等腰三角形经典练习题有难度

合集下载

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)等腰三角形经典题(必看)以下是一些经典的等腰三角形题,希望能对你的研究有所帮助。

1. 判断等腰三角形给定一个三角形ABC,其中AB=AC。

你需要判断这个三角形是否为等腰三角形。

解答:如果角B等于角C,则该三角形为等腰三角形。

2. 求等腰三角形的周长已知一个等腰三角形ABC,其中AB=AC,且BC=8cm。

你需要求解这个等腰三角形的周长。

解答:由于AB=AC且BC=8cm,那么周长等于AB+AC+BC=2AB+BC=2(BC/2)+BC=BC+BC=2BC=2*8cm=16cm。

3. 求等腰三角形的面积已知一个等腰三角形ABC,其中AB=AC=10cm,且角BAC等于60度。

你需要求解这个等腰三角形的面积。

解答:由于AB=AC=10cm且角BAC等于60度,我们可以利用正弦定理来计算三角形的高。

设三角形的高为h,那么有sin60度=h/10cm,解得h=10cm*sin60度=10cm*sqrt(3)/2=5sqrt(3)cm。

等腰三角形的面积可以通过底边乘以高再除以2来计算,即面积=10cm*5sqrt(3)cm/2=25sqrt(3)cm²。

4. 求等腰三角形的顶角已知一个等腰三角形ABC,其中AB=AC=5cm,且BC=6cm。

你需要求解这个等腰三角形的顶角。

解答:由于AB=AC=5cm且BC=6cm,我们可以使用余弦定理来计算角BAC的大小。

设角BAC为x度,则有cosx=(5²+5²-6²)/(2*5*5)=19/25。

解得x=arccos(19/25)≈31.8度。

因此,等腰三角形的顶角大约为31.8度。

以上是一些关于等腰三角形的经典习题,希望对你的学习有所帮助。

如果你还有其他问题,请随时向我提问。

等腰三角形练习题

等腰三角形练习题

ED C A F、§14.3 等腰三角形1.等腰三角形练习题一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 &2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80°5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108° —EDCABHFG二、填空题6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; —(2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______. 一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为( ) A.6㎝B.10㎝C.6㎝或10㎝ D.14㎝2.已知△ABC ,AB =AC ,∠B=65°,∠C 度数是( ) A .50° B .65° C .70° D . 75° 3.等腰三角形是轴对称图形,它的对称轴是( ),A .过顶点的直线B .底边的垂线C .顶角的平分线所在的直线D .腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”). 5.已知△ABC ,AB =AC ,∠A=80°,∠B 度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________. 7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题¥11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.12.如图,在四边形ABCD 中,AB=AD ,CB=CD ,求证:∠ABC=∠ADC.DCAB13.已知△ABC 中AB=AC ,点P 是底边的中点,PD ⊥AB ,PE ⊥AC ,垂足分别是D 、E ,•求证:PD=PE.《四、探究题14.如图,CD 是△ABC 的中线,且CD=12AB ,你知道∠ACB 的度数是多少吗由此你能得到一个什么结论请叙述出来与你的同伴交流.DCAB 练习题(第二课时)一、选择题、1.如图1,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于()A.3cm B.4cm C. D.2cmD CABEDABFEDCA BHF(1) (2) (3)2.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个 B.2个 C.3个 D.4个3.如图2,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC 于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;•③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③ B.①②③④ C.①② D.①}4.如图3,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.CH=HD D.AC=AF二、填空题5.△ABC中,∠A=65°,∠B=50°,则AB:BC=_________.6.已知AD是△ABC的外角∠EAC的平分线,要使AD•∥BC,•则△ABC•的边一定满足________.7.△ABC中,∠C=∠B,D、E分别是AB、AC上的点,•AE=•2cm,•且DE•∥BC,•则AD=________.8.一灯塔P在小岛A的北偏西25°,从小岛A沿正北方向前进30海里后到达小岛,•此时测得灯塔P在北偏西50°方向,则P与小岛B相距________.三、解答题)9.如图,已知AB=AC,E、D分别在AB、AC上,BD与CE交于点F,•且∠ABD=•∠ACE,求证:BF=CF.[10.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,•求证:△DBE是等腰三角形.EDCABF}#四、探究题11.如图,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,DE∥AC•交AB于E,求证:AE=BE.AEDCABF<2.等边三角形、练习题一、选择题1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形(C .直角三角形D .不等边三角形ED CABF21EDCA B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 二、填空题6.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______. .7.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________. 9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD•的长度是_______. 一、选择题1.△ABC 是等边三角形,D 、E 、F 为各 边中点,则图中共.有正三角形( ) A .2个 B .3个 C .4个 D .5个.2.△ABC 中,∠A :∠B :∠C =1:2:3,则BC :AB 等于 ( )A . 2:1B .1:2C .1:3D .2 :3 二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________. 4.等边三角形的两条高线相交所成钝角的度数是__________. 5.在△ABC 中, ∠A =∠B =∠C ,则△ABC 是_____三角形. 6.△ABC 中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题 `10.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是多少度&11.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.D CAB、12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDCABHF四、探究题/13.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC , 求∠BDE 的度数.(提示:连接CE )EDCAB】7.△ABC 是等边三角形,点D 在边BC 上,DE ∥AC ,△BDE 是等边三角形吗试说明理由.)、8.已知:如图,P ,Q 是△ABC 边上BC 上的两点, 且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.%:AQCPB9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC 是等边三角形.】!八年级数学(上)轴对称整章测试(A)一、填空题(每题2分,共32分)1.轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形.2.设A、B两点关于直线MN对称,则______垂直平分________.:3.等腰三角形是_______对称图形,它至少有________条对称轴.4.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.5.点(1,3)P 关于x轴的对称点的坐标为.6.已知等腰三角形的顶角是30°,则它的一个底角是.7.已知等腰三角形有一个角是50°,则它的另外两个角是.8.等腰三角形两边长为4cm 和 6cm ,则它的周长为.9.已知点P在线段AB的垂直平分线上,PA=6,则PB= .10.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD= .…11.如图,在等边△ABC中,AD⊥BC,AB=5cm ,则DC的长为.12.如图,△ABC中,AB=AC,DE是AB的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC=,△BDC的周长C△BDC= .13 13.如图,∠1=50°,∠2=80°,DB=AB,CE=CA,则∠D=,∠DAE=.ABCD第10题第11题图第12题图第13题图BA¥DCB CDAE1}2B CAD E<第14题图第15题图第16题图第4题图C AACOBD-AB CDE14.如图,AB=AC,∠A=40o,AB的垂直平分线MN交AC于点D,则∠DBC=_______.15.如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长是________.16.如图,若B、D、F在MN上,C、E在AM上,且AB=BC=CD,EC=ED=EF,∠A=20o,则∠FEB=________.二、解答题(共68分).17.(7分)已知:如图,△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B 1 C1和△A2B2C2,△A1B1C1和△A2B2C2各顶点坐标为:A1(,);B1(,);C1(,);A2(,);B2(,);C2(,).—18.(5分)已知:如图,AC和BD交于点O,ABOCBADPDECAB!23.(5分)如图,△ABD、△AEC都是等边三角形,求证:BE=DC .~DEC.BAOA DE F]BC24.(6分)已知:E 是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C 、D .求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.;(5分)已知:△ABC 中,∠B、∠C 的角平分线相交于点D ,过D 作EF7.等腰△ABC 中,AB =AC =10,∠A =30°,则腰AB 上的高等于___________.8.如图,△ABC 中,AD 垂直平分边BC ,且△ABC 的周长为24,则AB +BD = ;又若∠CAB =60°,则∠CAD = .9.如图,△ABC 中,EF 垂直平分AB ,GH 垂直平分AC ,设EF 与GH 相交于O ,则点O 与边BC 的关系如何请用一句话表示: .{10.如图:等腰梯形ABCD 中,AD ∥BC ,AB =6,AD =5,BC =8,且AB ∥DE ,则△DEC 的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.…BE CDA ABC;DB HFAEC<G O第8题图 第9题图 第10题图12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD 沿对角线BD 折叠,使点C 恰好落在如图C 1的位置,若∠DBC =30º,则∠ABC 1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,∠A =35º,∠BCO =30º,那么∠AOB =____ ___.二、解答题(共68分)17.(5分)已知点M )5,3(b a -,N )32,9(b a +关于x 轴对称,求ab 的值./18.(5分)已知AB =AC ,BD =DC ,AE 平分∠FAC ,问:AE 与AD 是否垂直为什么;¥19.(5分)如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC于E ,AC =9 cm ,△BCE 的周长为15 cm ,求BC 的长.\20.(5分)如图所示,已知△ABC 和直线MN .求作:△A ′B ′C ′,使△A ′B ′C ′和△ABC关于直线MN 对称.(不要求写作法,只保留作图痕迹)【第14题图 第15题图 第16题图AEF;21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..B!A .—22.(5分)如图,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC.求D的度数,ACD的度数.》、23.(5分)有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm,∠BEG=60°,求折痕EF的长.——24.(8分)如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A=︒30,求∠ACB的度数;(2)已知∠A=︒40,求∠ACB的度数;(3)已知∠A=︒x,求∠ACB的度数;AC(4)请你根据解题结果归纳出一个结论.¥!25.(6分)如图所示,在等边三角形ABC中,∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.26.(7分)已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,试说明△ADF是等腰三角形的理由.27.(7分)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.ABOE F CAFACBPQ(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l剪掉标有A的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.。

等腰三角形问题综合专项练习(解析版)

等腰三角形问题综合专项练习(解析版)

