分子克隆技术步骤

合集下载

分子克隆实验流程

分子克隆实验流程

分子克隆实验流程一、引物的稀释1、引物干粉冻存于-20℃,用前12000rpm离心1min;2、按引物管上的nmol数稀释,nmol=4.92,加49.2µL ddH2O至100µM;3、稀释至10µM(5µL引物F+5µL引物R+40µL ddH2O)二、目的基因的扩增实验前准备:生物安全柜紫外照射30min,模板DNA、水、引物、buffer,dNTP提前10min拿出解冻,用75%酒精擦拭移液器及台面。

扩增体系:Reagent 25µL 50µL10xbuffer (含Mg2+) 2.5µL 5µLdNTP (10mM) 0.5µL 1µLrT aq酶0.25μL0.5μLprimer (10μM) 1.25μL 2.5μLTemplate DNA 2μL4μLddH2O 18.5µL 37µL反应程序:(延伸时间按目的片段大小进行调整)95℃预变性3min(95℃变性30 s,60℃退火30s,72℃延伸45s)x3572℃后延伸7min4℃保持电泳:120V,加2µLloading buffer,上样5µL,1000bp marker 5µL小胶:2%,0.6g琼脂糖,30ml 1xTAE中胶:2%,1g琼脂糖,50ml 1xTAE大胶:2%,2g琼脂糖,100ml 1xTAE三、目的产物切胶回收(试剂盒)四、连接实验前准备:SolutionI在冰上融化连接体系:Reagent 10µL胶回收DNA(50ng/μL)4µLPDM-18T载体1µLSolution I 5µL反应条件:16℃,4h(PCR仪,热盖105℃)/ 4℃过夜五、转化实验前准备:开启42℃水浴锅实验步骤:样品+阴性对照(无质粒)+阳性对照(感受态带的质粒)1、把感受态细胞TOP10从-80℃冰箱拿出并放置于冰上解冻;2、每管分装30 - 50μL感受态细胞(冰浴);3、向感受态细胞中加入5μL连接产物,冰浴30min。

分子克隆的五个步骤

分子克隆的五个步骤

分子克隆的五个步骤1 选择载体:在分子克隆的过程中,首先需要选择一种合适的载体来实现这一过程。

载体是要被克隆的DNA片段,生物体中的某种大分子结构,可以为克隆提供容器。

一般来说,载体选择最好是含有可重复使用的重组信息,如使用多种重组酶克隆更为容易和可靠,能在实验室之间转移。

该步骤需要考虑选择对于试验类型最合理、在实验中表现最佳的载体,与之相符的必要条件是有可操作和稳定的复制介质,以及品质可靠、价格相对划算的供应商。

2 将载体与要克隆的DNA片段连接:接下来需要将载体与要克隆的DNA片段连接。

这样一来,DNA片段就会受到载体中的重组酶以及其余细菌特有的信息影响,从而生存,复制,得以分离,克隆出多个相同的DNA断片。

连接DNA片段和载体的技术有各种方法,最常见的方法为用复制酶切割载体的方法,这种技术利用重组酶将DNA片段片段插入载体结构中,实现载体与DNA片段的融合。

3 转化:经过第二步的操作,则可以将融合的载体片段转入细菌,进行转化,实现将载体片段覆盖到细菌细胞中,形成细菌外源DNA的转基因,从而使细菌体系内发生变化,从而开始转化过程。

4 筛选:经过第三步的转化,载体就可以移植到细菌体内,从而形成转基因细菌,这时候就可以采用测试细胞以及一些标记物质来进行筛选,将转基因细菌与其他细菌相区分开来,根据一些指定条件进行筛选,从而得到被克隆的特异性DNA片段,实现分子克隆的目的。

5 收集:经过第四步的筛选,就可以将特异性的DNA断片收集起来,被收集的DNA断裂片段就是分子克隆的结果,可以得到被克隆的特异性DNA 断片,将其用于进一步的研究。

最后,分子克隆是一种复杂的实验过程,需要经过以上5个步骤,才能实现分子克隆的目的,如正确选择载体、把该DNA片段片段插入载体结构、将融合的载体片段转入细菌、用测试细胞以及一些标记物质对转基因细菌进行筛选,从而得到被克隆DNA片段,最终收集被克隆的DNA断片,这样就可以实现分子克隆的目的,得出满意的实验结果。

分子克隆实验标准步骤

分子克隆实验标准步骤

分⼦克隆实验标准步骤分⼦克隆实验标准步骤⼀、常规分⼦克隆实验流程:⼆、分⼦克隆实验标准步骤(含实验编号):1. PCR 扩增⽬的基因(编号Clone SOP-1)以本实验室常⽤酶KOD-Plus-Neo (TOYOBO )为例体系(50ul ):10×KOD buf 5uldNTP(2mM) 5ulMg 2+ 3ulPrimer1 1ulPrimer2 1ulTemplate50-200ngKOD0.5ulddH 2O up to 50ul程序:95℃2min98℃10s58℃30s 35cycle68℃2kb/min68℃7min12℃∞2.PCR产物的琼脂糖凝胶电泳琼脂糖凝胶的制备(编号Clone SOP-2)琼脂糖溶液的制备:称取琼脂糖,置于三⾓瓶中,按1%-1.5%的浓度加⼊相应体积的TBE或TAE缓液,将该三⾓瓶置于微波炉加热⾄琼脂糖溶解。

胶板的制备:①取有机玻璃内槽,洗净、晾⼲;②将有机玻璃内槽置于⼀⽔平位置模具上,安好挡板,放好梳⼦。

在距离底板上放置梳⼦,以便加⼊琼脂糖后可以形成完好的加样孔。

③将温热琼脂糖溶液倒⼊胶膜中,使胶液缓慢地展开,直到在整个有机玻璃板表⾯形成均匀的胶层。

④室温下静置30min左右,待凝固完全后,轻轻拔出梳⼦,在胶板上即形成相互隔开的上样孔。

制好胶后将铺胶的有机玻璃内槽放在含有0.5~1×TAE(Tris-⼄酸)或TBE(Tris-硼酸)⼯作液的电泳槽中使⽤,没过胶⾯1mm以上。

3.试剂盒回收DNA⽚段(编号Clone SOP-3)以本实验室常⽤DNA凝胶回收试剂盒(天根)为例使⽤前请先在漂洗液PW中加⼊⽆⽔⼄醇,加⼊体积请参照瓶上的标签。

