2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五套合集(含答案)

合集下载

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题五(pdf版,含解析)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B. C. D.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.43.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.84.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.305.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且=m,=n,则+=.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有个.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=.(第10题图) (第11题图)11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题五参考答案与试题解析一、选择题(共5小题,每题4分,满分20分)1.(4分)下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.2.(4分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.4【分析】连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.【解答】解:当滚动到⊙O′与CA也相切时,切点为D,连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选:C.【点评】此题主要考查切线及角平分线的性质,勾股定理等知识点,属中等难度题.3.(4分)如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.8【分析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.【解答】解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选C.【点评】主要考查了分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.4.(4分)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.5.(4分)已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6【分析】根据题中所给的条件,在直角三角形中解题.根据角的正切值与三角形边的关系,结合勾股定理求解.【解答】解:过点B作BE⊥AC交AC于点E.如下图设BE=x,∵∠BDA=45°,∠C=30°,∴DE=x,BC=2x,∵tan∠C=,∴=tan30°,∴3x=(3+x),解得x=,在Rt△ABE中,AE=DE﹣AD=﹣3=,由勾股定理得:AB2=BE2+AE2,AB==3.故选C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二、填空题(共6题,每小题5分,满分30分)6.(5分)满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.7.(5分)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b ﹣7c,则m的最小值为﹣.【分析】解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.【解答】解:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.=﹣.所以m最小值故本题答案为:﹣.【点评】本题考查了三元一次方程组和一元一次不等式的解法.8.(5分)如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC 于P,Q两点,且=m,=n,则+=1.【分析】根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ 于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案.【解答】解:分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则BE ∥AD∥CF,∵点D是BC的中点,∴MD是梯形的中位线,∴BE+CF=2MD,∴+==+===1.【点评】此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.9.(5分)在平面直角坐标系中,横坐标与纵坐标都是整数的点(x,y)称为整点,如果将二次函数的图象与x轴所围成的封闭图形染成红色,则此红色区域内部及其边界上的整点个数有25个.【分析】找到函数图象与x轴的交点,那么就找到了相应的x的整数值,代入函数求得y的值,那么就求得了y的范围.【解答】解:将该二次函数化简得,y=﹣[(x﹣4)2﹣],令y=0得,x=或.则在红色区域内部及其边界上的整点为(2,0),(3,0),(4,0),(5,0),(6,0),(2,1),(2,2),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2)共25个,故答案为:25.【点评】本题涉及二次函数的图象性质,解决本题的关键是得到相对应的x的值.10.(5分)如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A (0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.11.(5分)如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.【点评】本题考查的是矩形的定理以及垂径的性质,考生应注意运用勾股定理来求得边长继而才能求出周长.三、简答题(共4小题,满分50分)12.(12分)九年级(1)、(2)、(3)班各派4名代表参加射击比赛,每队每人打两枪,射中内环得50分,射中中环得35分,射中外环得25分,脱靶得0分.统计比赛结果,(1)班8枪全中,(2)班1枪脱靶,(3)班2枪脱靶,但三个班的积分完全相同,都是255分.请将三个班分别射中内环、中环、外环的次数填入下表并简要说明理由:班级内环中环外环(1)班(2)班(3)班【分析】本题可以通过设出内环、中环、外环射中的枪数为x,y,z;设脱靶数为t,根据等量关系“总得分=内环得分+中环得分+外环得分”列出函数方程进行分析,从而确定出各中枪数.【解答】解:填表如下:班级内环中环外环(1)班134(2)班232(3)班330理由如下:可设t枪脱靶,x枪射中内环,y枪射中中环,则有(8﹣x﹣y﹣t)枪射中外环,所以50x+35y+25(8﹣x﹣y﹣t)=255化简得y=5+2(t﹣x)+(1+t﹣x)对于(1)班,t=0,y=5﹣2x+(1﹣x),x为奇数,只能取x=1,得y=3;对于(2)班,t=1,y=7﹣2x+(2﹣x),x为偶数,只能取x=2,得y=3;对于(3)班,t=2,y=9﹣2x+(3﹣x),x为奇数,只能取x=3,得y=3;【点评】此题考查的是学生对函数方程的分析讨论并对某些值确定,同学们要注意细心分析.13.(12分)设二次函数y=ax2+bx+c的开口向下,顶点落在第二象限.(1)确定a,b,b2﹣4ac的符号,简述理由.(2)若此二次函数图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为3,求抛物线的解析式.【分析】(1)根据抛物线的开口向下判断a的符号,再根据第二象限点的坐标特点及二次函数的顶点坐标列出不等式组,确定出解答a,b,b2﹣4ac的符号即可.(2)根据抛物线过原点及顶点在直线x+y=0上求出其顶点坐标及一次项系数,再根据顶点与原点的距离为3求出二次项系数,进而求出其解析式.【解答】解:(1)∵抛物线开口向下,∴a<0;∵顶点在第二象限,∴,∴b<0,b2﹣4ac>0.(2)由题意可得c=0,此时顶点坐标为(﹣,﹣),因顶点在直线x+y=0上,所以﹣﹣=0,b=﹣2.此时顶点坐标为(,﹣),由+=18,a=﹣,则抛物线的解析式为y=﹣x2﹣2x.【点评】本题考查的是二次函数的图象与系数的关系及用待定系数法求二次函数的解析式,掌握二次函数的特点是解题的关键.14.(12分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD=60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).【分析】(1)根据圆内接四边形的性质和三角形的内角和定理进行证明;(2)根据三角形的外心到三角形的三个顶点的距离相等的性质只需证明AB=AF=AE,根据等腰三角形的性质和判定进行证明.【解答】证明:(1)∠ABF=∠ADC=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,(4分)而∠F=60°﹣∠ACF,(6分)因为∠ACF=∠ADE,(7分)所以∠ABF=∠F,所以AB=AF.(8分)(2)四边形ABCD内接于圆,所以∠ABD=∠ACD,(10分)又DE=DC,所以∠DCE=∠DEC=∠AEB,(12分)所以∠ABD=∠AEB,所以AB=AE.(14分)∵AB=AF,∴AB=AF=AE,即A是三角形BEF的外心.(16分)【点评】综合运用了圆内接四边形的性质、三角形的内角和定理以及三角形的外心的性质.15.(14分)在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x 于点M,BC边交x轴于点N(如图1).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.【分析】(1)S阴=S△OAB+S扇形OBB′﹣S△OAA′﹣S扇形OAA′,根据公式即可求解.(2)延长BA交y轴于E点,可以证明:△OAE≌△OCN,△OME≌△OMN 证得:OE=ON,AE=CN,MN=ME=AM+AE=AM+CN.从而求得:P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.即可求解.(3)Rt△BMN中,BM2+BN2=MN2,所以(1﹣n)2+(1﹣m+n)2=m2⇒m2﹣mn+2﹣m=0.把这个方程看作关于n的方程,根据一元二次方程有解得条件,即可求得.【解答】解:(1)如图,S阴=S△OAB+S扇形OBB'﹣S△OA'B′﹣S扇形OAA'=S扇形OBB′﹣S扇形OAA′=π﹣π×12=(2)p值无变化证明:延长BA交y轴于E点,在△OAE与△OCN中,∴△OAE≌△OCN(AAS)∴OE=ON,AE=CN在△OME与△OMN中,∴△OME≌△OMN(SAS)∴MN=ME=AM+AE=AM+CN∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2;(3)设AM=n,则BM=1﹣n,CN=m﹣n,BN=1﹣m+n,∵△OME≌△OMN,=S△MOE=OA×EM=m∴S△MON在Rt△BMN中,BM2+BN2=MN2∴(1﹣n)2+(1﹣m+n)2=m2⇒n2﹣mn+1﹣m=0∴△=m2﹣4(1﹣m)≥0⇒m≥2﹣2或m≤﹣2﹣2,∴当m=2﹣2时,△OMN的面积最小,为﹣1.此时n=﹣1,则BM=1﹣n=2﹣,BN=1﹣m+n=2﹣,∴Rt△BMN的内切圆半径为=3﹣2.【点评】本题综合运用了扇形的面积公式,全等三角形的判定,三角形的面积公式以及勾股定理的综合应用,难度较大.。

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题五(无答案)

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题五(无答案)

A.1 15 3
B.1 15
C.0
3
D.以上均不对
5.已知直线 AB 的方程为:y kx m 经过点 A(a,a), B(b,8b)(a 0,b 0) .当 b 是整数时, a
满足条件的整数 k 有( )个.填空题(每小题 5 分,共 25 分)
6.若 a b 2, (1 a)2 (1 b)2 4 ,则 a5 b5 =
表,发现时针与分针成角度( 为整数),回来时,他也看了一下手表,发现此时还不 到 7 点钟,且时针与分针的夹角也为 .若小华买菜的时间为 10k= k ( k 为整数)分钟, 求 k 的值.
14. (10 分)如图,四边形 ABCD 内接于圆 O,ABC 60,BD 平分 ABC ,H 是 ABC 的
,
b
a
7.在 ABC 中, A 45, B 30 , AD 是 ABC 的中线.则 ADC
.
8.在等腰 Rt ABC 中,已知 ACB 90 , P 是 ABC 内一点,使 PA 11, PB 7 ,
PC 6 .则边 AC 的长为
.
9.已知关于 x 的两个方程 x2 x 3m 0, x2 x m 0(m 0) .若前一个方程中有一个
为等腰三角形,若存在,请直接写出点 P 的坐标;若不存在,请说明理由.
y
B
83 l
D
y 3x
y
B
83
y 3x
F
C
C
E OP
A
8x
A
O
8
x
备用图1
根是后一个方程的某个根的 3 倍,则实数 m 的值是
.
10.如图,已知直线 PA 与⊙O 交于 A、B 两点,AE 是⊙O 的直径,C