等腰三角形问题综合专项练习(解析版)一、单选题1.等腰三角形底边上一点到两腰的距离之和等于( )A .腰上的高B .腰上的中线C .底角的平分线D .顶角的平分线【标准答案】A【思路点拨】画出图形,利用等积法证明可得等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高.【精准解析】解:如图:中,,为上任意一点,,,垂足ABC ∆AB AC =D BC DE AB ⊥DF AC ⊥为、,于,连接AD ,E F CG AB ⊥G ,ED AB ⊥ ;12ABD S AB ED ∆∴=A ,DF AC ⊥ ;12ACD S AC DF ∆∴=⋅,CG AB ⊥ ;12ABC S AB CG ∆∴=⋅∵111222AB CG AB ED AC DF=+A A A 又,AB AC = .CG DE DF ∴=+等腰三角形底边上的任意一点到两腰的距离之和等于一腰上的高,∴故选:.A【名师指路】本题考查了等腰三角形的性质,解题关键是熟练运用等积法证明垂线段之间的关系.2.(2021·广东白云·八年级期末)如图,∠ABE =∠ACD ,∠EBC =∠DCB ,则下列结论正确的有( )①AB =AC ;②AD =AE ;③BD =CE ;④CD =BE.A .1个B .2个C .3个D .4个【标准答案】D【思路点拨】由∠ABE =∠ACD ,∠E BC =∠DC B ,可得出∠ABC =∠ACB ,再利用等角对等边可得出AB =AC ,可判断①;由∠A =∠A ,AB =AC 及∠ABE =∠ACD ,可证出△ABE ≌△ACD (ASA ),再利用全等三角形的性质可得出AD =AE ,CD =BE ,可判断②④;由AB =AC ,AD =AE ,可得出BD =CE 可判断③即可.【精准解析】解:∵∠ABE =∠ACD ,∠EBC =∠DCB ,∴∠ABE +∠EBC =∠ACD +∠DCB ,∴∠ABC =∠ACB ,∴AB =AC ,结论①正确;在△ABE 和△ACD 中,,A A AB ACABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACD (ASA ),∴AD =AE ,CD =BE ,结论②④正确;∵AB =AC ,AD =AE ,∴AB ﹣AD =AC ﹣AE ,∴BD =CE ,结论③正确.∴正确的结论有4个.故选择:D .【名师指路】本题考查了全等三角形的判定与性质以及等腰三角形的性质,掌握全等三角形的性质及等腰三角形的性质是解题的关键.3.(2021·广东高州·八年级期中)如图,已知在△ABC 中,AB =AC ,BE 和 CD 分别是∠ABC 和∠ACB 的平分线,则下列结论中,①∠ABE =∠ACD ;②BE =CD ;③OC =OB ;④CD ⊥AB ,BE ⊥AC ,正确的是( )A .①B .①②C .①②③D .②③④【标准答案】C【思路点拨】由AB =AC 得∠AB C =∠ACB ,由两个平分条件,则可得∠ABE =∠ACD ,即①成立;且∠OBC =∠OCB ,从而可得OC =OB ,即③正确;易证△ABE ≌△ACD ,BE =CD ,故可得②正确;由AB =AC 得∠ABC =∠ACB ,由两个平分条件,则可得∠OBC =∠OCB ,从而可得OC =OB ,即③正确;若④成立,则可得△ABC 是等边三角形,显然与已知矛盾.【精准解析】∵AB =AC∴∠ABC =∠ACBBE 和 CD 分别是∠ABC 和∠ACB 的平分线∴∠ABE =∠OBC =,∠ACD =∠OCB = 12ABC 12ACB ∴∠ABE =∠ACD =∠OBC =∠OCB即①成立∵∠OBC =∠OCB∴OC =OB即③正确在△ABE 和△ACD 中A A AB ACABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACD (ASA )∴BE =CD即②正确若④成立,则∠ABC +∠OCB =90゜∵∠ABE =∠OBC =∠OCB∴∠ABE =∠OBC =∠OCB =30゜∴∠ABC =2∠ABE =60゜∵AB =AC∴△ABC 是等边三角形显然与已知△ABC 是等腰三角形矛盾故④错误所以正确的结论为①②③故选:C .【名师指路】本题考查了等腰三角形的性质,三角形全等的判定与性质,等边三角形的判定等知识,熟练运用三角形全等的判定与性质是本题的关键.4.(2021·广东·佛山市华英学校八年级期中)如图,等边三角形ABC 中,D 、E 分别在AB 、BC 边上,且AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G .下列结论:①AE =CD ;②∠AFC =120°;③△ADF 是等腰三角形;④,其中正确的结论是12FGAG =( )A .①②B .①③C .①④D .③④【标准答案】A【思路点拨】根据等边三角形的性质可得AB =AC ,∠BAC =∠B =60°,然后利用“边角边”证明△ABE 和△CAD 全等,根据全等三角形对应边相等可得AE =CD ,判定①正确;根据全等三角形对应角相等可得∠ACD =∠BAE ,求出∠CAF +∠ACD =60°,然后利用三角形的内角和定理求出∠AFC =120°,判定②正确;求出∠ADF >60°,∠FAD <60°,∠AFD =60°,判定△ADF 不是等腰三角形;求出∠AFG =60°,再求出∠FAG =30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得FG =AF ,然后判断④.12【精准解析】解:在等边△ABC 中,AB =AC ,∠BAC =∠B =60°,在△ABE 和△CAD 中,,60AB AC BAC B AD BE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CAD (SAS ),∴AE =CD ,故①正确;∵∠ACD =∠BAE ,∴∠CAF +∠ACD =∠CAF +∠BCE =∠BAC =60°,在△ACF 中,∠AFC =180°﹣(∠CAF +∠ACD )=180°﹣60°=120°,故②正确;∵∠FAD <∠BAC ,∠BAC =∠B =60°,∴∠ADF >60°,∠FAD <60°,∠AFD =60°,∴△ADF 不是等腰三角形,故③错误;∵∠AFG =180°﹣∠AFC =180°﹣120°=60°,AG ⊥CD ,∴∠FAG =90°﹣60°=30°,∴FG =AF ,∴,故④错误,12FG AF =综上所述,正确的有①②.故选:A .【名师指路】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等边三角形和全等三角形的判定与性质,并准确识图是解题的关键.5.(2021·广东·西关外国语学校八年级期中)如图,已知△ABC和△DCE是等边三角形,点B,C,E在同一直线上,AE,AC与CD,BD分别交于点F、G.连接GF,下列结论:①AE=BD;②AG=DF;③GF∥BE,④CF=GF,其中正确的个数有( )A.1个B.2个C.3个D.4个【标准答案】C【思路点拨】根据等边三角形性质,利用SAS证明△BCD≌△ACE,可证结论①;证明△DGC≌△EFC,得△GFC是等边三角形,则CF=FG,可得结论④;∠GFC=60°,根据∠GFC =∠DCE=60°,所以GF∥BE,可得结论③;由CG=CF,AC≠DC,可知:AC−CG≠DC−CF,即AG≠DF,可得结论②.【精准解析】解:∵△ABC和△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,∴△BCD≌△ACE,∴AE=BD,故①正确;∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴∠ACD=∠DCE=60°,由①得△BCD≌△ACE,∴∠GDC=∠AEC,∵DC=EC,∴△DGC≌△EFC,∴CF=CG,∴△GFC是等边三角形,∴CF =FG ,∠GFC =60°,∴∠GFC =∠DCE =60°,∴GF ∥BE ,故③④正确;∵CG =CF ,而AC 与CD 不相等,所以AG 与DF 不相等,故②不正确;正确的有:①③④,一共3个,故选:C .【名师指路】本题考查了全等三角形的性质和判定及等边三角形的性质和判定,属于常考点型,难度适中;准确地在图形中找到全等三角形并进行证明是本题的关键.6.(2021·广东·南山实验教育集团南海中学八年级开学考试)如图,,点45AOB ∠=︒、分别在射线、上,,的面积为,是直线上的动M N OA OB 6MN =OMN A 12P MN 点,点关于对称的点为,点关于对称点为,当点在直线上运动P OA 1P P OB 2P P NM 时,的面积最小值为( )12OPP AA .B .C .D .681218【标准答案】B【思路点拨】连接OP ,过点O 作OH ⊥MN 交NM 的延长线于点H .利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【精准解析】连接OP ,过点O 作OH ⊥MN 交NM 的延长线于点H ,如图∵,MN =61122OMN S MN OH =⨯=△∴OH =4∵点关于对称的点为,点关于对称点为P OA 1P P OB 2P ∴∠AOP 1=∠AOP ,∠BOP 2=∠BOP ,OP =OP 1=OP 2∵∠AOB =45°∴∠P 1OP 2=2(∠AOP +∠BOP )=2∠AOB =90°∴△OP 1P 2是等腰直角三角形∴当OP 1最小,△OP 1P 2的面积最小根据垂线段最短知,OP 的最小值为线段OH 的长,即为4∴△OP 1P 2的面积最小值为14482⨯⨯=故选:B .【名师指路】本题考查了轴对称,三角形的面积,垂线段最短等知识,关键是证明△OP 1P 2是等腰直角三角形,把求面积的最小值转化为线段的最小值,也体现了数学上的转化思想.7.(2021·广东实验中学越秀学校八年级期中)如图所示,,点是60AOB ∠=︒P 内一定点,并且,点、分别是射线,上异于点的动点,AOB ∠2OP =M N OA OB O 当的周长取最小值时,点到线段的距离为( )PMN A O MNA .1B .2C .4D .1.5【标准答案】A【思路点拨】分别作点P 关于OB 和OA 的对称点P '和P '',连接OP '、OP ''、P 'P '',则P 'P ''与OB 的交点为点N ',P 'P ''与OA 的交点为点M ',连接PN '、PM ',则此时P 'P ''的值即为△PMN的周长的最小值,过点O 作OC ⊥P 'P ''于点C ,求得∠OP 'P ''的值,由含30°角的直角三角形的性质可得答案.【精准解析】解:分别作点P 关于O B 和OA 的对称点P '和P '',连接OP '、OP ''、P 'P '',则P 'P ''与OB 的交点为点N ',P 'P ''与OA 的交点为点M ',连接PN '、PM ',则此时P 'P ''的值即为△PMN 的周长的最小值,过点O 作OC ⊥P 'P ''于点C ,如图所示:由对称性可知OP =OP '=OP '',∵∠AOB =60°,∴∠P 'OP ''=2×60°=120°,∴∠OP 'P ''=∠OP ''P '=30°,∵OP =2,OC ⊥P 'P '',∴OC =OP '=1.12故选:A .【名师指路】本题考查了轴对称−最短路线问题,熟练掌握轴对称的性质、等腰三角形的性质及含30°角的直角三角形的性质是解题的关键.8.(2021·广东·深圳市高级中学八年级开学考试)如图,在ABC 中,BD 、CE 分别A 是∠ABC 和∠ACB 的平分线,AM ⊥CE 于P ,交BC 于M ,AN ⊥BD 于Q ,交BC 于N ,∠BAC =110°,AB =6,AC =5,MN =2,结论①AP =MP ;②BC =9;③∠MAN =30°; ④AM =AN .其中正确的有( )A .4个B .3个C .2个D .1个【标准答案】C【思路点拨】先证明ACP ≌MCP ,根据全等三角形的性质得到AP =MP ,判断①;再证明ABQ A A A ≌NBQ ,根据全等三角形的性质得到CM =AC =5,BN =AB =6,结合图形计算,判A 断②;根据三角形内角和定理判断③;根据等腰三角形的判定判断④即可.【精准解析】解:∵CE 是∠ACB 的平分线,∴∠ACP =∠NCP ,∵AM ⊥CE ,∴,90CPA CPM ∠=∠=︒在ACP 和MCP 中,A A ,ACP MCP CP CP CPA CPM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ACP ≌MCP (ASA ),A A ∴AP =MP ,∠CMA =∠CAM ,①结论正确;∵ACP ≌MCP ,A A ∴CM =AC =5,∵BD 是∠ABC 的平分线,∴∠ABQ =∠NBQ ,∵AN ⊥BD ,∴,90BQA BQN ∠=∠=︒在ABQ 和NBQ 中,A A ,ABQ NBQ BQ BQBQA BQN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABQ ≌NBQ (ASA ),A A ∴BN =AB =6,∠BNA =∠BAN ,∴BC =BN +CM ﹣MN =5+6﹣2=9,②结论正确;∵∠BAC =110°,∴∠MAC +∠BAN ﹣∠MAN =110°,∵∠CMA =∠CAM ,∠BNA =∠BAN ,∴∠CMA+∠BNA﹣∠MAN=110°,A又∵在AMN中,∠CMA+∠BNA=180°﹣∠MAN,∴180°﹣∠MAN﹣∠MAN=110°,∴∠MAN=35°,③结论错误;④∵AB=6,AC=5,∴AB≠AC,∴∠ABC≠∠ACB,∵∠ABC+2∠ANM=180°,∠ACC+2∠AMN=180°,∴180°-2∠ANM≠180°-2∠AMN,∴∠AMN≠∠ANM,∴AM≠AN,④结论错误,∴正确的结论有①②,故选:C.【名师指路】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键,也考查了等腰三角形的判定.9.(2021·广东·汕头市龙湖实验中学八年级开学考试)如图,D是AB边上的中点,A将ABC沿过D点的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF的大小为()A.50°B.80°C.90°D.100°【标准答案】B【思路点拨】由折叠的性质,即可求得AD=DF,又由D是AB边上的中点,即可得DB=DF,根据等边对等角的性质,即可求得∠DFB=∠B=50°,再由三角形的内角和定理,即可求得∠BDF的度数.【精准解析】解:∵折叠,∴AD =DF ,∵D 是AB 边上的中点,∴AD =BD ,∴BD =DF ,∵∠B =50°,∴∠DFB =∠B =50°,∴∠BDF =180°﹣∠B ﹣∠DFB =80°.故选:B .【名师指路】此题考查了折叠的性质,等腰三角形的判定与性质,以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.10.(2021·广东·东莞市沙田瑞风实验学校八年级期中)如图,在中,ABC ∆AB BC =,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB .下列结论中,正确的个数是() ①∠1=∠EFD ;②BE =EC ;③BF =DF =CD ;④FD BC//A .B .C .D .1234【标准答案】C【思路点拨】根据等腰直角三角形的“三合一”性质、角平分线的性质、全等三角形ABC 的性质对以下选项进行一一验证即可.ADF ABF ∆≅∆【精准解析】解:在中,,,,ABC ∆AB BC =AB BC ⊥BE AC ⊥;AE CE BE ∴==故②正确;在和中,ADF ∆ABF ∆,()12AD AB AF AF ⎧=⎪∠=∠⎨⎪=⎩公共边,()ADF ABF SAS ∴∆≅∆,ADF ABF ∴∠=∠,,AB BC AB BC ⊥= 为等腰直角三角形,ABC ∴A ,BE AC ⊥ ,90CEB AEB ∴∠=∠=︒,45ABF CBE ∴∠=∠=︒45ADF ABF ∴∠=∠=︒,45C ∠=︒ ,45ADF ABE ∴∠=∠=︒,45ADF C ∴∠=∠=︒(同位角相等,两直线平行),//DF BC ∴故④正确;,ADF ABF ∆≅∆ (全等三角形的对应边相等).DF BF ∴=又,,//DF BC BE EC =,EF DF ∴=,CD BF DF ∴==故③正确;,,.45EAB ∠=︒ 12∠=∠1122.52EAB ∴∠=∠=︒又,//DF BC ,45EFD EBC ∴∠=∠=︒;1EFD ∴∠≠∠故①错误;综上所述,正确的说法有②③④三种;故选:C .【名师指路】本题考查了等腰直角三角形的性质、全等三角形的判定,解题的关键是充分利用了等腰三角形的“三合一”的性质.二、填空题11.(2021·广东·广州市第十六中学八年级开学考试)已知等腰中,一腰上ABC A AC 的中线将的周长分成和两部分,则这个三角形的腰长和底边长分BD ABC A 9cm 15cm 别为_______.【标准答案】10cm ,4cm【思路点拨】将腰长与腰长的一半分为9cm 和15cm 两种情况,分别求出腰长,再求出底边,然后根据三角形的任意两边之和不能大于第三边进行判断即可.【精准解析】解:设腰长为x cm ,腰长与腰长的一半是9cm 时,x +x =9,12解得x =6,所以,底边=15﹣×6=12,12∵6+6=12,∴6cm 、6cm 、12cm 不能组成三角形;②腰长与腰长的一半是15cm 时,x +x =15,12解得x =10,所以,底边=9﹣×10=4,12所以,三角形的三边为10cm 、10cm 、4cm ,能组成三角形,故答案为: 10cm , 4cm .【名师指路】本题主要考查了中线的定义以及三角形两边之和不能大于第三边,正确理解等腰三角形以及中线的定义并熟练掌握三角形的两边之和不能大于第三边是解答本题的关键.12.(2021·广东·汕头市龙湖实验中学八年级期末)如图,在△ABC 中,AB =AC ,∠B =36°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =36°,DE 交线段AC 于点E ,点D 在运动过程中,若△ADE 是等腰三角形,则∠BDA 的度数为_________.【标准答案】72°或108°【思路点拨】利用外角的性质判断出,分类讨论当时和AED ADE ≠∠∠AED DAE =∠时,两种情况,利外角的性质和角的等量代换运算即可.36ADE DAE ==︒∠∠【精准解析】解:∵AB AC=∴36B C ∠=∠=︒∵36AED EDC C EDC =+=+︒∠∠∠∠∴AED ADE≠∠∠∴当时,则AED DAE =∠180180367222ADE AED DAE ︒-︒-︒====︒∠∠∴7236108ADB DAE C =+=︒+︒=︒∠∠∠当时,则36ADE DAE ==︒∠∠363672ADB DAE C =+=︒+︒=︒∠∠∠故答案为:或72︒108︒【名师指路】本题主要考查了等腰三角形的判定及性质,外角的性质,灵活运用外角的性质是解题的关键.13.(2021·广东·珠海市文园中学八年级期中)如图,△ABC 的面积为12,AB =AC ,BC =4,AC 的垂直平分线EF 分别交AB ,AC 边于点E ,F ,若点D 为BC 边的中点,点P 为线段EF 上一动点,则△PCD 周长的最小值为 ___.【标准答案】8【思路点拨】连接,由于是等腰三角形,点是边的中点,故,再根据三角AD ABC ∆D BC AD BC ⊥形的面积公式求出的长,再根据是线段的垂直平分线可知,点关于直线AD EF AC C的对称点为点,故的长为的最小值,由此即可得出结论.EF A AD CP PD +【精准解析】解:连接,AD是等腰三角形,点是边的中点,ABC ∆ D BC ,AD BC ∴⊥,1141222ABC S BC AD AD ∆∴==⨯⨯=A 解得:,6AD =是线段的垂直平分线,EF AC 点关于直线的对称点为点,∴C EF A 的长为的最小值,AD ∴CP PD +的周长最短.CDP ∴∆11()6462822CP PD CD AD BC =++=+=+⨯=+=故答案为:8.【名师指路】本题考查了轴对称最短路线问题、等腰三角形的性质,解题的关键是熟知等腰三角-形三线合一的性质.14.(2021·广东·广州市越秀区育才实验学校八年级期中)△ABC 中,AB =AC =12厘米,BC =8厘米,点D 为AB 的中点,如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,若点Q 的运动速度为 ___米/秒,△BPD 能够与△CQP 全等.【标准答案】3或4.5.【思路点拨】根据等腰三角形的性质得出∠B =∠C ,根据全等三角形的判定得出两种情况:①BD =CP ,BP =CQ ,②BD =CQ ,BP =PC ,设运动时间为t 秒,列出方程,再求出答案即可.【精准解析】解:设运动时间为t 秒,∵AB =12厘米,点D 为AB 的中点,∴BD =AB =6(cm ),12∵AB =AC ,∴∠B =∠C ,∴要使,△BPD 能够与△CQP 全等,有两种情况:①BD =CP ,BP =CQ ,8﹣3t =6,解得:t =,23∴CQ =BP =3×=2,23∴点Q 的运动速度为2÷=3(厘米/秒);23②BD =CQ ,BP =PC ,∵BC =8厘米,∴BP =CP =BC =4(厘米),12即3t =4,解得:t =,43∴CQ =BD =6厘米,∴点Q 的运动速度为6÷=4.5(厘米/秒),43故答案为:3或4.5.【名师指路】本题考查了全等三角形的判定和等腰三角形的性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想.15.(2020·广东·广州外国语学校附属学校八年级期末)已知:如图,△ABC 是等边三角形,延长AC 到E ,C 为线段AE 上的一动点(不与点A 、E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ,OC .以下五个结论:①AD=BE ;②AP=BO ;③PQ//AE ;④∠AOB=60°;⑤OC 平分∠AOE ;结论正确的有_________(把你认为正确的序号都填上)【标准答案】①③④⑤【思路点拨】根据等边三角形的三边都相等,三个角都是60°,可以证明△ACD △BCE ,根据全等≅三角形对应边相等可得AD=BE ,所以①正确;由△ACD △BCE 得∠CAD=∠CBE ,加上∠BCA=∠DCE=60°,AC=BC ,得到△ACP ≅△BCQ (ASA ),所以AP=BO ,故②错误;≅根据△ACP △BCQ ,再根据PC=QC ,推出△PCQ 是等边三角形,又由∠ACB=∠≅CPQ ,根据内错角相等,两直线平行,故③正确;利用等边三角形的性质,BC //DE ,再根据平行线的性质得到∠CBE=∠DEO ,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故④正确;根据三角形面积公式求出CN=CM ,根据角平分线性质即可判断⑤.【精准解析】①∵正三角形ABC 和正三角形CDE ,∴BC=AC ,DE=DC=CE ,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,,=∠=∠⎨⎪=⎧⎪⎩AC BC ACD BCE DC CE ∴△ACD △BCE (SAS ),≅∴AD=BE ;故①正确.②∵△ACD △BCE (已证),≅∴∠CAD=∠CBE ,∵∠BCA=∠DCE=60°(已证),∴=60°,180602∠=︒-⨯︒BCQ ∴∠ACB=∠BCQ=60°,在△ACP 和△BCQ 中,,=∠=∠∠⎧⎪⎨⎩=∠⎪AC BC CAD CBE ACB BCQ ∴△ACP △BCQ (ASA ),≅∴AP=BO ,故②错误.③∵△ACP △BCQ (已证),≅∴PC=QC ,∴△PCQ 是等边三角形.∴∠CPQ=60°,∴∠ACB=∠CPQ ,∴PQ//AE ,故③正确.④∵∠ACB=∠DCE=60°,∴∠BCD=60°,在正三角形CDE 中,∠DEC =60°=∠BCD ,∴ BC//DE ,∴∠CBE=∠DEO ,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故④正确.⑤过C 作于M ,于N ,CM BE ⊥CN AD⊥∵△ACD △BCE ,≅∴,BE=AD ,∆∆=BCE ACD S S ∴1122⨯⨯=⨯⨯,BE CM AD CN ∴CM=CN ,∴OC 平分∠AOE ,故⑤正确;故答案为①③④⑤.【名师指路】本题主要考查了三角形的证明,解题的关键是熟知全等三角形的判定、等边三角形的性质、角平分线的性质以及平行线的判定.16.(2020·广东福田·八年级期中)如图,已知等腰△ABC ,AB=AC ,∠BAC=120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC ,下面结论:①∠APO=∠ACO ;②∠APO+∠PCB=90°;③PC=PO ;④AO+AP=AC ;其中正确的有________.(填上所有正确结论的序号)【标准答案】①②③④【思路点拨】连接,证明,利用等腰三角形的性质可判断结论①;由线段垂直平分线的OB OP OB =性质定理,等腰三角形的判定与性质,三角形的内角和定理,角的和差求出∠APO 与∠DCO 的和等于30°,再证明是等边三角形,可判断结论②,③;, 在线段AC POC ∆上截取AE=AP ,连接PE ,证明△APO ≌△EPC 可判断结论④.【精准解析】解:如图,连接,OB∵AD ⊥BC ,,AB AC =是的中垂线,,AD ∴BC A ABC CB =∠∠,OB OC ∴=,OBC OCB ∴∠=∠,ABO ACO ∴∠=∠,OP OC = ,OP OB ∴=,OBP OPB ∴∠=∠ 即结论①正确;,APO ACO ∠=∠ 连接BO ,如图1所示:,120,AB AC BAC =∠=︒30,ABC ACB ∴∠=∠=︒由,APO ACO ∠=∠30,APO DCO ACO DCO ACB ∴∠+∠=∠+∠=∠=︒1803030120,OPC OCP ∴∠+∠=︒-︒-︒=︒60,POC ∠=︒,OP OC = 是等边三角形,POC ∴∆60,PCO ∴∠=︒ 60603090,PCB APO PCO DCO APO DBO ABO ∴∠+∠=∠+∠+∠=︒+∠+∠=︒+︒=︒即结论②正确;是等边三角形,POC ∆,PC PO ∴=即结论③正确;在线段AC 上截取AE=AP ,连接PE ,如图所示:∵∠BAC+∠CAP=180°,∠BAC=120°,∴∠CAP=60°,∴△APE 是等边三角形,∴AP=EP ,又∵△OPC 是等边三角形,∴OP=CP ,又∵∠APE=∠APO+∠OPE=60°,∠CPO=∠CPE+∠OPE=60°,∴∠APO=∠EPC ,在△APO 和△EPC 中,, AP EP APO EPC OP CP ⎧⎪∠∠⎨⎪⎩===∴△APO ≌△EPC (SAS ),∴AO=EC ,又∵AC=AE+EC ,AE=AP ,∴AC=AO+AP , 即结论④正确;综合所述,①,②,③,④都正确,故答案为:①,②,③,④.【名师指路】本题综合考查了线段垂直平分线的性质定理,等腰三角形的判定与性质,等边三角形的判定与性质,全等三角形的判定与性质,角的和差,线段的和差,等量代换等相关知识点,重点掌握全等三角形的判定与性质和等边三角形的判定与性质,难点是作辅助线构建等腰三角形,等边三角形,全等三角形.17.(2020·广东·广州市育才中学八年级期中)如图,在等腰中,ABC ∆是的高,分别是上一动点,则 5AB AC AD ==,ABC ∆4,3,AD BD E F ==、AB AD 、的最小值为__________.BF EF+【标准答案】245【思路点拨】利用等腰三角形的对称性找到点B 的对称点C ,连接CE ,当CE ⊥AB 时,线段的和最小,再运用等面积法求CE 的长度即可.【精准解析】如图所示:点B 关于AD 的对称点是点C ,∴BF =CF ,∴BF +EF =CF +EF =CE ,当CE ⊥AB 时,线段的长度有最小值,利用△ABC 面积的两种表示方法,得:,11BC AD=AB CE 22⋅⋅∵BC =2BD =6,AD =4,AB =5,∴,1164=5CE 22⨯⨯⨯⋅解得:.24CE=5【名师指路】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用等面积法求线段长度是解题的关键.18.(2021·广东·佛山市华英学校八年级期中)如图,已知∠AOB =a ,在射线OA 、OB 上分别取点OA 1=OB 1,连接A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B =B 1A 2,连接A 2B 2,…,按此规律,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2021﹣θ2020的值为__.【标准答案】.20211802α︒-【思路点拨】根据等腰三角形两底角相等用α表示出∠A 1B 1O ,再根据平角等于180°列式用α表示出θ1,再用θ1表示出θ2,并求出θ2﹣θ1,依此类推求出θ3﹣θ2,…,θ2021﹣θ2020,即可得解.【精准解析】解:∵OA 1=OB 1,∠AOB =α,∴∠A 1B 1O =(180°﹣α).12∴(180°﹣α)+θ1=180°.12∴θ1=.o 1802α+∵B 1B 2=B 1A 2,∠A 2B 1B 2=θ1,∴,o 12211802A B B θ-=∠∵o2212=180A B B θ+∠∴,o o 12180=1802θθ-+整理得:,o 2540=4αθ+∴.o o o 21540180180==424αααθθ++---同理可求:,o o 231801260==28θαθ++∴o o o 321260540180==848αααθθ++---•••以此类推, o 202120202021180=2αθθ--故答案为:.o 20211802α-【名师指路】本题主要考查了等腰三角形的性质,三角形的内角和定理,解题的关键在于能够准确找到规律求解.19.(2021·广东·广州市培正中学八年级期中)如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【标准答案】12⎛ ⎝【思路点拨】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可.【精准解析】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D 点作x 轴的垂线交于x 2处,∵△OAB 是等边三角形,且OA =2,∴在Rt △AD x 2中,∠DA x 2=60°,AD =1,∴,212Ax =2Dx =故D 点的坐标为,即P 3;32⎛ ⎝32⎛ ⎝第4秒结束时P 点运动到了点B 的位置,同理过B 点向x 轴作垂线恰好交于点C ,在Rt △OBC 中,∠BOC =60°,,,2OB =1OC =,BC故B 点的坐标为(1P 4(1第5秒结束时P 点运动到了线段OB 的中点E 的位置,根据点D 即可得出E 点的坐标为,即 P 5;12⎛ ⎝12⎛ ⎝第6秒结束时运动到了点O 的位置,所以P 6的坐标为P 6(0,0);第7秒结束时P 点的坐标为P 7(1,0),与P 1相同;……由上可知,P 点的坐标按每6秒进行循环,∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为,12⎛ ⎝故答案为:.12⎛ ⎝【名师指路】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.20.(2020·广东·广州大学附属中学八年级期中)在△ABC 中,∠C =90°,D 是边BC 上一点,连接AD ,若∠BAD +3∠CAD =90°,DC =a ,BD =b ,则AB =________. (用含a ,b 的式子表示)【标准答案】2a+b.【思路点拨】延长BC 至点E ,使CE=CD=a ,连接AE ,利用∠BAD +3∠CAD =90°,∠CAB+∠B =90°,证得∠B=2∠CAD ,再利用CE=CD,AC ⊥CD,证得△AED 是等腰三角形,推出∠E=∠EAB,由此得到AB=EB=2a+b.【精准解析】如图,延长BC 至点E ,使CE=CD ,连接AE ,∵∠ACB=90°,∴∠CAB+∠B=90°,AC⊥CD,∵∠BAD+3∠CAD=90°,∠BAD+∠CAD=∠BAC,∴∠B=2∠CAD,∵CE=CD,AC⊥CD,∴AC垂直平分ED,∴AE=AD,即△AED是等腰三角形,∴∠EAC=∠CAD,∴∠EAD=2∠CAD=∠B,∴∠EAB=∠B+∠BAD,∵∠E=∠ADE=∠B+∠BAD,∴∠E=∠EAB,∴AB=EB,∵EB=EC+CD+BD=a+a+b=2a+b,∴AB=2a+b.故填:2a+b.【名师指路】此题考查直角三角形的性质、等腰三角形的性质,延长BC至点E,使CE=CD是关键的辅助线,由此将直角三角形转化为等腰三角形来证明.三、解答题21.(2020·广东·龙华新区实验学校八年级期中)解答下列问题:(1)模型建立:如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C 位于BA的延长线上时,线段BC取得最大值,则最大值为_________(用含a,b的式子表示);(2)模型运用:如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)灵活运用:如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.【标准答案】(1)a+b;(2)①见解析;②13;(3)6+【思路点拨】(1)根据点C位于BA的延长线上时,线段BC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到CD=AC,EC=CB,∠ACD=∠BCE=60°,推出△DCB≌△ACE,根据全等三角形的性质得到AE=BD;②由于线段AE长的最大值=线段BD的最大值,根据(1)中的结论即可得到结果;(3)如图3中,连接BN,将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,易知PA AN长的最大值=线段BP长的最大值,当P在线段BA的延长线时,线段BP取得最大值,由此即可解决问题.【精准解析】解:(1)∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a +b,故答案为:a+b;(2)①证明:如图2中,∵△ACD 与△BCE 是等边三角形,∴CD =AC ,CB =CE ,∠ACD =∠BCE =60°,∴∠DCB =∠ACE ,在△CBD 与△CEA 中,,CD CA DCB ACE CB CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≌△CEA (SAS ),∴AE =BD ;②∵线段AE 长的最大值=线段BD 的最大值,由(1)知,当线段BD 的长取得最大值时,点D 在BA 的延长线上,∴最大值为AD +AB =3+10=13;(3)如图3中,连接BN,∵将△AMN 绕着点M 顺时针旋转90°得到△PBM ,连接AP ,则△APM 是等腰直角三角形,∴MA =MP =2,BP =AN ,∴PA =,∵AB =6,∴线段AN 长的最大值=线段BP 长的最大值,∴当P 在线段BA 的延长线时,线段BP 取得最大值=AB +AP =6+【名师指路】本题属于三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质以及旋转的性质的综合应用.注意等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.正确的作出辅助线构造全等三角形是解题的关键.22.(2021·广东·广州市真光中学八年级期中)如图,等边中,,关于轴ABC ∆A B y 对称,交轴负半轴于点,.AD AC ⊥y D ()0,6C (1)如图1,求点坐标;D (2)如图2,为轴负半轴上任一点,以为边作等边,的延长线交E x CE CEF ∆FA y 轴于点,求的长;G OG (3)如图3,在(1)的条件下,以为顶点作的角,它的两边分别与、交D 60︒CA BC 于点和,连接.探究线段、、之间的关系,并子以证明.M N MN AM MN NB【标准答案】(1);(2)6;(3),证明详见解析()0,2D -MN NB AM =+【思路点拨】(1)先证∠ACO =30°,在Rr △ACO 中由勾股定理求出AC 的长,再在Rt △ACD 中求出CD 的长,即可求出OD 的长,进步写出点D 坐标;(2)证△FCA9≌△ECB ,求出∠GAO =60°,再证△CAO2△GAO ,即可得到OG =OC =6;(3)如图3,延长MA 至点H ,使AH =BN ,连接BD ,先证△DAH ≌△DBN ,再证△DMI ≌△DMN ,即可推出AM+BN =MN.【精准解析】(1)(1)△ABC 为等边三角形,A ,B 关于y 轴对称,C(0,6),∵6CO AB CO ⊥,=,∴1302AO BO ACO BCO ACB ∠∠∠︒=,===在中设则,Rt ACO A AO x =,2AC x =∵,222AO CO AC =+∴,()222x 2x =+6解得,取正值),∴AO AC ∵AD AC ⊥∴在中,设则,Rt ADC A AD a =,2CD a =∵222AD AC CD +=(()222a 2a +=解得,(取正值)a 4=∴,=4=8AD CD ,∴,=2OD CDCO =﹣∴;()0,2D -(2)、均为等边三角形CEF DABC ∆,,CE CF ∴=AC BC =60ECF ACB ∠=∠=︒,即ECF ECA ACB ECA ∴∠+∠=∠+∠FCA ECB∠=∠在和中FCA ∆ECB ∆FC EC FCA ECBAC BC =⎧⎪∠=∠⎨⎪=⎩()FCA ECB SAS \D @D 60FAC EBC \Ð=Ð=°18060GAB CAB FAC \Ð=°-Ð-Ð=°,平分30AGC ACG \Ð=Ð=°AO CAG∠.6OG OC \==(3),证明如下:MN NB AM =+如图,延长至点,使,连接、,NB H BH AM =DH BD由题意得:,AD BD =BD BC⊥在和中AMD ∆BHD ∆90AM BH MAD HBD AD BD =⎧⎪∠=∠=︒⎨⎪=⎩()AMD BHD SAS \D@D ,DM DH \=MAD HDBÐ=Ð,60ACB ∠=︒ 90MAD HBD Ð=Ð=°120ADB \Ð=°又60MDN Ð=°60MDA NDB \Ð+Ð=°,即60HDB NDB \Ð+Ð=°60HDN Ð=°在和中MDN ∆HDN ∆60MD HD MDN HDN DN DN =⎧⎪∠=∠=︒⎨⎪=⎩()MDN HDN SAS \D@D MN HN\=HN NB BH NB AM=+=+ .MN NB AM \=+【名师指路】本题考查了等边三角形的性质,勾股定理,全等三角形的判定与性质等,解题关键是证线段的和差关系时会用截长补短的作方法.23.(2021·广东·佛山市南海石门实验中学八年级月考)如图,在中,ABC A ,平分线交于点,点为上一动点,过作直线2ACB B ∠=∠BAC ∠AO BC D H AO H 于,分别交直线、、于点、、.l AO ⊥H AB AC BC N E M(1)当直线经过点时(如图2),求证:;l C BN CD (2)当是线段的中点时,写出线段和线段之间的数量关系,并证明;M BC CE CD (3)请直接写出、和之间的数量关系.BN CE CD 【标准答案】(1)见解析;(2)CD=2CE ,证明见解析;(3)当点M 在线段BC 上时,CD=BN+CE ;当点M 在BC 的延长线上时,CD=BN-CE ;当点M 在CB 的延长线上时,CD=CE-BN .【思路点拨】(1)连接ND ,先由已知条件证明DN=DC ,再证明BN=DN 即可;(2)当M 是BC 中点时,CE 和CD 之间的等量关系为CD=2CE ,过点C 作CN'⊥AO 交AB 于N'.过点C 作CG ∥AB 交直线l 于G ,再证明△BNM ≌△CGM 问题得证;(3)BN 、CE 、CD 之间的等量关系要分三种情况讨论:①当点M 在线段BC 上时;②当点M 在BC 的延长线上时;③当点M 在CB 的延长线上时;由(2)即可得出结论.【精准解析】(1)证明:连接ND ,如图2所示:∵AO 平分∠B AC ,∴∠BAD=∠CAD ,∵直线l ⊥AO 于H ,。