①柱平衡步骤:向吸附柱CA2中(吸附柱放⼊收集管中)加⼊500µl平衡液BL,12,000rpm(~13,400×g)离⼼1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。

(请使⽤当天处理过的柱⼦)②将单⼀的⽬的DNA条带从琼脂糖凝胶中切下(尽量切除多余部分)放⼊⼲净的离⼼管中,称取重量。

分子克隆的步骤及原理

分子克隆的步骤及原理

分子克隆的步骤及原理分子克隆是利用重组DNA技术复制特定的DNA片段并将其插入到另一个DNA分子中的过程。

它是许多生物学和医学研究中常用的技术,例如用于研究基因结构和功能、制备重组蛋白以及研发基因治疗等。

第一步是选择并提取目标DNA片段。

一般情况下,需要从生物体中提取DNA,例如通过PCR扩增或酶切来获取所需片段。

PCR是一种酶链反应技术,通过引物引导DNA的聚合酶在一系列温度循环中合成DNA。

酶切是利用限制性内切酶切割特定的DNA序列来获得目标DNA片段。

第二步是将目标DNA片段插入载体DNA中。

载体DNA是一段能够自主在细胞中复制的DNA分子。

常用的载体包括质粒和噬菌体。

目标DNA片段需要与载体DNA进行连接,形成重组DNA。

连接主要通过DNA连接酶的作用,与连接酶反应的连接体包括连接酶本身、大肠杆菌DNA连接酶I(T4 DNA连接酶由细菌染色体T4噬菌体中提取的)、T4 ligation buffer (限制性内切酶的缓冲液通用成分+乙醇和内切酶)。

连接后的重组DNA 可以通过转化作用导入到宿主细胞中。

第三步是将重组DNA导入宿主细胞。

转化是将外源的DNA片段导入到细胞中的过程。

常用的转化方法包括化学转化和电转化。

化学转化是通过改变细胞的物理状态和细菌细胞表面的荷电状态,使其能够非特异性地吸附DNA质粒。

电转化则是通过电场作用使DNA穿透细胞膜,进入细胞。

最后一步是筛选和分离重组的细胞。

由于重组细胞中带有插入的目标DNA片段,因此可以通过筛选技术来判断哪些细胞中含有目标DNA。

常用的筛选方法包括抗生素耐药筛选和荧光蛋白筛选。

在抗生素耐药筛选中,重组细胞会在含有特定抗生素的培养基中生长,而未转化的细胞则会被抑制。

在荧光蛋白筛选中,以荧光蛋白为报告基因,使转化的细胞能够呈现出荧光信号。

分子克隆的原理主要依赖于DNA的重组和复制。

DNA连接酶通过其黏末端连接酶活性,可以将目标DNA片段连接到载体DNA中形成重组DNA。

DNA分子克隆技术(也称基因克隆技术)

DNA分子克隆技术(也称基因克隆技术)

DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。

其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。

载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。

主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。

载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。

细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。

质粒载体是在天然质粒的基础上人工改造拼接而成。

最常用的质粒是pBR322。

基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。

其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。

cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。

cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。

特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。

核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。

分子克隆技术步骤[整理]

分子克隆技术步骤[整理]

分子克隆技术步骤在分子水平上提供一种纯化和扩增特定DNA片段的方法。

常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA 的许多拷贝,从而获得目的基因的扩增。

克隆在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖(细胞)系;其动词(clone,cloned,cloning)含义指在生物体外用重组技术将特定基因插入载体分子中,即分子克隆技术。

将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类。

cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA 分子连接引入寄主细胞。

每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布。

特点是:①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;③cDNA能在细菌中表达。

cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。

1.方法:(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA 切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。

(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。

在细胞中以游离超螺旋状存在,很容易制备。

质粒DNA可通过转化引入寄主菌。

在细胞中有两种状态,一是“紧密型”;二是“松驰型”。

分子克隆基本流程及技术原理

分子克隆基本流程及技术原理

分子克隆基本流程及技术原理分子克隆是一种重要的实验技术,可用于制备大量的DNA和蛋白质,探索基因功能,研究生物学过程等。

其基本流程包括DNA片段选择、PCR 扩增、限制性内切酶切割、连接、转化和筛选等步骤。

以下将详细介绍分子克隆的基本流程及技术原理。

PCR扩增:接下来,使用聚合酶链反应(PCR)技术扩增DNA片段。

PCR是一种有效的DNA扩增方法,它通过反复复制DNA模板,生成大量的DNA片段。

PCR反应基本包括三个步骤:变性、引物结合和扩增。

-变性:将DNA模板加热至95°C,使其两个链分离,得到单链DNA。

-引物结合:将反应体系温度下调到适宜的引物结合温度,引物与DNA模板的互补序列结合,形成DNA-DNA复合物。

-扩增:在一定的温度下,聚合酶通过DNA-DNA复合物进行扩增。

扩增过程包括DNA链合成、DNA链延长、DNA链分离和DNA链结合。

多次循环后,可以得到大量的目标DNA片段。

限制性内切酶切割:在PCR扩增后,可选用特定的限制性内切酶切割目标DNA片段。

内切酶是一种具有特异性的酶,它能够在特定的DNA序列上切割产生特定的片段。

通过切割,可以克隆所需的片段,并在连接过程中提供黏性末端。

连接:将目标DNA片段与载体DNA(如质粒)连接起来。

连接可采用多种方法,如T4DNA连接酶方法、PCR重叠延伸法等。

连接时,需要确保目标DNA片段与载体DNA能够互补配对,并生成稳定的连接。

转化:将连接后的混合物转化到宿主细胞中。

转化可通过化学方法(如钙离子转化法)或生物方法(如细菌电穿孔法)实现。

转化后,将细胞培养在含有适当选择压力(如抗生素)的培养基中,这样只有转化成功的细胞才能存活。

筛选:根据实验目的选择合适的筛选方法。

通常,使用抗生素抗性标记和荧光蛋白等进行筛选,以识别并纯化所需克隆产物。

技术原理:-PCR技术:PCR技术是通过DNA聚合酶的模板依赖性合成,将DNA片段按特定序列进行扩增。

分子克隆实验步骤总结

分子克隆实验步骤总结

分子克隆实验步骤总结分子克隆实验步骤1.对目的片段进行pcr扩增:Pcr体系:(50μL)DNA Template:10-100ng10×PCR buffer:5μL50mM dNTPs:0.5μLPrimers:1μM eachWater:add to 49μLTaq Polymerase:1μL2.琼脂糖电泳,看有无目的条带3.对目的条带进行切胶回收4.对pcr产物加尾: 72℃,20min(如用高保真酶,则需加尾;Taq酶,则无需加尾)加尾体系:(10μL)胶回收DNA: 8μLBuffer: 1μLdNTPmix: 0.5μLTaq Polymerase:0.5μL5.T载体连接:室温,30min体系:(6μL)加尾后产物:4μLT载体:1μLSalt solution 1μL6.30-40μL感受态加入重组后的质粒。

