上册_第一章有理数复习

七年级数学上册_第一章有理数复习

相反数
只有符号不同的两个数,叫做互为相反数 其中一个是另一个的相反数。 位于原点两侧且到原点的距离相等的两个数, 叫做互为相反数。
1)数a的相反数是-a 2)0的相反数是0.
3)若a、b互为相反数,则a+b=0.
-4
-2 2
4
-4 -3 –2 –1
0
1
2
3
4
1.一个数的相反数是最小的正整数,那么这个数 是(A)
1. 正整数、零、负整数 _____________统称整数,试举例说明。 正分数、负分数 2. _____________ 统称分数,试举例说明。 整数、分数 3. _____________ 统称有理数。 4. 有理数的分类表:
有 理 数 整数 正整数 0 负整数 正分数 正有理数 有 理 数 0 负有理数 正整数
由绝对值求数
3.
求一个数的绝对 值,必须遵循 “先判后去”的 程序
填空: 3; 若|a|=3,则a=± ____ -1 。 |a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4 1 。 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____
判断: 绝对值的 (1)|5|=|-5| √ 非负性 √ (2)|-0.3|=|0.3| (3)|3|>0 √ (4)|-1.4|>0 √ (5)有理数的绝对值一定是正数 × (6)若a=b,则|a|=|b| √ (7)若|a|=|b|,则a=b × (8)若|a|=-a,则a必为负数 ×
互为相反数的两个数的绝对值相等
1)一个正数的绝对值一定是正数(它本身)( √ )
绝对值等于它本身的数是正数 或0 × 2)一个负数的绝对值一定是它的相反数( √ ) 绝对值等于它的相反数的数是负数 3) 正数的绝对值大于负数的绝对值( × ) 4 ) 绝对值较大的数较大( × ) 5)任何数的绝对值都不是负数(√) 或0 ×

初一数学上册第一章有理数总复习资料

初一数学上册第一章有理数总复习资料

第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。

有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。

在数的研究上它起着重要的作用。

它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。

但要注意数轴上的所有点并不是都有有理数和它对应。

借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。

2、相反数是指只有符号不同的两个数。

零的相反数是零。

互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。

有了相反数的概念后,有理数的减法运算就可以转化为加法运算。

3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。

对于任何有理数a,都有≥0。

4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。

有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。

5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。

7、近似数与有效数字:近似数:一个与实际数很接近的数,称为近似数;有效数字:从左边第一个不为0的数字起,到精确到的数位止,这些数字都是这个数的有效数字。

(1)有效数字越多,近似数就越精确;(2)由四舍五入得到的近似数0.003206,左边第一个不是零的数是3,最后一位四舍五入所得到的数是6,从3到6中间的所有的数字是3、2、0、6,左边的三0个不算,但2和6之间的0要算,这个近似数有4个有效数字。