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题1.已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm2.在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF为()A.75°B.60°C.45°D.30°3.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°4.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN的度数是()A.70°B.80°C.90°D.100°5.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°6.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.7.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③8.下列说法正确的是()A.两个能重合的图形一定关于某条直线对称B.若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧C.到角两边距离相等的点在这个角的平分线上D.如果三角形一边的垂直平分线经过它的一个顶点,那么这个三角形一定是等腰三角形9.用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为()米.A.B.C.D.10.在等腰直角△ABC(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,则满足此条件的点有()A.1个B.3个C.6个D.7个11.如图所示,在△ABC中,AB=AC,腰AB的垂直平分线交另一腰AC于点D,BD+CD=10cm,则AB的长为_________.12.如图,若等腰△ABC的腰长AB=10cm,AB的垂直平分线交另一腰AC于D,△BCD的周长为16cm,则底边BC是_________cm.13.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是_________.14.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有_________个.15.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为_________.16.等腰△ABC的底边上高AD与底角平分线CE交于点P,EF⊥AD,F为垂足,则线段EB与线段EF的数量关系为_________.17.如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为_________.18.等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,则这个三角形的腰长为_________.19.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按图示方式折叠,则图中阴影部分是_________三角形.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_________.21.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.22.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D作DF⊥AB于点F,说明:BC=DE+EF成立的理由.23.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.24.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.25.如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.26.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由.27.如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.28.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.29.如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.30.如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.参考答案:1.解:∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选B2.解:∵DE、FG分别垂直平分AB、BC,∴AE=BE,BF=CF,∴∠A=∠ABE,∠C=∠CBF,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选B3.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B4.解:∵P关于OA、OB的对称∴OA垂直平分PC,OB垂直平分PD∴CM=PM,PN=DN∴∠PMN=2∠C,∠PNM=2∠D,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∴∠CPD+∠O=180°,∴∠CPD=180°﹣40°=140°∴∠C+∠D=40°∴∠MPN=180°﹣40°×2=100°故选D.5.解:如图,延长AO交BC于点M,连接BO,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°﹣50°)÷2=65°,∵AO是∠BAC的平分线,∴∠BAO=25°,又∵OD是AB的中垂线,∴∠OBA=∠OAB=25°,∴∠OBM=∠OCM=60°﹣25°=40°,∴∠BOM=∠COM=90°﹣40°=50°,由折叠性可知,∠OCM=∠COE,∴∠MOE=∠COM﹣∠COE=50°﹣40°=10°,∴∠OEM=90°﹣10°=80°,∵由折叠性可知,∠OEF=∠CEF,∴∠CEF=(180°﹣80°)÷2=50°.故选:B6.解:设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D7.解:在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.故①②正确;在△ABD中,AB=AD,∠BAO=∠DAO,所以BO=DO,AO⊥BD,即AC垂直平分BD.故③正确;不能推出∠ABO=∠CBO,故④不正确.故选B8.解:A、两个能重合的图形不一定关于某条直线对称,故错误;B、两个图形关于某条直线对称,它们的对应点有可能位于对称轴上,故错误;C、同一平面内,到角的两边距离相等的点在角的平分线上,故错误;D,正确,故选D9.解:等边三角形周长为a,则边长为,设P到等边三角形的三边分别为x、y、z,则等边三角形的面积为b=××(x+y+z)解得x+y+z=,故选C10.解:∵△ABC是等腰直角三角形,(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,∴有一个满足条件的点﹣斜边中点,∴符合条件的点有1个.故选A.11.解:∵ED是边AB边上的中垂线,∴AD=BD;又∵BD+CD=10cm,AB=AC,∴BD+CD=AD+DC=AC=AB=10cm,即AB=10cm.故答案是:10cm12.解:∵DE是线段AB的垂直平分线,∴AD=BD,∴BD+CD=AC,∵AB=AC=10cm,BD+CD+BC=AB+BC=16cm,∴BC=16﹣AB=16﹣10=6cm.故答案为:6cm13.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:2014.解:∵将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上.∴EF∥DG,∠E=∠D=60°,∴∠ENM=∠D=60°,∠MGD=∠E=60°,∴EM=NM=EN,DM=GM=DG,∴△MEN,△MDG是等边三角形.∵∠A=∠B=30°,∴MA=MB,∴△ABM是等腰三角形.∴图中等腰三角形有3个15.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=8,BC=5,∴CE=5,∴AE=AC﹣EC=8﹣5=3,∴BE=3,∴BD=1.5.故选A.16.解:延长EF交AC于点Q,∵EF⊥AD,AD⊥BC∴EQ∥BC∴∠QEC=∠ECB∵CE平分∠ACB∴∠ECB=QCE∴∠QEC=∠QCE∴QE=QC∵QE∥BC,且△ABC为等腰三角形∴△AQE为等腰三角形∴AQ=AE,QE=2EF∴BE=CQ=2EF.故答案为:BE=2EF.17.解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=2318.解:设AB=AC=2X,BC=Y,则AD=CD=X,∵AC上的中线BD将这个三角形的周长分成15和6两部分,∴有两种情况:1、当3X=15,且X+Y=6,解得,X=5,Y=1,∴三边长分别为10,10,1;2、当X+Y=15且3X=6时,解得,X=2,Y=13,此时腰为4,根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴腰长只能是10.故答案为1019.解:∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,∵根据题意知道点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI=60°,∴阴影部分是等边三角形,故答案为:等边.20.答:由①③条件可判定△ABC是等腰三角形.证明:∵∠EBO=∠DCO,∠EOB=∠DOC,(对顶角相等)BE=CD,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形21.解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.22.解:∵BD平分∠ABC,DF⊥AB,∠C是直角,∴CD=DF,∠DBC=∠DBE,∠DFB=∠C,∴△BCD≌△BFD,∴BC=BF,∵DE∥BC,∴∠DBC=∠EDB,即∠DBC=∠DBE,∴△BDE是等腰三角形,∴BE=DE,∴BF=BC=DE+EF23.(1)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.24.解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°25.解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形26.①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);②∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH,在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH;③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形27.解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°﹣60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=728.(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACP和△BCP中,,∴△ACP≌△BCP(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)在△AEC和△BFC中,∴△AEC≌△BFC(ASA),∴AE=BF(全等三角形对应边相等).29.证明:∵AB=BC=CA,∴△ABC为等边三角形,∴∠BAC=∠C=60°,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠BPQ=∠ABE+∠BAP,∴∠BPQ=∠CAD+∠BAP=∠CAB=60°,∵BQ⊥AD∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.30.解:AD=EC.证明如下:∵△ABC和△BCD都是等边三角形,每个角是60°∴AB=EB,DB=BC,∠ABE=∠DBC=60°,∴∠ABE+∠EBC=∠DBC+∠EBC即∠ABD=∠EBC在△ABD和△EBC中∴△ABD≌△EBC(SAS)∴AD=EC。