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题一(pdf版,含答案)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题一(pdf版,含答案)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题一一、选择题(每小题3分,共30分)1.在直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在( ) A .直线y =﹣x 上 B .抛物线y =x 2上 C .直线y =x 上 D .双曲线xy =1上 2.以等速度行驶的城际列车,若将速度提高25%,则相同距离的行车时间可节省k %,那么k 的值是( ) A .35 B .30C .25D .203.若﹣1<a <0,则a ,a ³,3a ,1a一定是( ) A .1a最小,a 3最大 B .3a 最小,a 最大 C .1a 最小,a 最大 D .1a最小,3a 最大4.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于( ) A .25 B .5 C .6 D .325.将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为( )A . -4≤b ≤-2 B. -6≤b ≤2 C.-4≤b ≤2 D. -8≤b ≤-26.设a ,b 是实数,定义@的一种运算如下:a @b =(a +b )2﹣(a ﹣b )2,则下列结论:①若a @b =0,则a =0或b =0 ②a @(b +c )=a @b +a @c③不存在实数a ,b ,满足a @b =a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,a @b 最大. 其中正确的有( )第4题图 第5题图xOyC 1D 1A 1B 1E 1 E 2 E 3 E 4 C 2 D 2 A 2B 2C 3D 3A 3B 3第7题图A .②③④B .①②④C .①③④D .①②③7.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2018B 2018C 2018D 2018的边长是( )A .201712()B .201812()C .201733()D .201833()8. 如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b =0;②c <0;③﹣3a +c >0;④4a ﹣2b >at 2+bt (t 为实数);⑤点(﹣29,y 1),(﹣25,y 2),(﹣21,y 3)是该抛物线上的点,则y 1<y 2<y 3. 其中说法正确的有( )A .4个B .3个C .2个D .1个9.若关于x 的方程22240224x x x ax x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( )A .6-B .30-C .32-D .38-10.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接BE ,CF . BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )第8题图①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE④S △HDG :S △HBG =tan ∠DAG ;⑤线段DH 的最小值是25﹣2. A .2 B .3C .4D .5二、填空题(每小题4分,共20分)11.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P '(﹣y +1,x +2),我们把点P '(﹣y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2018的坐标为 . 12. 如图, 点A ,C 都在函数的图象上,点B ,D 都在轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .13.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .14. 已知有理数x 满足:31752233x x x -+-≥-,若32x x --+的最小值为a ,最大值为b ,则ab = . 15.如图,在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),减去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .33(0)y x x=>x 第12题图 第13题图第15题图三、解答题(每题10分,共50分) 16. (本题满分10分)已知非零实数a ,b 满足a b a b a a =++-+-++-4)1)(5(316822,求1-b a 的值17. (本题满分10分)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”. (1)请你直接写出3个四位“和谐数”;(2)猜想任意一个四位“和谐数”能否被11整除,并说明理由;(3) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x (,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.14x ≤≤18. (本题满分10分)边长为22的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;3(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=8 BC;(3)猜想PF与EQ的数量关系,证明你的结论.第18题图18备用图1 18备用图219. (本题满分10分)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)在(2)的条件下,设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ 的最小值.第19题图19备用图1 19备用图220. (本题满分10分)如图,已知抛物线y =ax 2+bx 经过点A (10,0)和B (8,4).点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线段,与直线OB 交于点C ,延长PC 到Q ,使QC =PC .过点Q 的直线分别与x 轴、y 轴相交于点D 、E ,且OD =OE ,直线DE 与直线OB 相交于点F .设OP =t . (1)请直接写出抛物线和直线OB 的函数解析式; (2)当点Q 落在抛物线上时,求t 的值; (3)连结BD :①请用含t 的代数式表示点F 的坐标;②当以点B 、D 、F 为顶点的三角形与△OEF 相似时, 求t 的值.OA Bx ByP Q C ED F第20题图2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题一答案一、 选择题(每题3分,共30分)1.D2.D3.A4.A5.A6.B7.C8.B9.D 10.C 二、填空题(每题4分,共20分) 11. (1,4);12. (,0);13. 11133y x =-+;14. 5;15. 40或三、解答题(每小题10分,共50分) 16. (本题满分10分)由题意得:5,0)1)(5(2≥≥+-a b a ………………………………………. 2分44)4(16822-=-=-=+-a a a a a ……………………………… 3分)1)(5(3)1)(5(34)1)(5(344)1)(5(316822222=+-+-=+-+-+=++-+-+-=++-+-++-b a b a b a b a b a b a b a b a a……………6分又因为03≥-b ,0)1)(5(2≥+-b a 故0)1)(5(32=+-=-b a b ……… 8分则5,3==a b , ………………………………… 9分故1-b a =25 .............................. .............................. (10)分17.(本题满分10分)解:⑴、四位“和谐数”:1221,1331,1111,6666…(答案不唯一)……………………2分(2)任意一个四位“和谐数”都能被11整数,理由如下: 设任意四位“和谐数”形式为:abcd ,则满足:最高位到个位排列:a ,b ,c ,d 个位到最高位排列:d,c,b,a26由题意,可得两组数据相同,则:a =d ,b =c 则1000100101000100101001110911011111111abcd a b c d a b b a a ba b +++++++====+为正整数∴ 四位“和谐数” abcd 能被11整数 又∵a ,b ,c ,d 为任意自然数, ∴任意四位“和谐数”都可以被11整除…………………………………………5分 (3)设能被11整除的三位“和谐数”为,zyx ,则满足:个位到最高位排列:x,y,z 最高位到各位排列:z,y,x .由题意得,两组数据相同,则:x =z .故10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++为正整数 ∴y =2x ()……………………………………………………8分 18. (本题满分10分)(1)证明:如图1,∵线段BP 绕点B 顺时针旋转90°得到线段BQ , ∴BP =BQ ,∠PBQ =90°. ∵四边形ABCD 是正方形, ∴BA =BC ,∠ABC =90°. ∴∠ABC =∠PBQ .∴∠ABC ﹣∠PBC =∠PBQ ﹣∠PBC ,即∠ABP =∠CBQ . 在△BAP 和△BCQ 中, ∵,∴△BAP ≌△BCQ (SAS ).∴CQ =AP ;………………………………………………………………………………3分(2)解:如图1,∵四边形ABCD 是正方形, ∴∠BAC =∠BAD =45°,∠BCA =∠BCD =45°,∴∠APB +∠ABP =180°﹣45°=135°, ∵DC =AD =2,14x ≤≤由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,………………………………………………………………………………5分∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,……………………………………………………6分x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;……………………………………………………7分(3)解:结论:PF=EQ,…………………………………………………………8分理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.…………………………………9分当F在AD的延长线上时,如图3,同理可得:PF=PG=EQ.…………………………………10分19. (本题满分10分)证明:(1)如图1,连接BC,∵CD为⊙O的直径,AB⊥CD,∴=,∴∠A=∠ABC,∵EC=AE,∴∠A=∠ACE,∴∠ABC=∠ACE,∵∠A=∠A,∴△AEC∽△ACB,∴,∴AC2=AE•AB;………………………………………………………………………………3分(2)PB=PE,……………………………………………………………………………4分理由是:如图2,连接OB,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE; (7)分(3)如图3,∵N为OC的中点,∴ON=OC=OB,R t△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB为等边三角形,∵Q为⊙O任意一点,连接PQ、OQ,因为O Q为半径,是定值4,则PQ +OQ 的值最小时,PQ 最小, 当P 、Q 、O 三点共线时,PQ 最小, ∴Q 为OP 与⊙O 的交点时,PQ 最小, ∠A =∠COB =30°, ∴∠PEB =2∠A =60°, ∠ABP =90°﹣30°=60°, ∴△PBE 是等边三角形, Rt △OBN 中,BN ==2,∴AB =2BN =4,设AE =x ,则CE =x ,EN =2﹣x , Rt △CNE 中,x 2=22+(2﹣x )2, x =,∴BE=PB=4﹣=, Rt △OPB 中,OP ===,∴PQ =﹣4=.则线段PQ 的最小值是.……………………………………………………10分20. (本题满分10分) 解:(1)抛物线的函数解析式是21542y x x =-+,………………………2分 直线OB 的函数解析式是12y x =; ………………3分By E(2)∵OP =t ,PC ⊥x 轴于点P ,交直线OB 于点C , ∴PC =12t ,∴PQ =t ,即Q (t ,t ),………………4分 当点Q 落在抛物线上时,21542t t t =-+,解得:6t =; -…………………………………………6分(3)①作FG ⊥x 轴于点G ,设FG =n , 由(2)得:PQ =t ,∵OD =OE ,OD ⊥OE , ∴45ODE ∠=︒,∴△PDQ 是等腰直角三角形∴PD = PQ =t ,∴OD =2t ,同理可得:FG = DG =n ,∴OG =2t n -, 将x =2t n -,y=n 代入12y x =得:23n t =,∴OG =43t ,∴F (43t ,23t ); ………………………………………8分 ②由(3)①得:OF =22253FG OG t +=,22223FD FG DG t =+=, ∵22ED t =,45OB =, ∴BF =25453OB OF t -=-,423EF ED FD t =-=, Ⅰ.当点F 在射线OB 的点B 的右侧时:∠BFD >90°,而△OEF 中无钝角,故此时△OEF 与△DBF 不相似; Ⅱ.当点F 在线段OB 上时:∵∠OFE =∠BFD ,∴OE 和BD 是对应边,当△OEF ∽△DBF 时,OF EF DF BF =,即25423322254533t tt t =-,解得:103t =,当△OEF ∽△BDF 时,OF EF BF DF =,即25423325224533t tt t=-,解得:4t =. ∴103t =或4. …………………………………10分。

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题二及答案解析

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题二及答案解析

则点 P 到点 M 与到边 OA 的距离之和的最小值是

三、解答题(共 78 分)
19.(10 分)(1)计算:(
)-1+(π﹣3.14)0﹣2sin60°﹣ +|1﹣3 |;
(2)先化简,再求值:(a+1﹣
)÷(
),其中 a=2+ .
20.(10 分)如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别 是 BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰角为 30°,试求电线杆的高度(结果保留根号)
13. 若关于 x 的方程
+
=3 的解为正数,则 m 的取值范围是___________
14. 如图,正五边形 ABCDE 放入某平面直角坐标系后,若顶点 A,B,C,D 的坐标分 别是 (0,a),(﹣3,2),(b,m),(c,m),则点 E 的坐标是_________
第 14 题图
第 15 题图
第 16 题图
第 17 题图
15. 如图,△ABC 是等边三角形,AB=2,分别以 A,B,C 为圆心,以 2 为半径作弧,则图
中阴影部分的面积是

16. 如图,在平面直角坐标系中,函数 y=2x 和 y=﹣x 的图象分别为直线 l1,l2,过点(1,0)
作 x 轴的垂线交 l1 于点 A1,过点 A1 作 y 轴的垂线交 l2 于点 A2,过点 A2 作 x 轴的垂线交 l1
A.k<1
B.k≤1 C.k>﹣1 D.k>1
4. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十
五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为 8 步,股(长

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题一及答案

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题一及答案

4.由 1,2,3,4 这四个数字组成四位数 abcd (数字可重复使用),要求满足 a c b d .
这样的四位数共有
()
A.36 个.
B.40 个.
C.44 个.
D.48 个. .
5、已知△ ABC 为锐角三角形,⊙ O 经过点 B,C,且与边 AB,AC 分别相交于点 D,E. 若
⊙ O 的半径与△ ADE 的外接圆的半径相等,则⊙ O 一定经过△ ABC 的( ).
( ).
(A)10 (B)9 (C)7 (D)5
8、设方程组 x3-xyz=-5, y3-xyz=2, z3-xyz=21 的正实数解有(

A、1 组 B、2 组 C、3 组 D、4 组
二、填空题:(本题满分 28 分,每小题 7 分)
9.在△ABC 中,已知 AB=AC,∠A=40°,P 为 AB 上一点,∠ACP=20°,则 BC =
(Ⅱ)解法一 设 PC a , DQ b ,不妨设 a ≥ b >0,
由(Ⅰ)可知
∠ ABP =∠ ABQ 30 , BC = 3a , BD = 3b ,
所以 AC = 3a 2 , AD = 2 3b . 因为 PC ∥ DQ ,所以△ ACP ∽△ ADQ .
于是 PC AC ,即 a 3a 2 .所以 a b 3ab . DQ AD b 2 3b
( xP
xQ )
3. 3
同理,若 xQ
3,可得 xP
3 ,从而 2
2 k 3 (xP xQ )
3. 3
所以,直线 PQ 的函数解析式为
y 3 x 1 ,或 y 3 x 1. ……………………………………19、如图,△ABC 为等腰

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题三及答案

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题三及答案
2020 年黄冈中学自主招生(理科实验班)预录考试
数学模拟试题三
一.选择题:
1. 方程 x= 3x 5 5 3 5- 3
的根是 x=( )
A.4- 15
B.4+ 15 C. 15 -4 D. 5 - 3
2. 将自然数 1~22 分别填在下面的“□”内(每个“□”只能填一个数), 在形成的 11 个 分数中, 分数值为整数的最多能有( )个
因为
a b c (a b c)x2 (a 2b 3c)x 2c (a b c)x2 (a 2ac 2 3c)x 2c
P
C
N
M
I
B
T
A
Q
2020 年黄冈中学自主招生(理科实验班)预录考试
数学模拟试题三答案
一试
一.选择题:
题号 1
2
3
4
5
6
7
8
9
10
答案 B
C
A
B
D
C
A
D
B
C
二.填空题:
11.__3960________;
12.__2009__________;
13.__(3,0)(2,2)_____;
14.___8___________;
xmin
2, 3
当 y z 1 满足 3
18.解:(1)当 x = c 时,y = 0,即 ac2 bc c 0, c( ac b1) 0,又 c>1,所以
ac b 1 0 设一元二次方程 ax2 bx c 0 两个实根为 x1, x2 (x1 x2 )
由 x1
x2
c a
0 ,及 x = c>1,得
15.___ 9 3 ______; 4

黄冈中学2020年春自主招生数学模拟试题(附答案)

黄冈中学2020年春自主招生数学模拟试题(附答案)