二、有理数的运算法则1、同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与标准质量的差值/g -6 -2 0 1 3 4
袋数
1 4 3453
(1)若标准质量为450 g,则抽样检测的20袋食品的总质量 为多少克? (2)若该种食品的合格范围为(450±5)g,求该食品的抽样 检测的合格率.
5.某市旅游局发布统计报告,国庆节期间,我市风景区 在7天假期中每天接待游客的人数变化如下表所示(正 数表示比前一天多的人数,负数表示比前一天少的人数)
有理数的运算
二. 有理数的乘、除法运算 有理数的乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.
有理数的除法法则: 除以一个不等于0的数,等于乘这个数的倒数.
a b a 1 (b 0) b
1.计算:
(1). (-4)×5×(-0.25)
(2). × (-16)×(+0.5)×(-4)
加法交换律 a+b=b+a 加法结合律 (a+b)+c=a+(b+c) 乘法交换律 ab=ba 乘法结合律 (ab)c=a(bc) 乘法分配律 a(b+c)=ab+ac
1.运用简便方法计算: (1).(-125)×(-25)×(-5)×(-2)×(-4)×(-8);
45 7
(2).(-36)×( 9 6 12 ); (3).998×(-18).
(3). (+2)×(-8.5)×(-100)×0×(+90)
(4). 3 5 (1 1 )
8 12
15
2.化简:
(1) 72 ; (2) 30 ; (3) 0 .
9
45
75
3.计算:
(1)(36 9 ) 9; 11
(2)(12) (4) (11); 5
(3)( 2) ( 8) (0.25). 35
有理数的运算
三. 有理数的乘方运算 一般地,n个相同的因数a相乘,即 a ·a ·… ·a 记作an
a·a·… ·a= an
求n个相同因数的积的运算叫做乘方,乘方的结果叫幂.
运算 结果
加法 和
减法 差
乘法 积
除法 商
乘方 幂
区别:
(1). 32 (3)2
(2).( 2)2 22 33
符号规律:
⑴0.632 8 (精确到0.001) ⑵7.912 2 (精确到个位) ⑶479955 (精确到百位) ⑸479955 (精确到千位) ⑹2.976 (精确到十分位) ⑺3.4×106 (精确到万位)
4.李明测得一根钢管的长度约为0.8米.
按照李明测得的结果,你能求出钢管的准确 长度x应
在什么范围吗?
日期 10月1日 10月2日 10月3日 10月4日 10月5日 10月6日 10月7日
人数变

+1.2 +0.8 +0.2 -0.2 -0.6 +0.2
-1
/万人
(2).若9月30日的游客人数为0.6万人,门票每人100元, 则国庆期间该风景区的门票收入是多少万元?(用科学记数 法表示)
6.观察下列三行数,你能提出哪些问题? -2,4,-8,16,-32,64,… ①
利用四舍五入法得到的近似数,四舍五入到哪一位,就说 这个近似数精确到哪一位.
1.用科学记数法表示下列各数:
①900 200
②300
③10 000 000
④-510 000.
2.已知下列用科学记数法表示的数,写出原来的数.
①2.01×104 ②6.070×105
③6×105
④104
3.用四舍五入法,按括号中的要求对下列各 数取近似数.
加法运算经验
1.互为相反数的两个数先相加——相反数结合法; 2.符号相同的两个数先相加——同号结合法; 3.分母相同的数先相加——同分母结合法; 4.几个数相加得到整数,先相加——凑整法;
5.整数与整数,小数与小数相加——同形结合法.
小数
分数
(0.5) 31 2.75 (31) (51) (4 2)
(1)每组数中的第2个数与第1个数有什么关系? (2)每组数中的第3个数与第1个数有什么关系? (3)计算第50组数的和.
2.某原料仓库一天的原料进出记录如下表(运进用正数 表示,运出用负数表示)
进出量/t 进出次数
-3 4 -1 2 -5 21332
(1)这天仓库的原料比原来增加了还是减少了?请说明 理由;
(2)根据实际情况,现有两种方案:方案一:运进每吨 原料费用5元,运出每吨原料费用8元;方案二:不管 运进还是运出,都是每吨费用6元.从节约运费的角度 考虑,选用哪一种方案比较合适?
拓展:
(1)若 a, b 互为相反数, a b 且,
则 2b 2a
, a

