数理统计课件-精

合集下载

《概率论与数理统计》-课件 概率论的基本概念

《概率论与数理统计》-课件 概率论的基本概念
解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为

概率论与数理统计课件第5章-PPT精品文档

概率论与数理统计课件第5章-PPT精品文档

PX Q 0 . 5 2
1
第三四分位数Q3: PX Q 0 . 7 5 3
例1
为对某小麦杂交组合F2代的株高X进行研究,抽
取容量为100的样本,测试的原始数据记录如下(单位: 厘米),试根据以上数据,画出它的频率直方图,求随
机变量X的分布状况。
87 99 86 87 84 85 96 90 103 88 91 94 94 91 88 109 83 89 111 98 102 92 82 80 91 84 88 91 110 99 86 94 83 80 91 85 73 98 89 102 99 81 80 87 95 70 97 104 88 102 69 94 95 92 92 90 94 75 91 95 102 76 104 98 83 94 90 96 80 80 90 92 105 92 92 90 94 97 86 91 95 94 88 96 80 94 92 91 77 83
样本方差( X X i n 1i 1


几个常用的统计量
设 (X ,X , 1 2 是总体 X 的一个样本, ,X n) 样本均方差或标准差
2 1 n S X i X n 1i 1


它们的观测值用相应的小写字母表示.反映总 体X取值的平均,或反映总体X取值的离散程度。
几个常用的统计量
设 (X ,X , 1 2 是总体 X 的一个样本, ,X n)
子样的K阶(原点)矩
1 n k Ak X i n i 1
子样的K阶中心矩
1 B k X i X n i1
n


k
数据的简单处理
为了研究随机现象,首要的工作是收集原始数据. 一般通过抽样调查或试验得到的数据往往是杂乱无章

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计全套精品课件(PPT)

概率论与数理统计全套精品课件(PPT)
概率论与数理统计
河南工业大学理学院
教材:《概率论与数理统计》第三版 王松桂 等编 科学出版社
参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社
2. 《概率论与数理统计》 魏振军 编
中国统计出版社
序言
概率论是研究什么的?
人们所观察到的现象大体上分成两类: 1.确定性现象或必然现象 事前可以预知结果的:即在某些确定的条 件满足时,某一确定的现象必然会发生,或根 据它过去的状态,完全可以预知其将来的发展 状态。 2.偶然性现象或随机现象 事前不能预知结果:即在相同的条件下重 复进行试验时,每次所得到的结果未必相同, 或即使知道它过去的状态,也不能肯定它将来 的状态。
写出样本空间,指出哪些是基本事件,表示B ,C,D。
解: {1, 2,..., 6} Ai {i},i 1,..., 6 为基本事件
B {2, 4, 6} C {1,3,5} D {4,5, 6}
既然事件是一个集合,因此有关事件 间的关系、运算及运算规则也就按集合 间的关系、运算及运算规则来处理。
1.1.1 随机试验与事件
随机试验(试验)的特点: 1.可在相同条件下重复进行; 2.每次试验之前无法确定具体是哪种结果出 现,但能确定所有的可能结果。
试验常用“E”表示
(随机)试验的例子
E1: 掷一颗骰子,观察所掷的点数是几; E2 :工商管理部门抽查产品是否合格; E3: 观察某城市某个月内交通事故发生的次数; E4 :已知物体长度在a和b之间,测量其长度; E5: 对某只灯泡做试验,观察其使用寿命; E6: 对某只灯泡做试验,观察其使用寿命是否小
于200小时。
样本空间:试验的所有可能结果所组成
的集合称为样本空间。记为:

概率论和数理统计-课件-数理统计方法60页PPT

概率论和数理统计-课件-数理统计方法60页PPT

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
概率论和数理统计-课件-数理统计方 法
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
ENDபைடு நூலகம்

概率论与数理统计ppt课件(完整版)

概率论与数理统计ppt课件(完整版)

B
A
S
(1) A B
8
2.和事件:
A B { x | x A或x B }称为A与B的和事件. 即A, B中至少有一个发生 , 称为A与B的和, 记A B. 可列个事件A1 , A 2 , 的和事件记为

A .
k k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的 A 积,即事件A与B 同时发生. A B 可简记为AB.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 灯泡的寿命{t|t≥0}.
5
例 E1,E2等. 例
2.无穷样本空间:样本点在区间或区域内取值.
B A 类似地, 事件 S 为可列个事件A1, A2, ...的积事件.
k 1 K
(2) A B A B
S
(3)A B
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生. 基本事件: 由一个样本点组成的单点集. 如:{H},{T}. 复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}. 必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。 不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。