黄冈中学2020年春自主招生模拟试题数 学 试 题(考试时间:120分钟 总分120分)一、选择题(每题3分,共24分)1.一元二次方程x 2+bx +c =0的一实根是另一实根的2倍,则以下结论错误的是( )A .b 2-4c ≥0B .b ≤0C .c ≥0D .2b 2=9c2.关于x 的不等式组1532223x x x x a ⎧+>-⎪⎪⎨+⎪<+⎪⎩,只有4个整数解,则a 的取值范围是( )A .-5≤a ≤143-B .-5≤a ≤143-C . -5<a ≤143-D . -5≤a <143- 3.双曲线y =k x (k <0)上有A ,B 两点,直线AB 交y 轴于点D ,交x 轴于点C ,且OD =OC ,若A (43-,1),则点B 的坐标为( )A .(-1,43) B .(-1,34) C .(-1,23) D .(-1,32)4.已知函数f (x )=x 2+λx ,p ,q ,r 为△ABC 的三边,且P <q <r ,若所有的正整数p ,q ,r 都满足f (p )<f (q )<f (r ),则λ的取值范围是( )A . λ>-2B . λ>-3C . λ>-4D . λ>-55.如图,△ABC 的面积为60,点D 在BC 上,BD =2CD ,连接AD 点E 为AD 中点,连接BE 并工交AC 于点,则△AEF 的面积为( )A . 2B . 4C . 5D . 86.记S n =a 1+a 2+…+a n , 令T n =12nS S S n+++,称T n 为a 1,a 2…,a n 这列数的“理想数”.已知a 1,a 2,…,a 500的“理想数”为2004,那么8,a 1,a 2,…,a 500的“理想数”为( )A . 2004B .2006C . 2008D . 20107.如图,△ABC 内接于⊙O ,且AB =AC ,直线AD 交BC 于点E ,F 是OE 的中点,如果BD ∥CF ,BC =25,则线段CD 的长为( )A . 2B .5C .6D . 238.已知x ,y ,z ,a ,b 均为非零的实数,且满足331xy x y a b =+-,31yz y z a=+,331xz x z a b =++,112xyz xy yz zx =++,则a 的值为( ) A . 2 B .-2 C .1 D . -1二、填空题(每题3分,共24分)9.已知a+b+c=0, a 2+b 2+c 2=6,那么a 4+b 4+c 4的值为_________10.用三种边长相等的正多边形地转铺地,其顶点在一起,刚好能完全铺满地面,已知正多边形的边数为x 、y 、z ,则111x y z++的值为 .11. 将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩,只有正数解的概率为 .12.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,顶点B 在的比例函数y =2(0)x x-<上,点A 在反比例函数3(0)y x x=>上,C ,D 在x 轴上,则平行四边形ABCD 的面积是_______. 13. 设[x ]表示不超过x 的最大整数(例如:[2]=2,[1.25]=1),则方程3x -2[x ]+4=0的解为________ .14.使不等式|2x 3-|+k <x 有解的实数k 的取值范围是______.15.如图,⊙O 中,直径AB =10,C ,D 是上半圆⌒AB上的两个动点,弦AC 与BD 交于点E ,则AE ·AC +BE ·BD =__________16.如图所示,点A 、C 都在函数y =2(0)x x>的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等腰直角三角形,则D 点的坐标为________ 三、解答题17.(8分)已知实数x ,y满足(2x +1)2+y 2+(y -2x )2=13,求x +y . 18.(8分)设m 是不小于-1的实数,关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2 (1)若22126x x +=,求m 的值.(2)求22121211mx mx x x +--的最大值. 19.(8分)如图,已知△ABC ,D 是BC 的延长线上的点,F 是AB 延长线上的点,∠ACD 的平分线交BA的延长线于点E ,∠FBC 的平分线交AC 的延长线于点E ,∠FBC 的平分线交AC 的延长线于点G ,若CE =BC =BG ,求∠ABC .2y x =-3y x=第5题图第7题图第16题图第15题图第12题图20.(8分)如图,已知A,B 两点的坐标分别为A(0,23),B(2,0),直线AB与反比例函数y=mx的图象交于点C和点D(-1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.21.(9分)如图,在锐角△ABC中,AC是最短边,以AC的中点O为圆心,12AC长为半径作⊙O,交BC于点E,过O作OD∥BC交O于点D,连结AE、AD、DC.(1)求证:D是⌒AE的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若=12CEFOCDSS∆∆=,且AC=4,求CF的长.22.(9分)提高过江大桥的车辆通行能力可改善整个城市的交通状况。

湖北省黄冈中学2020年高考适应性考试理科数学模拟卷(五)含参考答案及评分标准

湖北省黄冈中学2020年高考适应性考试理科数学模拟卷(五)含参考答案及评分标准

湖北省黄冈中学2020年高考适应性考试模拟卷(五)数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合|A x x a ,2|430Bx xx ,若A B B I ,则实数a 的取值范围是()A .3aB .3a C .1a D .1a 2.在复平面内,复数(1i)(2i)z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.如图,在平行四边形ABCD 中,,AC BD 相交于点O ,E 为线段AO 的中点,若,BE BA BDR u u u r uu u r uu u r ,则A .34B .14C .14D .344.定义在R 上的函数2,10(),01x x f x x x ,且1(2)(),()2f x f xg x x ,则方程()()f x g x 在区间[5,9]上的所有实数根之和最接近下列哪个数()A .14B .12C .11D .105.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,π3A,2b ,ABC 的面积等于23,则ABC 外接圆的面积为()A .16πB .8πC .6πD .4π6.已知实数,,a b c ,22log aa ,121()log 2bb ,231()2cc,则()A .b c aB .c b a C .ba c D .ca b 7.已知椭圆221112211:1(0)xy C a b ab与双曲线222222222:1(0,0)xy C a b ab有相同的焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1222F F PF ,设1C 与2C 的离心率分别为12,e e ,则21e e 的取值范围是A .13,B .13,C .12,D .12,8.如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A 到B 的最短线路有()条A .100B .400C .200D .2509.已知函数ln 2ln 6f x x x ,则A .f x 在2,6上单调递增B .f x 在2,6上的最大值为2ln2C .f x 在2,6上单调递减D .yf x 的图象关于点4,0对称10.如图,在平面内放置两个相同的直角三角板,其中30A,且,,B C D 三点共线,则下列结论不成立的是()A .3CD BCuu u r uu u r B .0CA CE u u u r u u u r C .AB uu u r与DE 共线D .CA CBCE CDuu u r uu u r u u u r u u u r 11.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为()12.已知函数f x 是定义在R 上的奇函数,20f ,当0x时,有2xf x f xx成立,则不等式20x f x的解集是()A .2,02,U B .2,00,2U C .2,D .,22,U第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题十一及答案解析

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题十一及答案解析

O
x
20. (本题满分 12 分) 在△ABC 中,∠ACB=90°,经过点 C 的⊙O 与斜边 AB 相切于点 P. (1)如图①,当点 O 在 AC 上时,试说明 2∠ACP=∠B; (2)如图②,AC=24,BC=18,当点 O 在△ABC 外部时,求 CP 长的取值范围.
H
14.已知关于 x 的二次函数 y 1 x 2 2(m 1)x m 5 2
BF
E
①若当 x 为一切实数时, y 有最大值 2,则 m
C
13 题图
②若当 5 x 2 时, y 有最大值 2,则 m
15、已知 m 为实数,且 m 2 6 与 1 2 6 都是整数,则 m 的值是
二班的学生组成后队,速度为 6 km/h.前队出发 1 h 后,后队才出发,同时,后队派一名联络员
骑自行车在两队之间不间断地来回进行联络,他骑车的速度为 12 km/h.若不计队伍的长度,联
络员在行进过程中,离.前.队.的.路.程.y(km)与后队行进时间 x(h)之间存在着某种函数关系. (1)求后队追到前队所用的时间 x 的值;
范围是( )
A 、 a =0
B、 a ≥0
C、 a =-2
D、 a >0 或 a =-2
8、如图,正方形 ABCD 内接于⊙O,P 为劣弧 CD 上一点,PA 交 BD 于点 M , PB 交 AC 于点 N, 记∠PBD=θ.
若 MN⊥PB,则 2cos2θ-tanθ 的值(

A、 1 2
B、1
C、 2
2020 年湖北省黄冈中学理科实验班提前招生(预录) 数学模拟试题十一
时间:120 分 分值:120 分
一、填空题:(本大题共有 8 小题,每题 4 分,共 32 分)