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。

1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。

解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。

2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。

解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。

解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。

4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。

解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。

各种等腰三角形难题

各种等腰三角形难题

各种等腰三角形难题例1.在等腰三角形⊿ABC中,AB=AC,∠A=20°,点D在AB上,AD=BC,连接CD,求∠XXX的度数。

解析:利用全等三角形的性质,构造全等三角形⊿DAE≌⊿CBA,得到DE=CE,∠DEC=40°,∠ADE=80°。

因此,∠ADC=150°,∠BDC=30°。

例2.在等腰三角形⊿ABC中,AB=AC,∠BAC=20°,点D和E分别在AB和AC上,且∠BCD=50°,∠CBE=60°,求∠DEB的度数。

解析:通过连线,构造等边三角形⊿GEF和⊿GBC。

得到∠XXX∠EFG=60°,∠AFG=140°,∠DFG=40°,∠XXX∠BCD,BD=BC=BG,∠BGD=80°,∠DGF=40°。

因此,通过全等三角形的性质得到∠DEG=∠DEF=30°。

因此,∠DEB=30°。

例3.在等腰三角形⊿ABC中,AB=AC,∠BAC=20°,点D和E分别为AB和AC上的点,且∠ABE=10°,∠ACD=20°,求∠DEB的度数。

解析:通过连线,构造等边三角形⊿BCF和⊿DGF,得到CM=CB=CF,∠CMF=∠CFM=80°,∠GMF=100°,∠XXX∠FGM=40°,FM=GM。

因此,通过全等三角形的性质得到∠DMG=∠DMF=50°。

因此,∠DEB=30°。

根据已知条件,可以得到∠DMC=130°=∠EMB,且∠DCM=∠EBM=20°。

因此,可以得到⊿DMC∽⊿EMB,进而得到DM/MC=EM/MB。

同时,由于∠DME=∠BMC=50°,可以得到⊿DME∽⊿CMB,且∠DEM=∠XXX°。

又因为∠BEC=∠ABE+∠A=30°,因此可以得到∠DEB=∠DEG-∠BEC=50°-30°=20°。

等腰三角形经典试题综合训练(含解析)

等腰三角形经典试题综合训练(含解析)