数学数理统计PPT课件

数学数理统计PPT课件

b}P{anpnnpbnp}
npq npq npq
(bnp)(anp)
npq
npq
-25-
例 某单位有200台电话分机,每台分机有5%的时间
要使用外线通话。假定每台分机是否使用外线是相互 独立的,问该单位总机要安装多少条外线,才能以 90%以上的概率保证分机用外线时不等待?
解:设有X部分机同时使用外线,则有 X~B(n,p), 其 n 2 中 p 0 0 0. n ,0 1 p 5 n 0 ,- , p p ( 3 ) .0 1 .8 设有N 条外线。由题意有 P{XN}0.9
去掉,代之以 (Markov) 大数定律
1
n2
D n k1
Xk
n0
-11-
二 随机变量的收敛性
定义1 设 X1,X2,,Xn, 为一列随机变量,如果
存在常数 a使得对于任意的 0, 有
ln i P m X n a 1
则称 X n 依概率收敛于 a, 记为 Xn Pa
定义2 设 X1, X2, ,为一列随机变量,X是随机变量
准备工作
1) 切比雪夫不等式
设 X为一随机变量, 其数学期望 E( X )和方差 D( X )
都存在,则对于任意 0, 有
PXE(X) 22
2) A.L.Cauchy-Schwarz不等式.
设 r.v (X ,Y) ,满足 EX 2 , EY 2 则有
E(XY)2 EX2EY2
-3-
贝努里(Bernoulli) 大数定律
n i1
Xi
b}P{ani1
Xi n bn
}
n
n
n
(bn)(an)
n
n
-20-

(精品) 概率论与数理统计课件:随机变量的数字特征

(精品) 概率论与数理统计课件:随机变量的数字特征
0
D( ) E E 2 E E 2
D D
性质4可以推广到如下情形。
当1,
2
,,
两两独立时,有
n
n
D(1 2 n ) Di i 1
一般地,对n个随机变量1、
随机变量的数字特征
▪数学期望 ▪方差 ▪协方差与相关系数 ▪矩 ▪条件数学期望
§5.1 数学期望
离散型随机变量的数学期望
设随机变量的分布律为 P( xk ) pk
则当
k
xk
pk
时,称
xk pk 为随机变
k
量的数学期望或均值,记作E ,即有
E xk pk xk P( xk )
k
k
例1 甲、乙两射手的稳定成绩分别为
并且有 Ei 0 1 p 1 p p
设 1 2 n
则 E E1 2 n
E1 E2 En
np
此外,我们可以推导出 η~B(n,p)
超几何分布
在一箱N件装的产品中混进了M件次品,今从中抽 取n 件 (n≤M) ,求从中查出次品的件数的概率分布.

P(
k)
C C k nk M NM CNn
p p2 p1 p
p 1 p 2 1 24
例5 设随机变量ξ服从[a,b]上的均匀分布,
求Dξ。
解:(x)
1 ba
0
a xb 其他
E 2 b x2 dx 1 (a2 ab b2 )
a ba 3
而E a b
2
D E 2 (E )2 1 (b a)2
12
例6
设随机变量ξ服从正态分布N(a,σ2),求Dξ。
指数分布 (参数为a)
np
λ
1 p

《概率论与数理统计》课件

《概率论与数理统计》课件
② 力①= ____, AC1 =__________, AA =________. _______ _____ ③ A = ____. ④ 若AuB,则力UB =_____, AHB =______, A ____B. ____ _____ ⑤ A-B = AB = A-AB, A = (AB) , A[}B = B^A万二,U8麟

____
XXXX大学
1.2.1事件间的关系与运算
文氏图(Venn diagram )
随机事件的关系和运算 相似集合的关系和运算
XXXX大学
关系
包含
相等 互不相容 (互斥)
符号表示
AuB/BD A
A u B且A D B
AB=0
事件间的关 系
事件发生
/发生则8发生
样本点
X的样本点都 是gj勺样本

ABC U ABC U
A3:“恰有两人命中目标 '
A4 :"最多有一人命中目 标
A5 :“三人均命中目标' :
ABC
ABC U ABC U
ABC
BC U AC U AB
ABC A n B n
A6 :“三人均未命中目标
C
单选题1分
设凡B, C三个事件,则“至少有两个发生”可表示 )O

A. ABC^^ U ABC
3/10/2022
10
XXXX大学
1.2.2事件的运算性质
交换律A AB = BA
结合律 (A U B)U C
二」U (B U C)
(AB) C = A
3/10/2022
11
XXXX大学
1.2.2事件的运算律
分配律 An(^uc)=(^n^)u(^nc ) Ausnc)=(,ug)n(,u。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