2020年高考模拟湖北省黄冈中学高考(理科)数学模拟试卷 含解析

2020年高考模拟湖北省黄冈中学高考(理科)数学模拟试卷 含解析

2020年高考模拟高考数学模拟试卷(理科)一、选择题1.已知集合A={x|9x2﹣3<1},B={y|y<2},则(∁R A)∩B=()A.B.∅C.D.2.已知复数z1=3﹣bi,z2=1﹣2i,若是实数,则实数b的值为()A.6B.﹣6C.0D.3.AQI即空气质量指数,AQI越小,表明空气质量越好,当AQI不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI的统计数据.则下列叙述正确的是()A.这12天的AQI的中位数是90B.12天中超过7天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这12天的AQI的平均值为1004.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(4x+4﹣x)|x|B.f(x)=(4x﹣4﹣x)log2|x|C.f(x)=(4x+4﹣x)log2|x|D.f(x)=(4x+4﹣x)|x|5.设a=log48,b=log0.48,c=20.4,则()A.b<c<a B.c<b<a C.c<a<b D.b<a<c6.已知A、B是圆O:x2+y2=16的两个动点,||=4,=﹣.若M是线段AB的中点,则•的值为()A.8+4B.8﹣4C.12D.47.“仁义礼智信”为儒家“五常”,由孔子提出“仁、义、礼”,孟子延生为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”,将“仁义礼智信”排成一排,“仁”排在第一位,且“智信”相邻的概率为()A.B.C.D.8.如图所示,在单位正方体ABCD﹣A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P 取得最小值,则此最小值为()A.2B.C.2+D.9.已知双曲线的右焦点为F,渐近线为l1,l2,过点F的直线l与l1,l2的交点分别为A,B,若AB⊥l2,则|AB|=()A.B.C.D.10.已知数列{a n}的通项公式为,则数列{a n}的前2020项和为()A.B.C.D.11.已知函数,现有如下命题:①函数f(x)的最小正周期为;②函数f(x)的最大值为;③是函数f(x)图象的一条对称轴.其中正确命题的个数为()A.0B.1C.2D.312.已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,∠ABC=90°,点B 在AC上的射影为D,则三棱锥P﹣ABD体积的最大值是()A.B.C.D.二、填空题13.已知实数x,y满足,则目标函数z=5x+2y的最大值是.14.设S n为数列{a n}的前n项和,已知a1=2,对任意p,q∈N*,都有a p+q=a p•a q,则(n>1且n∈N*)的最小值为.15.点A,B为椭圆E:长轴的端点,C、D为椭圆E短轴的端点,动点M满足,若△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为.16.已知函数f(x)对x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,则实数m的取值范围是.三、解答题17.在△ABC中,内角A,B,C的对边分别是a,b,c,已知,点M 是BC的中点.(1)求A的值;(2)若a=,求中线AM的最大值.18.如图,ABCD是边长为2的正方形,面EAD⊥面ABCD,且EA=ED,O是线段AD 的中点,过E作直线l∥AB,F是直线l上一动点.(1)求证:OF⊥BC;(2)若直线l上存在唯一一点F使得直线OF与平面BCF垂直,求二面角B﹣OF﹣C 的余弦值.19.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:质量指标值m m<185185≤m<205m≥205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?20.已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.21.已知函数f(x)=xe x﹣1﹣a(x+lnx),a∈R.(1)若f(x)存在极小值,求实数a的取值范围;(2)设x0是f(x)的极小值点,且f(x0)≥0,证明:f(x0)≥2(x02﹣x03).(二)选考题:共10分.请考生在第19-1,19-2题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(φ为参数),以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)射线OM与曲线C1交于点M,射线ON与曲线C2交于点N,求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.参考答案一、选择题1.已知集合A={x|9x2﹣3<1},B={y|y<2},则(∁R A)∩B=()A.B.∅C.D.解:根据题意,集合A={x|9x2﹣3<1}=(﹣,),则∁R A=(﹣∞,﹣]∪[,+∞),又由B={y|y<2},则(∁R A)∩B=(﹣∞,﹣]∪[,2),故选:C.2.已知复数z1=3﹣bi,z2=1﹣2i,若是实数,则实数b的值为()A.6B.﹣6C.0D.解:∵===是实数,则6﹣b=0,∴实数b的值为6,故选:A.3.AQI即空气质量指数,AQI越小,表明空气质量越好,当AQI不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI的统计数据.则下列叙述正确的是()A.这12天的AQI的中位数是90B.12天中超过7天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这12天的AQI的平均值为100解:这12天的AQI的中位数是=99.5,故A错误;这12天中,空气质量为“优良”的有95,85,77,67,72,92,故B错误;从4日到9日,AQI数值越来越低,空气质量越来越好,故C正确,(67+72+77+85+92+97+104+111+135+138+144+201)=110.25,所以D错误,故选:C.4.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(4x+4﹣x)|x|B.f(x)=(4x﹣4﹣x)log2|x|C.f(x)=(4x+4﹣x)log2|x|D.f(x)=(4x+4﹣x)|x|解:函数f(x)的图象如图所示,函数是偶函数,x=1时,函数值为0.f(x)=(4x+4﹣x)|x|是偶函数,但是f(1)≠0,f(x)=(4x﹣4﹣x)log2|x|是奇函数,不满足题意.f(x)=(4x+4﹣x)log2|x|是偶函数,f(1)=0满足题意;f(x)=(4x+4﹣x)|x|是偶函数,f(1)=0,x∈(0,1)时,f(x)>0,不满足题意.则函数f(x)的解析式可能是f(x)=(4x+4﹣x)log2|x|.故选:C.5.设a=log48,b=log0.48,c=20.4,则()A.b<c<a B.c<b<a C.c<a<b D.b<a<c解:∵b底大于0小于1而真数大于1∴b<0∵a=log48=c=20.4<20.5=,∴a>c>b故选:A.6.已知A、B是圆O:x2+y2=16的两个动点,||=4,=﹣.若M是线段AB的中点,则•的值为()A.8+4B.8﹣4C.12D.4解:因为M是线段AB的中点,所以=+,从而•=(﹣)•(+)=2﹣2+•,由圆的方程可知圆O的半径为4,即||=||=4,又因为||=4,所以<,>=60°,故•=8,所以•=×16﹣×16+×8=12.故选:C.7.“仁义礼智信”为儒家“五常”,由孔子提出“仁、义、礼”,孟子延生为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”,将“仁义礼智信”排成一排,“仁”排在第一位,且“智信”相邻的概率为()A.B.C.D.解:将“仁义礼智信”排成一排,基本事件总数n=,“仁”排在第一位,且“智信”相邻包含的基本事件个数m==12,∴“仁”排在第一位,且“智信”相邻的概率为p==.故选:A.8.如图所示,在单位正方体ABCD﹣A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P 取得最小值,则此最小值为()A.2B.C.2+D.解:如图所示,把对角面A1C绕A1B旋转至A1BC′D1′,使其与△AA1B在同一平面上,连接AD1′,则AD1′==为所求的最小值.故选:D.9.已知双曲线的右焦点为F,渐近线为l1,l2,过点F的直线l与l1,l2的交点分别为A,B,若AB⊥l2,则|AB|=()A.B.C.D.解:如图,由双曲线C:,得,b=1,c=3.设l1:y=,l2:,则,∴AB:y=(x﹣3),联立,解得B(,﹣);联立,解得A(,).∴|OA|=,|OB|=.∴|AB|2==.∴|AB|=.故选:A.10.已知数列{a n}的通项公式为,则数列{a n}的前2020项和为()A.B.C.D.解:∵数列{a n}的通项公式为=(﹣1)n﹣1,则数列{a n}的前2020项和为:=1=.故选:C.11.已知函数,现有如下命题:①函数f(x)的最小正周期为;②函数f(x)的最大值为;③是函数f(x)图象的一条对称轴.其中正确命题的个数为()A.0B.1C.2D.3解:由题意可知,函数f(x)的最小正周期为,即①正确;②当时,f(x)=﹣=,当时,f(x)==,当时,f(x)==,可绘制出该函数的图象如下图所示,故函数的最大值为,即②正确;③由②的分析可得函数关于对称,即③正确;故选:D.12.已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,∠ABC=90°,点B 在AC上的射影为D,则三棱锥P﹣ABD体积的最大值是()A.B.C.D.解:如图,由题意,PA=PB=PC=2,∠ABC=90°,可知P在平面ABC上的射影G为△ABC的外心,即AC中点,则球的球心在PG的延长线上,设PG=h,则OG=2﹣h,∴OB2﹣OG2=PB2﹣PG2,即4﹣(2﹣h)2=4﹣h2,解得h=1.则AG=CG=,过B作BD⊥AC于D,设AD=x,则CD=,再设BD=y,由△BDC∽△ADB,可得,∴y=,则,令f(x)=,则f′(x)=,由f′(x)=0,可得x=,∴当x=时,f(x)max=,∴△ABD面积的最大值为,则三棱锥P﹣ABD体积的最大值是.故选:B.二、填空题:共4小题,每小题5分,共20分.13.已知实数x,y满足,则目标函数z=5x+2y的最大值是15.解:先根据约束条件画出可行域,如图:然后平移直线z=5x+2y,当直线z=5x+2y过点A(3,0)时,z最大值为15.故答案为:15.14.设S n为数列{a n}的前n项和,已知a1=2,对任意p,q∈N*,都有a p+q=a p•a q,则(n>1且n∈N*)的最小值为32.解:依题意,由p,q∈N*,及p,q的任意性,可令p=n,q=1,则a p+q=a p•a q,即为a n+1=a n•a1=2a n.∴数列{a n}是以2为首项,2为公比的等比数列.∴a n=2•2n﹣1=2n,n∈N*.∴S n﹣1==2n﹣2.∴===2n+≥2=32.当且仅当2n=,即n=4时,等号成立.∴(n>1且n∈N*)的最小值为32.故答案为:32.15.点A,B为椭圆E:长轴的端点,C、D为椭圆E短轴的端点,动点M满足,若△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为.解:由题意可得A(﹣a,0),B(a,0),C(0,b),D(0,﹣b),设M(x,y),因为动点M满足,所以=2,整理可得:x2+y2﹣ax+a2=0,即(x﹣)2+y2=a2,则可得M是以(,0)为圆心,以为半径的圆,所以当M(a,)时△MAB面积的最大值为8,即=8,解得a=,当M位于M1(a,0)时,△MCD面积的最小值为1,即=1,所以b=,所以离心率e===,故答案为:.16.已知函数f(x)对x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,则实数m的取值范围是(﹣∞,﹣e].解:∵函数f(x)对x∈R均有f(x)+2f(﹣x)=mx﹣6①,∴将﹣x换为x,得f(﹣x)+2f(x)=﹣mx﹣6②,∴由①②,解得f(x)=﹣mx﹣2.∵f(x)≥lnx恒成立,∴m≤﹣恒成立,∴只需m≤.令,则g'(x)=,令g'(x)=0,则x=,∴g(x)在(0,)上单调递减,在(,+∞)上单调递增,∴,∴m≤﹣e,∴m的取值范围为(﹣∞,﹣e].故答案为:(﹣∞,﹣e].三、解答题:共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第14至18题为必考题,每个试题考生都必须作答,第19-1、19-2题为选考题,考生根据要求作答.(一)必考题:共5小题,每小题l2分,共60分.17.在△ABC中,内角A,B,C的对边分别是a,b,c,已知,点M 是BC的中点.(1)求A的值;(2)若a=,求中线AM的最大值.解:(1)△ABC中,内角A,B,C的对边分别是a,b,c,已知,由正弦定理得:,由于sin B=sin(A+C)=sin A cos C+cos A sin C,且sin C≠0,整理得:tan A=,(0<A<π),所以A=.(2)在△ABC中,由余弦定理b2+c2﹣bc=3,由于,当且仅当b=c时,等号成立.所以b2+c2≤6.由于AM是BC边的中线,所以:在△ABM和△ACM中,由余弦定理得:①,②由①②得:,当且仅当b=c时,AM的最大值为.18.如图,ABCD是边长为2的正方形,面EAD⊥面ABCD,且EA=ED,O是线段AD 的中点,过E作直线l∥AB,F是直线l上一动点.(1)求证:OF⊥BC;(2)若直线l上存在唯一一点F使得直线OF与平面BCF垂直,求二面角B﹣OF﹣C 的余弦值.【解答】(1)证明:∵EA=ED,O是AD的中点,∴EO⊥DA,∵面EAD⊥面ABCD,面EAD∩面ABCD=AD,∴EO⊥面ABCD,∴EO⊥BC∵EF∥AB,BC⊥AB,∴EF⊥BC∵EO∩EF=E∴BC⊥面EOF∵OF⊂面EOF,∴OF⊥BC;(2)解:设BC的中点为M,连接OM,FM,设OM的中点为N,连接FN∵EF∥AB,OM∥AB,∴EF∥OM,∴E,F,O,M四点共面∵OF⊥BC,∴OF⊥面FBC等价于OF⊥FM,∴直线l上存在唯一一点F使得直线OF与平面BCF垂直,即等价于以OM为直径的圆与直线l相切,F恰为切点,NF⊥EF∴直线l与直线OM的距离为1,故NF=1∵OE⊥EF,NF⊥EF,OE,NF共面,∴NF∥OE∵EO⊥面ABCD,∴NF⊥面ABCD在直角△FNB和△FNC中,BF=CF=∵OF⊥面FBC,∴OF⊥BF,OF⊥CF∴∠BFC为二面角B﹣OF﹣C的平面角∴在△BFC中,BF=CF=,BC=2,cos∠BFC==.19.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:质量指标值m m<185185≤m<205m≥205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?解:(Ⅰ)根据抽样调查数据,一、二等品所占比例的估计值为0.200+0.300+0.260+0.090+0.025=0.875,由于该估计值小于0.90,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定.(Ⅱ)由频率分布直方图知,一、二、三等品的频率分别为0.375、0.5、0.125,故在样本中用分层抽样方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,再从这8件产品中随机抽取4件,一、二、三等品都有的情况有2种:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率.(Ⅲ)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为:170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4“质量提升月”活动后,产品质量指标值X近似满足X~N(218,140),则E(X)=218.所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了:218﹣200.4=17.6.20.已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y(II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,由消去y,整理得x2﹣4kx﹣4=0,所以x1+x2=4k,x1x2=﹣4,从而有|x1﹣x2|==4,由解得点M的横坐标为x M===,同理可得点N的横坐标为x N=,所以|MN|=|x M﹣x N|=|﹣|=8||=,令4k﹣3=t,t≠0,则k=,当t>0时,|MN|=2>2,当t<0时,|MN|=2=2≥.综上所述,当t=﹣,即k=﹣时,|MN|的最小值是.21.已知函数f(x)=xe x﹣1﹣a(x+lnx),a∈R.(1)若f(x)存在极小值,求实数a的取值范围;(2)设x0是f(x)的极小值点,且f(x0)≥0,证明:f(x0)≥2(x02﹣x03).解:(1)∵函数f(x)=xe x﹣1﹣a(x+lnx),a∈R.∴.令g(x)=xe x﹣1﹣a,则g′(x)=(x+1)e x﹣1>0,∴g(x)在(0,+∞)上是增函数.又∵当x→0时,g(x)→﹣a,当x→+∞时,g(x)→+∞.∴当a≤0时,g(x)>0,f′(x)>0,函数f(x)在区间(0,+∞)上是增函数,不存在极值点;当a>0时,g(x)的值域为(﹣a,+∞),必存在x0>0,使g(x0)=0.∴当x∈(0,x0)时,g(x)<0,f′(x)<0,f(x)单调递减;当x∈(x0,+∞)时,g(x)>0,f′(x)>0,f(x)单调递增;∴f(x)存在极小值点.综上可知实数a的取值范围是(0,+∞).证明:(2)由(1)知﹣a=0,即a=.∴lna=lnx0+x0﹣1,f(x0)=(1﹣x0﹣lnx0).由f(x0)≥0,得1﹣x0﹣lnx0≥0.令g(x)=1﹣x﹣lnx,由题意g(x)在区间(0,+∞)上单调递减.又g(1)=0,∴由f(x0)≥0,得0<x0≤1,令H(x)=x﹣lnx﹣1,(x>0),则H′(x)=1﹣=,当x>1时,H′(x)>0,函数H(x)单调递增;当0<x<1时,H′(x)<0,函数H(x)单调递减;∴当x=1时,函数H(x)取最小值H(1)=0,∴H(x)=x﹣lnx﹣1≥0,即x﹣1≥lnx,即e x﹣1≥x,∴,1﹣x0﹣lnx0≥1﹣x0﹣(x0﹣1)=2(1﹣x0)≥0,∴f(x0)=(1﹣x0﹣lnx0)≥•2(1﹣x0)=2(﹣),∴f(x0)≥2(x02﹣x03).(二)选考题:共10分.请考生在第19-1,19-2题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-4:坐标系与参数方程]22.已知曲线C1的参数方程为(φ为参数),以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)射线OM与曲线C1交于点M,射线ON与曲线C2交于点N,求的取值范围.解:(1)由曲线C1的参数方程(φ为参数),得:,即曲线C1的普通方程为.又x=ρcosθ,y=ρsinθ,曲线C1的极坐标方程为3ρ2cos2θ+2ρ2sin2θ=6,即ρ2cos2θ+2ρ2=6.曲线C2的极坐标方程可化为,故曲线C2的直角方程为.(2)由已知,设点M和点N的极坐标分别为(ρ1,α),,其中,则,.于是.由,得﹣1<cosα<0,故的取值范围是.一、选择题23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…。