7.放冰上30min。

8.42℃热击90s(放冰上冷:1-2min)9. 加SOC(200-250μL)10.37℃,300rpm,1h11.平板涂布:加氨苄的培养基,37℃培养箱倒置培养过夜12.挑单菌落:用牙签挑单菌落,放到含6mL液体培养基的试管中,37℃摇床培养过夜13.试剂盒提质粒14.酶切:37℃,2h体系:(20μL)Buffer2: 2μL酶:0.5μL模板:1μLBSA:0.2μLH2O:16.31μL15.琼脂糖凝胶电泳分析是否正确导入目的片段鉴定阳性克隆的另一个方法----菌落PCR从平板挑单菌落到含1ml LB(Amp+)的1.5drof管中,37℃摇床培养8小时左右,进行菌落PCR鉴定,引物可选用载体的通用引物,如T载体用M13F/R。

菌落PCR体系(20ul)10*taq buf 2uldNTPs(2.5mM)1.6ul Mg2+(25mM)1.6ul Primer F (10uM)0.5ul Primer R(10uM)0.5ul DNA 1 ul Ex taq 0.3 ul ddH2O 12.5ul程序:94度10min94度30sec56度30sec72度2:10 30cycle 72度10min4度forever。

分子克隆法

分子克隆法

分子克隆法
分子克隆法是一种分子生物学技术,用于在体外制备和复制DNA 分子,包括基因、DNA片段和整个染色体。

这种技术允许科学家复制和操纵DNA,以进行各种研究和应用,包括基因工程、药物开发和基因治疗。

下面是分子克隆法的主要步骤:
1.DNA提取:首先,需要从源材料(通常是细胞或组织样本)中
提取DNA。

这可以通过细胞裂解和蛋白质分离等方法来完成。

2.DNA切割:提取的DNA通常是大片段,需要将其切割成较小
的片段,以便后续克隆。

这一步通常使用限制性内切酶来实现,
这些酶可以在特定DNA序列上切割。

3.DNA连接:切割后的DNA片段可以通过DNA连接酶与载体
DNA(如质粒或病毒DNA)连接在一起,形成重组DNA分子。

这个过程称为DNA重组。

4.DNA转化:重组DNA可以被引入宿主细胞中,这个过程称为
DNA转化。

这可以通过热激冷却法、电穿孔法、化学法等方法
来实现。

5.宿主细胞培养:转化后的细胞被培养,以允许它们繁殖并扩增
重组DNA。

6.筛选与识别:在宿主细胞中,可以筛选出携带重组DNA的细
胞,通常使用抗生素抗性标记或荧光标记等方法来进行筛选。

7.DNA提取与纯化:从筛选出的细胞中提取和纯化重组DNA,
以便进一步的研究或应用。

8.分析与验证:最后,分析和验证克隆的DNA,确保它是所需的
目标DNA,并不包含错误或突变。

分子克隆法有许多应用,包括基因表达、基因编辑、蛋白质生产、疾病研究等。

它在生物学研究和生物工程领域发挥着关键作用,允许科学家操纵和研究DNA,以深入了解生命的分子机制。

分子克隆主要步骤

分子克隆主要步骤

分子克隆主要步骤分子克隆是一种常用的分子生物学技术,用于复制DNA分子。

下面是分子克隆的主要步骤:1.DNA提取:首先需要从一个已知的DNA源(例如细菌、动物组织等)中提取所需的DNA。

这可以通过使用不同的提取方法(如酚/氯仿提取、自动提取仪等)来实现。

2.限制性内切酶切割:将目标DNA切割成片段。

此步骤可以通过使用限制性内切酶来实现,这些酶可以识别特定的DNA序列,并在这些序列中切割DNA,形成切割产物。

3.DNA修饰:如果需要,在第2步切割的DNA片段末端添加修饰,以便后续步骤的操作。

例如,可以在DNA片段的末端添加磷酸基团(通过激酶酶和ATP)或羟基(通过糖转移酶和dTTP)。

4.连接DNA片段:将目标DNA片段与载体DNA(通常是质粒)连接起来。

这可以通过使用DNA连接酶,如DNA连接酶I或T4DNA连接酶,将DNA片段与载体DNA的末端连接。

5.转化:将连接好的DNA导入到宿主细胞中。

这可以通过转化(常见的转化宿主细胞包括大肠杆菌和酵母)来实现。

转化可以通过热冲击法、电转化或使用化学方法来进行。

6.筛选:在经过转化的细胞中筛选出带有目标DNA的细胞。

这可以通过将转化后的细胞接种到含有适当选择标记的培养基上来实现。

只有带有目标DNA的细胞才能生长并形成克隆。

7.复制:选取带有目标DNA的细胞进行培养,并使其进行大量复制。

这可以通过将细胞培养在含有适当培养基和条件的培养皿中来实现。

8.提取:从大量复制的细胞中提取含有目标DNA的质粒。

这可以通过使用质粒提取试剂盒来实现,其中包含了一系列的化学试剂和步骤,用于纯化和提取目标DNA。

9.鉴定:验证提取的DNA是否为目标DNA。

这可以通过进行限制性内切酶切割、PCR扩增或测序等方法来实现。

分子克隆是一种重要的实验技术,可用于构建重组DNA分子、研究基因功能、制备蛋白质等。

虽然上述步骤描述了分子克隆的基本过程,但具体操作可能会因实验目的和需求而略有不同。

分子克隆详细步骤

分子克隆详细步骤

分子克隆详细步骤分子克隆是通过重组DNA分子来产生大量完全相同的DNA序列的技术。

在分子克隆工作中,我们主要进行克隆载体的构建、目标DNA的扩增、将目标DNA插入克隆载体中、转化和筛选等步骤。

下面将详细介绍这些步骤:1.克隆载体的构建:克隆载体是用于插入目标DNA的DNA分子。

常用的克隆载体包括质粒、噬菌体和人工染色体等。

在构建克隆载体时,我们首先需要选择适合的载体,并提取载体的DNA。

然后,利用酶切酶对载体进行酶切,生成线性的载体DNA。

接下来,将目标DNA插入克隆载体的相应位点上,形成重组的载体。

2.目标DNA的扩增:目标DNA可以通过PCR(聚合酶链反应)来扩增。