等腰三角形经典试题综合训练(含解析)一.选择题(共18小题)1.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm2.等腰三角形腰长为5,则其底边长a的取值范围为()A.0<a≤5 B.5≤a≤10 C.0<a<10 D.0<a<53.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°4.等腰三角形一腰上的高于另一腰的夹角为50°,那么这个三角形的顶角为()A.40°B.100°C.140°D.40°或140°5.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.A.1个B.2个C.3个D.4个6.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°7.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE8.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC 于M、N,则△AMN的周长为()A.12 B.4 C.8 D.不确定9.如图,在△ABC中,AB=AC,AD平分∠BAC,交BC于点D,DE⊥AB于点E,DF⊥AC于点F,对于下列结论:①AD⊥BC;②AE=AF;③AD上任意一点到AB,AC的距离相等;④AD上任意一点到点B,点C 的距离相等.其中正确结论的个数是()A.1 B.2 C.3 D.410.如图,在△ABC中,AB=AC,D、E、F分别在三边上,且BE=CD,BD=CF,G为EF的中点,则∠DGE 的度数是()A.45°B.60°C.90°D.120°11.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()A.1个B.2个C.3个D.4个12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个13.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°14.如图,在△ABC中,AB=AC=8,点D在BC上,DE∥AB,DF∥AC,则四边形AFDE的周长是()A.24 B.18 C.16 D.1215.如图,△ABC中,∠ABC=63°,点D,E分别是△ABC的边BC,AC上的点,且AB=AD=DE=EC,则∠C 的度数是()A.21°B.19°C.18°D.17°16.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1(n>2)的度数为()A.B.C.D.17.如图钢架中,∠A=10°,焊上等长的钢条来加固钢架,若P1A=P1P2,则这样的钢条至多需要()A.5根B.6根C.7根D.8根18.如图,已知△ABC是等腰三角形,AC=BC=5,AB=8,D为底边AB上的一个动点(不与A、B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF的值为()A.3 B.4 C.D.二.填空题(共8小题)19.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.20.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=度.21.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b 的代数式表示△ABC的周长为.22.如图,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,则∠C=度.23.如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=°.24.如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于点P.则三角形PBC的面积是.25.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.26.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N 构成等腰三角形的点P恰好有三个,则x的值是.三.解答题(共9小题)27.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.28.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF.29.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.(1)求证:∠CBE=∠BAD;(2)当△ABC满足什么条件时,AE=CE.直接写出条件.30.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里;(2)根据彬彬的辅助线作法,完成证明过程.31.如图,△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.32.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.33.如图1,△ABC中,AB=AC,∠A=36°,我们发现这个三角形有一种特性,即经过它某一顶点的一条射线可把它分成两个小等腰三角形.为此,请你解答问题;如图2,△ABC中,AB=AC,∠A=108°,请你在图中画一条射线(不必写画法),把它分成两个小等腰三角形,并写出底角的大小.34.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PE∥AB 交BC于点D,交AC于点F.(1)若点P在BC上(如图一),此时PD=0,可得结论:PD+PE+PF AB(填“>”“<”或“=”)(2)当点P在△ABC内(如图二)时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请直接写出你的猜想,不需要证明.35.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?等腰三角形综合训练参考答案与试题解析一.选择题(共18小题)1.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.2.等腰三角形腰长为5,则其底边长a的取值范围为()A.0<a≤5 B.5≤a≤10 C.0<a<10 D.0<a<5【分析】由已知条件腰长是5,底边长为a,根据三角形三边关系列出不等式,通过解不等式即可得到答案.【解答】解:根据三边关系可知:5﹣5<a<5+5,即0<a<10.故选C.3.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选C.4.等腰三角形一腰上的高于另一腰的夹角为50°,那么这个三角形的顶角为()A.40°B.100°C.140°D.40°或140°【分析】分三角形是锐角三角形时,利用直角三角形两锐角互余求解;三角形是钝角三角形时,利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图1,三角形是锐角三角时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.5.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.A.1个B.2个C.3个D.4个【分析】认真阅读每一问题给出的已知条件,根据等腰三角形的概念、性质判断正误.【解答】解:①等腰三角形的两腰相等,正确;②等腰三角形的两底角相等,正确;③等腰三角形底边上的中线与底边上的高相等,正确;④等腰三角形是轴对称图形,对称轴就是底边上的高所在的直线,正确.故选D.6.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.7.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选C.8.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC 于M、N,则△AMN的周长为()A.12 B.4 C.8 D.不确定【分析】根据角平分线的定义可得∠ABE=∠CBE,∠ACE=∠BCE,再根据两直线平行,内错角相等可得∠CBE=∠BEM,∠BCE=∠CEN,然后求出∠ABE=∠BEM,∠ACE=∠CEN,根据等角对等边可得BM=ME,CN=NE,然后求出△AMN的周长=AB+AC.【解答】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN∥BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.9.如图,在△ABC中,AB=AC,AD平分∠BAC,交BC于点D,DE⊥AB于点E,DF⊥AC于点F,对于下列结论:①AD⊥BC;②AE=AF;③AD上任意一点到AB,AC的距离相等;④AD上任意一点到点B,点C 的距离相等.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】首先根据角平分线的性质可得AD上任意一点到AB,AC的距离相等,根据等腰三角形的性质得到AD⊥BC,根据全等三角形的性质得到AE=AF,根据线段垂直平分线的性质得到AD上任意一点到点B,点C的距离相等.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,AD上任意一点到AB,AC的距离相等,故①③正确;∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△ADE与Rt△AFD中,∴Rt△ADE≌Rt△AFD,∴AE=AF;故②正确;∵AB=AC,AD平分∠BAC,∴AD垂直平分BD,∴AD上任意一点到点B,点C的距离相等,故④正确;故选D.10.如图,在△ABC中,AB=AC,D、E、F分别在三边上,且BE=CD,BD=CF,G为EF的中点,则∠DGE 的度数是()A.45°B.60°C.90°D.120°【分析】首先连接DE,DF,由AB=AC,可得∠B=∠C,又由BE=CD,BD=CF,利用SAS可判定△BDE≌△CFD,即可得DE=DF,然后由三线合一的性质,证得DG⊥EF,继而求得答案.【解答】解:连接DE,DF,∵AB=AC,∴∠B=∠C,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS),∴DE=DF,∵G为EF的中点,∴DG⊥EF,即∠DGE=90°.故选C.11.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()A.1个B.2个C.3个D.4个【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解.【解答】解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故选:D.12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个,故选D13.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.14.如图,在△ABC中,AB=AC=8,点D在BC上,DE∥AB,DF∥AC,则四边形AFDE的周长是()A.24 B.18 C.16 D.12【分析】因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.【解答】解:∵AB=AC=15,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=8+8=16.故四边形AFDE的周长是16.故选C.15.如图,△ABC中,∠ABC=63°,点D,E分别是△ABC的边BC,AC上的点,且AB=AD=DE=EC,则∠C 的度数是()A.21°B.19°C.18°D.17°【分析】设∠C=x.由DE=EC,根据等边对等角得出∠C=∠EDC=x,根据三角形外角的性质得出∠AED=∠C+∠EDC=2x.同理表示出∠ADB=∠ABC=3x,则3x=63°,求出x即可.【解答】解:设∠C=x.∵DE=EC,∴∠C=∠EDC=x,∴∠AED=∠C+∠EDC=2x.∵AD=DE,∴∠AED=∠DAE=2x,∴∠ADB=∠DAE+∠C=3x.∵AB=AD,∴∠ADB=∠ABC=3x,∴3x=63°,∴x=21°.故选A.16.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1(n>2)的度数为()A.B.C.D.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.17.如图钢架中,∠A=10°,焊上等长的钢条来加固钢架,若P1A=P1P2,则这样的钢条至多需要()A.5根B.6根C.7根D.8根【分析】由于焊上的钢条长度相等,并且AP1=P1P2,所以∠A=∠P1P2A,则可算出∠P2P1P3的度数,并且和∠P1P3P2度数相等,根据平角的度数为180度和三角形内角和为180度,结合等腰三角形底角度数不大于90度即可求出最多能焊上的钢条数.【解答】解:如图:∵∠A=∠P1P2A=10°,∴∠P2P1P3=20°,∠P1P3P2=20°,∴∠P1P2P3=140°,∴∠P3P2P4=30°∴∠P3P4P2=30°∴∠P2P3P4=120°∴∠P4P3P5=40°∴∠P3P5P4=40°∴∠P3P4P5=100°∴∠P5P4P6=50°∴∠P4P6P5=50°∴∠P4P5P6=80°∴∠P6P5P7=60°,∴∠P6P7P5=60°,∴∠P5P6P7=60°,∴∠P8P6P7=70°,∴∠P6P8P7=70°,∴∠P6P7P8=40°,∴∠P8P7P9=80°,∴∠P7P9P8=80°,∴∠P9P8P7=20°,∴∠P9P8C=90°,此时就不能在往上焊接了,综上所述总共可焊上8条.故选D.18.如图,已知△ABC是等腰三角形,AC=BC=5,AB=8,D为底边AB上的一个动点(不与A、B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF的值为()A.3 B.4 C.D.【分析】连接AD,过点C作CE⊥AB于点E,根据勾股定理求出CE的长,再由三角形的面积公式即可得出结论.【解答】解:连接AD,过点C作CE⊥AB于点E,∵AC=BC=5,AB=8,∴AE=4,∴CE==3,∴S△ABC=AB•CE=×8×3=12.∵DE⊥AC,DF⊥BC,∴S△ABC=S△ACD+S△BDC=AC•DE+BC•DF=×5×(DE+DF)=12,∴DE+DF=.二.填空题(共8小题)19.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=75度.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=(180°﹣30°)=75°,故答案为:75.20.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=55度.【分析】首先求出∠C的度数,再根据等腰三角形的性质求出∠A,从而利用四边形内角和定理求出∠EDF.【解答】解:∵∠AFD=145°,∴∠CFD=35°又∵FD⊥BC于D,DE⊥AB于E ∴∠C=180°﹣(∠CFD+∠FDC)=55°∵AB=AC ∴∠B=∠C=55°,∴∠A=70°根据四边形内角和为360°可得:∠EDF=360°﹣(∠AED+∠AFD+∠A)=55°∴∠EDF为55°.故填55.21.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b 的代数式表示△ABC的周长为2a+3b.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b 故答案为:2a+3b.22.如图,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,则∠C=36度.【分析】根据已知题目中所给的等量关系,用一个角分别表示出其他的角,利用三角形内角和等于180°,便可得出∠C的度数.【解答】解:由题意知,在△ABC中,AB=AC,所以∠B=∠C,又AB=BD,AD=DC,所以∠C=∠DAC,∠BAD=∠BDA=2∠C,由三角形内角和为180°可得,∠C+∠C+3∠C=180°,得∠C=36°.故填36.23.如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=80°.【分析】先利用SSS证明△ABD≌△EBD,再根据全等三角形对应角相等即可求出∠BED.【解答】解:在△ABD与△EBD中,,∴△ABD≌△EBD,∴∠BED=∠A=80°.故答案为80.24.如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于点P.则三角形PBC的面积是cm2.【分析】过点P作PE⊥BP,垂足为P,交BC于点E,由角平分线的定义可知∠ABP=∠EBP,结合BP=BP 以及∠APB=∠EPB=90°即可证出△ABP≌△EBP(ASA),进而可得出AP=EP,根据三角形的面积即可得出S=S EPC,再根据S△PBC=S△BPE+S EPC=S△ABC即可得出结论.△APC【解答】解:过点P作PE⊥BP,垂足为P,交BC于点E,如图所示.∵AP垂直∠B的平分线BP于点P,∴∠ABP=∠EBP.在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=EP.∵△APC和△EPC等底同高,∴S△APC=S EPC,∴S△PBC=S△BPE+S EPC=S△ABC=cm2.故答案为:cm2.25.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒,当t为3或6或6.5或5.4时,△ACP是等腰三角形.【分析】由于没有说明哪一条边是腰,故需要分情况讨论.【解答】解:∵AC=6,BC=8,∴由勾股定理可知:AB=10,当点P在CB上运动时,由于∠ACP=90°,∴只能有AC=CP,如图1,∴CP=6,∴t==3,当点P在AB上运动时,①AC=AP时,如图2,∴AP=6,PB=AB﹣CP=10﹣6=4,∴t==6,②当AP=CP时,如图3,此时点P在线段AC的垂直平分线上,过点P作PD⊥AC于点D,∴CD=AC=3,PD是△ACB的中位线,∴PD=BC=4,∴由勾股定理可知:AP=5,∴PB=5,∴t==6.5;③AC=PC时,如图4,过点C作CF⊥AB于点F,∴cos∠A==,∴AF=3.6,∴AP=2AF=7.2,∴PB=10﹣7.2=2.8,∴t==5.4;综上所述,当t为3或6或6.5或5.4时,△ACP是等腰三角形.故答案为:3或6或6.5或5.4.26.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N 构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4﹣4或4<x<4.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.三.解答题(共9小题)27.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.【解答】解:∵BE⊥AE∴∠AEB=90°∵AE平分∠BAC∴∠CAE=∠BAE=42°又∵ED∥AC∴∠AED=180°﹣∠CAE=180°﹣42°=138°∴∠BED=360°﹣∠AEB﹣∠AED=132°28.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF.【分析】根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.【解答】证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF.29.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.(1)求证:∠CBE=∠BAD;(2)当△ABC满足什么条件时,AE=CE.直接写出条件.【分析】(1)根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD.(2)根据等边三角形的性质即可求解.【解答】(1)证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.(2)当△ABC满足是等边三角形的条件时,AE=CE.30.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里;(2)根据彬彬的辅助线作法,完成证明过程.【分析】(1)线段BC的中垂线可以直接作出的,不需要附带“过点A作”;(2)根据已知条件利用AAS可证△ABD≌△ACD,得出AB=AC.【解答】(1)解:作辅助线不能同时满足两个条件;(2)证明:作△ABC的角平分线AD.∴∠BAD=∠CAD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(AAS).∴AB=AC.31.如图,△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.【分析】首先过点D作DM∥AC交BC于M,易证得△DMF≌△ECF,继而证得DF=EF.【解答】证明:过点D作DM∥AC交BC于M,∴∠DMB=∠ACB,∠FDM=∠E,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DMB,∴BD=MD,∵BD=CE,∴MD=CE,在△DMF和△ECF中,,∴△DMF≌△ECF(AAS),∴DF=EF.32.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=25°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA的变化情况.(2)假设△ABD≌△DCE,利用全等三角形的对应边相等得出AB=DC=2,即可求得答案.(3)假设△ADE是等腰三角形,分为三种情况:①当AD=AE时,∠ADE=∠AED=40°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=70°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【解答】解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2)当△ABD≌△DCE时.DC=AB,∵AB=2,∴DC=2,∴当DC等于2时,△ABD≌△DCE;(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.33.如图1,△ABC中,AB=AC,∠A=36°,我们发现这个三角形有一种特性,即经过它某一顶点的一条射线可把它分成两个小等腰三角形.为此,请你解答问题;如图2,△ABC中,AB=AC,∠A=108°,请你在图中画一条射线(不必写画法),把它分成两个小等腰三角形,并写出底角的大小.【分析】先根据AB=AC,∠A=108°,求得∠C=36°,再过点A作∠DAC=36°,则△ACD和△ABD均为等腰三角形.【解答】解:如图2所示,由AB=AC,∠A=108°,可知∠C=36°,过点A在∠BAC内部作射线AD,使得∠DAC=36°,则△ABD中,∠BAD=72°,∠ADB=72°,△ACD中,∠DAC=∠C=36°,故△ACD和△ABD均为等腰三角形,故射线AD即为所求.34.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PE∥AB 交BC于点D,交AC于点F.(1)若点P在BC上(如图一),此时PD=0,可得结论:PD+PE+PF=AB(填“>”“<”或“=”)(2)当点P在△ABC内(如图二)时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请直接写出你的猜想,不需要证明.【分析】(1)先求出四边形PFAE是平行四边形,根据平行四边形对边相等可得PF=AE,再根据两直线平行,同位角相等可得∠BPE=∠C,然后求出∠B=∠BPE,利用等角对等边求出PE=BE,然后求解即可;(2)根据平行四边形的判定得出四边形AEPF为平行四边形,根据平行四边形的性质,平行线的性质即可得证.【解答】解:(1)答:PD+PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PFAE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PD+PE+PF=AB;(2)当点P在△ABC内时,结论PD+PE+PF=AB仍然成立.证明:∵PE∥AC,PF∥AB,∴四边形AEPF为平行四边形,∴PE∥AF ∵PF∥AB,∴∠FDC=∠B,又∵AB=AC,∴∠B=∠C,∴∠FDC=∠C,∴DF=CF,∴DF+PE=CF+AF,即DF+PE=AC,又∵DF=PD+PF,AC=AB,∴PD+PF+PE=AB,即上述结论成立.35.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。

(完整版)等腰三角形经典练习题(有难度)

(完整版)等腰三角形经典练习题(有难度)

A等腰三角形练习题一、计算题:1. 女口图,△ABC 中,AB=AC,BC=BD,AD=DE=EB求6的度数2. 如图,CA=CB,DF=DB,AE=AD求/A的度数3、AB 于丄AB 于E, DF 丄BC 交AC 于点F,若/EDF=70。

