第3章 布尔代数与逻辑函数化简

合集下载

第三章布尔代数与逻辑函数化简

第三章布尔代数与逻辑函数化简
F = A B C + BC( A + A) + A C ( B + B) = A B C + ABC + A BC + AB C + A B C
_ _ _ _ _ _ _ _ _ _ _ _ _
和 ( A + A)
_
乘第二项和第三项, ( B + B)
_
(2) 真值表法。将原逻辑函数A、B、C 取不同 值组合起来,得其真值表,而该逻辑函数是将F=1 那些输入变量相或而成的,如表3 - 3所示。
_ _ _ _
_
_
_ _
= A B + A B + ( A B + A B )CD
令 A B + A B = G, 则
F = G + G CD = G + CD = A B + A B + CD
_ _ _
_ _
_
_
_
_
3. 应用多余项定律 ( AB + A C + BC = AB + A C )
例 10 解 化简
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
此例就是用 (C + C ) 和 ( A + A) 分别去乘第三项和第四项, 然后再进行化简。
_
_
6. 添项法
在函数中加入零项因子 x . x 或 x . x f ( AB . ..) ,利用 加进的新项,进一步化简函数。 例 14 化简 = AB C + ABC AB 。 F
第三章 布尔代数与逻辑函数化简
3.1 3.2 3.3 基本公式和规则 逻辑函数的代数法化简 卡诺图化简

布尔代数与逻辑函数化简

布尔代数与逻辑函数化简
根据对偶法则,原式F成立,则其对偶式也一 定成立。
在求对偶式时,为保持原式的逻辑优先关系, 应正确使用括号。
3.1.2 基本法则
公式名称
公式
1、0-1律 2、自等律 3、等幂律 4、互补律 5、交换律 6、结合律 7、分配律 8、吸收律1
A•0 0 A•1 A A• A A A• A 0 A•B B• A A • (B • C) (A • B) • C A(B C) AB AC (A B)(A B) A
F AB AC
A&
B
A&
C
1
F
3.1.3 基本公式的应用
(1)与非-与非式
F AB AC
将与或式两次取反,利用摩根定律一次即可。
F F AB AC AB• AC
A&
B
A&
C
&
F
3.1.3 基本公式的应用
(2)与或非式
F AB AC
① 求出反函数,化简为与或式
② 对反函数取反,即得与或非表达式
F AB AC AB AC
F AB AC
A & 1
B
F
A
C
3.1.3 基本公式的应用
(3)或与式 将与或非式用摩根定律展开,即得或与表达式
F AB AC
AB • AC ( A B)( A C)
A 1 B
A 1 C
&
F
3.1.3 基本公式的应用
(4)或非-或非式 将或与式两次取反,并用摩根定律展开一次即 得或非-或非表达式。
推广:在两项组成的与或表达式中,如果其中一项中含 有原变量 X,而另一项含有反变量 X ,将这两项的其余 因子各自取反,就可得到该函数的反函数。

数字逻辑电路 第三章 布尔代数与逻辑函数化简(52P)

数字逻辑电路 第三章 布尔代数与逻辑函数化简(52P)

例4 F=AD+AD+AB+AC+BD+ACEG+BEG+DEGH 解: 原式=A+AB+AC+BD+ACEG+BEG+DEGH (吸收律1)
=A+AC+BD+BEG+DEGH (吸收律2)
=A+C+BD+BEG+DEGH(吸收律3) =A+C+BD+BEG (多余项定律)
例5
F=AB+BC+BC+AB F=AB+BC+BC(A+A)+AB(C+C) (互补律A+A=1) =AB+BC+ABC+ABC+ABC+ABC (分配律) =AB+BC+ABC+ABC+ABC(吸收律2: AB+ABC=AB) =AB+BC+ABC+ABC (吸收律2: BC+ABC=BC) =AB+BC+AC(吸收律1:ABC+ABC=AC)
反函数
③ 反演法则
例:求F A B C D E的反函数F
F A B C D E A B C D E A BC D E A BC DE
上述过程要反复应用求反律。而利用反演法则直接写出结果。
F A B C D E
3.1.3 基本公式应用
5.交换律
6.结合律 7.分配律 8.吸收律1
A· B= B· A
A· (B· C)= (A· B)· C A(B+C)=AB+AC (A+B)(A+B)=A

用代数法化简逻辑函数

用代数法化简逻辑函数

用代数法化简逻辑函数一、引言逻辑函数是计算机科学中的重要概念之一,它是由一个或多个逻辑变量构成的表达式。

在实际应用中,我们需要对逻辑函数进行化简,以便更好地理解和优化电路设计。

本文将介绍代数法化简逻辑函数的方法。

二、基本概念1. 逻辑变量:指只能取两个值(真或假)的变量。

2. 逻辑运算:指对逻辑变量进行操作的运算符,包括非(NOT)、与(AND)、或(OR)等。

3. 逻辑表达式:由逻辑变量和逻辑运算符组成的表达式。

三、代数法化简方法1. 布尔代数定律布尔代数定律包括以下几种:(1)结合律:A AND (B AND C) = (A AND B) AND C;A OR (B OR C) = (A OR B) OR C。