湖北省黄冈中学2020年春自主招数学模拟试题及参考答案

湖北省黄冈中学2020年春自主招数学模拟试题及参考答案

黄冈中学2020年春自主招生模拟试题数 学 试 题(考试时间:120分钟 总分120分)一、选择题(每题3分,共24分)1.一元二次方程x 2+bx+c=0的一实根是另一实根的2倍,则以下结论错误的是( )A.b 2-4c ≥0B.b ≤0C.c ≥0D.2b 2=9c2.关于x 的不等式组1532223x x x x a ⎧+>-⎪⎪⎨+⎪<+⎪⎩,只有4个整数解,则a 的取值范围是( )A.-5≤a ≤143-B.-5≤a ≤143-C. -5<a ≤143-D. -5≤a<143- 3.双曲线y=k x (k<0)上有A ,B 两点,直线AB 交y 轴于点D ,交x 轴于点C ,且OD=OC ,若A (43-,1),则点B 的坐标为( )A.(-1,43) B.(-1,34) C.(-1,23) D .(-1,32)4.已知函数f(x)=x 2+λx ,p ,q ,r 为△ABC 的三边,且P<q<r ,若所有的正整数p ,q ,r 都满足f(p)<f(q)<f(r),则λ的取值范围是( )A. λ>-2B. λ>-3C. λ>-4D. λ>-55.如图,△ABC 的面积为60,点D 在BC 上,BD=2CD ,连接AD 点E 为AD 中点,连接BE 并工交AC 于点,则△AEF 的面积为( )A. 2B. 4C. 5D. 86.记S n =a 1+a 2+…+a n , 令T n =12nS S S n+++,称T n 为a 1,a 2…,a n 这列数的“理想数”.已知a 1,a 2,…,a 500的“理想数”为2004,那么8,a 1,a 2,…,a 500的“理想数”为( )A. 2004B.2006C. 2008D. 20107.如图,△ABC 内接于⊙O ,且AB=AC ,直线AD 交BC 于点E ,F 是OE 的中点,如果BD ∥CF ,BC=25,则线段CD 的长为( )A. 2B.5C.6D. 238.已知x ,y ,z ,a ,b 均为非零的实数,且满足331xy x y a b =+-,31yz y z a =+,331xz x z a b=++,112xyz xy yz zx =++,则a 的值为( ) A. 2 B.-2 C.1 D. -1二、填空题(每题3分,共24分)9.已知a+b+c=0, a 2+b 2+c 2=6,那么a 4+b 4+c 4的值为_________.第5题图第7题图10.用三种边长相等的正多边形地转铺地,其顶点在一起,刚好能完全铺满地面,已知正多边形的边数为x、y、z,则111x y z++的值为.11.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于x,y的方程组322ax byx y+=⎧⎨+=⎩,只有正数解的概率为.12.如图,在平面直角坐标系中,四边形ABCD是平行四边形,顶点B在的反比例函数y=2(0)xx-<上,点A在反比例函数3(0)y xx=>上,C,D在x轴上,则平行四边形ABCD的面积是_______.13. 设[x]表示不超过x的最大整数(例如:[2]=2,[1.25]=1),则方程3x-2[x]+4=0的解为________ .14.使不等式|2x3-|+k<x有解的实数k的取值范围是______.15.如图,⊙O中,直径AB=10,C,D是上半圆⌒AB上的两个动点,弦AC与BD交于点E,则AE·AC+BE·BD=__________.16.如图所示,点A、C都在函数y=2(0)xx>的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等腰直角三角形,则D点的坐标为________.三、解答题17.(8分)已知实数x,y满足(2x+1)2+y2+(y-2x)2=13,求x+y.18.(8分)设m是不小于-1的实数,关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等的实数根x1,x2(1)若22126x x+=,求m的值;(2)求22121211mx mxx x+--的最大值.第16题图第15题图2yx=-3yx=第12题图19.(8分)如图,已知△ABC,D是BC的延长线上的点,F是AB延长线上的点,∠ACD的平分线交BA的延长线于点E,∠FBC的平分线交AC的延长线于点E,∠FBC的平分线交AC的延长线于点G,若CE=BC=BG,求∠ABC.20.(8分)如图,已知A,B两点的坐标分别为A(0,23),B(2,0),直线AB与反比例函数y=mx的图象交于点C和点D(-1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.21.(9分)如图,在锐角△ABC中,AC是最短边,以AC的中点O为圆心,12AC长为半径作⊙O,交BC于点E,过O作OD∥BC交O于点D,连结AE、AD、DC.(1)求证:D是⌒AE的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若=12CEFOCDSS∆∆=,且AC=4,求CF的长.22.(9分)提高过江大桥的车辆通行能力可改善整个城市的交通状况。

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题(十)及参考答案

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题(十)及参考答案

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题十时间:120分 分值:120分一、选择题:(本大题共有8小题,每题4分,共32分) 1.已知非零实数,a b 满足53353,a b a a b -+++=+=则( )A .1-B .0C .1D .5-2.已知11=-x x ,则x x+1的值为( ). A .5±B .5C .3±D .5或13.若关于x 的方程12221ax -=-的解为正数,则实数a 的取值范围是( ) A .32a < B .32a > C.322a a >≠且 D .3122a a <≠且4.如果一直线l 经过不同三点()()(),,,,,A a b B b a C a b b a --,那么直线l 经过( ) A .第二、四象限 B .第一、二象限 C .第二、三、四象限 D .第一、三、四象限 5. 已知平面四边形ABCD ,下列条件:①AB ∥CD ;②BC ∥AD ;③AB=④BC=AD ⑤∠A=∠C⑥∠B=∠D. 任取其中两个,可以得出“平面四边形ABCD 是平行四边形”的概率是( )A .32B .815C .53 D .157 6.直角△ABC 的三个顶点,,A B C 均在抛物线2y x =上,并且斜边AB 平行于x 轴,若斜边上7.设正整数a ,b ,c 满足c 2-1=a 2(b 2-1),且a >1,则 ab的最小值是 ( )A .13B .12 C .2 D .38.如图所示,在直角坐标系中,A 点坐标为(﹣3,﹣2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( ) A .(﹣4,0) B .(﹣2,0)C .(﹣4,0)或(﹣2,0)D .(﹣3,0)二、填空题:(本大题共有7小题,每题4分,共28分)9.如果函数y=b 的图像与函数y=x 2﹣3|x ﹣1|﹣4x ﹣3的图像恰有三个交点,则b 的可能值是 .10.如图,已知直线交x 轴、y 轴于点A 、B ,⊙P 的圆心从原点出发以每秒1个单位的速度向x 轴正方向移动,移动时间 为t (s ),半径为,则t= s 时⊙P 与直线AB 相切.11.已知关于x 的方程:x m x m 22240---=()有两个实根x 1、x 2满足x x 212=+,则m 的值为10.若关于x 的不等式组5030x a x b -≥⎧⎨-<⎩的整数解仅有1、2、3,则满足这个不等式组的有序整数对(),a b 的个数为 对11.在平面直角坐标系中,O 是坐标原点,()11,A x y 是反比例函数()10y x x=>的图像上的一点,()22,B x y 是反比例函数()40y x x=-<的图像上的一点,则△AOB 的面积的最小值为14.如右图所示,△ABC 的面积为3,,,,D E F G 分别 是,BC AC 边上的三等分点,,AE BF 相交于点H , 则四边形CEHF 的面积是15. 竖直上抛的小球离地高度是它运动时间的二次函数. 小军相隔1秒依次竖直向上抛出两个小球. 假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度. 第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t= . 三、解答题:2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题十第II 卷 (答题卷)一、选择题:(本大题共有8小题,每题4分,共32分)9、 10、 11、 12、13、 14、 15、 三、解答题:(合计60分) 16、(8分)二元二次方程组⎩⎨⎧=++=t4y 4x )2y (n x 22有两个实数解⎩⎨⎧==11y y x x 和⎩⎨⎧==22y y x x ,其中2y 1=,且n4x y 2x y 2211=+,求常数t ,n 的值。

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题七及答案解析

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题七及答案解析
,A 随之在边 OM 上运动,矩形 ABCD 的
形状保持不变,其中 AB=2,BC=1,运动过程中,点 D 到点 O 的最
大距离为(

A. 2 1
B. 5
C. 145 5
D. 5 2
7、点 C 是半径为 1 的半圆弧 AB 的一个三等分点,分别以弦 AC、BC 为直径向外侧作 2 个半 圆,点 D、E 也分别是 2 半圆弧的三等分点,再分别以弦 AD、DC、CE、BE 为直径向外侧作 4 个半圆。则图中阴影部分(4 个新月牙形)的面积和是( )
B. 22011 1
C. 1 (22011 1) 2
D. 1 (22011 1) 2
2、如图,⊙O 过点 B、C,圆心 O 在等腰 Rt△ABC 的内部,BAC 90 ,OA 1,BC 6 .
则⊙O 的半径为( ).
A. 6
B. 13
C. 13 D. 2 13
3、如图,表示阴影区域的不等式组为( ).
轴和 y 轴的垂线段,且矩形 OAPB 的面积为 2 .那么,点 P 可能出现在的象限有( ).
(A)1 个
(B)2 个
(C)3 个
(D)4 个
5、已知 AC⊥BC 于 C,BC=a,CA=b,AB=c,下列选项中⊙O 的半径为 ab 的是(
).
ab
1
6、如图,∠MON=90°,矩形 ABCD 的顶点 A、B 分别在边 OM,ON
16、(10 分) 如图,已知圆内接四边形 ABCD 的对角线 AC、BD 交于点 N,点 M•在对角线 BD 上,且满足∠BAM=∠DAN,∠BCM=∠DCN.
求证:(1)M 为 BD 的中点;(2) AN AM . CN CM
3
17、(10 分)阅读下面材料: 小伟遇到这样一个问题:如图 1,在△ ABC(其中∠BAC 是一个可以变化的角)中, AB=2,AC=4,以 BC 为边在 BC 的下方作等边△ PBC,求 AP 的最大值. 小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点 B 为 旋转中心将△ ABP 逆时针旋转 60°得到△ A′BC,连接 A′A,当点 A 落在 A′C 上时,此 题可解(如图 2). 请你回答:AP 的最大值是 参考小伟同学思考问题的方法,解决下列问题: 如图 3,等腰 Rt△ ABC.边 AB=4,P 为△ ABC 内部一点,求 AP+BP+CP 的最小值?