18
二、几何定义:
定义若对于一随机试验, 每个样本点出现是等可能的,
样本空间所含的样本点个数为无穷多个, 且具有非 零的,有限的几何度量,即0 m() ,则称这一随机 试验是一几何概型的.
19
定义 当随机试验的样本空间是某个区域,并且任 意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
(2) P() 1, P() 0;
(3) 对于两两互斥的可列多个事件A1, A2 ,, P( A1 A2 ) P( A1 ) P( A2 )
23
三. 统计定义:
(一) 频率
1. 在相同的条件下, 共进行了n次试验,事件A发生的次
数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为 fn(A).
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P( A)
SA中中的的基基本本事事件件总数数
k n
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
性质4. 对任一事件A, P(A) 1.
性质5. 对任一事件A, P(A) 1 P(A).

数理统计 ppt课件

数理统计 ppt课件

医药数理统计方法
01-04-13
地区
东部 南部 西部 中部
订单百 易碎品订
分比 单百分比
30
25
40
10
20
5
10
3
医药数理统计方法
01-04-14
课堂讨论题 某发报站分别以概率
0.6和0.4发出信号“*”和“–”,若通
讯系统受到种种干扰,当发出信号 “*”时,收报站分别以概率0.8和 0.2收到信号“*”和“–”;当发出信 号为“–”时,收报站分别以概率0.9 和0.1收到信号“–”和“*”。求收报 站收到信号“*”时,发报站确实发 出信号“*”的概率。
n
P(B) P(Ai)P(B|Ai) i1
医药数理统计方法
A3 A2
… B
A1
An
01-04-04
医药数理统计方法
01-04-05
例 有3个外形完全相同的袋子,在 第1个袋子中装有2个白球、1个红球; 在第2个袋子中装有3个白球、1个红 球;在第3个袋子中装有2个白球、2 个红球。先随机地挑选一个袋子,
医药数理统计方法
0.6 “*”
0.8 0.2
0.4 “–”
0.1 0.9
01-04-15
“*” “–”
医药数理统计方法
01-04-16
例 癌症的早期诊断、治疗是提高
疗效的关键。近年来,甲胎蛋白免 疫检测法(简称 AFP 法)被普遍应 用于肝癌的普查和诊断。
医药数理统计方法
01-04-17
设 A={肝癌患者},B={AFP检验 结果为阳性};且已知AFP检测方法 的真阳性率 P(B|A)=0.94,假阳性率 P(B| A )=0.04;在人群中肝癌的发病 率 P(A)=0.0004;今有一人 AFP 检测

数理统计全集ppt课件

数理统计全集ppt课件

ak
1 n
n i1
xik
由大数定律可知:
bk
1n ni1(xi
x)k
Ak
1n n i1
Xi k
依概率收敛于
E( X k )
.
例1. 从一批相同的电子元件中随机地抽出8个,测得使用
寿命(单位:小时)分别为:2300,2430,2580,2400,
2280,1960,2460,2000,试计算样本均值、样本方差及
n
证 明:设 χ2 X i2 X i ~N (0,1)i1,2,,n i 1 X1,X2,,Xn相互独立,则
E (X i)0 ,D (X i)1 , E (X i2) D (X i) E (X i)21,
E χ2 E n Xi2 n E(X i2) n i1 i1
.
E(Xi4)
1 x4ex22dx3 2π
ψ(x) Γ(Γn2(1)n1Γ 2n(2)n22)(n n1 2)(n n1 2x0)n211
1 x n1
n1n2 2
n2
x0 x0
.
f(x;n1,n2) n1 20
n2 n2 25
n2 10
o
x
.
注意:统计的三大分布的定义、基本性质在后面的
学习中经常用到,要牢记!!
4、上α分位点
例3.设总体X和Y相互独立,同服从 N(0,32 )
分布,而 X1,X2,…, X9 和 Y1,Y2,…, Y9 分别是来自X和Y的简单随机样本,求统计量
U X1X2 X9 的分布. Y12 Y22 Y92
解:Xi ~N(0,9)
9
Xi ~ N(0,81)
i1
9
Xi
i1 ~ N(0,1) 9

概率论与数理统计ppt课件

概率论与数理统计ppt课件

注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....