b
a
(2)当 a 0 时,
=

a
3.若a,b互为相反数,c,d互为倒数,
m的倒数是-2,求 a b cd 的值. m
4.若a>0,b<0,且a b<0,把a、a、b、b、
0 按从大到小的顺序进行排列.
有理的运算律
(1)(-2)51 ;(2)(-2)50 ; (3)250 ; (4)251; (5)12 011.
有理数的运算
四. 有理数的混合运算 1.运算顺序 2.运算符号
乘方运算
乘除运算
加减运算
1.指出下列各题的运算顺序
(1) 50 2 1 ; 5
(2) 6 (3 2);
(3) 6 3 2;
(4)17 8 2 4 3;
(5) 32 50 22 1 1; 10
(6)1 1 1 0.5 43 .
计算:
(1)0.125 (3 1) (3 1) (11 2) 0.25;
4
8
3
(2)( 7 3 5 5 ) (36); 12 4 6 18
(3)(2) ( 1 ) ( 1 ); 12 12
第一章 有 理 数
本章复习
正数与负数
本章知识结构
有理数 的分类
本章知识点
有理数的分类
按定义分
有 理 数
按正负分
正整数 整数 0
负整数
正分数 分数
负分数
正整数
正有理数 零
负有理数
正分数 负整数
负分数
题型归类
类型一: 有理数的意义及分类
例1. 将下列各数填在相应的集合里
-3.8
,
-20%

4.3

答:0.75≤x<0.85
5. ⑴ 我校七年级415名师生,想租用45座 的客车外出秋游,问:应该租用多少辆客 车?
“进一法”
⑵ 工人师傅把一根100厘米的圆钢锯短,用 来做6厘米长的零件,可加工多少件?
“去尾法”
有理数的运算
一. 有理数的加、减法运算 有理数加法运算法则:
同号两数相加,取相同的符号,并把绝对值相加. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号, 并用较大的绝对值减去较小的绝对值.互为相反数 的两个数 相加得0.一个数同0相加,仍得这个数.
9
(4).( 1 ) ( 2 1 1 2) 30 3 10 6 5
2.逆用乘法分配律计算: (1)17.48×37+174.8×1.9+8.74×88;
(2)-13×23-0.34×27+13×(-13)-57×0.34.
3.根据实验测定:高度每增加1 km,气温大约降低6℃. 某登山运动员在攀登某山峰的途中发回信息,报告他所在 高度的气温为-15℃ ,如果当时地面温度为3℃,登山运动 员所在位置的高度能确定吗?
类型三: 有理数的大小比较
数轴上的两个点,右边的点表示的数与左边的 点表示的数的大小关系是怎样的?
在数轴上表示有理数,左边的数小于右边的数. 正数大于0, 负数小于0, 正数大于负数. 两个负数,绝对值大的反而小.
1.有理数a、b在数轴上的位置对应如图, 试用“>”将a、b、-a、-b、0、2、-2连接起来.
2.若a>0,b<0,且|a|<|b|,则a、-a、b、-b从小
到大的顺序是

3.如果|-2a|=-2a,则a的取值范围是
()
A.a>0 B.a≥0 C.a≤0 D.a<0
类型四: 科学记数法与近似数
把一个大于10的数表示成 a×10n 的形式(其中 a 是整数数
位只有一位的数, n为正整数),这种记数方法叫做科学记数法.
日期 10月1日 10月2日 10月3日 10月4日 10月5日 10月6日 10月7日
人数变

+1.2 +0.8 +0.2 -0.2 -0.6Байду номын сангаас+0.2
-1
/万人
(1).若9月30日的游客人数记为m万人,请用式子表示10月 3日的游客人数;
5.某市旅游局发布统计报告,国庆节期间,我市风景区在7天 假期中每天接待游客的人数变化如下表所示(正数表示比 前一天多的人数,负数表示比前一天少的人数)
(4)(24 ) (2 2)2 5 1 ( 1) (0.5)2. 3 26
有理数的应用
1、某出租车周日下午以钟楼为出发点,在东西方向的大 街上行驶,规定向东为正,向西为负,行驶里程按照先 后顺序记录如下(单位:km): +9,-3,-5,+4,-8,+6,-3,-6,-4,+10. (1)最后出租车离开钟楼多远?在钟楼的什么方向? (2)若每千米的收费价格是2.4元,该出租车周日下午的 营业额是多少?
0,6,-6, 18,-30,66,… ② -1,2,-4, 8, -16, 32,… ③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和.
练习
观察下列五组数: 1,-1,-1; 2,-4,-6; 3,-9,-15; 4,-16,-28; 5,-25,-45; ……
相关文档
最新文档