首先,设计引物,使其与目标DNA的两端末端相互互补。

然后,在PCR反应中,通过DNA聚合酶的扩增作用,使目标DNA得以扩增。

PCR反应通常包括模板DNA、引物、核苷酸和聚合酶等成分。

3.目标DNA的插入:将扩增后的目标DNA与酶切后的载体进行连接,利用DNA连接酶催化目标DNA与载体之间的连接反应,生成重组的克隆载体。

连接后的载体含有目标DNA的序列。

4.转化:将克隆载体引入宿主细胞中进行复制。

这一步骤通常称为转化。

转化可以通过电击、热激、化学方法等方式进行。

宿主细胞通常是大肠杆菌等细菌。

5.筛选:利用筛选方法来选择包含目标DNA的克隆。

常用的筛选方法包括抗生素筛选、报告基因筛选和限制性内切酶酶切筛选等。

抗生素筛选是将带有选择性抗生素耐受基因的克隆引入含有相应抗生素的培养基中,只有带有目标DNA的克隆才能生长。

报告基因筛选是通过将报告基因插入克隆载体中,使之与目标DNA一起被转录和翻译,从而表达报告基因的蛋白质,以此来筛选包含目标DNA的克隆。

限制性内切酶酶切筛选是通过限制性内切酶对重组载体和目标DNA进行酶切,并通过凝胶电泳的方法来分离并检测含有目标DNA的克隆。

以上就是分子克隆的详细步骤。

通过这些步骤,我们可以获得大量完全相同的DNA序列,并用于各类分子生物学研究和应用中。

分子克隆详细步骤

分子克隆详细步骤

分子克隆步骤:一、贴壁细胞总RNA提取:1、吸掉培养液,用PBS洗一遍?2、往培养皿中加入1ml,TRIzol,吹打几次(每10cm2面积,即3.5cm直径的培养板加1ml)3、移至1.5mlEP管,静置5分钟4、加入200ul三氯甲烷,震荡混匀,室温静置5分钟5、4度12000r/min,离心15分钟,取上清,约600ul6、加入500ul异丙醇,混匀后,静置30分钟?7、4度12000r/min,离心15分钟,弃上清8、加入1ml70%预冷酒精洗涤沉淀物9、4度7500r/min,离心5分钟10、弃上清,自然晾干11、加入50ulDEPC水溶解,测OD值*鼠尾基因组DNA粗提取:1、100ul lysis buffer for each tail,and 2ul 10mg/ml PK,55℃,overnight.2、Then,100℃ for 10min to denature the PK, use 0.5~1ul lysate as template to do PCR.Lysis buffer:(store at 4℃)KCl 0.5MTris 0.1MNP-40 1%Tween-20 1%二、RT-PCR:1、预变性体系12ul:Total RNA 2ulOligo(dT18)primer 1ulDH water 9ul65℃ 5min 速置冰上2、RT体系:20ul:预变性体系12ul5×buffer 4ulRNAase inhibiter 1ul10m dNTP 2ulMMLV 1ul42℃ 60min70℃ 5min12℃ forever3、PCR体系20ul:10×buffer 2ul10m dNTP 0.5ulPrimer(F+R) 1ul (0.5ul+0.5ul)稀释后cDNA(50ul)1ulPfu 0.2uldd water 15.3ul95℃3min、(95℃30s,55℃30s,72℃35s)×29cycle、72℃10min、12℃forever三、跑胶鉴定PCR产物:四、醇沉PCR产物:1、将PCR产物转移至1.5mlEP管中2、加入0.1倍体积预冷NaAC,3倍体积70%预冷乙醇,混匀3、—80℃静置30min4、4度14000r/min,10min离心弃上清,加1ml70%预冷乙醇洗涤沉淀5、4度14000r/min,10min离心弃上清,自然晾干6、加入25-20ul dd water 吹匀静置10-20min待溶解五、原始质粒/PCR醇沉产物双酶切体系50ul:Enzyme1 1ulEnzyme2 1ul10×Buffer 5ul (在体系中被稀释成1×)10×BSA 5ul (看需要)Template 1ugADD dd water to 50ul酶切过夜?六、单独鉴定质粒酶切产物:1、采用20ul体系:酶各0.5ul、buffer2ul、bsa0.5ul、template2ul)酶切2h2、跑胶鉴定七、电泳,切胶回收与纯化:使用DNA回收试剂盒(QIAquick Gel Extraction Kit Protocol)PCR酶切产物纯化:1.将PCR产物于需要的电压和电流下跑电泳2. 紫外灯下仔细切下含待回收DNA的凝胶,置1.5ml离心管中,称重。

分子克隆步骤

分子克隆步骤

分子克隆流程及步骤1PCR扩增目的基因片段模板1μL -20℃小提质粒的盒子引物1(10μmol)1μL -20℃标有引物的盒子100μL体系引物2 (10μmol)1μL 物品位置:-20℃标有引物的盒子2×Taq mix 50μL -20℃分子克隆工具酶1Pfu高保真酶1μL 分子克隆工具酶1dd水46μL 4℃冰箱长盒子中PCR 循环:94℃5min-----94℃1min----59℃1min----72℃1min-----72℃1min-----4℃2h 变性反应变性反应复性温度延伸反应延伸反应保存30 cycle注:1 HS Mix 与Taq mix 一样;2 PCR盖子温度94 ℃;3 退火温度视不同引物碱基,公式为:T=2(G+C)+(A+T)最适合温度为T的上下2-5℃;4 PCR产物保存在4℃,过夜则保存在-20℃2 PCR 扩曾产物的凝胶电泳,拍照为了检验PCR的扩增结果需对其进行琼脂糖凝胶电泳分析。