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题八(pdf版,含答案)

湖北省黄冈中学2020年自主招生(理科实验班)预录考试数学模拟试题八(pdf版,含答案)

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题八一.选择题(共8小题,满分40分,每小题5分)1.若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是()A.4x+2 B.﹣4x﹣2 C.﹣2 D.22.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:53.一根长30cm、宽3cm的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,MA的长应为()A.7.5cm B.9cm C.12cm D.10.5cm4.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.55.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位6.在打靶中,某运动员每发子弹都是命中8、9、10环,他打了多于11发子弹,共得100环,那么,他命中10环的次数是()A.0 B.1 C.2 D.不能确定7.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1 B.C.D.8.点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.二.填空题(共10小题,满分40分,每小题4分)9.已知扇形的半径为2cm,面积是cm2,则扇形的弧长是cm.10.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.11.若直线y=2x+3与直线y=mx+5平行,则m+2的值为.12.已知对于任意正整数n,都有a1+a2+…+a n=n3,则=.13.取大小、质地都相同的四张卡片,正面分别写有数字﹣1,1,2,3,充分洗匀后任取两张,取卡片上标注的两个数作为点的坐标,那么该点刚好在一次函数y=x﹣2图象上的概率是14.若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是.15.如图,菱形ABCD的边长是2cm,∠A=60°,点E、F分别是边AB、CD上的动点,则线段EF的最小值为cm.16.如图,Rt△ABC,∠BCA=90°,AC=BC,点D为△ABC外一点,且AC=CD,连接DB交AC于点H,∠DCA的平分线交DH于点F,过B点作FC的垂线交FC的延长线于点E.已=8,则CE的长为.知tan∠DBC=,S△ACD17.方程|x2﹣3x+2|+|x2+2x﹣3|=11的所有实数根之和为.18.已知实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,则的值是.三.解答题(共4小题,满分40分,每小题10分)19.(10分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.20.(10分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C (4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.21.(10分)若关于x的分式方程的解为负数,求a的取值范围.22.(10分)如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC 于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.(1)求证:BC∥FG;(2)探究:PE与DE和AE之间的关系;(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题八参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.解:∵|x﹣3|+=7,∴|x﹣3|+|x+4|=7,∴﹣4≤x≤3,∴2|x+4|﹣=2(x+4)﹣|2x﹣6|=2(x+4)﹣(6﹣2x)=4x+2,故选:A.2.解:A、a2+b2=c2,是直角三角形,错误;B、∵52+122=132,∴此三角形是直角三角形,故本选项正确;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项正确;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项正确;故选:D.3.解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm,下底等于纸条宽的2倍,即6cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即6cm,故超出点P的长度为(30﹣15)÷2=7.5,AM=7.5+3=10.5.故选D.4.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.5.解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.6.解:设环数为8,9,10的次数分别为x,y,z,∴x+y+z>11,8x+9y+10z=100,∵若x+y+z≥13,则8x+9y+10z≥8×13>100,故x+y+z=12.∴该运动员打靶的次数为:12.当x=10时,y=0,z=2,当x=9时,y=2,z=1,当x=8时,y=4,z=0.故他命中10环的次数分别为:0,1,2.故选:D.7.解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选:A.8.解:易知D、C、E三点共线,点C是半径为1的半圆弧AB的一个三等分点,∴对的圆心角为=60°,∴∠ABC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB=1,BC=AB•COS30°=,BE=BC•COS30°=,CE=DC=,AD=,且四边形ABED为直角梯形,外层4个半圆无重叠.从而,S阴影=S梯形ABED+S△ABC﹣,=S△ADC+S△BCE,=.故选:B.二.填空题(共10小题,满分40分,每小题4分)9.解:设弧长为l,∵扇形的半径为2cm,面积是cm2,∴•2•l=π,∴l=πcm.故答案为=π.10.解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∵AM=AP,∠MAP=60°,∴△AMP是等边三角形,∵∠MAP=∠BAC,∴∠MAB=∠PAC,∴△MAB≌△PAC,∴BM=PC=10,∵PM2+PB2=100,BM2=100,∴PM2+PB2=BM2,∴∠MPB=90°,∵∠APM=60°,∴∠APB=150°,∠APH=30°,∴AH=PA=3,PH=3,BH=8+3,∴AB2=AH2+BH2=100+48,∴菱形ABCD的面积=2•△ABC的面积=2××AB2=50+72,故答案为50+72.11.解:∵两直线平行∴两直线的k值相同∴m=2∴m+2=4.12.解:∵当n≥2时,有a1+a2+…+a n﹣1+a n=n3,a1+a2+…+a n﹣1=(n﹣1)3,两式相减,得a n=3n2﹣3n+1,∴==(﹣),∴++…+,=(1﹣)+(﹣)+…+(﹣),=(1﹣),=.故答案为:.13.解:画出树状图如下:当x=﹣1时,y=﹣1﹣2=﹣3,当x=1时,y=1﹣2=﹣1,点(1,﹣1)在函数图象上,当x=2时,y=2﹣2=0,当x=3时,y=3﹣2=1,点(3,1)在函数图象上,所以,共有12个点的坐标,其中在一次函数y=x﹣2图象上的有2个,P(在一次函数y=x﹣2图象上)==,故答案为:.14.解:∵解不等式①得:x≥﹣4,又∵不等式组的所有整数解得和为﹣9,∴﹣4+(﹣3)+(﹣2)=﹣9或(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1=﹣9,∴﹣2<m≤﹣1或1<m≤2,故答案为:﹣2<m≤﹣1或1<m≤2.15.解:作DM⊥AB与M,∴∠AMD=90°.∵四边形ABCD是菱形,∴AD=AB=BC=CD=2cm.∵∠A=60°,∴∠ADM=30°.∴AM=AD=1cm.在Rt△AMD中,由勾股定理,得DM=cm.∴线段EF的最小值为.故答案为:.16.解:延长CF交AD于M,连接AF,以C为圆心OA为半径作⊙C.∵CD=CA,CF平分∠ACD,∴CM⊥AD,DM=AM,∴FD=FA,∵∠ADB=∠ACB=45°,∴∠FDA=∠FAD=45°,∴∠AFD=∠AFB=∠ACB=90°,∴A、F、C、B四点共圆,∵tan∠DBC==,设CH=3k,则BC=4k,BH=5k,AB=4k,∴AH=AC﹣CH=k,FH k,AF=k,AD=k,∵△FHC∽△AHB,∴==,∴CF=k,∴CM=CF+FM=k,=8,∵S△ACD∴×k×k=8,∴k=,∴AM=,∵∠AMC=∠E=90°,AC=BC,∠ACM=∠CBE,∴△AMC≌△CEB,∴CE=AM=.故答案为.17.解:分段讨论知(1),解得x=(舍去);(2),解得x=﹣;(3),解得x=(舍去);(4),解得x=.∴(﹣)+=.故答案为:.18.解:因为实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,(1)当a=b=1+或1﹣时,原式==2﹣2或﹣2﹣2;(2)当a≠b时,可以把a,b看作是方程x2﹣2x﹣1=0的两个根.由根与系数的关系,得a+b=2,ab=﹣1.则原式=﹣2.故填空答案:﹣2或2﹣2或﹣2﹣2.三.解答题(共4小题,满分40分,每小题10分)19.解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.20.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.21.解:分式方程去分母得:(x+1)(x﹣1)﹣(x﹣2)2=2x+a,整理得:x2﹣1﹣x2+4x﹣4=2x+a,解得:x=,根据题意得:<0,解得:a<﹣5,再将x=2代入方程得:a=﹣1;将x=﹣1代入得:a=﹣7,则a的取值范围为a<﹣5且a≠﹣7.22.(1)证明:连接BE,∵点P是△ABC的内心,∴∠BAD=∠CAD.又∵FG切⊙O于E,∴∠BEF=∠BAD.又∵∠DBE=∠CAD,∴∠BEF=∠DBE.∴BC∥FG.(2)解:连接BP,则∠ABP=∠CBP.∵∠BPE=∠BAP+∠ABP=∠PBC+∠EBD,∴∠BPE=∠PBE.∴BE=PE.在△ABE和△BDE中,∠BAE=∠EBD,∠BED=∠AEB,∴△ABE∽△BDE.∴=.∴BE2=AE•DE.∴PE2=AE•DE.(3)解:∵FE2=FB•FA=FB(FB+AB),而FE=AB,∴AB2=3(3+AB).设AB=x,则x2﹣3x﹣9=0,解之得x=.∴AB=(取正值).由(1)在△AFG中,BC∥FG,∴.∴AC==×=1+.∴AG=AC+CG=3+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题六一、选择题(每小题5分,共40分)1.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1 B.﹣+1 C.﹣﹣1 D.++12.如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是()A.B.C.D.3.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A.B.C.D.4.有铅笔、练习本、圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1个,共需()A.1.2元B.1.05元C.0.95元D.0.9元5.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.6.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣7.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C. D.8.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x%D.(2+x%)•x%二、填空题(每小题5分,共40分)9.方程组的解是.10.若对任意实数x不等式ax>b都成立,那么a,b的取值范围为.11.设﹣1≤x≤2,则|x﹣2|﹣|x|+|x+2|的最大值与最小值之差为.12.两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.14.有一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠使A、C两点重合,那么折痕长是.15.已知3,a,4,b,5这五个数据,其中a,b是方程x2﹣3x+2=0的两个根,则这五个数据的标准差是.16.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.三、解答题(共70分)17.(15分)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.18.(15分)如图,开口向下的抛物线y=ax2﹣8ax+12a与x轴交于A、B两点,抛物线上另有一点C在第一象限,且使△OCA∽△OBC,(1)求OC的长及的值;(2)设直线BC与y轴交于P点,点C是BP的中点时,求直线BP和抛物线的解析式.19.(15分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)20.(10分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.21.(15分)如图,已知⊙O和⊙O′相交于A、B两点,过点A作⊙O′的切线交⊙O于点C,过点B作两圆的割线分别交⊙O、⊙O′于E、F,EF与AC相交于点P.(1)求证:PA•PE=PC•PF;(2)求证:;(3)当⊙O与⊙O′为等圆时,且PC:CE:EP=3:4:5时,求△PEC与△FAP的面积的比值.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题六答案与试题解析一、选择题(每小题5分,共40分)1.解:∵﹣=﹣===,∴a的小数部分=﹣1;∵﹣===,∴b的小数部分=﹣2,∴﹣====.故选B.2.