(2)交换律:A AND B = B AND A;A OR B = B OR A。

(3)分配律:A AND (B OR C) = (A AND B) OR (A AND C);A OR (B AND C) = (A OR B) AND (A OR C)。

(4)吸收律:A OR (A AND B) = A;(A OR B) AND A = A。

(5)恒等律:A AND 1 = A;A OR 0 = A。

(6)补充律:A OR NOT A = 1;A AND NOT A = 0。

2. 化简步骤化简逻辑函数的基本步骤如下:(1)将逻辑函数写成标准形式;(2)应用布尔代数定律进行化简;(3)使用代数运算法则进行化简;(4)使用卡诺图进行化简。

四、例子假设有一个逻辑函数F(A,B,C)=AB+BC+AC,要将其化简为最简形式。

步骤如下:(1)将逻辑函数写成标准形式:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)。

(2)应用布尔代数定律进行化简:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)=(A AND B) OR (B AND C)=(B AND (A OR C)) OR (A AND B)(3)使用代数运算法则进行化简:F(A,B,C)=(B AND (A OR C)) OR (A AND B)=(AB OR BC) OR AC=AB+BC+AC因此,原来的逻辑函数F可以被化简为最简形式AB+BC+AC。

布尔代数与逻辑函数

布尔代数与逻辑函数

布尔代数与逻辑函数布尔代数是一种由英国数学家乔治·布尔于19世纪中期发展起来的代数体系,它在计算机科学和逻辑学中起着重要的作用。

布尔代数通过对逻辑函数的运算和推理,描述了逻辑关系和逻辑推理的规则。

本文将介绍布尔代数的基本概念和运算规则,以及它与逻辑函数的关系。

一、布尔代数的基本概念布尔代数是一种由逻辑数学中的一元逻辑和二元逻辑运算构成的代数系统。

它由两个基本元素组成,分别是真值和逻辑变量。

真值表示一个命题的真假,通常用0和1表示,其中0表示假,1表示真。

逻辑变量则表示一个命题中的可变部分,可以取0或1两个值。

二、布尔代数的运算规则布尔代数具有以下几种基本的运算规则:1. 与运算(AND):表示逻辑与关系,用符号“∧”表示,在数字电路中常用乘号“*”代替。

2. 或运算(OR):表示逻辑或关系,用符号“∨”表示,在数字电路中常用加号“+”代替。

3. 非运算(NOT):表示逻辑非关系,用符号“¬”表示,在数字电路中常用上划线“-”表示。

4. 异或运算(XOR):表示逻辑异或关系,用符号“⊕”表示。

5. 同或运算(XNOR):表示逻辑同或关系,用符号“⊙”表示。

这些运算规则在布尔代数中可以通过真值表或逻辑公式进行演算。

三、逻辑函数的定义与应用逻辑函数是布尔代数中的重要概念,它是一个或多个逻辑变量与运算符的组合,得到一个布尔值的函数。

逻辑函数在计算机科学和电子工程中有广泛的应用,特别是在数字电路和逻辑设计中。

逻辑函数可以通过真值表或逻辑表达式来描述。

真值表是逻辑函数的一个常用表示方法,它列出了函数在所有可能输入组合下的输出结果。

逻辑表达式则是通过逻辑运算符和逻辑变量的组合来表示逻辑函数。

四、逻辑函数的简化与优化在实际的逻辑设计中,逻辑函数往往需要进行简化和优化,以减少电路的复杂度和功耗。

常用的逻辑函数简化方法包括代数运算、卡诺图方法和奎因-麦克拉斯基算法等。

这些方法通过对逻辑函数进行等价变换和合并,找出最简逻辑表达式,从而实现逻辑电路的最优设计。

数字电子技术教学大纲(物联网工程专业)

数字电子技术教学大纲(物联网工程专业)

《数字电子技术》课程教学大纲课程名称:数字电子技术英文名称:Digital Electronic Technology 课程代码: 课程类别: 必修专业基础学分: 2 学时: 32开课单位: 计算机科学与信息工程学院适用专业: 物联网工程制订人:谭晓东审核人:黄华升审定人: 陶程仁一、课程的性质和目的(一)课程性质本课程是计算机与技术、物联网工程等本科专业的必修专业基础课。

且为主干课程。

本课程主要讲述数字逻辑的基本概念、基本定律和基本分析方法,数字逻辑电路的特性、功能,分析方法及应用。

(二)课程目的课程教学所要达到的目的是:1.能正确理解本课程的基本概念、基本理论;2.掌握数字电路的工作原理、性能和特点;3.掌握数字电路的基本分析方法和设计方法;4.能独立的应用所学的知识去分析和求解从工程中抽象出的逻辑问题以及与专业有关的某些数字电路的实际问题,并具有工程计算和分析能力,为后续专业课程的学习打下基础。

二、与相关课程的联系与分工要求学生具备高等数学、大学物理、电路理论、半导体器件等方面的知识,才能进入该课程的学习,该课程为后续电子计算机及接口技术等方面的课程及专业课程中的电子电路实际应用奠定基础。

