等腰三角形知识点+经典例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲等腰三角形

【要点梳理】

要点一、等腰三角形的定义

1.等腰三角形

有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一

边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC

为腰,BC为底边,∠A是顶角,∠B、∠C是底角.

2.等腰三角形的作法

已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.

作法:1.作线段BC=a;

2.分别以B,C为圆心,以b为半径画弧,两弧

相交于点A;

3.连接AB,AC.

△ABC为所求作的等腰三角形

3.等腰三角形的对称性

(1)等腰三角形是轴对称图形;

(2)∠B=∠C;

(3)BD=CD,AD为底边上的中线.

(4)∠ADB=∠ADC=90°,AD为底边上的高线.

结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.

4.等边三角形

三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.

要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A

=180°-2∠B,∠B=∠C=180

2A

︒-∠.

(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.

要点二、等腰三角形的性质

1.等腰三角形的性质

性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.

推论:等边三角形的三个内角都相等,并且每个内角都等于60°.

性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.

2.等腰三角形中重要线段的性质

等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.

要点诠释:这条性质,还可以推广到一下结论:

(1)等腰三角形底边上的高上任一点到两腰的距离相等。

(2)等腰三角形两底边上的中点到两腰的距离相等.

(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.

(4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等.

要点三、等腰三角形的判定定理

1.等腰三角形的判定定理

如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.

要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.2.等边三角形的判定定理

三个角相等的三角形是等边三角形.

有一个角是60°的等腰三角形是等边三角形.

3. 含有30°角的直角三角形

定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

要点四、反证法

在证明时,先假设命题的结论不成立,然后从这个假设出发,经过逐步推导论证,最后推出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果,从而证明命题的结论一定成立,这种证明命题的方法叫做反证法.

要点诠释:反证法也称归谬法,是一种间接证明的方法,一般适用于直接证明有困难的命题.一般证明步骤如下:

(1)假定命题的结论不成立;

(2)从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果;

(3)由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.

【典型例题】

类型一、等腰三角形中有关角度的计算题

例1、(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,

∠ABC=105°,求∠A,∠C度数.

【思路点拨】由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.【答案与解析】

解:∵AB=BD,

∴∠BDA=∠A,

∵BD=DC,

∴∠C=∠CBD,

设∠C=∠CBD=x,

则∠BDA=∠A=2x,

∴∠ABD=180°﹣4x,

∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,

解得:x=25°,所以2x=50°,

即∠A=50°,∠C=25°.

【总结升华】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.

【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.

【答案】

解:∵AC=BC=BD,AD=AE,DE=CE,

∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,

则∠AED=∠ADE=2x,∠A=∠B=180°-4x

在△ABC中,根据三角形内角和得,

x+y+180°-4x+180°-4x=180°①

又∵A、D、B在同一直线上,∴2x+x+y=180°②

由①,②解得x=36°

∴∠B=180°-4x=180°-144°=36°.

类型二、等腰三角形中的分类讨论

例2、在等腰三角形中,有一个角为40°,求其余各角.

【思路点拨】由一个等腰三角形内角为40°,分别从40°是等腰三角形顶角与40°是底角的角度去分析求解即可求得答案.

【答案与解析】

解:(1)当40°的角为顶角时,由三角形内角和定理可知:

两个底角的度数之和=180°-40°=140°,

又由等腰三角形的性质可知:两底角相等,

故每个底角的度数

1

14070

2

=⨯︒=︒;

(2)当40°的角为底角时,另一个底角也为40°,

则顶角的度数=180°-40°-40°=100°.

∴其余各角为70°,70°或40°,100°.

【总结升华】此题考查了等腰三角形的性质.此题比较简单,注意掌握分类讨论思想的应用,小心别漏解.

例3、已知等腰三角形的周长为13,一边长为3,求其余各边.

【答案与解析】

解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;

相关文档
最新文档