(电压8V/cm,电泳槽正负极间距离)取出5-6μL样品于电泳槽中,DNA marker 3-5μL,电泳至过凝胶1/2在紫外下观察,必要时拍照。

注意电泳时的正负极,DNA和蛋白质都是从负极向正极跑。

电压的控制为8V/cm,大槽一般电压为小胶100V,大胶160V,小槽电压一般为80V。

附注:配琼脂糖凝胶的方法:2g琼脂糖(BIOWEST REGULAR AGAROSE G-10),200ml 0.5×TBE 在微波炉中加热5min两次直至煮沸完全溶解,冷却后加入EB倒入模具中即可。

EB有剧毒注意戴手套3PCR扩增产物的纯化本步骤为试剂盒的纯化,详细步骤见TakaRa Fragment purification kit ver2.0的说明书注:1提取试剂盒有不切胶纯化和切胶纯化两种,参照不同的说明书进行操作。

2操作到第六步后弃滤液空柱子离心2min (1200r/m),丢弃滤液,将柱子放入新的离心管中(从超净台里面取)至烤箱中2min,同时将Elution Buffer放入烤箱中2-5min,再接第七步后面的步骤。

分子克隆全攻略

分子克隆全攻略

分⼦克隆全攻略分⼦克隆⼀、载体与外源⽚段(PCR产物)的双酶切为了保证做连接反应时有⾜够的量,应该加⼊1ug的DNA进⾏酶切反应;两种酶分别加1ul,10*buffer 2ul,1ug的DNA,加⽔⾄20ul。

(因此要跑胶分析DNA以及载体的浓度,取1-2ul,电泳检测其含量。

1ul量太少,可以加将其稀释在9ul⽔中,再加loading buffer。

6ul 15000bp的maker,2500bp条带的亮度约是100ng DNA。

可对⽐maker的亮度算出酶切回收的DNA的浓度,以便于连接反应的⽤量。

Image J软件可以做灰度分析。

)双酶切反应结束后,使⽤PCR cleanup试剂盒回收DNA与载体。

回收完之后⽤同样的⽅法分析其浓度。

(也可以⽤分光光度计直接测量DNA的浓度,但是,⼀般酶切反应之后浓度会⽐较⼩,取1ul 稀释100倍之后浓度很低,可能已经低于仪器的测量范围,⽽电泳灵敏度很⾼,还可⼀排除杂带、RNA、蛋⽩质等对浓度的⼲扰。

)⼆、连接反应载体100ng,DNA⽚段根据⼤⼩,1ul buffer,1ul T4连接酶,加⽔⾄10ul;16°连接12-16h。

载体(约0.03pmol)与外源DNA的摩尔⽐⼤约1:3~1:10之间,根据载体与DNA⽚段的长度,可算出需要的量。

扫胶的电脑上有个⽂件:连接反应.xls,按要求填写即可得出连接反应的⽤量。

因为载体的⼤⼩⼀般在5kb-10kb,因此,严格的算出0.03pmol的载体的质量意义不⼤,⼤约100ng即可。

如果时间⽐较紧张,可以25°连接15min,之后可取5ul进⾏转化,剩余5ul 16°继续连接。

三、质粒转化到感受态⼤肠杆菌中从-70°中取出感受态,在⼿⼼融化后⽴即插⼊冰上,5ul连接产物+100ul感受态⼤肠杆菌,混匀。

冰浴30min,然后42°热激90s,热激时不要晃动EP管。

然后⽴即插⼊冰上,静置2min。

分子克隆实验指南

分子克隆实验指南

分子克隆实验指南分子克隆是现代生物学领域的一项核心技术,也是基因研究、药物研发和农业开发过程中必不可少的手段之一。

在这篇指南中,我将会简要介绍如何进行分子克隆实验,以帮助初学者更好地理解、掌握这项技术。

同时,我也建议实验者在进行实验前,详细阅读当地的安全操作规程,并在合适的实验室环境中进行操作。

一、材料准备在进行分子克隆实验前,我们需要准备以下材料和试剂:1. DNA的扩增产物和载体DNA2. 限制性内切酶3. T4 DNA连接酶4. 细菌菌种5. 热激酶6. 磷酸缓冲液7. 离心管、PCR管、琼脂糖凝胶和电泳槽等相关实验器材。

二、实验步骤1. PCR扩增将目标DNA扩增出来,制备扩增产物。

同时,也需要提纯产物,将其溶于蒸馏水中,以备后续操作。

2. DNA限制性内切酶切割选择两种限制酶,将目标DNA和载体DNA分别切割。

切割产品应该能够被T4 DNA连接酶形成连接。

在T4 DNA连接酶形成连接的基础上,我们需要将其转化到大肠杆菌等细菌中进行培养。

3. DNA连接将切割后的DNA和载体DNA混合,加入T4DNA连接酶,进行DNA连接。

连接成功后,进行质粒的转化操作。

4. 质粒转化将DNA与转化者(例如大肠杆菌)一起培养几个小时,使其在培养基中繁殖生长。

之后,分离转化菌落,进行鉴定。

5. 鉴定正式的及相关标签元素为了确保成功的分子克隆,在选取符合需要的转化菌落后,除了进行相关的鉴定,还需要使用相关的标签元素。

这些标签元素可以用于识别有效的重组表达载体,并进行大规模的表达。

三、实验注意事项1. 选取嵌合体目标和载体的选择应按照相关配对的要求进行。

在酶切反应中,应注意酶的用量。

同时,也需要注意处理过程中不要将酶污染。

2. 进行DNA限制性内切酶切割时,应注意温度和反应时间。

3. 在进行DNA连接后,将混合物放置于水浴中,沸腾数分钟,以便DNA连接的更加稳定。

在连接DNAs之前,应该对酶进行热灭活。

4. 质粒转化后,为了鉴定高效的表达,需要进行多次筛选和鉴定。

分子克隆与表达实验

分子克隆与表达实验

分子克隆与表达实验流程1.选取菌株从保存的海冰细菌中随机选取某几株,挑取其单菌落于发酵培养基(2216)活化培养,1d后将活化的菌株5ml接入70ml发酵培养基中,12℃,100rpm摇床培养,大约4~5d后对菌株在4℃下,12000rpm进行离心,收集菌体,于4℃保存。