三、教学内容及要求第一章数制与代码本章是学习数字逻辑电路及其工作原理的基础,应掌握各种数制、代码的特点及相互之间的转换规律。

1.1 进位计数制1.1.1进位计数制的基本概念1.1.2 常用进位计数制1.2 数制转化1.2.1 非十进制转化成十进制数1.2.2 十进制数转化成其它进制数1.2.3 二进制数转化成八进制数或十六进制数1.2.4 八进制数或十六进制数转化成二进制数1.3 常用代码1.3.1 二—十进制码(BCD码)1.3.2 可靠性编码1.3.3 字符代码【重点与难点】本章主要讲述简单的逻辑运算及常用的逻辑门。

重点是熟练掌握基本逻辑运算、各种门电路的图形符号及其输出函数表达式,正确处理各种门电路使用中的实际问题。

逻辑函数化简公式大全

逻辑函数化简公式大全

逻辑函数化简公式大全逻辑函数化简是在布尔代数中常用的一种方法,它通过应用逻辑运算规则和布尔代数定律,将复杂的逻辑函数简化为更简洁的形式。

这种简化可以减少逻辑电路的复杂性,提高计算机系统的效率。

以下是一些常见的逻辑函数化简公式大全:1. 与运算的化简:- 与运算的恒等律:A∧1 = A,A∧0 = 0- 与运算的零律:A∧A' = 0,A∧A = A- 与运算的吸收律:A∧(A∨B) = A,A∧(A∧B) = A∧B- 与运算的分配律:A∧(B∨C) = (A∧B)∨(A∧C)- 与运算的交换律:A∧B = B∧A2. 或运算的化简:- 或运算的恒等律:A∨1 = 1,A∨0 = A- 或运算的零律:A∨A' = 1,A∨A = A- 或运算的吸收律:A∨(A∧B) = A,A∨(A∨B) = A∨B- 或运算的分配律:A∨(B∧C) = (A∨B)∧(A∨C)- 或运算的交换律:A∨B = B∨A3. 非运算的化简:- 非运算的双重否定律:(A) = A- 非运算的德摩根定律:(A∧B) = A∨B,(A∨B) = A∧B4. 异或运算的化简:- 异或运算的恒等律:A⊕0 = A,A⊕1 = A- 异或运算的自反律:A⊕A = 0- 异或运算的结合律:A⊕(B⊕C) = (A⊕B)⊕C- 异或运算的交换律:A⊕B = B⊕A5. 条件运算的化简:- 条件运算的恒等律:A→1 = 1,A→0 = A- 条件运算的零律:A→A' = 0,A→A = 1- 条件运算的反转律:A→B = A∨B- 条件运算的分配律:A→(B∧C) = (A→B)∧(A→C)这些公式是逻辑函数化简中常用的基本规则,通过灵活应用它们,可以将复杂的逻辑表达式简化为更简单的形式。

使用这些规则,我们可以提高逻辑电路的效率和简洁性,并降低硬件成本。

第三章 逻辑函数化简

第三章 逻辑函数化简

一:布尔代数的基本公式公式名称公式1、0-1律A*0=0 A+1=12、自等律A*1=A A+0=A3、等幂律A*A=A A+A=A4、互补律A*A=0 A+A=15、交换律A*B=B*A A+B=B+A6、结合律A*(B*C)=(A*B)*C A+(B+C)=(A+B)+C7、分配律A(B+C)=AB+AC A+BC=(A+B)(A+C)8、吸收律1(A+B)(A+B)=A AB+AB=A9、吸收律2A(A+B)=A A+AB=A10、吸收律3A(A+B)=AB A+AB=A+B11、多余项定律(A+B)(A+C)(B+C)=(A+B)(A+C)AB+AC+BC=AB+AC12、否否律()=A13、求反律AB=A+B A+B=A*B下面我们来证明其中的两条定律:(1)证明:吸收律1第二式AB+AB=A左式=AB+AB=A(B+B)=A=右式(因为B+B=1)(2)证明:多余项定律AB+AC+BC=AB+AC左式=AB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C)+AC(1+B)=AB+AC=右式证毕注意:求反律又称为摩根定律,它在逻辑代数中十分重要的。

二:布尔代数的基本规则代入法则它可描述为逻辑代数式中的任何变量A,都可用另一个函数Z 代替,等式仍然成立。

对偶法则它可描述为对任何一个逻辑表达式F,如果将其中的“+”换成“*”,“*”换成“+”“1”换成“0”,“0”换成“1”,仍保持原来的逻辑优先级,则可得到原函数F的对偶式G,而且F与G互为对偶式。

我们可以看出基本公式是成对出现的,二都互为对偶式。

反演法则有原函数求反函数就称为反演(利用摩根定律),我们可以把反演法则这样描述:将原函数F中的“*”换成“+”,“+”换成“*”,“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成原变量,长非号即两个或两个以上变量的非号不变,就得到原函数的反函数。