5.1 大数定律 5.2 中心极限定理

第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13


事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定

例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖

课件-数理统计与多元统计 第一章 数理统计的基本概念 1.4统计量的分布

课件-数理统计与多元统计 第一章 数理统计的基本概念 1.4统计量的分布
一 样本均值的分布 二 χ2-分布 三 t-分布 四 F-分布 五 正态总体样本均值与样本 方差的分布
1 1
一、样本均值的分布
1、单个正态总体下的样本均值的分布
定理1.4.1 设总体X 服从正态总体N (, 2 ), X1, X2 ,
L
, Xn ,为来自X的一个样本,则样本均值X
1 n
n i 1
t0.99 (48),
t0.05 (15),
2
t0.05 (15) 1.753, t0.95 (15) t0.05 (15) 1.753,
t0.01(48) 2.33, t0.99 (48) t0.01(48) 2.33,
t 0.05 (15) 2.131
2
27
四、F-分布
1、F分布的定义 定义1.4.5 若随机变量X的密度函数为
F
X Y
n1 n2
~
F (n1 , n2 )
即F服从自由度为n1, n2的F分布F (n1, n2 )。
31
4、 F分布的上分位点 定义1.4.6 对于给定的正数,0 1, 称满足条件
P{F (n1, n2 ) F (n1, n2 )}

的F (n1, n2 )为F分布的上 分位点。
注:由F分布性质可知
表以供查阅。
例如
2 0.05
(26)
38.885
2 0.95
(26)
15.379
19
注2: 2分 布 表 一 般 只 列 到n 45, 对 于n 45时 , 由 中 心 极 限 定 理 , 可 得 2分 布 的 上分 位 点2 (n)
的近似值为
2 (n) 12(z 2n 1)2
其中z为N (0,1)的上分位点。

概率论与数理统计PPT课件

概率论与数理统计PPT课件
24
例6: (抽签问题)一袋中有a个红球,b个白球,记a+b=n. 设每次摸到各球的概率相等,每次从袋中摸一球, 不放回地摸n次。 设 { 第k次摸到红球 },k=1,2,…,n.求 解1:
号球为红球,将n个人也编号为1,2,…,n.
----------与k无关
可设想将n个球进行编号: 其中
18
性质:
19
§4 等可能概型(古典概型)
定义:若试验E满足:S中样本点有限(有限性)出现每一样本点的概率相等(等可能性)
称这种试验为等可能概型(或古典概型)。
20
例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一 球的可能性相等,从中随机摸一球, 记A={ 摸到红球 },求P(A).
31
三、全概率公式与Bayes公式
定义:设S为试验E的样本空间,B1,B2,…,Bn 为E的一组事件。若: 则称B1,B2,…,Bn为S的一个划分,或称为一组完备事件组。
即:B1,B2,…,Bn至少有一发生是必然的,两两同时发生又是不可能的。
32
定理:设试验E的样本空间为S,A为E的事件。B1,B2,…,Bn为S的一个划分,P(Bi)>0,i=1,2,…,n; 则称:
试验序号
n =5
n =50
n =500
nH
fn(H)
nH
fn(H)
nH
fn(H)
12345678910
2315124233
0.40.60.21.00.20.40.80.40.60.6
22252125242118242731
0.440.500.420.500.480.420.360.480.540.62
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则称随机变量F U/m 服从自由度为(m, n) V/n
的F分布,记作F~F(m, n)
2. F分布的概率密度函数:
(
y)
[(m n) (m 2)(n
2](m n)m 2)(1 my
y2 (m 2)-1 n)(mn) 2
,
y
0,
0
, 其它.
3. 性质: 若F~F(m, n), 则 1 ~F(n, m).
定理: 设X1, X2, …, Xn是来自总体X的一个样
本, 并设总体二阶矩存在,EX=,DX=2,则有
EX , D( X ) 2
n
ES
2 n
2 (n
2).
§6.2 统计分布与抽样分布
统计量T(X1,X2,…,Xn)的分布称为抽样分布。
一、统计中常用的分布:
(一)χ2--分布
1.