2.提取菌株全基因组在超净工作台上取120μl离心后的菌株悬浮于400μl的1×TE缓冲液中,加入10%SDS 100μl和2mg/mL的溶菌酶20μl,混匀后置于37℃保温1h,加入5M 的NaCl 70μl充分混匀,置于65℃水浴10min,加入等体积的苯酚/氯仿/异戊醇(25:24:1)混匀,离心(12000rpm、8min),取上层水相于新离心管中并加入等体积的氯仿/异戊醇(24:1)充分抽提,取上层水相加入两倍体积的无水乙醇沉淀DNA,并用70%的乙醇淋洗两次,倾去乙醇,真空干燥后溶于25μl的1×TE缓冲液。

对全基因组进行电泳检验,其余的置-4℃冰箱保存备用。

3.根据目的蛋白设计引物本实验研究的是小分子蛋白:谷胱甘肽转移酶(GST)、硫氧还蛋白(Trx)和谷氧还蛋白(Grx)。

根据这三种蛋白的基因用Primer5设计引物。

引物名称与序列引物名称引物序列,方向5′——3′合成规格(OD)GST1(1) TTTATGGYGTMCCKCTTTCTC 2GST1(2) CA TGCTSCA TATTSATTAWCTG 2GST2(1) AGTSTCGCCGTTTAATCAACC 2GST2(2) YKCATY AAKYTGCTCRCCMSC 2GST3(1) TTTA TGGCGTACCTCTTTCTCC 2GST3(2) CGGTAA TACCTAACTGCTCAGC 2GST4(1) TCTGTTACCTCGCCTTAT 2GST4(2) AAAGCCA TTATCTTCTGC 2GST5(1) ACTTA TTTGGAGCA TTGAGCGG 2GST5(2) TCGGCGGTTCAAGAAAAG 2Trx1(1) AAGAATTCA TGAGCGAGAAAATAATCC 2Trx1(2) CGCAAGCTTTTAAAGA TTGTTTTCTA 2Trx2(1) AAGAATTCA TGAGCGAGAAAATAATC 2Trx2(2) CTCAAGCTTTTAGA TGTTGTTTTCTA 2Trx3(1) CGGAGAGCCA TA TGAGCGAGAA 2Trx3(2) TTGTTTAAATCTCGAGATTGTTTTCT 2Grx1(1) GTGTTATCTGGTGGTA TGG 2Grx1(2) TTGTGCTGCTGCGTTTTG 24.PCR扩增以菌株的全基因组为模板,对上述引物进行PCR,从中寻找含有目的基因的菌株,对含有目的基因的菌株进行验证并保种。

分子克隆组装实验报告(3篇)

分子克隆组装实验报告(3篇)

第1篇一、实验目的1. 学习分子生物学中最基本的技术——分子克隆的操作过程。

2. 掌握基因克隆的概念,了解基因克隆的基本原理和方法。

3. 熟练掌握DNA提取、限制性内切酶切割、DNA连接、转化、筛选和鉴定等分子克隆实验操作。

4. 提高实验操作技能,培养严谨的科学态度。

二、实验原理分子克隆是指将目的基因(或DNA片段)与载体DNA连接,使其在宿主细胞中复制和表达的过程。

本实验采用分子克隆组装技术,将目的基因插入载体中,实现基因克隆。

三、实验材料1. 基因组DNA提取试剂盒2. 限制性内切酶3. DNA连接酶4. 载体DNA5. 目的基因片段6. 转化宿主细胞7. LB培养基、琼脂糖、氨苄青霉素等四、实验步骤1. 提取目的基因片段和载体DNA(1)取适量基因组DNA,按照试剂盒说明书进行提取。

(2)取适量载体DNA,按照试剂盒说明书进行提取。

2. 限制性内切酶切割(1)将目的基因片段和载体DNA分别用限制性内切酶进行切割。

(2)酶切反应体系:10×酶切缓冲液5μl,限制性内切酶1μl,DNA模板5μl,加双蒸水至50μl。

(3)酶切条件:37℃反应2小时。

3. DNA连接(1)将酶切后的目的基因片段和载体DNA进行连接。

(2)连接反应体系:10×连接缓冲液5μl,DNA连接酶1μl,酶切后的目的基因片段5μl,酶切后的载体DNA5μl,加双蒸水至50μl。

(3)连接条件:16℃反应4小时。

4. 转化宿主细胞(1)将连接产物转化大肠杆菌DH5α感受态细胞。

(2)转化条件:42℃热激45秒。

5. 筛选和鉴定(1)将转化后的细胞涂布于含有氨苄青霉素的LB培养基平板上,37℃培养过夜。

(2)挑取单克隆菌落,提取质粒DNA。

(3)对提取的质粒DNA进行PCR扩增,检测目的基因是否插入载体。

(4)对阳性克隆进行测序,验证插入序列的正确性。

五、实验结果1. 成功提取目的基因片段和载体DNA。

2. 目的基因片段和载体DNA经限制性内切酶切割后,酶切图谱与预期相符。

分子克隆技术操作手册

分子克隆技术操作手册

分子克隆技术操作手册摘要:一、分子克隆技术简介二、分子克隆实验材料与设备三、分子克隆实验步骤1.设计引物2.合成目的基因3.构建表达载体4.转化受体细胞5.筛选转化子6.鉴定目的基因四、分子克隆实验注意事项五、实验结果分析与应用正文:一、分子克隆技术简介分子克隆技术是一种生物技术方法,通过复制特定DNA序列,将目的基因在受体细胞中稳定表达。