布尔代数化简

布尔代数化简

布尔代数是一种用于逻辑推理和电路设计的数学工具。

它基于两个值(通常表示为0和1),代表了逻辑真值的两种状态:假和真。

布尔代数通过定义运算符和规则,使我们能够对逻辑表达式进行化简和简化。

在本文中,我们将介绍布尔代数的基本概念和常见的化简技巧。

一、布尔代数的基本概念1. 逻辑变量:布尔代数中的变量只能取两个值,通常用字母表示,例如A、B、C等。

2. 逻辑常数:布尔代数中的常数有两个值,0表示假,1表示真。

3. 逻辑运算符:布尔代数中的常见逻辑运算符有与(AND)、或(OR)、非(NOT)等。

4. 逻辑表达式:由逻辑变量、逻辑常数和逻辑运算符组成的表达式称为逻辑表达式。

二、布尔代数的化简技巧1. 吸收律:对于任意变量A和B,有A∨(A∧B)=A和A∧(A∨B)=A。

2. 分配律:对于任意变量A、B和C,有A∧(B∨C)=(A∧B)∨(A∧C)和A∨(B∧C)=(A∨B)∧(A∨C)。

3. 德摩根定律:对于任意变量A和B,有¬(A∨B)=¬A∧¬B和¬(A∧B)=¬A∨¬B。

4. 重复律:对于任意变量A,有A∨A=A和A∧A=A。

5. 简化律:对于任意变量A和B,有A∨(A∧¬B)=A和A∧(A∨¬B)=A。

三、布尔代数的化简步骤1. 将逻辑表达式转换为布尔代数的标准形式,即每个变量只出现一次的乘积项之和的形式。

2. 使用吸收律、分配律、德摩根定律和重复律对逻辑表达式进行化简,将其转化为最简形式。

3. 根据问题的要求,可以进一步化简逻辑表达式,例如使用简化律等。

四、例子解析假设我们有一个逻辑表达式为(A∧B)∨(A∧C)∨(B∧C),我们可以使用布尔代数的化简技巧来简化它。

首先,我们可以应用分配律,将逻辑表达式转化为(A∨B)∧(A∨C)∧(B∨C)的形式。

然后,我们可以应用重复律,将逻辑表达式简化为(A∨B)∧(A∨C)。

第3章 布尔代数与逻辑函数化简

第3章 布尔代数与逻辑函数化简

F = GC + G C = G = A B
布尔代数与逻辑函数化简
例8. F = A B C + AB C 解:令 B C = G ,则
F = A G + AG = A
例9. F = A B C + A B C + A B C + AB C 解:原式 = A C + A C = C 利用等幂律,一项可以重复用几次。 利用等幂律,一项可以重复用几次。
F = AB + AC = A B + A C
布尔代数与逻辑函数化简
2. 逻辑函数不同形式的转换 逻辑函数的形式是多种多样的, 逻辑函数的形式是多种多样的,一个逻辑问题可以用 多种形式的逻辑函数来表示, 多种形式的逻辑函数来表示,每一种函数对应一种逻辑电 路。逻辑函数的表达形式通常可分为五种:与或表达式、 逻辑函数的表达形式通常可分为五种:与或表达式、 与非−与非表达式、与或非表达式、或与表达式、或非 或 与非 与非表达式、与或非表达式、或与表达式、或非−或 与非表达式 非表达式。 非表达式。
布尔代数与逻辑函数化简
例10. F = A B C D + A B C D + A BCD + AB C D + A B C D , 与其余四项均是相邻关系,可以重复使用。 其中 A B C D 与其余四项均是相邻关系,可以重复使用。 解:
ABC D + ABC D = BC D A B C D + AB C D = AC D A B C D + A B CD = A B D ABC D + ABC D = ABC
F = A B + AC
布尔代数与逻辑函数化简

第三章:布尔代数分析与数字电路逻辑化简表示(不同的展开方式)

第三章:布尔代数分析与数字电路逻辑化简表示(不同的展开方式)

第二章:布尔代数及其分析数字电路基于排列组合与数字集合论,和数理逻辑有一定距离。

在逻辑函数的计算方面,使用数理逻辑的非计算,能够化简布尔表达式。

布尔逻辑代数引进数字电路,与命题的真假判断有区别,因此逻辑函数用数字函数描述更有广泛的内涵:既包括逻辑计算也包括组合功能.英国数学家布尔的研究导致逻辑代数的出现,并被命名为布尔代数。

逻辑代数给数字电路建立二值逻辑模型,可进行具体数字系统的分析和设计,并在此基础上化简运算,得到数字系统的最优实现方法.使用布尔代数还可以揭示不同逻辑函数之间的相互关系,很清楚的发现这些逻辑函数所对应的具体数字电路之间的转换关系,根据实际需要灵活选择,实现不同数字电路的互换.§1.布尔代数系统的基本内容布尔代数系统建立在集合{0,1}上的运算和规则。