解:作PH⊥AB于H,如图,∵△PAB为等腰直角三角形,∴∠A=∠B=45°,AH=BH=AB=1,∴△PAH和△PBH都是等腰直角三角形,∴PA=PB=AH=,∠HPB=45°,∵∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,而∠CPD=45°,∴1≤AN≤2,即1≤x≤2,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM,而∠A=∠B,∴△ANP∽△BPM,∴=,即=,∴y=,∴y与x的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选:A.3.解:如右图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,,故可得△ENK≌△EML,即阴影部分的面积始终等于正方形面积的.故选B.4.解:设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据题意得:,②﹣①得:x+3y=1.05③,①﹣3③可得:2y=z,故可得:x+y+2y=x+y+z=1.05.故选B.5.解:方法1、∵方程有两个不相等的实数根,则△>0,∴(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选D.6.解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=S扇形﹣S正方形=﹣1=.故选:A.7.解:因为三角形是锐角三角形,所以22+32>x2;22+x2>32,所以5<x2<13,即.故选B.8.解:根据题意得:第三季度的产值比第一季度增长了(2+x%)•x%,故选D二、填空题(每小题5分,共40分)9.解:设x+1=a,y﹣1=b,则原方程可变为,由②式又可变化为=26,把①式代入得=13,这又可以变形为(+)2﹣3=13,再代入又得﹣3=9,解得ab=﹣27,又因为a+b=26,所以解这个方程组得或,于是(1),解得;(2),解得.故答案为和.10.解:∵如果a≠0,不论a大于还是小于0,对任意实数x不等式ax>b都成立是不可能的,∴a=0,则左边式子ax=0,∴b<0一定成立,∴a,b的取值范围为a=0,b<0.11.解:∵﹣1≤x≤2,∴x﹣2≤0,x+2>0,∴当2≥x≥0时,|x﹣2|﹣|x|+|x+2|=2﹣x﹣x+x+2=4﹣x;当﹣1≤x<0时,|x﹣2|﹣|x|+|x+2|=2﹣x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1.故答案为:112.解:由题意可知:P2007的坐标是(Px2007,4013),又∵P2007在y=上,∴Px2007=.而Qx2007(即Px2007)在y=上,所以Qy2007===,∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣|=.故答案为:.13.解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=314.解:如图,由勾股定理易得AC=15,设AC的中点为E,折线FG与AB交于F,(折线垂直平分对角线AC),AE=7.5.∵∠AEF=∠B=90°,∠EAF是公共角,∴△AEF∽△ABC,∴==.∴EF=.∴折线长=2EF=.故答案为.15.解:由方程x2﹣3x+2=0解方程的两个根是1,2,即a=1,b=2故这组数据是3,1,4,2,5其平均数(3+1+4+2+5)=3方差S2=[(3﹣3)2+(1﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2故五个数据的标准差是S==故本题答案为:.16.解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).三、解答题(共70分)17.解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x12+x22=(x1+x2)2﹣2x1x2=4(m﹣2)2﹣2(m2﹣3m+3)=2m2﹣10m+10=6∴,∵﹣1≤m<1,∴;(2)==(﹣1≤m<1).∴当m=﹣1时,式子取最大值为10.18.解:(1)由题设知a<0,且方程ax2﹣8ax+12a=0有两二根,两边同时除以a得,x2﹣8x+12=0原式可化为(x﹣2)(x﹣6)=0x1=2,x2=6于是OA=2,OB=6∵△OCA∽△OBC∴OC2=OA•OB=12即OC=2而===,故(2)因为C是BP的中点∴OC=BC从而C点的横坐标为3又∴设直线BP的解析式为y=kx+b,因其过点B(6,0),,则有∴∴又点在抛物线上∴∴∴抛物线解析式为:.19.解:设每周应生产空调、彩电、冰箱的数量分别为x台、y台、z台,则有,①﹣②×4得3x+y=360,总产值A=4x+3y+2z=2(x+y+z)+(2x+y)=720+(3x+y)﹣x=1080﹣x,∵z≥60,∴x+y≤300,而3x+y=360,∴x+360﹣3x≤300,∴x≥30,∴A≤1050,即x=30,y=270,z=60.最高产值:30×4+270×3+60×2=1050(千元)20.解:画树状图得:则一共有8种等可能的情况,(1)∵2个女孩和1个男孩的3种,∴这个家庭有2个男孩和1个女孩的概率为:;(2)∵这个家庭至少有一个男孩的有7种情况,∴这个家庭至少有一个男孩的概率为:.21.(1)证明:连接AB,∵CA切⊙O'于A,∴∠CAB=∠F.∵∠CAB=∠E,∴∠E=∠F.∴AF∥CE.∴.∴PA•PE=PC•PF.(2)证明:∵,∴=.∴.再根据切割线定理,得PA2=PB•PF,∴.(3)解:连接AE,由(1)知△PEC∽△PFA,而PC:CE:EP=3:4:5,∴PA:FA:PF=3:4:5.设PC=3x,CE=4x,EP=5x,PA=3y,FA=4y,PF=5y,∴EP2=PC2+CE2,PF2=PA2+FA2.∴∠C=∠CAF=90°.∴AE为⊙O的直径,AF为⊙O'的直径.∵⊙O与⊙O'等圆,∴AE=AF=4y.∵AC2+CE2=AE2∴(3x+3y)2+(4x)2=(4y)2即25x2+18xy﹣7y2=0,∴(25x﹣7y)(x+y)=0,∴.∴.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题七一、选择题(每题5分,共12小题)1.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:102.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.3.抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A.≤a≤1 B.≤a≤2 C.≤a≤1 D.≤a≤24.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=9.则k的值是()A.9 B.6 C.5 D.45.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a<;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④6.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.24B.48C.96D.1927.如图,一次函数y=ax+b与x轴、y轴交于A、B两点,与反比例函数y=相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、EF.有下列三个结论:①△CEF 与△DEF的面积相等;②△DCE≌△CDF;③AC=BD.其中正确的结论个数是()A.0 B.1 C.2 D.38.如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5 B.4 C.3 D.29.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,以O为圆心的半圆分别与AB、AC边相切于D、E两点,且O点在BC边上,则图中阴影部分面积S阴=()A.B.C.5﹣πD.﹣10.若实数a,b满足a﹣ab+b2+2=0,则a的取值范围是()A.a≤﹣2 B.a≥4 C.a≤﹣2或a≥4 D.﹣2≤a≤411.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()A.B.C.D.12.有四张正面分别标有数字﹣2,﹣6,2,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为a;不放回,再从中抽取一张,将该卡片上的数字记为b,则使关于x的不等式组的解集中有且只有3个非负整数解的概率()A.B.C.D.二、填空题(每题5分,共6小题)13.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为.14.已知|ab﹣2|+|a﹣1|=0,则++…+=.15.若x2﹣3x+1=0,则的值为.16.已知实数a,b,c满足a+b+c=10,且,则的值是.17.若+b2+2b+1=0,则a2+﹣|b|=.18.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.三、解答题19.(15分)如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.20.(15分)为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:p=50x2+100x+450,每处理一吨再生资源得到的新产品的售价定为100元.若该单位每月再生资源处理量为y(吨),每月的利润为w(元).(1)分别求出y与x,w与x的函数关系式;(2)在今年内该单位哪个月获得利润达到5800元?21.(15分)已知关于x的一元二次方程(a﹣1)x2+(2﹣3a)x+3=0.(1)求证:当a取不等于1的实数时,此方程总有两个实数根;(2)若m,n(m<n)是此方程的两根,并且.直线l:y=mx+n交x轴于点A,交y轴于点B.坐标原点O关于直线l的对称点O′在反比例函数的图象上,求反比例函数的解析式;(3)在(2)成立的条件下,将直线l绕点A逆时针旋转角θ(0°<θ<90°),得到直线l′,l′交y轴于点P,过点P作x轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求θ的值.22.(15分)如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题七参考答案与试题解析一、选择题(每题5分,共12小题)1.解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选D.2.解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选B.3.解:由右图知:A(1,2),B(2,1),再根据抛物线的性质,|a|越大开口越小,把A点代入y=ax2得a=2,把B点代入y=ax2得a=,则a的范围介于这两点之间,故≤a≤2.故选D.4.解:作AD⊥x轴于D,BE⊥x轴于E,如图,设反比例函数解析式为y=(k>0),∵A、B两点的横坐标分别是a、2a,∴A、B两点的纵坐标分别是、,∵AD∥BE,∴△CEB∽△CDA,∴===,∴DE=CE,∵OD:OE=a:2a=1:2,∴OD=DE,∴OD=OC,∴S△AOD=S△AOC=×9=3,∴|k|=3,而k>0,∴k=6.故选B.5.解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=<0,∴a、b同号,即b>0,∴abc<0,故本选项错误;②当x=1时,函数值为2,∴a+b+c=2;故本选项正确;③∵对称轴x=>﹣1,解得:<a,∵b>1,∴a>,故本选项错误;④当x=﹣1时,函数值<0,即a﹣b+c<0,(1)又a+b+c=2,将a+c=2﹣b代入(1),2﹣2b<0,∴b>1故本选项正确;综上所述,其中正确的结论是②④;故选D.6.解:∵点A(﹣,0),点B(0,1),∴OA=,OB=1,∴tan∠OAB==,∴∠OAB=30°,∵△OA1B1、△A1B2A2、△A2B3A3…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠A1B2A=∠A2B3A=∠OAB=30°,∴OB1=OA=,A1B2=A1A,A2B3=A2A,∴OA1=OB1=,OA2=OA1+A1A2=OA1+A1B2=+2=3,同理:OA3=7,OA4=15,OA5=31,OA6=63,则A5A6=OA6﹣OA5=32.则△A5B6A6的周长是96,故选C.7.解:①设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DEF的面积是××x=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴①正确;②条件不足,无法证出两三角形全等的条件,∴②错误;③∵△CEF的面积等于△DEF的面积,∴边EF上的高相等,∴CD∥EF,∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∴③正确;正确的有2个.故选:C.8.解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,∴△COM≌△DON(AAS),∴OM=ON,∴四边形OMEN是正方形,设正方形ABCD的边长为2a,∵∠DCE=30°,∠CED=90°∴DE=a,CE=a,设DN=x,x+DE=CE﹣x,解得:x=,∴NE=x+a=,∵OE=NE,∴=•,∴a=1,∴S正方形ABCD=4故选B.9.解:连接OD,OE,设⊙O与BC交于M、N两点,∵以O为圆心的半圆分别与AB、AC边相切于D、E两点,∴OD⊥AB,OE⊥AC,即∠ADO=∠AEO=90°,∵在Rt△ABC中,∠A=90°,∴四边形ADOE是矩形,∵OD=OE,∴四边形ADOE是正方形,∴∠DOE=90°,∴∠DOM+∠EON=90°,设OE=x,则AE=AD=OD=x,EC=AC﹣AE=4﹣x,∵△COE∽△CBA,∴,即,解得:x=,∴S阴影=S△ABC﹣S正方形ADOE﹣(S扇形DOM+S扇形EON)=×3×4﹣()2﹣=﹣.故选D.10.解:∵b是实数,∴关于b的一元二次方程b2﹣ab+a+2=0,△=(﹣a)2﹣4×1×(a+2)≥0解得:a≤﹣2或a≥4;∴a的取值范围是a≤﹣2或a≥4.故选C.11.