,求AFD 的度数4. 女口图,△ABC 中, AB=AC,BC=BD=ED=EA 求/A的度数ACA5. 如图,△ABC 中,AB二AC , D 在BC 上, /BAD=30 °在AC 上取点E,使AE=AD,求/EDC的度数6. 如图,△ABC 中,/C=901BE=AC,BD= 2,DE+BC=1,求/ABC的度数,D为AB上一点,作DE丄BC于E,若C7. 如图,△ABC 中,AD 平分Z BAC,若AC二AB+BD 求ZB : Z C的值二、证明题:8. 如图,A DEF 中,/EDF=2 ZE, FA丄DE 于点A,问:DF、AD、AE 间有什么样的大小关系9. 如图,△ABC中,Z B=60。

,角平分线AD、CE交于点0求证:AE+CD二AC12.如图,△BC中,AB=AC,D 点,且/ ABD= ZACD =60 求证:CD=AB-BD13. 已知:如图,AB=AC=BE , CD为A ABC中AB边上的中线1D求证:CD= 2CEB C14. 如图,△ABC 中,/1二 /2,/EDC二 ZBAC求证:BD=EDD15. 如图,△ABC 中,AB=AC,BE=CF,EF 求证:EG=FG16. 如图,△ABC 中,/ABC=2 ZC , AD 是BC 边上的高,B 到点E ,使17. 如图,AABC 中,AB=AC,AD 和BE 两条高,交于点 H ,且AE=BE求证:AH=2BDBE=BD求证:AF=FCA18. 如图,△ABC 中,AB二AC, /BAC=90 °,BD=AB, /ABD=30求证:AD=DC19. 如图,等边△ABC中,分别延长BA至点E,延长BC至点D,使AE=BD求证:EC=ED20. 如图,四边形ABCD中,/BAD+ ZBCD=180 °,AD、BC的延长线交于点F, DC、AB的延长线交于点E,/E、/F的平分线交于点H 求证:EH丄FH一、计算题:1. 女口图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求/A的度数设/ABD为X,则/A为2x由8x=180 °得 /A=2x=45 °2. 如图,CA=CB,DF=DB,AE=AD求/A的度数设/A 为X,由5x=180 °BD得/A=363. 如图,△ABC 中,AB=AC , D 在BC 上,DE 丄AB 于E, DF 丄BC 交AC 于点F,若/EDF=70求Z AFD的度数Z AFD=1604. 如图,△ABC中,求/A的度数设/A为x180ZA= 7AB=AC,BC=BD=ED=EA5. 如图,△ABC 中,AB二AC , D 在BC 上,/BAD=30 °在AC 上取点E,使AE=AD,求/EDC的度数设/ADE为xx—156. 如图,△ABC中,/C=90 °,D为AB上一点,作DE丄BC于E,若1BE=AC,BD= 2,DE+BC=1,求/ABC的度数延长DE到点F,使EF=BC可证得:△ABC幻^FE所以/仁ZF由Z2+ ZF=90 °得Z1+ ZF=90 °1在Rt ADBF 中,BD= 2,DF=1所以/F = Z1=30 °7. 如图,A ABC 中,AD 平分/BAC,若AC二AB+BD求ZB : /C的值在AC上取一点E,使AE=AB可证/△ABD坐A DE所以Z B= Z AED由AC=AB+BD,得DE=EC, 所以Z AED=2 ZC故/B : Z C=2:1、证明题:8. 如图,AKBC中,ZABC, /CAB的平分线交于点P,过点P作DE //AB ,分别交BC、AC于点D、E求证:DE=BD+AE13证明APBD 和BEA 是等腰三角形9. 如图,A DEF 中,/EDF=2 ZE , FA 丄 DE 于点 A ,问:DF 、AD 、AE10. 如图,A ABC 中,Z B=60求证:AE+CD 二AC 在AC 上取点F,使 AF=AE易证明MOE ^zAOF,,角平分线AD 、CE 交于点OBED间有什么样的大小关系DF+AD=AE在AE上取点B,使AB=AD 得Z AOE二 ZAOF由ZB=60 °,角平分线AD、CE,得Z AOC=120所以Z AOE= ZAOF= ZCOF= /COD=60故△COD幻©OF,得CF=CD所以AE+CD二AC11. 如图,©ABC 中,AB=AC, zA=100 °,BD 平分/ABC, 求证:BC=BD+AD 延长BD到点E,使BE=BC,连结CE 在BC上取点F,使BF=BA易证©ABD 坐©BD,得AD=DF再证©CDE 坐©DF,得DE=DF故BE=BC=BD+AD也可:在BC上取点E,使BF=BD,连结DF在BF上取点E,使BF=BA,连结DE先证DE=DC,再由©ABD坐©BD,得AD=DE,最后证明DE=DF即可BE F12. 如图,AABC中,AB=AC,D 为AABC外一点,且/ ABD二 zACD =60求证:CD=AB-BD在AB上取点E,使BE=BD ,在AC上取点F,使CF=CD得ABDE与△CDF均为等边三角形,只需证MDF幻Z ED13. 已知:如图,AB=AC=BE , CD为A ABC中AB 边上的中线1求证:CD= 2CE延长CD到点E,使DE=CD.连结AE证明MCE坐zBCE14. 如图,A ABC 中,/1二 /2,/EDC二 ZBAC求证:BD=ED易证/△ABD坐A DF,得BD=DF, ZB= Z AFD由ZB+ ZBAC+ ZC= ZDEC+ ZEDC+ /C=180所以ZB= ZDEC所以/DEC二Z AFD所以DE=DF,故BD=ED15. 如图,A ABC 中,AB=AC,BE=CF,EF 交BC 于点G求证:EG=FG16. 如图,A ABC中,/ABC=2 ZC, AD是BC边上的高,B到点E,使ABE=BD求证:AF=FC17. 如图,△ABC中,AB=AC,AD 和BE两条高,交于点求证:AH=2BD由△AHE坐^CE,得BC=AH18. 如图,A ABC 中,AB=AC, /BAC=90 °,BD=AB, zABD=30求证:AD=DC作AF丄BD于F,DE丄AC于E可证得Z DAF=DAE=15 °所以/△ADE坐A DF得AF=AE,由AB=2AF=2AE=AC,所以AE=EC,因此DE是AC的中垂线,所以AD=DC19. 如图,等边A ABC中,分别延长BA至点E,延长BC至点D,使AE=BD求证:EC=ED延长BD到点F,使DF=BC,可得等边厶BEF,F 18C D只需证明A BCE幻△DE即可20. 如图,四边形ABCD中,/BAD+ ZBCD=180 °,AD、BC的延长线交于点F, DC、AB的延长线交于点E,/E、/F的平分线交于点H求证:EH丄FH延长EH交AF于点G由ZBAD+ /BCD=180ZDCF+ ZBCD=180 °得/BAD二 /DCF,由外角定理,得/1二2 故MGM是等腰三角形由三线合一,得EH丄。

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习一.选择题(共2小题)1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cm B.3cm C.2cm D.不能确定2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD ②CN=CM③MN∥AB 其中正确结论的个数是()A.0B.1C.2D.31题2题3题4题二.填空题(共1小题)3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于_________.三.解答题(共15小题)4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.6.已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由.7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.11.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=_________.点P到AB边的距离PE=_________.12.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD 的长(请你直接写出结果).13.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)线段AD与BE有什么关系?试证明你的结论.(2)求∠BFD的度数.15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF 和CF,求证:AE=CF.16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.17.(2006•郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.等腰三角形典型例题练习参考答案与试题解析一.选择题(共2小题)1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cm B.3cm C.2cm D.不能确定考点:角平分线的性质.分析:由已知条件进行思考,结合利用角平分线的性质可得点D到AB的距离等于D到AC的距离即CD 的长,问题可解.解答:解:∵∠C=90°,AD平分∠BAC交BC于D∴D到AB的距离即为CD长CD=5﹣3=2故选C.2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB其中正确结论的个数是()A.0B.1C.2D.3考点:平行线分线段成比例;全等三角形的判定与性质;等边三角形的性质.分析:由△ACD和△BCE是等边三角形,根据SAS易证得△ACE≌△DCB,即可得①正确;由△ACE≌△DCB,可得∠EAC=∠NDC,又由∠ACD=∠MCN=60°,利用ASA,可证得△ACM≌△DCN,即可得②正确;又可证得△CMN是等边三角形,即可证得③正确.解答:解:∵△ACD和△BCE是等边三角形,∴∠ACD=∠BCE=60°,AC=DC,EC=BC,∴∠ACD+∠DCE=∠DCE+∠ECB,即∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,故①正确;∴∠EAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠DCE=60°,∴∠ACD=∠MCN=60°,∵AC=DC,∴△ACM≌△DCN(ASA),∴CM=CN,故②正确;又∠MCN=180°﹣∠MCA﹣∠NCB=180°﹣60°﹣60°=60°,∴△CMN是等边三角形,∴∠NMC=∠ACD=60°,∴MN∥AB,故③正确.故选D.二.填空题(共1小题)3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于1:3.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.解答:解:∵△ABC是正三角形,∴∠B=∠C=∠A=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠CED=∠BDF=90°,∴∠BFD=∠CDE=∠AEF=30°,∴∠DFE=∠FED=∠EDF=60°,,∴△DEF是正三角形,∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,①÷②,=,∴DF:AB=1:,∴△DEF的面积与△ABC的面积之比等于1:3.故答案为:1:3.三.解答题(共15小题)4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.考点:全等三角形的判定与性质;角平分线的定义.分析:过D作DM⊥AB,于M,DN⊥AC于N,根据角平分线性质求出DN=DM,根据四边形的内角和定理和平角定义求出∠AED=∠CFD,根据全等三角形的判定AAS推出△EMD≌△FND即可.解答:证明:过D作DM⊥AB,于M,DN⊥AC于N,即∠EMD=∠FND=90°,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN(角平分线性质),∠DME=∠DNF=90°,在△EMD和△FND中,∴△EMD≌△FND,∴DE=DF.5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.考点:等腰三角形的判定与性质;平行线的性质.分析:根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.解答:解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+EC.6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由.考点:等腰三角形的判定;全等三角形的判定与性质.分析:用(HL)证明△EBD≌△FCD,从而得出∠EBD=∠FCD,即可证明△ABC是等腰三角形.解答:△ABC是等腰三角形.证明:连接AD,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,且DE=DF,∵D是△ABC的BC边上的中点,∴BD=DC,∴Rt△EBD≌Rt△FCD(HL),∴∠EBD=∠FCD,∴△ABC是等腰三角形.(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?考点:等边三角形的性质;等腰三角形的判定.分析:(1)由题意可推出∠ACB=60°,∠E=∠CDE,然后根据三角形外角的性质可知:∠ACB=∠E+∠CDE,即可推出∠E的度数;(2)根据等边三角形的性质可知,BD不但为AC边上的高,也是∠ABC的角平分线,即得:∠DBC=30°,然后再结合(1)中求得的结论,即可推出△DBE是等腰三角形.解答:解:(1)∵△ABC是等边三角形,∴∠ACB=60°,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴,(2)∵△ABC是等边三角形,BD⊥AC,∴∠ABC=60°,∴,∵∠E=30°,∴∠DBC=∠E,∴△DBE是等腰三角形.8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.考点:含30度角的直角三角形.分析:由△ABC中,∠ACB=90°,∠A=30°可以推出AB=2BC,同理可得BC=2BD,则结论即可证明.解答:解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=60°.又∵CD⊥AB,∴∠DCB=30°,∴BC=2BD.∴AB=2BC=4BD.9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.考点:全等三角形的判定与性质;等腰三角形的性质.分析:过D点作DG∥AE交BC于G点,由平行线的性质得∠1=∠2,∠4=∠3,再根据等腰三角形的性质可得∠B=∠2,则∠B=∠1,于是有DB=DG,根据全等三角形的判定易得△DFG≌△EFC,即可得到结论.解答:证明:过D点作DG∥AE交BC于G点,如图,在△DFG和△EFC中,∴△DFG≌△EFC,∴DF=EF.10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.考点:全等三角形的判定与性质.分析:延长CE,BA交于一点F,由已知条件可证得△BFE全≌△BEC,所以FE=EC,即CF=2CE,再通过证明△ADB≌△FAC可得FC=BD,所以BD=2CE.解答:证明:如图,分别延长CE,BA交于一点F.∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.11.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=7.点P到AB边的距离PE=4或10.考点:等腰三角形的性质;三角形的面积.分析:(1)连接AP.先根据三角形的面积公式分别表示出S△ABP,S△ACP,S△ABC,再由S△ABP=S△ACP+S△ABC即可得出PE=PF+PH;(2)先根据直角三角形的性质得出AC=2CH,再由△ABC的面积为49,求出CH=7,由于CH>PF,则可分两种情况进行讨论:①P为底边BC上一点,运用结论PE+PF=CH;②P为BC延长线上的点时,运用结论PE=PF+CH.解答:解:(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH,∵S△ABP=S△ACP+S△ABC,∴AB•PE=AC•PF+AB•CH,又∵AB=AC,∴PE=PF+CH;(2)∵在△ACH中,∠A=30°,∴AC=2CH.∵S△ABC=AB•CH,AB=AC,∴×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+PF=CH,∴PE=CH﹣PF=7﹣3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.12.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE 即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.解答:解:(1)故答案为:=.(2)过E作EF∥BC交AC于F,∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.(3)解:CD=1或3,理由是:分为两种情况:①如图1过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EM,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,∴BN=,∴CN=1+=,∴CD=2CN=3;②如图2,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EM,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=113.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据全等三角形的性质和判定和线段垂直平分线性质求出AB=AC=CD,推出∠CDA=∠CAD=∠CPM,求出∠MPF=∠CDM,∠PMF=∠BMA=∠CMD,在△DCM和△PMF中根据三角形的内角和定理求出即可.解答:解:∠F=∠MCD,理由是:∵AF平分∠BAC,BC⊥AF,∴∠CAE=∠BAE,∠AEC=∠AEB=90°,在△ACE和△ABE中∵,∴△ACE≌△ABE(ASA)∴AB=AC,∵∠CAE=∠CDE∴AM是BC的垂直平分线,∴CM=BM,CE=BE,∴∠CMA=∠BMA,∵AE=ED,CE⊥AD,∴AC=CD,∴∠CAD=∠CDA,∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD,∴∠MPC=∠CDA,∴∠MPF=∠CDM,∴∠MPF=∠CDM(等角的补角相等),∵∠DCM+∠CMD+∠CDM=180°,∠F+∠MPF+∠PMF=180°,又∵∠PMF=∠BMA=∠CMD,∴∠MCD=∠F.14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)线段AD与BE有什么关系?试证明你的结论.(2)求∠BFD的度数.考点:等边三角形的性质;全等三角形的判定与性质.分析:(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD,从而证得结论;(2)根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.解答:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA.在△ABE和△CAD中,∴△ABE≌△CAD∴AD=BE.(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.考点:全等三角形的判定与性质.分析:根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.解答:证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形.分析:可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,当然相等了,由此可以证明△AEO≌△BFO;延长BF交AE于D,交OA于C,可证明∠BDA=∠AOB=90°,则AE⊥BF.解答:解:AE与BF相等且垂直,理由:在△AEO与△BFO中,∵Rt△OAB与Rt△OEF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°﹣∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF.延长BF交AE于D,交OA于C,则∠ACD=∠BCO,由(1)知∠OAE=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.17.(2006•郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.考点:等腰三角形的性质.分析:(1)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(2)类似(1)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC的面积=三角形ABD的面积﹣三角形ACD的面积.解答:解:(1)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(2)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.考点:等腰三角形的性质;三角形的面积.分析:猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB=AB•PD,S△PAC=AC•PE,S△CAB=AB•CF,S△PAC=AC•PE,AB•PD=AB•CF+AC•PE,即可求证.解答:解:我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下:连接AP,则S△PAC+S△CAB=S△PAB,∵S△PAB=AB•PD,S△PAC=AC•PE,S△CAB=AB•CF,又∵AB=AC,∴S△PAC=AB•PE,∴AB•PD=AB•CF+AB•PE,即AB(PE+CF)=AB•PD,∴PD=PE+CF.。