布尔代数的基本定律用恒等式的形式表示,包括代入,反演,对偶,展开四个基本运用规则,主要用来解决逻辑函数的变换与化简. 1布尔代数系统简介数字函数表达式:12(,,...,)n Y F A A A =,其中:12,,...,n A A A 称为输入变量,Y 叫做输出变量,F 称为逻辑函数,表示基本逻辑运算或复合逻辑运算。

def1在二值集{0,1}E =中,逻辑变量取值为0或1,称为布尔变元或变量。

注:布尔变元可用大写字母,也可用小写字母表示,但是一定要保持一致性。

def2从n E 到E 的函数被称为n 度布尔函数,其中n E =011{,,...,,,01}n i x x x x E i n -<>∈≤≤- 说明:n 度布尔函数与n 元组逻辑函数是一个概念,定义域是()n In E 。

2布尔代数的基本运算和复合运算表1:布尔代数与,或,非运算真值表说明:①与运算表示只有全部输入变量都为1时,输出变量为1;其它输入变量组合,得到得输出都为0。

②或运算表示只有全部输入变量都为0时,输出变量为0;其它输入变量组合,得到得输出都为1。

数字电路第3章 布尔代数与逻辑函数化简

数字电路第3章 布尔代数与逻辑函数化简

Y f ( A, B, C,)
注意:与普通代数不同的是,在逻辑代数中,不管是变 量还是函数,其取值都只能是0或1,并且这里的0和1只表示两 种不同的状态,没有数量的含义。
(3)逻辑函数相等的概念:设有两个逻辑函数
Y1 f ( A, B, C,)
Y2 g ( A, B, C,)
它们的变量都是A、B、C、…,如果对应于变量A、B、 C、…的任何一组变量取值,Y1和Y2的值都相同,则称Y1和Y2 是相等的,记为Y1=Y2。 若两个逻辑函数相等,则它们的真值表一定相同;反之, 若两个函数的真值表完全相同,则这两个函数一定相等。 证明等式:
第 3章
学习要点:
基本定理和化简方法
掌握布尔(逻辑)代数的基本运算法则、基本公式、
了解不同类型逻辑表达式的相互转换以及最简与或
表达式。
能够熟练地运用真值表、逻辑表达式、卡诺图、波
形图和逻辑图表示逻辑函数。
3.1 基本公式
和规则
逻辑代数是按一定的逻辑关系进行运算的代数,是分 析和设计数字电路的数学工具。在逻辑代数,只有0和1 两种逻辑值,有与、或、非三种基本逻辑运算,还有与或、 与非、与或非、异或几种导出逻辑运算。
A A 0
等幂律: A A A
A A A
双重否定律: A A
分别令A=0及 A=1代入这些 公式,即可证 明它们的正确 性。
A B B A 交换律: A B B A
利用真值表很容易证 明这些公式的正确性。 如证明A· B=B· A:
( A B) C A ( B C ) 结合律: ( A B) C A ( B C )
证明分配率:A+BC=(A+B)(A+C) 证明:

第3章 逻辑代数

第3章 逻辑代数
解解::Y Y ABACBCBBDDAABCBCDD
mmm50 5mm1m7 m72mm8m83mmm994mmm11600mmm111133 m 1mm21155m14 mm((55,,77,,88,,99,,1100,,1133,,1155)) MAMB0 MC0M1DM1M2AM2BM3CM3DM4M4MA6BM6MC11D11MM1A122MBMC1144D ABMCMD((00,,11A,,22B,,33C,,44D,,66,,11A11,B,11C22,,1D144))ABC D ABC D
2 真值表
输入变量 输出 A B C···· Y1 Y2 ···· 输入变量所 输出对应的取值 有可能的取 值
ABC F 000 0 001 0 010 0 011 1 100 0 101 1 110 1 111 1
2. 逻辑函数(表达)式 将逻辑函数中输出变量与输入变量之间的逻辑关系 用与、或、非三种运算符号连接起来的表达式
交换律
7
A·(B·C) = (A·B)·C
16 A+(B+C)=(A+B)+C 结合律
8
A·(B+C)=A·B + A·C 17 A+B·C =(A+B) ·(A+C) 分配律
9
AB A B
18
A B AB
反演律
公式(17)的证明:A+BC=(A+B)(A+C)
证明:
右边 =(A+B)(A+C)
偶式,记作 Y 。
所谓对偶定理是指,若两个逻辑函数式相等,那 么它们的对偶式也相等。
AB AC BC AB AC
( A B)( A C)(B C) ( A B)( A C)