:
F
4. F - 分布的上分位点:
对于给定的 , 0 1, 称满足条件: P{F Fα (m, n)}
P{ 2 2 (n)}
f ( y)dy
2 (n)
的点2 (n)为 2 (n)分布的上分位点.
f(y)
0
2
(n)
y
(二) t-分布:
1.定义 : 设X~N(0,1), Y ~ 2 (n), 并且X, Y 相互独立,
则称T X Y/n服从自由度为n的t 分布,
记作T~t(n)。
2. t(n)分布的概率密度函数为:
样本及抽样分布
§6.1 基本概念 一、总体: 在统计学中, 我们把所研究的全部元素组成 的集合称作母体或总体, 总体中的每一个元素 称为个体。 我们只研究感兴趣的某个或者几个指标(记
为X),因此把这些指标的分布称为总体的分
布,记为X~F(x)。
二、样本:
设总体X具有分布函数F(x),若X1, X2,…,Xn是 具有分布函数F(x)的相互独立的随机向量,则 称其为总体F(或总体X)的简单随机样本, 简称样本, 它们的观察值x1,x2, …, xn称为样本 观察值, 又称为X的n个独立的观察值。
四、 常用的统计量:
1. 样本均值
X 1 n
n
Xi;
i1
2.
样本方差
S2
1 n -1
n i1
(Xi
X
2
);
3. 样本k阶原点矩
Ak
1 n
n i 1
X
k i
,k
1, 2,;
4. 样本k阶中心矩
Bk
1 n
n i1
(Xi
X )k
,
k
2, 3,.
注:1.它们的观察值为x
1 n
n i 1
xi,仍称为样本
三、统计量: 设X1, X2, …, Xn是来自总体X的一个样本,
g(X1, X2, …, Xn)是一个与总体分布中未知参数 无关的样本的连续函数,则称g(X1,X2,…,Xn)为 统计量。
统计量是样本的函数,它是一个随机变量,
如果x1, x2, …, xn是样本观察值, 则g(x1, x2, …, xn) 是统计量g(X1, X2, …, Xn)的一个观察值.
3)
若X具有概率

度f
(
x),
则X
1,
X
2
,
X

n
n
联合概率密度为f *(x1, x2, xn ) f (xi ) i1
例1:X~U(0,θ), X1, X2, …, Xn是来自X的样本,
求(X1, X2, …, Xn)的联合密度函数。
例2:X ~ P( X x) p x (1 p)1x , x 0,1 ( X1, X 2 ,, X n )为 来 自X的 样 本 , 求样本的联合分布律。
分布具有可加性,定义中X1,X2,,Xn 独立
n
同服从N (0,1),所以 2=
i 1
X
2 i
~
( n 2
,
1) 2
分布的概率密度为:
f
( x)
βα Γ (α)
x e α-1 -x ,
x
0,
0 , 其它.
比较 2 (n)的密度可知: 2 (n)分布就是 n , 1
22
的分布,即 2 (n) (n / 2,1/2).
X
1
,
X
2
,,
X

n





数为:
n
F* (x1, x2, xn ) F (xi ) i 1
2) 若总体X是离散型随机变量,其分布律为
px=P(X=x) , x=x1,x2,…
则样本X1, X2, …, Xn的联合分布:
n
P( X1 y1,, X n yn ) P( X i yi ) i 1 其中yi x1, x2,;(i 1,2,, n)
3. 2(n)分布的性质:
(1) 2 (n)具有可加性:
若12
~
2 (m),
2 2
~
2 (n),
并且12 ,
2独
2
立,

12
2 2
~
2(m
n).
(2) 若 2 ~ 2 (n), 则有E( 2 ) n, D( 2 ) 2n.
4. 2分布的上分位点:
对于给定的正数 , 0 1, 称满足条件
f (t)
Γ ( n 1) 2
(1
t2
- n1
)2
,
-
t
.
πn Γ ( n ) n
2
说明
利用Γ函数的性质可得lim f (t)
1
-t2
e 2,
n
2
即当n充分大时, 有t-分布近似N (0,1)分布.
3. t(n)分布的上分位点:
对于给定的 , 0 1, 称满足条件:
P{t tα (n)}
设X1
,
X
2
,
,
X

n


体N
(0,
1)的样


则称统计量 2
X12
X
2 2
X
2 n





为n的 2分布, 记作 2 ~ 2 (n).
定理: 2 (n)的概率密度为
1
2
Γ
(n
2)
n 1 - y
y2 e 2,
y 0, .
0,
y 0,
2. 分布与2(n)分布的关系:
由第二章知:若X ~ N (0,1), 则X 2 ~ Γ (1 , 1). 22
f (t)dt α
tα (n)
的点tα (n)为t(n)分布的上分位点。
f(t)
t
0 t (n)
4.由t分布的上分位点的定义及密度函数f (t)
的对称性知t1-α (n) -tα (n).
5. t分布的上分位点可由附表4查出, 在n 45时,
tα (n) Zα .
(三) F分布:
1.定义:设U~ 2 (m),V~ 2 (n),且U,V独立,
均值,
s2
1 n 1
n
(x i
i 1
x)2 , 称为样本方差,
2.当 k
1时,
A1
X,当k
2时, B2
n 1 S2, n
当样本容量很大时, B2 S 2.
3.若总体X的k阶矩E(X k ) k 存在,
P
则当n 时, Ak k .
4.样本的联合分布:
1) 若X~F(x), X1, X 2 ,, X n为F的一个样本, 则
相关文档
最新文档