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)

等腰三角形经典习题(必看)题一:求等腰三角形的面积
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该等腰三角形的面积。

解题思路
由于等腰三角形的底和高两边相等,可以利用三角形的面积公式求解。

面积公式为:$S = \frac{1}{2} \times x \times y$。

题二:求等腰三角形的周长
题目描述
给定一个等腰三角形,已知底的长度为x,求该等腰三角形的周长。

解题思路
由于等腰三角形的底和两边相等,可以利用周长公式求解。


长公式为:$P = 2 \times x + 2 \times \sqrt{\frac{x^2}{4} + y^2}$。

题三:求等腰三角形的顶角
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该
等腰三角形的顶角。

解题思路
等腰三角形的顶角可以通过三角函数求得。

顶角的弧度可以表
示为:$r = \arctan(\frac{y}{\frac{x}{2}})$,然后将弧度转换为角度:$a = \frac{180 \times r}{\pi}$。

总结
通过以上题,我们可以掌握等腰三角形的面积、周长和顶角的
求解方法,这些基础知识对于进一步研究和应用等腰三角形有重要
意义。

以上为等腰三角形经典习题,希望对您的学习有所帮助。

等腰三角形难题

等腰三角形难题

等腰三角形补充练习一.选择题(共3小题)1.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°2.如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个 B.8个 C.9个 D.10个3.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α二.填空题(共14小题)5.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为.6.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为.7.有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是度.8.如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是.9.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为个.10.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.11.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.12.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.13.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.14.如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=.15.线段AB和直线l在同一平面上.则下列判断可能成立的有个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l上恰好只有个6点P,使△ABP为等腰三角形.16.如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,可得△D1E1F1,则△D1E1F1的面积S1=;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=AB,则△D2E2F2的面积S2=;按照这样的思路探索下去,D n,E n,F n分别是△ABC三边上的点,且AD n=BE n=CF n=AB,则S n=.17.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是.18.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.2017年08月23日139****2832的初中数学组卷参考答案与试题解析一.选择题(共4小题)1.(2016秋•资中县期末)在△ABC中,∠B=30°,点D在BC边上,点E在AC 边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°【解答】解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故选:D.2.(2016春•乳山市期中)如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个 B.8个 C.9个 D.10个【解答】解:如图所示,以A为圆心,AB长为半径画弧,则圆弧经过的格点C3、C8、C7即为点C的位置;以B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C6、C4、C5即为点C 的位置;作线段AB的垂直平分线,垂直平分线没有经过格点.故以A、B、C为等腰三角形顶点的所有格点C的个数为8个.故选(B)3.(2015•天心区校级自主招生)如图,已知等边△ABC外有一点P,P落在∠BAC 内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4 B.8 C.9 D.12【解答】解:设等边三角形ABC的边长为a,连接PA、PB、PC,则S△PAB+S△PAC﹣S△PCB=S△CAB,即ah1+ah2﹣ah3=,∴a(h2+h3﹣h1)=,∵h2+h3﹣h1=6,∴a=4,==12,∴S△CAB故选(D).4.(1998•杭州)如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α【解答】解:根据题意:在△ABC中,AB=AC∴∠B=∠C∵AE=AD∴∠ADE=∠AED,即∠B+∠α﹣∠EDC=∠C+∠EDC化简可得:∠α=2∠EDC∴∠EDC=α.故选A.二.填空题(共14小题)5.(2016•江西模拟)在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为15°或30°或60°或75°或150°.【解答】解:根据点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,作出如下图形:由图可得:∠AP1C=15°,∠AP2C=30°,∠AP3C=60°,∠AP4C=75°,∠AP5C=150°.故答案为:15°或30°或60°或75°或150°6.(2016秋•东阿县期中)等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为67.5°或22.5°.【解答】解:有两种情况;(1)如图,当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,故答案为:67.5°或22.5°.7.(2013•香坊区三模)有两个等腰三角形甲和乙,甲的底角等于乙的顶角,甲的底长等于乙的腰长,甲的腰长等于乙的底长,则甲的底角是36°或60°度.【解答】解:假设等腰三角形甲为ABC,等腰三角形乙为DEF(如图所示).①顶角为D根据题中的条件,甲的底长等于乙的腰长,甲的底角等于乙的顶角,我们可以将D挪到B点,使BC与DE重合,DF与AB重合,如果A为锐角,则F点在AB边上,由于CF=AC,由图知是不可能的.如果A为钝角,则F点在AB延长线上,由于CF=AC,得知乙的底角=2倍的顶角=2倍甲的底角,故可以解得甲的底角是36度;②当等腰三角形甲和乙都是等边三角形时,∠1=∠2=∠3=60°,即甲的底角是60°.故答案是:36°或60°.8.(2013•泰州一模)如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1,则角θ的取值范围是18≤θ<22.5.【解答】解:∵A1A2=AA1∴θ1=∠A2A1A3=2θ,∴θ2=∠A2A4A3=θ+2θ=3θ,∴θ3=∠A2A4A3+θ=4θ,由题意得:,∴18°≤θ<22.5°.9.(2013•宜兴市一模)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为6个.【解答】解:如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分别以点A、B为圆心,以AB长为半径画圆,P5、P6为满足条件的点,综上所述,满足条件的所有点P的个数为6.故答案为:6.10.(2013•安徽模拟)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是①②③④.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.【解答】解:∵PR=PS,PR⊥AB,PS⊥AC,∴P在∠A的平分线上,在Rt△ARP和Rt△ASP中,∵,∴Rt△ARP≌Rt△ASP(HL),∴AS=AR,∠QAP=∠PAR,∵AQ=PQ,∴∠PAR=∠QPA,∴∠QPA=∠QAR∴QP∥AR,∵△ABC为等边三角形,∴∠B=∠C=∠BAC=60°,∴∠PAR=∠QPA=30°,∴∠PQS=60°,在△BRP和△QSP中,∵,∴△BRP≌△QSP(AAS),∴①②③④项四个结论都正确,故答案为①②③④.11.(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.【解答】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠A n=.故答案为:.12.(2012•枣阳市校级模拟)已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为8或6,底边长为5或9.【解答】解:根据题意画出图形,如图所示,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,①若AB+AD的长为12,则2x+x=12,解得x=4,则x+y=9,即4+y=9,解得y=5;②若AB+AD的长为9,则2x+x=9,解得x=3,则x+y=12,即3+y=12,解得y=9;所以等腰三角形的底边为5时,腰长为8;等腰三角形的底边为9时,腰长为6;故答案为:8或6;5或913.(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.【解答】解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为:.14.(2011•鄂州校级模拟)如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB=70°.【解答】解:在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC∴AD=AB=AC,∠DAC=∠BAC﹣∠BAD=20°,∴∠ACD=∠ADC=80°,∵AB=AC,∠BAC=80°,∴∠ABC=∠ACB=50°,∴∠CDB=140°=∠BPC,又∠DCB=30°=∠PCB,BC=CB,∴△BDC≌△BPC,∴PC=DC,又∠PCD=60°,∴△DPC是等边三角形,∴△APD≌△APC,∴∠DAP=∠CAP=∠DAC=20=10°,∴∠PAB=∠DAP+∠DAB=10°+60°=70°.或由△BDC≌△BPC,∴BP=BD=BA∴∠BAP=∠BPA又∵∠ABP=∠ABC﹣∠PBC=40°∴∠BAP=(180﹣40)/2=70°故答案为:70°.15.(2011•海曙区模拟)线段AB和直线l在同一平面上.则下列判断可能成立的有5个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l上恰好只有个6点P,使△ABP为等腰三角形.【解答】解:要使△APB是等腰三角形,分为三种情况:①AP=BP(即作AB的垂直平分线于直线的交点,即有一个点)∴直线l上恰好只有个1点P,使△ABP为等腰三角形正确;②AB=AP(以A为圆心,以AB为半径画弧,交直线于两点),即直线l上恰好只有个2点P,使△ABP为等腰三角形正确;直线l上恰好只有个3点P,使△ABP为等腰三角形正确;③AB=BP(以B为圆心,以AB为半径画弧,交直线于两点)即直线l上恰好只有个4点P,使△ABP为等腰三角形正确;直线l上恰好只有个5点P,使△ABP为等腰三角形正确;∵1+2+2=5,∴直线l上恰好只有个6点P,使△ABP为等腰三角形错误;故答案为:5.16.(2011•拱墅区校级模拟)如图,△ABC为正三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=AB,可得△D1E1F1,则△D1E1F1的面积S1=S;如,D2,E2,F2分别是△ABC三边上的点,且AD2=BE2=CF2=AB,则△D2E2F2的面积S2=S;按照这样的思路探索下去,D n,E n,F n分别是△ABC三边上的点,且AD n=BE n=CF n=AB,则S n=S.【解答】解:∵△ABC为正三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵AD1=BE1=CF1=AB,∴BD1=CE1=AF1=AB,∴△AD1F1≌△BD1E1≌△CE1F1,设等边△ABC的边长为a,则S=a2sin60°,△AD1F1的面积=×a•a•sin60°=S,∴△D1E1F1的面积S1=S﹣3×S=S;同理,AD2=BE2=CF2=AB时,BD2=CE2=AF2=AB,△AD2F2的面积S2=×a•a•sin60°=S,△D2E2F2的面积S2=S﹣3×S=S;AD n=BE n=CF n=AB时,BD n=CE n=AF n=AB,△AD n F n的面积=×a•a•sin60°=S,△D n E n F n的面积S n=S﹣3×S=S.故答案为:S,S,S.17.(2009•滨州)已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是<x<5.【解答】解:依题意得:10﹣2x﹣x<x<10﹣2x+x,解得<x<5.故填<x<5.18.(2005•江西)如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=220度.【解答】解:如图,△ABC中,∠A+∠B=180°﹣∠C=180°﹣40°=140°;四边形中,∠1+∠2=360°﹣(∠A+∠B)=360°﹣140°=220°.故填220.。

鲁教版七年级等腰三角形练习50题及参考答案(难度系数0.6)

鲁教版七年级等腰三角形练习50题及参考答案(难度系数0.6)

七年级等腰三角形(难度系数0.6)一、单选题(共18题;共36分)1.如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2019,则点P2019的坐标是()A. (2019,2)B. (2019, √3)C. (4038, √3)D. (4037, √3)【答案】 D【考点】点的坐标,等边三角形的性质,翻折变换(折叠问题)2.将边长为1的一个正方形和一个等边三角形按如图的方式摆放,则ΔABC的面积为()A. 1B. 12C. 13D. 14【答案】 D【考点】等边三角形的性质,含30度角的直角三角形,正方形的性质3.如图,三组互相垂直的线段,已知AD=2,BC=8,BF=4,那么AC的长度等于()A. 2B. 3C. 4D. 5【答案】C【考点】含30度角的直角三角形4.在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC 等于()【考点】角平分线的性质,含30度角的直角三角形5.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B.C. D.【答案】D【考点】一次函数的图象,三角形三边关系,等腰三角形的性质6.如图,已知等边△AEB和等边△BDC在线段AC同侧,则下面错误的是()A. △ABD≌△EBCB. △NBC≌△MBDC. DM=DCD. ∠ABD=∠EBC【答案】C【考点】全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质7.若等腰三角形的两边长分别为4和9,则它的周长为()A. 22B. 17C. 13D. 17或22【答案】A【考点】三角形三边关系,等腰三角形的性质8.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()【考点】等腰三角形的判定9.已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB=AC”,那么△ABC是等边三角形;②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.上述说法中,正确的有()A. 3个B. 2个C. 1个D. 0个【答案】A【考点】等边三角形的判定10.如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为()A. 3B. 4C. 5D. 6【答案】C【考点】等边三角形的性质11.等腰三角形的三边长分别为3x﹣2,4x﹣3,6﹣2x,则该三角形的周长为()A. 6B. 6或9或8.5C. 9或8.5D. 与x的取值有关【答案】C【考点】三角形三边关系,等腰三角形的性质12.如图,在3×3网格中,已知点A,B是网格顶点(也称格点),若点C也是图中的格点,且使得△ABC 为等腰三角形,则满足条件的点C的个数为()A. 3B. 4C. 5D. 6【答案】C【考点】等腰三角形的判定13.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点【答案】D【考点】三角形内角和定理,等腰三角形的判定与性质14.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为()A. 4cmB. 6cmC. 8cmD. 12cm【答案】C【考点】等腰三角形的性质,等边三角形的判定与性质15.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】三角形的外角性质,全等三角形的判定与性质,等边三角形的判定与性质16.如图线段AB与直线AC相交构成∠BAC(其中∠BAC为锐角,且∠BAC≠60°) ,请在直线AC上找一点D使得△ABD为等腰三角形.问:这样的点D共存在( )点.A. 1B. 2C. 3D. 4【答案】 D【考点】线段垂直平分线的性质,等腰三角形的判定,作图—基本作图17.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能得到两个等腰三角形纸片的是()A. B.C. D.【答案】B【考点】等腰三角形的判定18.如图,已知∠AOB=60∘,点P在边OA上,OP=10,点M、N在边OB上,PM=PN,若MN=2,则OM=()A. 3B. 4C. 5D. 6【答案】B【考点】等腰三角形的性质,含30度角的直角三角形二、填空题(共12题;共17分)19.若等腰三角形的两边的长分别是3cm、7cm,则它的周长为________cm.【答案】17【考点】三角形三边关系,等腰三角形的性质20.某等腰三角形的周长是50cm,底边长是xcm,腰长是ycm,则y与x之间的关系式是________.(0<x<25)【答案】y=50−x2【考点】函数解析式,等腰三角形的性质21.若△ABC 的三边长为a,b,c,且c(a-b)+b(b-a)=0,则△ABC 为________三角形.【答案】等腰【考点】因式分解的应用,等腰三角形的判定22.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为________.【答案】65°或25°【考点】角的平分线,平行线的性质,等腰三角形的性质23.已知等腰三角形的一个内角是80°,则它的底角是°.【答案】80°或50°【考点】三角形内角和定理,等腰三角形的性质24.已知等腰三角形的两条边长分别为2和3,则它的周长为________【答案】7或8【考点】等腰三角形的性质25.如图,在第1个ΔABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个ΔA1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个ΔA2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为________;第n个三角形中以A n为顶点的内角的度数为________度.【答案】17.50;702n−1【考点】三角形的外角性质,等腰三角形的性质,探索图形规律26.等腰三角形两边长分别为5,7,则其周长为________.【答案】17或19【考点】三角形三边关系,等腰三角形的性质27.等腰三角形的两边长分别是5cm和7cm,则它的周长是________cm.【答案】17或19【考点】三角形三边关系,等腰三角形的性质28.一个等腰三角形的底边长为5,一腰上中线把其周长分成的两部分的差为3,则这个等腰三角形的腰长为________【答案】8【考点】三角形三边关系,等腰三角形的性质29.如图,在△ABC 中,AB=AC ,DE ∥BC ,∠1=65°,则∠2=________°【答案】115【考点】平行线的性质,等腰三角形的性质30.如图已知OA=a ,P 是射线ON 上一动点,∠AON=60°,当OP=________时,△AOP 为等边三角形.【答案】 a【考点】等边三角形的判定三、解答题(共6题;共30分)31.如图,在△ABC 中,∠C=90°,∠B=30°,BC=6cm ,AD 是∠CAB 的平分线,求DC 的长。