第3章-布尔代数与逻辑函数化简

第3章-布尔代数与逻辑函数化简

与项用与门实现
运算次序为先非后与再或,因此用三级电路实现之。
根据逻辑式画逻辑图的方法:
将各级逻辑运算用 相应逻辑门去实现。
布尔代数与逻辑函数化简
例1 图示为控制楼道照明的开关电路。两 个单刀双掷开关 A 和 B 分别安装在楼上和 楼下。上楼之前,在楼下开灯,上楼后关 灯;反之,下楼之前,在楼上开灯,下楼 后关灯。试画出控制功能与之相同的逻辑 电路。
ACB AC D BD ACB ACD ABC AD CD
布尔代数与逻辑函数化简
消去法 运用吸收律 A AB A B ,消去多余因子。
Y AB AC BC AB ( A B)C AB ABC AB C
Y AB AB ABCD ABCD
布尔代数与逻辑函数化简
但如果将函数化简后其函数式为 F=AC+B
只要两个门就够了, 如图3 - 4所示。
A
&
C
B
≥1 F
图 3 – 4 函数化简后的逻辑 图
布尔代数与逻辑函数化简
三、代数化简法
运用逻辑代数的基本定律和
公式对逻辑式进行化简。
并项法 运用 AB AB A,
将两项合并为一项,并消去一个变量。
0 –1 ·11律= 1
0+A=A
重叠律
互补律
1+A=1 A+A=A
1 ·A = A A ·A = A
0 ·A = 0
还原律
布尔代数与逻辑函数化简
二、基本定律 (一) 与普通代数相似的定律
交换律 A + B = B + A
A ·B = B ·A
结合律 (A + B) + C = A + (B + C) (A ·B) ·C = A ·(B ·C)

第3章布尔代数与逻辑函数化简分解

第3章布尔代数与逻辑函数化简分解

_
________
(e)F A B A C 或非表达式
布尔代数与逻辑函数化简
3.2 逻辑函数的代数法化简
一、逻辑函数及其表示方法
逻辑函数描述了某种逻辑关系。 常采用真值表、逻辑函数式、卡诺图和逻辑图等表示。
1. 真值表
列出输入变量的各种取值组合及其对
应输出逻辑函数值的表格称真值表。
列 (1)按 n 位二进制数递增的方式列
A + AB = A (1 + B) = A
布尔代数与逻辑函数化简
(二) 逻辑代数的特殊定理
吸收律 A + AB = A 推广公式:
摩根定律(又称反演律)
推A广B公式A ·:B A+B A B A+B A ·B
00 1 1
00 1 1
思110 考101:((12011))
若已1知 若已01知
A+ AB
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
输出变量 Y 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0
布尔代数与逻辑函数化简
2. 逻辑函数式 表示输出函数和输入变量逻辑关系的 表达式。又称逻辑表达式,简称逻辑式。
真值表 (1)找出函数值为 1 的项。 逻辑(函2)数将式这一些般项根中据输真入值变表量、取卡值诺为图1或的逻用辑原图变写量出代。替,
逻辑式
取值为 0 的用反变量代替,则得到一系列与项。
(3)将这些与项相加即得逻辑式。

第3章 布尔代数与逻辑函数化简

第3章 布尔代数与逻辑函数化简

由上面可以看出反复用摩根定律即可,当函数较 复杂时,求反过程就相当麻烦。
逻辑代数与逻辑函数
练习二
反演和对偶法则
1、求下面函数F的反函数F
F = AB+C+AD
2、求下面函数F的对偶式F’
F = A(BC+BC)+AC
3、说明对偶法则和反演法则的区别
逻辑代数与逻辑函数
3.1.3 逻辑函数的表达式的形式与转换方法
_ _ _ _ _ _
_
逻辑代数与逻辑函数
例2(2)法2
F A B C D E
F A B C D E A B C D E A B C D E A B C D E
_ _ _ _ _ _ _ _ _ _
_
_
解:用摩根定律
________
( e) F A B A C 或非表达式
逻辑代数与逻辑函数
3.2
逻辑函数的代数法化简
3.2.1 逻辑函数与逻辑图 从实际问题总结出的逻辑函数可以用门电路组合 成逻辑图。
A B
&
≥1
1
1
F
&
图 2 – 14 AB A B 函数的逻辑图
_ _
逻辑代数与逻辑函数
从逻辑问题概括出来的逻辑函数式, 不一定是最 简式。化简电路,就是为了降低系统的成本,提高电 路的可靠性,以便用最少的门实现它们。例如函数:
_
_ ___Fra bibliotek_例4 求 F AB A C 的反函数 解: F AB AC ( A B) ( A C )
AA AB BC AC AB AC
_
逻辑代数与逻辑函数