该技术在基因工程、生物科学等领域具有广泛应用,有助于研究基因功能、蛋白质表达及药物筛选等。

二、分子克隆实验材料与设备1.实验材料:DNA模板、引物、dNTPs、DNA聚合酶、缓冲液等。

2.实验设备:PCR仪、离心机、电泳仪、凝胶成像系统等。

三、分子克隆实验步骤1.设计引物根据目的基因序列,设计一对互补的引物。

引物应具备一定的特异性,避免非特异性扩增。

2.合成目的基因利用PCR技术,以DNA模板为基础,通过引物扩增目的基因。

反应条件需根据所使用DNA聚合酶的要求进行优化。

3.构建表达载体将目的基因与载体DNA连接,形成表达载体。

常用的载体有质粒、噬菌体等。

4.转化受体细胞将构建好的表达载体转化到受体细胞中,如大肠杆菌、酵母等。

转化方法有化学法、电转化法等。

5.筛选转化子转化后的受体细胞在含相应抗生素的培养基上生长,筛选出含有目的基因的转化子。

6.鉴定目的基因对筛选出的转化子进行进一步鉴定,如DNA测序、基因表达分析等。

四、分子克隆实验注意事项1.实验过程中要保持无菌操作,避免污染。

2.选择合适的引物长度和退火温度,以提高扩增特异性。

3.转化受体细胞时,注意操作力度,避免细胞损伤。

4.筛选转化子时,严格控制抗生素浓度,避免过度筛选。

五、实验结果分析与应用1.分析PCR产物,判断目的基因是否成功克隆。

2.鉴定目的基因的表达水平,评估实验效果。

3.将成功克隆的目的基因应用于基因敲除、基因表达等研究。

通过以上步骤,您可以顺利完成分子克隆实验。

实验过程中需严格操作,确保实验结果的准确性。

分子生物学分子克隆技术

分子生物学分子克隆技术

克隆示意图
克隆技术流程
分 切 连 转 筛

分离 来自生物组织 、扩增 设计引物,PCR扩增 mRNA-------DNA------扩增
引物设计与订购
酶切位点
双酶切、保护碱基、最合适的缓冲液,
引物订购
保护碱基
1.用限制性酶消化 DNA 样品
单酶切
双酶切
选择合适的双酶切缓冲液
提取正确的克隆菌中的质粒,转入表达型的菌株,如BL21等,诱导表 达蛋白
鉴定方法
鉴 定
PCR
原 位 杂 交
免疫学方法 鸡的β肌球蛋白的克隆和检出
蛋白质的纯化
谢谢
多利诞生的过程
为什么震惊和惊呼,我们先了解一下多利诞生的过程以及胚胎细胞克隆和 体细胞克隆的区别这两个基本问题,对我们学习后面内容或许有所帮助和 启发,
四、分子克隆的技术支撑
核酸凝胶电泳技术 核酸分子连接技术 细菌转化技术 DNA序列分析技术 寡核苷酸合成技术 基因定点突变技术 聚合酶链反应 PCR 技术 DNA序列测定技术
核酸凝胶电泳
细菌转化技术 包括感受态细胞制备
聚合酶链反应 PCR 技术
大规模生产生物活性物质
野生细胞
目的基因高效表达规律
1. 目的蛋白无须变形和复性就具有生物活性的表达方式 2. 对于翻译后需要修饰蛋白质结构,能够进行目的蛋白结构修饰的
表达方式 3. 能够将目的蛋白分泌到细胞(ZHOU)质、特别是分泌到细胞外
的分泌型表达方式 4. 降低不含目的基因细胞的比例,保持目的基因的稳定性,使目的基
因在宿主细胞内长时间超持和表达 5. 通过选择好的培养方法和能够进行高密度培养的细胞,提高细胞
1 真核基因组庞大而复杂,不易制得基因图谱,

分子克隆技术步骤

分子克隆技术步骤

分子克隆技术步骤第一步:选取目标DNA在开始分子克隆之前,需要从一个生物体中选择一个含有所需DNA序列的样本。

这可以是任何生物体的DNA,例如人类、动物、植物或微生物。

第二步:DNA提取从所选生物体提取DNA。

这可以通过使用一系列化学和物理方法来完成,例如细胞裂解、蛋白酶处理、DNA沉淀和洗涤等。

第三步:选择一个合适的载体载体是一种DNA分子,可以容纳目标DNA序列并将其复制。

在分子克隆中最常使用的载体是质粒。

质粒是圆形的双链DNA分子,存在于许多细菌和酵母种类中,并被广泛用于分子生物学研究。

第四步:限制性内切酶切割将目标DNA和载体同时使用限制性内切酶(Restriction Enzymes)酶切。

限制性内切酶是一种可以识别和切割特定DNA序列的酶。

通过在目标DNA和载体的特定位置上切割,可以为将两者连接提供互补的末端。

第五步:DNA连接将目标DNA和载体连接在一起。

将目标DNA和载体的DNA片段混合,并在其末端形成互补碱基,然后使用DNA连接酶将两者连接在一起。

连接后的DNA分子被称为重组质粒。

第六步:转化将重组质粒引入细菌或酵母等微生物细胞中,这个过程称为转化。

这可以通过将细菌细胞暴露在低温高压胁迫下来实现,使得细胞膜变得更加渗透性,可以将质粒引入细胞内。

第七步:筛选和鉴定筛选出含有重组质粒的细菌或酵母细胞。

一种常用的筛选方法是将细菌培养在含有抗生素的培养基上,只有携带重组质粒的细菌才能在含有抗生素的环境下存活。

此外,还可以使用标记基因和特定染色剂等方法来鉴定重组质粒。

第八步:扩增和纯化用培养液扩增含有重组质粒的细菌或酵母细胞。

随着细菌或酵母细胞的生长,它们会复制重组质粒并将其传递给后代细胞。

然后使用一系列纯化步骤,如离心、洗涤和电泳等手段,将其中的重组质粒提取纯化。

总结:分子克隆技术的主要步骤包括选取目标DNA、DNA提取、选择合适的载体、限制性内切酶切割、DNA连接、转化、筛选和鉴定,以及扩增和纯化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子克隆技术步骤在分子水平上提供一种纯化和扩增特定DNA 片段的方法。

常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA 的许多拷贝,从而获得目的基因的扩增。

克隆在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖( 细胞)系;其动词(clone,cloned,cloning) 含义指在生物体外用重组技术将特定基因插入载体分子中,即分子克隆技术。

将DNA 片段( 或基因)与载体DNA 分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA 克隆两类。

cDNA 克隆是以mRNA 为原材料,经体外反转录合成互补的DNA(cDNA) ,再与载体DNA 分子连接引入寄主细胞。

每一cDNA 反映一种mRNA 的结构,cDNA 克隆的分布也反映了mRNA 的分布。

特点是:①有些生物,如RNA 病毒没有DNA ,只能用cDNA 克隆;②cDNA 克隆易筛选,因为cDNA 库中不包含非结构基因的克隆,而且每一cDNA 克隆只含一个mRNA 的信息;③cDNA 能在细菌中表达。

cDNA 仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。

1. 方法:(1) DNA 片段的制备:常用以下方法获得DNA 片段:①用限制性核酸内切酶将高分子量DNA 切成一定大小的DNA 片段;②用物理方法( 如超声波) 取得DNA 随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA 反转录产生cDNA 。