(完整版)等腰三角形基础题练习

(完整版)等腰三角形基础题练习

等腰三角形基础题练习1.一个等腰三角形的两边长分别为4,8,则它的周长为()2.若等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A. 11B. 16C。

17 D. 16或173.已知一等腰三角形的两边长x,y满足方程组错误!则此等腰三角形的周长为__ __.4.如图,AC平分∠BAD,CD⊥AD,CB⊥AB,连结B D。

,图中等腰三角形有__ _ 对5.已知等腰三角形ABC的底边BC的长为8,且|AC-BC|=2,则腰AC的长为()A.10或6 B.10C.6 D.8或66.若等腰三角形一腰上的高线与另一腰的夹角为20°,则顶角的度数是.7.有一个等腰三角形,三边长分别为3x-2,4x-3,6-2x,则这个等腰三角形的周长为8如图,在▱ABCD中,,,的平分线交BA的延长线于点E,则AE的长为9如图,是由绕点O顺时针旋转后得到的图形,若点D恰好落在AB上,且的度数为,则的度数是A. B. C. D。

10如果一个等腰三角形的一个角为,则这个三角形的顶角为11如图,中,,AC的垂直平分线分别交AB、AC于点D和E,则的周长是12已知a、b、c是的三条边,且满足,则是A。

锐角三角形B。

钝角三角形C。

等腰三角形 D. 等边三角形13如图,下列条件不能推出是等腰三角形的是A.B。

,C. ,D。

,14如图,在中,,,,AD平分,交BC于点D,于E,则______ .15如图,,OC平分,如果射线OA上的点E满足是等腰三角形,那么的度数为______.16如图,在中,,,,点P从点B开始以的速度向点C移动,当要以AB为腰的等腰三角形时,则运动的时间为______.17平行四边形ABCD中,的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD 的周长为______cm.18如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.19如图,中,点D在边BC上,若,,则______度20如图,在中,,AB的垂直平分线MN交AC于D点若BD平分,则______21.如图,在△ABC中,AB=AC,以AB,AC为边在△ABC的外侧作两个等边三角形△ABE和△ACD,且∠EDC=40°,则∠ABC的度数为°22。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50° B.65° C.70° D. 75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线/二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)[9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.一、选择题1.B2.B3.C二、填空题4.底角,等边对等角~5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)|∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各@边中点,则图中共.有正三角形( )A.2个 B.3个C.4个 D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于 ( )A. 2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.—三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.《9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题[AQ CPB1.D 2.B二、填空题 3.2㎝ 4.120° 5.等边 6.6㎝ 三、解答题7.△ABC 是等边三角形.理由是 ∵△ABC 是等边三角形;∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余)》∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( ) A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C =60°AQ CPB∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=BD AB =21(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

等腰三角形专项训练题

等腰三角形专项训练题

等腰三角形专项训练题1、一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .不确定.2、.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为( )A.600B.1200C.600或1500D.600或12003、有一个等腰三角形的周长为25,一边长为11,那么腰长为( )A .11B .7C .14D .7或114、下列命题正确的个数是( )①如果等腰三角形内一点到底边两端点的距离相等, 那么过这点与顶点的直线必垂直于底边; ②如果把等腰三角形的底边向两个方向延长相等的线段, 那么延长线段的两个端点与顶点距离相等; ③等腰三角形底边中线上一点到两腰的距离相等; ④等腰三角形高上一点到底边的两端点距离相等.A.1个 B.2个 C.3个 D.4个5、下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个6、如图,⊿MNP 中,∠P= 60,MN=NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG=NQ , 若⊿MNP 的周长为12,MQ=a ,则⊿MGQ 的周长为 ( )(A) 8+2a (B )8+a (C ) 6+a (D )6+2a7、如图9-13所示,△ABC 中,BC 边的垂直平分线DE 交BC 于D ,交AC 于E , BE =5厘米,△BCE 的周长是18厘米,则BC = 厘米8.已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC .你能说明BE 与DF 相等吗?A B C D E F1 2 A BCE D9.在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,且AE =21(AB +AD ),求∠ABC +∠ADC 的度数.10.已知△ABC 中,AB =AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点F 、F ,给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形,③S AEPF 四边形=21 S ABC ;④EF=AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的是( )A .1个B .2个C .3个D . 4个11.如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E .(1)若BC 在DE 的同侧(如图①)且AD =CE ,说明:BA ⊥A C .(2)若BC 在DE 的两侧(如图②)其他条件不变,问AB 与AC 仍垂直吗?若是请予证明,若不是请说明理由.12.已知:如图,在等边三角形ABC 中,D 、E 分别为BC 、AC 上的点,且AE =CD ,连 结AD 、BE 交于点P ,作BQ ⊥AD ,垂足为Q .求证:BP =2PQ .13.如图,等边三角形ABD 和等边三角形CBD 的长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE+CF =a .(1)E 、F 移动时,△BEF 的形状如何? (2)E 点在何处时,△BEF 面积的最小值.14、已知△ABC 中,∠BAC=90°, AB=AC. (1)如图,D 为AC 上任一点,连接BD ,过A 点作BD 的垂线交过C 点与AB 平行的直线CE 于点E.求证:BD=AE.(2)若点D 在AC 的延长线上,如图,其他条件同(1),请画出此时的图形,并猜想BD 与AE 是否仍然相等?说明你的理由.15.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB16、如图:在△ABC 中,AB=AC,P 为BC 边上任意一点,PF ⊥AB 于F,PE ⊥AC 于E,若AC 边上的高BD=a.(1)试说明PE +PF=a;(2)若点P 在BC 的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a 的关系式,不需要说明理由.ABCP F E D17.如图,等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC于E,过点E作EF⊥AC于F,过点F作FQ⊥AB于Q,设BP= x,AQ=y.(1)用x的代数式表示y;(2)当PB的长等于多少时,点P与点Q重合? (福州市中考题)18 △ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC.(1)如图1,连接DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,若BF=4,求CE的长.19.已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P.(1)点D、E分别在线段BA、BC上,若∠B=60°(如图1),且AD=BE,BD=CE,求∠APD的度数;(2)如图2,点D、E分别在线段AB、BC的延长线上,若∠B=90°,AD=BC,∠APD=45°,求证:BD=CE图2。

等腰三角形强化练习(打印)题(含答案)

等腰三角形强化练习(打印)题(含答案)

ED C AF1.等腰三角形练习题(第一课时)一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80° 5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80° B .90° C .100° D .108°ECAFG二、填空题 6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____.10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______.三、解答题11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.AB C DAB C D练习题(第二课时)一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cmD C AE D ABFEDCBH F(1) (2) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( ) A .1个 B .2个 C .3个 D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )A .①②③ B .①②③④ C .①② D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EF C .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 三、解答题9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .四、探究题11.如图,AF 是△ABC 的角平分线,BD ⊥AF 交AF 的延长线于D ,DE ∥AC•交AB 于E , 求证:AE=BE .ECABFE D ABF2.等边三角形练习题一、选择题1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③ B .①②④ C .①③ D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形D ABF21EDCA B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 二、填空题7.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD•的长度是_______. 三、解答题10.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,•求证:•BC=3AD.D CAB11.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDAH F等腰三角形测试题(1)1、等腰三角形的一边长为2,周长是7,则另外两边的长为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形练习题
一、计算题:
1. 如图,△ABC中,AB=AC,BC=BD,AD=DE=EB 求∠A的度数
2.如图,CA=CB,DF=DB,AE=AD
求∠A的度数F
D
A
3、AB于⊥AB于E,DF⊥BC交AC于点F,若∠EDF=70°,求∠AFD 的度数
4. 如图,△ABC中,AB=AC,BC=BD=ED=EA 求∠A的度数
C
B
5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数
6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,
若BE=AC,BD=21
,DE+BC=1,
求∠ABC 的度数
B
D
C
7. 如图,△ABC中,AD平分∠BAC,若AC=AB+BD 求∠B:∠C的值
二、证明题:
A
B C
D
8. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系
9. 如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC
A
D F
E
A
B
C
D
E
12. 如图,△ABC 中,AB=AC,D 为△ABC 外一
点,且∠ABD=∠ACD =60° 求证:CD=AB-BD
13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线
求证:CD=21
CE
E
A
B
C
D
14. 如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED
15. 如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG C
A
B
D E
1 2
16. 如图,△ABC 中,∠ABC=2∠C ,AD 是BC 边上的高,B 到点E ,使BE=BD 求证:AF=FC
17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且AE=BE 求证:AH=2BD
A
B D
F
E
C
B
D
18. 如图,△ABC 中,AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30° 求证:AD=DC
19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使
AE=BD 求证:EC=ED
20. 如图,四边形ABCD 中,∠BAD+∠BCD=180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H 求证:EH ⊥FH
B
C
D
F
一、计算题:
1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数
设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45°
2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数
H
A
B D
C
E
F D
A
B
设∠A 为x, 由5x=180° 得∠A=36°
3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160°
4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x
∠A=7180
C
B
5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x
∠EDC=∠AED -∠C=15°
6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,
若BE=AC,BD=21
,DE+BC=1,
求∠ABC 的度数
B
2x
x -15°
延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90°
在Rt △DBF 中, BD=21
,DF=1
所以∠F =∠1=30°
7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值
在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED
由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1
二、证明题:
8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E
C
D
E
P
A
B
C
D
E
求证:DE=BD+AE 证明△PBD 和△PEA 是等腰三角形
9. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系 DF+AD=AE
在AE 上取点B,使AB=AD
10. 如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC 在AC 上取点F,使AF=AE 易证明△AOE ≌△AOF,
A
D F
E
B
O
A
B
C D E
F
得∠AOE=∠AOF
由∠B=60°,角平分线AD 、CE, 得∠AOC=120°
所以∠AOE=∠AOF=∠COF=∠COD=60° 故△COD ≌△COF,得CF=CD 所以AE+CD=AC
11. 如图,△ABC 中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD
延长BD 到点E,使BE=BC,连结CE 在BC 上取点F,使BF=BA 易证△ABD ≌△FBD,得AD=DF 再证△CDE ≌△CDF,得DE=DF 故BE=BC=BD+AD
也可:在BC 上取点E,使BF=BD,连结DF 在BF 上取点E,使BF=BA,连结DE
先证DE=DC,再由△ABD ≌△EBD,得AD=DE,最后证明DE=DF 即可
A
C
F
A
C
E
F
12. 如图,△ABC 中,AB=AC,D 为△ABC 外一点,且∠ABD=∠ACD =60°
求证:CD=AB-BD
在AB 上取点E ,使BE=BD , 在AC 上取点F ,使CF=CD
得△BDE 与△CDF 均为等边三角形, 只需证△ADF ≌△AED
13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线
求证:CD=21
CE
延长CD 到点E,使DE=CD.连结AE 证明△ACE ≌△BCE
14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC
E
A
E
1 2
F
A
B
C D
E
F
求证:BD=ED
在CE上取点F,使AB=AF
易证△ABD≌△ADF,
得BD=DF,∠B=∠AFD
由∠B+∠BAC+∠C=∠DEC+∠EDC+∠C=180°
所以∠B=∠DEC
所以∠DEC=∠AFD
所以DE=DF,故BD=ED
15. 如图,△ABC中,AB=AC,BE=CF,EF交BC于点G
求证:EG=FG
16. 如图,△ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD
求证:AF=FC
A
B
D
F E C
F
17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且AE=BE
求证:AH=2BD
由△AHE ≌△BCE,得BC=AH
18. 如图,△ABC 中,AB=AC, ∠BAC=90°,BD=AB,
∠ABD=30° 求证:AD=DC
作AF ⊥BD 于F,DE ⊥AC 于E 可证得∠DAF=DAE=15°, 所以△ADE ≌△ADF 得AF=AE,
由AB=2AF=2AE=AC, 所以AE=EC,
因此DE 是AC 的中垂线,所以AD=DC
19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE=BD
B
D
B
C
D
F
求证:EC=ED
延长BD到点F,使DF=BC,
可得等边△BEF,
只需证明△BCE≌△FDE即可
20. 如图,四边形ABCD中,∠BAD+∠BCD=180°,AD、BC的延长线交于点F,DC、AB的延长线交于点E,∠E、∠F的平分线交于点H 求证:EH⊥FH
延长EH交AF于点G
由∠BAD+∠BCD=180°,
∠DCF+∠BCD=180°
得∠BAD=∠DCF,
由外角定理,得∠1=∠2,
故△FGM是等腰三角形由三线合一,得EH⊥A
B
D
C
E
F
H
G 1
2 M。

相关文档
最新文档