布尔代数化简

布尔代数化简

布尔代数化简布尔代数是一种逻辑代数,用于处理逻辑关系的数学工具。

在实际应用中,布尔代数常用于化简逻辑表达式,简化电路设计和逻辑推理。

本文将介绍布尔代数化简的基本原理,并通过示例详细阐述化简过程,为读者提供指导和启发。

布尔代数的基本原理是基于布尔运算,即与(AND)、或(OR)和非(NOT)三种基本逻辑运算。

逻辑表达式中的变量取值为真(1)或假(0),利用这些基本运算可以构建复杂的逻辑表达式,并通过化简简化表达式的复杂度。

布尔代数化简的目的是找到最简化的逻辑表达式,其等价于原始表达式,但占用更少的存储空间、计算时间或电路空间。

化简的过程可以通过代数运算、逻辑性质和逻辑规则来实现。

下面以一个具体的示例来详细阐述化简过程。

假设我们有一个逻辑表达式:A AND (B OR C) OR (A AND B) OR (A AND C)。

首先,我们可以利用分配律将这个表达式改写为:A AND (B OR C) OR B AND (A OR C)。

接下来,我们发现表达式中存在重复项:A AND (B OR C) 和 B AND (A OR C)都包含了 A AND B OR C 这一部分。

为了使表达式更简洁,我们可以通过结合律和吸收律来消去重复项。

首先,我们利用结合律将 A AND B OR C 改写为 (A AND B) OR C。

然后,我们可以利用吸收律消去重复项:将 (A AND B) OR C 和 B AND (A OR C) 合并为B OR C。

最后,我们得到了化简后的逻辑表达式:A AND (B OR C) OR B OR C。

通过上述化简过程,我们将原始的复杂逻辑表达式简化为了更简洁的等价表达式。

这样的化简过程不仅减少了表达式的复杂度,还可以降低电路设计和计算的复杂性。

布尔代数化简在电路设计和逻辑推理中具有重要的应用。

在电路设计方面,化简逻辑表达式可以降低电路的复杂度和成本,提高电路的稳定性和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列 真 值 表 方 法
布尔代数与逻辑函数化简
例如 的真值表。 例如求函数 Y = AB + CD 的真值表。
输 A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 入 变 C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 量 D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 输出变量 Y 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0
布尔代数与逻辑函数化简
(三) 对偶规则
对任一个逻辑函数式 Y,将“·”换成 , ” +”, +”换成 ” 换成“ “+”,“+”换成“·”,“0”换成 ” “1”,“1”换成“0”,则得到原逻 ” ”换成“ ” 辑函数式的对偶式 Y ′。
对偶规则:两个函数式相等,则它们的对偶式也相等。 对偶规则:两个函数式相等,则它们的对偶式也相等。 变换时注意:(1) 变量不改变 变换时注意: ) (2) 不能改变原来的运算顺序 ) A + AB = A A · (A + B) = A
布尔代数与逻辑函数化简
二、逻辑函数式化简的意义与标准
化 使逻辑式最简,以便设计出最简的逻辑电路, 使逻辑式最简,以便设计出最简的逻辑电路, 简 从而节省元器件、优化生产工艺、 从而节省元器件、优化生产工艺、降低成本和提 意 高系统可靠性。 义 高系统可靠性。 不同形式逻辑式有不同的最简式, 不同形式逻辑式有不同的最简式,一般先求取 或式,然后通过变换得到所需最简式。 最简与 - 或式,然后通过变换得到所需最简式。
逻辑式为
ABC
布尔代数与逻辑函数化简
3. 逻辑图 例如 画
由逻辑符号及相应连线构成的电路图。 由逻辑符号及相应连线构成的电路图。 的逻辑图 相加项用或门实现
反变量用非门实现
与项用与门实现 运算次序为先非后与再或,因此用三级电路实现之。 运算次序为先非后与再或,因此用三级电路实现之。 根据逻辑式画逻辑图的方法: 根据逻辑式画逻辑图的方法: 将各级逻辑运算用 相应逻辑门去实现。 相应逻辑门去实现。
布尔代数与逻辑函数化简
_
例4
转换为其它形式。 将函数与或表达式 F = AB + A C 转换为其它形式。
与非-与非式 与非式。 解 (1) 与非 与非式 将与或式两次取反,利用摩根定律 将与或式两次取反,利用摩根定律可得
F = AB + A C = AB⋅ A C
(2) 与或非式 与或非式。 首先求出反函数 求出反函数
变换时注意: 变换时注意: 注意 (1) 不能改变原来的运算顺序。 ) 不能改变原来的运算顺序。 (2) 反变量换成原变量只对单个变量有效,而长非 ) 反变量换成原变量只对单个变量有效, 号保持不变。 号保持不变。
原运算次序为 可见,求逻辑函数的反函数有两种方法: 可见,求逻辑函数的反函数有两种方法: 利用反演规则或摩根定律。 利用反演规则或摩根定律。
_ _ _ _ _ _
布尔代数与逻辑函数化简
2. 逻辑函数不同形式的转换 逻辑函数不同形式的转换 逻辑函数的形式是多种多样的, 逻辑函数的形式是多种多样的,一个逻辑问题可以 用多种形式的逻辑函数来表示, 用多种形式的逻辑函数来表示, 每一种函数对应一种逻 辑电路。 逻辑函数的表达形式通常可分为五种: 与或表 五种: 辑电路。 逻辑函数的表达形式通常可分为五种 与或表 达式、 与非-与非表达式、与或非表达式 或与表达式 与非表达式 表达式、 表达式、 达式、 与非 与非表达式、与或非表达式、或与表达式、 或非-或非表达式。 或非 或非表达式。 或非表达式