(2) 载体DNA 的选择:①质粒:质粒是细菌染色体外遗传因子,DNA 呈环状,大小为1-200 千碱基对(kb) 。

在细胞中以游离超螺旋状存在,很容易制备。

质粒DNA 可通过转化引入寄主菌。

在细胞中有两种状态,一是“紧密型”;二是“松驰型”。

此外还应具有分子量小,易转化,有一至多个选择标记的特点。

质粒型载体一般只能携带10kb 以下的DNA 片段,适用于构建原核生物基因文库,cDNA 库和次级克隆。

②噬菌体DNA :常用的λ噬菌体的DNA 是双链,长约49kb,约含50 个基因,其中50% 的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA 两端。

中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。

λ载体系统最适用于构建真核生物基因文库和cDNA 库。

M13 噬菌体是一种独特的载体系统,它只能侵袭具有 F 基因的大肠杆菌,但不裂解寄主菌。

M13DNA(RF) 在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。

寄主菌可分泌含单链DNA 的M13 噬菌体,又能方便地制备单链DNA ,用于DNA 顺序分析、定点突变和核酸杂交。

③拷斯(Cos) 质粒:是一类带有噬菌体DNA 粘性末端顺序的质粒DNA 分子。

是噬菌体-质粒混合物。

此类载体分子容量大,可携带45kb 的外源DNA 片段。

也能象一般质粒一样携带小片段DNA ,直接转化寄主菌。

这类载体常被用来构建高等生物基因文库。

(3) DNA 片段与载体连接:DNA 分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA 片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA 可产生相同的粘性末端。

在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。

②平头末端连接,用物理方法制备的DNA 往往是平头末端,有些酶也可产生平头末端。

平头DNA 片段可在某些DNA 连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。

④人工接头分子连接,在平头DNA 片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。

连接反应需注意载体DNA 与DNA 片段的比率。

以λ或Cos 质粒为载体时,形成线性多连体DNA 分子,载体与DNA 片段的比率高些为佳。

以质粒为载体时,形成环状分子,比率常为1∶1。

(4) 引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA 或噬菌体DNA(M13) 与氯化钙处理过的宿主细胞混合置于冰上,待DNA 被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA 低,原因是连接效率不高,有许多DNA 分子无转化能力,而且重组后的DNA 分子比原载体DNA 分子大,转化困难。

② 转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。

(5) 克隆的选择:①直接筛选:有些载体带有可辨认的遗传标记,能有效地将重组分子与本底区分。

例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA 片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子。

②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA 插入到抗药基因区后,基因失活,抗性消失。

如一质粒有A 和B 两个抗药性基因,当外源基因插入到B 基因区后,便只抗A 药而不抗B 药。

因此能在A 药培养基上正常生长而不能在B 药培养上生长的便是重组分子。

③核酸杂交:广泛用于筛选含有特异DNA 顺序的克隆。

方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交。

阳性点的位置就是所需要的克隆。

④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆。

2. 重要意义与应用:分子克隆技术是70 年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。

它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。

在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松驰素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。

还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。

在基因治疗方面。

通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40 病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。

为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖。

在工业生产方面,以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。

许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品。

在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质。

在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等。

在农业生产方面,植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能。

有许多外源基因导入植物获得成功。

分子克隆——主要步骤(1)带有目的基因的DNA片段的获得(2)重组DNA分子的构建(3)重组DNA分子的转化和重组克隆的筛选(4)特定重组克隆的鉴别可以用限制内切酶降解基因组DNA,再配合使用其他实验手段得到待定的DNA片段,可以用超速离心的方法分离出具有特定核苷酸组成的DNA片段,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的方法直接合成一段DNA。

2. 重组DNA分子的构建:重组DNA分子中包括两部分,一部分是外源DNA,即目的DNA片段,另一部分是载体DNA。

用作载体的,有质粒、噬菌体或病毒DNA。

它们的基本特征是能够独立复制。

如果用同一种限制性内切酶切割这两种DNA,则它们的末端完全相同,由于有互补的单链末端序列存在,在连接酶的作用下,就可以形成重组DNA分子。

在没有互补单链末端的情况下,也可以用酶学方法造成一个互补单链末端之后再进行连接。

3. 重组DNA分子的转化和重组克隆的筛选:重组DNA分子必须进入宿主细胞中,才能得到扩增和表达.这个过程叫做转化。

大肠杆菌是目前使用最广泛的宿主细胞。

除此以外.其他细菌、酵母、哺乳动物细胞等也可作为宿主细胞,可以根据实验的需要加以选择。

在被转化的宿主细胞中,不同的单个细胞(在平板上表现为单个菌落,亦称克隆)中可能含有不同的重组质粒或非重组质粒,因此必须进行筛选,以便确定哪些是重组克隆。

筛选可以使用抗菌素抗性或其他方法,依载体的性质而定。

4. 特定重组克隆的鉴别:由于重组克隆往往是较多的,而在某一克隆实验中,我们感兴趣的目的克隆只有一个或几个,所以需要进步鉴别。

使用的方法主要有核酸杂交法和免疫化学法。

此外,找出了目的克隆之后,还需要根据实验的目的,进一步弄清目的克隆中外源DNA片段上的基因的结构和功能。

主要有酶切图谱的制定,基因在DNA片段上的精确定位,确定是否有内含子,DNA序列分析,离体翻译实验,外源基因在某些宿主细胞中的表达及产物的提纯等。

分离制备待克隆的DNA片段————将靶DNA片段与载体在体外进行连接胞————筛重组DNA分子转入宿主细选、鉴定阳性重组子————重组子的扩增。

分子克隆方法DNA 片段的制备常用以下方法获得DNA 片段:①用限制性核酸内切酶将高分子量DNA 切成一定大小的DNA 片段;② 用物理方法(如超声波)取得DNA 随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA 反转录产生cDNA 。

载体DNA 的选择①质粒:质粒是细菌染色体外遗传因子,DNA 呈环状,大小为1-200 千碱基对(kb) 。

在细胞中以游离超螺旋状存在,很容易制备。

质粒DNA 可通过转化引入寄主菌。

在细胞中有两种状态,一是“紧密型”;二是“松弛型”。

此外还应具有分子量小,易转化,有一至多个选择标记的特点。

质粒型载体一般只能携带10kb 以下的DNA 片段,适用于构建原核生物基因文库,cDNA 库和次级克隆。

②噬菌体DNA :常用的λ噬菌体的DNA 是双链,长约49kb,约含50 个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA 两端。

中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。

相关文档
最新文档