4 个输入 变量有 24 = 16 种取 值组合。 值组合。
布尔代数与逻辑函数化简
2.
逻辑函数式
表示输出函数和输入变量逻辑关系的 表达式。又称逻辑表达式,简称逻辑式。 表达式。又称逻辑表达式,简称逻辑式。
的项。 ) 真值表 (1)找出函数值为 1 的项。 的用原变量代替, (2)将这些项中输入变量取值为 1 的用原变量代替 ) 逻辑函数式一般根据真值表、卡诺图或逻辑图写出。 逻辑函数式一般根据真值表、卡诺图或逻辑图写出。 , 的用反变量代替,则得到一系列与项。 取值为 0 的用反变量代替,则得到一系列与项。 逻辑式 (3)将这些与项相加即得逻辑式。 )将这些与项相加即得逻辑式。 例如 A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 Y 1 0 0 0 0 0 0 1
布尔代数与逻辑函数化简
第三章 布尔代数与逻辑函数化简
3.1 基本公式和法则 3.2 逻辑函数的代数法化简 3.3 卡诺图化简
布尔代数与逻辑函数化简
3.1 基本公式和规则
一、基本公式
逻辑常量运算公式 0·0=0 0·1=0 1·0=0 1·1=1 0+0=0 0+1=1 1+0=1 1+1=1
逻辑变量与常量的运算公式 0–1律 0+A=A 1+A=1 1·A=A 0·A=0 重叠律 A+A=A A·A=A 互补律 还原律
布尔代数与逻辑函数化简
Y = A B + AB = A ⊕ B
与或表达式( 个非门、 异或非表达式( 与或表达式(可用 2 个非门、 异或非表达式(可用 1 个异 2 个与门和 1 个或门实现) 个或门实现) 或门和 1 个非门实现) 个非门实现) (3) 画逻辑图 )
设计逻辑电路的基本原则是使电路最简。 设计逻辑电路的基本原则是使电路最简。
_
_
布尔代数与逻辑函数化简
A B A C
&
≥1
A B F A C
& & &
(b) A B ≥1 ≥1 ≥1 F
&
(a)
A B A C
&
≥1 F
(c)
A B A C
≥1
&
≥1
F A C
(d)
(e)
图 3 –1 同一逻辑的五种逻辑图
( a ) F = AB + A C与或表达式; (b) F = AB⋅ A C与非表达式;
布尔代数与逻辑函数化简
图示为控制楼道照明的开关电路。 例1 图示为控制楼道照明的开关电路。两 个单刀双掷开关 A 和 B 分别安装在楼上和 楼下。上楼之前,在楼下开灯, 楼下。上楼之前,在楼下开灯,上楼后关 反之,下楼之前,在楼上开灯, 灯;反之,下楼之前,在楼上开灯,下楼 后关灯。 后关灯。试画出控制功能与之相同的逻辑 电路。 电路。 解:(1) 分析逻辑问题,建立逻辑函数的真值表 ) 分析逻辑问题, 设开关 A、B合向左侧时为 0 、 合向左侧时为 方法: 方法: 状态, 状态; 状态,合向右侧时为 1 状态;Y 表 找出输入变量和输出函数, 找出输入变量和输出函数, 示灯, 状态, 示灯,灯亮时为 1 状态,灯灭时 对它们的取值作出逻辑规定, 对它们的取值作出逻辑规定, 状态。 为 0 状态。则可列出真值表为 。 然后根据逻辑关系列出真值表。 然后根据逻辑关系列出真值表 (2) 根据真值表写出逻辑式 ) A B 0 0 1 1 0 1 0 1 Y 1 0 0 1
布尔代数与逻辑函数化简
例1 证明等式 A + BC = (A + B) (A + C) 解: 真值表法 A B C A + BC (A + B) (A + C) 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 公式法 右式 = (A + B) (A + C) 用分配律展开 = AA + AC + BA + BC = A + AC + AB + BC = A (1 + C + B) + BC = A · 1 +BC = A + BC = 左式
F = A B + A C = A B A C = ( A+ B )( A + C )
(4) 或非 或非式 或非-或非式 或非式。 将或与表达式两次取反, 用摩根定律展开一次得或非 将或与表达式两次取反, 用摩根定律展开一次得或非 -或非表达式 或非表达式
_
_ _
_ _ _
_
F = ( A+ B )( A + C ) = A+ B + A+ C
布尔代数与逻辑函数化简
三、重要规则 (一) 代入规则
A A A 将逻辑等式两边的某一变量均用同 一个逻辑函数替代,等式仍然成立。 一个逻辑函数替代,等式仍然成立。
A均用 A均用 代替 A均用 均用 代替
B均用 代替 均用C代替 均用 利用代入规则能扩展基本定律的应用。 利用代入规则能扩展基本定律的应用。
A + B + C = A⋅ B + C = A⋅ B⋅ C
这样就得到三变量的摩根定律。 这样就得到三变量的摩根定律。
布尔代数与逻辑函数化简
(二) 反演规则
对任一个逻辑函数式 Y,将“·”换成 , ” +”, “+”,“+”换成“·”,“0”换成“1”, ”换成“ ” ”换成“ ” “1”换成“0”,原变量换成反变量,反变量 ”换成“ ” 原变量换成反变量, 换成原变量, 换成原变量,则得到原逻辑函数的反函数 Y 。
布尔代数与逻辑函数化简
例2 证明 解
A + B + C = A⋅ B⋅ C
_ _
____________
_
_
_
_________
相关文档
最新文档