解:A、S阴影=2×4=8(cm2);B、如图所示:根据勾股定理知,2x2=4,所以x=,S阴影=4×4﹣2××(4﹣)(4﹣)=﹣2(cm2);C、图C,逆时针旋转90°,并从后面看,可与图D对比,因为图C的倾斜度比图D的倾斜度小,所以,图C的底比图D的底小,两图为等高不等底,所以图C阴影部分的面积小于图D阴影部分的面积.D、如图:设阴影部分平行四边形的底为x,所以,直角三角形的短直角边是因为正方形的面积=阴影部分的面积+两个空白三角形的面积,所以,×4××2+2x=16,解得x=,S阴影=2×=因为,≈1.414,≈2.646,所以,﹣2≈9.312,≈8.775;即﹣2>,图B阴影的面积大于图D阴影的面积;又因为图A、图C、图D中阴影部分四边形为等高不等底,因为图D阴影的倾斜度最大,所以图D 中阴影部分的底最大;故选B12.解:根据题意列出树状图得:则(a,b)的等可能结果有:(﹣2,﹣6),(﹣2,2),(﹣2,6),(﹣6,﹣2),(﹣6,2),(﹣6,6),(2,﹣2),(2,6),(2,﹣6),(6,﹣2),(6,2),(6,﹣6)共12种;解①得:x<7,当a>0,解②得:,根据不等式组的解集中有且只有3个非负整数解,则3<x<7时符合要求,故,即b=6,a=2符合要求,当a<0,解②得:,根据不等式组的解集中有且只有3个非负整数解,则x<3时符合要求,故,即b=﹣6,a=﹣2符合要求,故所有组合中只有2种情况符合要求,∴使关于x的不等式组的解集中有且只有3个非负整数解的概率为:.故选A.二、填空题(每题5分,共6小题)13.解:在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=﹣;当a=﹣4时,把(﹣4,0)代入y=kx+3,得k=.故k的值为或.14.解:∵|ab﹣2|≥0,|a﹣1|≥0,且|ab﹣2|+|a﹣1|=0,∴ab﹣2=0且a﹣1=0,解得ab=2且a=1,把a=1代入ab=2中,解得b=2,则原式=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣=.故答案为:15.解:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入===== =故答案为.16.解∵a+b+c=10,∴a=10﹣(b+c),b=10﹣(a+c),c=10﹣(a+b),∴=﹣+﹣+﹣=﹣1+﹣1+﹣1=++﹣3,∵,∴原式=×10﹣3=﹣3=.故填:.17.解:∵+b2+2b+1=0,∴+(b+1)2=0,∴a﹣1=0,b+1=0,∴a=1,b=﹣1,∴a2+﹣|b|=0.故答案为:0.18.解:∵M、N两点关于y轴对称,∴M坐标为(a,b),N为(﹣a,b),分别代入相应的函数中得,b=①,a+3=b②,∴ab=,(a+b)2=(a﹣b)2+4ab=11,a+b=±,∴y=﹣x2±x,∴顶点坐标为(=±,=),即(±,).故答案为:(±,).三、解答题19.(1)证明:∵△AEB由△AED翻折而成,∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,∵△AFD由△AFG翻折而成,∴∠ADF=∠AGF=90°,∠DAF=∠FAG,AD=AG,∵∠EAG+∠FAG=∠EAF=45°,∴∠ABE=∠AGE=∠BAD=∠ADC=90°,∴四边形ABCD是矩形,∵AB=AD,∴四边形ABCD是正方形;(2)MN2=ND2+DH2,理由:连接NH,∵△ADH由△ABM旋转而成,∴△ABM≌△ADH,∴AM=AH,BM=DH,∵由(1)∠BAD=90°,AB=AD,∴∠ADH=∠ABD=45°,∴∠NDH=90°,∵,∴△AMN≌△AHN,∴MN=NH,∴MN2=ND2+DH2;(3)设AG=BC=x,则EC=x﹣4,CF=x﹣6,在Rt△ECF中,∵CE2+CF2=EF2,即(x﹣4)2+(x﹣6)2=100,x1=12,x2=﹣2(舍去)∴AG=12,∵AG=AB=AD=12,∠BAD=90°,∴BD===12,∵BM=3,∴MD=BD﹣BM=12﹣3=9,设NH=y,在Rt△NHD中,∵NH2=ND2+DH2,即y2=(9﹣y)2+(3)2,解得y=5,即MN=5.20.解:(1)设y=kx+b,根据题意,将(1,40),(2,50)代入y=kx+b,得:,解得:,故每月再生资源处理量y(吨)与x月份之间的关系式为:y=10x+30,w=100y﹣p=100(10x+30)﹣(50x2+100x+450)=﹣50x2+900x+2550;(2)由﹣50x2+900x+2550=5800得:x2﹣18x+65=0∴x1=13,x2=5∵x≤12,∴x=5,∴在今年内该单位第5个月获得利润达到5800元.21.(1)证明:∵方程(a﹣1)x2+(2﹣3a)x+3=0是一元二次方程,∴a﹣1≠0,即a≠1.∴△=(2﹣3a)2﹣4×(a﹣1)×3=(3a﹣4)2,而(3a﹣4)2≥0,∴△≥0.所以当a取不等于1的实数时,此方程总有两个实数根;(2)解:∵m,n(m<n)是此方程的两根,∴m+n=﹣,mn=.∵,=,∴﹣=,∴a=2,即可求得m=1,n=3.∴y=x+3,则A(﹣3,0),B(0,3),∴△ABO为等腰直角三角形,∴坐标原点O关于直线l的对称点O′的坐标为(﹣3,3),把(﹣3,3)代入反比例函数,得k=﹣9,所以反比例函数的解析式为y=﹣;(3)解:设点P的坐标为(0,p),延长PQ和AO′交于点G.∵PQ∥x轴,与反比例函数图象交于点Q,∴四边形AOPG为矩形.∴Q的坐标为(﹣,p),∴G(﹣3,P),当0°<θ<45°,即p>3时,∵GP=3,GQ=3﹣,GO′=p﹣3,GA=p,∴S四边形APQO′=S△APG﹣S△QGO′=×p×3﹣×(3﹣)×(p﹣3)=9﹣,∴=9﹣,∴p=.(合题意)∴P(0,).则AP=6,OA=3,所以∠PAO=60°,∠θ=60°﹣45°=15°;当θ=45°时,直线l于y轴没有交点;当45°<θ<90°,则p<﹣3,用同样的方法也可求得p=,这与p<﹣3相矛盾,舍去.所以旋转角度θ为15°.22.解:(1)∵直线AB:y=x+3与坐标轴交于A(﹣3,0)、B(0,3),代入抛物线解析式y=﹣x2+bx+c中,∴∴抛物线解析式为:y=﹣x2﹣2x+3;(2)∵由题意可知△PFG是等腰直角三角形,设P(m,﹣m2﹣2m+3),∴F(m,m+3),∴PF=﹣m2﹣2m+3﹣m﹣3=﹣m2﹣3m,△PFG周长为:﹣m2﹣3m+(﹣m2﹣3m),=﹣(+1)(m+)2+,∴△PFG周长的最大值为:.(3)点M有三个位置,如图所示的M1、M2、M3,都能使△ABM的面积等于△ABD的面积.此时DM1∥AB,M3M2∥AB,且与AB距离相等,∵D(﹣1,4),∴E(﹣1,2)、则N(﹣1,0)∵y=x+3中,k=1,∴直线DM1解析式为:y=x+5,直线M3M2解析式为:y=x+1,∴x+5=﹣x2﹣2x+3或x+1=﹣x2﹣2x+3,∴x1=﹣1,x2=﹣2,x3=,x4=,∴M1(﹣2,3),M2(,),M3(,).绝密★启用前2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题九注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共8小题,每小题4分,共32分)1.甲、乙两人3次都同时到某个体米店买米,甲每次买m(m为正整数)千克米,乙每次买米用去2m元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是()A.甲比乙便宜B.乙比甲便宜C.甲与乙相同D.由m的值确定2.自2006年3月26日起,国家对石油开采企业销售国产石油因价格超过一定水平(每桶40美元)所获的超额收入,将按比例征收收益金(征收比率及算法举例如下面的图和表).有人预测中国石油公司2006年第3季度将销售200百万桶石油,售价为每桶53美元,那么中国石油公司该季度估算的特别收益金将达到人民币(按1美元兑换8元人民币的汇率计算)()A.62.4亿元B.58.4亿元C.50.4亿元D.0.504亿元3.如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为()A.B.C.D.4.小明早晨从家里外出晨练,他没有间断地匀速跑了20min后回家.已知小明在整个晨练途中,出发t min时所在的位置与家的距离为s km,且s与t之间的函数关系的图象如图中的折线段OA﹣AB﹣BC所示,则下列图形中大致可以表示小明晨练路线的为()A.B.C.D.5.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l 与V2(V l<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;乙用一半的时间使用速度V l、另一半的时间使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为()A.图(1)B.图(1)或图(2)C.图(3)D.图(4)6.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是p:1,而在另一个瓶子中是q:1,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.B.C.D.7.点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.8.有红色、黄色、蓝色三个盒子,其中有一个盒子内放有一个苹果;三个盒子上各写有一句话,红色盒子上写着“该盒子没有苹果”,黄色盒子上写着“该盒子内有苹果”,蓝色盒子上写着“黄色盒子内没有苹果”;已知这三句话中有且只有一句是真的,那么苹果在哪个盒子内()A.红色B.黄色C.蓝色D.不能确定第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,每小题4分,共24分)9.方程的解为x=.10.世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.11.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为.12.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是36的钥匙所对应的原来房间应该是号.13.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=14.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为+.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为10.根据以上阅读材料,可构图求出代数式+的最小值为.三.解答题(共4小题,共44分)15.(10分)通过观察a2+b2﹣2ab=(a﹣b)2≥0可知:,与此类比,当a ≥0,b≥0时,(要求填写),你观察得到的这个不等式是一个重要不等式,它在证明不等式和求函数的极大值或者极小值中非常有用.请你运用上述不等式解决下列问题:(1)求证:当x>0时,;(2)求证:当x>1时,;(3)的最小值是.16.(10分)如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF 和EG的大小,并证明你的结论.17.(12分)某粮食加工厂给吉利卖站送来10箱袋装米粉,每箱10袋,每袋重800克,其中有一箱米粉每袋少50克,但不知道是哪一箱,送货员想出一个好办法,他用笔将10个箱子分别编上1,2,3,…,10的号码,然后从1号箱中取出1袋米粉,2号箱中取出2袋米粉,…10号箱中取出10袋米粉,在将这些米粉称了一下,称得重量为43800克,你知道重量不足的是哪一箱吗?18.(12分)如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).(1)求正比例函数和反比例函数的表达式;(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;(3)在(2)的条件下,直线BC与y轴交于点D,求以点A,B,D为顶点的三角形的面积;(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.2020年黄冈中学自主招生(理科实验班)预录考试数学模拟试题九参考答案与试题解析1.解:由题意可知:甲三次共买了3m千克的米,花费为1.8×m+2.2×m+2×m=6m元,则甲的平均单价为6m÷3m=2;乙共花费3×2m÷(2m÷1.8+2m÷2.2+2m÷2)=1.99<2;∴乙比甲便宜.故选:B.2.解:每桶特别收益金:5×20%+5×25%+3×30%=3.15(美元),合人民币:3.15×8=25.2(元),共获收益金:25.2×2 000 00000=50 400 00000(元)=50.4(亿元).故选:C.3.解:作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN,∵MH⊥CD,∠D=90°,∴MH∥AD,∴NH=HD,由旋转变换的性质可知,△MBC是等边三角形,∴MC=BC=a,由题意得,∠MCD=30°,∴MH=MC=a,CH=a,∴DH=a﹣a,∴CN=CH﹣NH=a﹣(a﹣a)=(﹣1)a,∴△MNC的面积=××(﹣1)a=a2,故选:C.4.解:根据图象得到,OA段,s随时间t的增大而增大,因而到家的距离增大;AB段距离不变,说明这段所走的路线到家的距离不变,即路线是以家为圆心的圆.故选:B.5.解:由题意得:甲在一半路程处将进行速度的转换,4个选项均符合;乙在一半时间处将进行速度的转换,函数图象将在t1处发生弯折,只有(1)(2)(4)符合,再利用速度不同,所以行驶路程就不同,两人不可能同时到达目的地,故(4)错误,故只有(1)(2)正确,故选:B.6.解:设瓶子的容积,即酒精与水的和是1.则纯酒精之和为:1×+1×=+;水之和为:+∴混合液中的酒精与水的容积之比为:(+)÷(+)=.7.解:易知D、C、E三点共线,点C是半径为1的半圆弧AB的一个三等分点,∴对的圆心角为=60°,∴∠ABC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB=1,BC=AB•COS30°=,BE=BC•COS30°=,CE=DC=,AD=,且四边形ABED为直角梯形,外层4个半圆无重叠.从而,S阴影=S梯形ABED+S△ABC﹣,=S△ADC+S△BCE,=.故选:B.8.解;假设红盒子的话是真的,则黄、蓝盒子的话是假的,三个盒子上的话相互之间产生矛盾,假设不成立;假设黄盒子的话是真的,则红、蓝盒子的话是假的,即苹果在红盒子和黄盒子内,显然假设不成立;假设蓝盒子的话是真的,则红、黄盒子的话是假的,可得到苹果在红盒子中,故假设成立.所以蓝盒子的话是真的,苹果在红盒子中.故选:A.9.解:方法一:移项得,=12﹣,两边平方得,=144﹣24+x+16,整理得,25=160+x,两边平方得,625(x+16)=25600+320x+x2,整理得,x2﹣305x+15600=0,即(x﹣65)(x﹣240)=0,∴x﹣65=0,x﹣240=0,解得x1=65,x2=240,检验:当x1=65时,+,=+,=9+3,=12,符合;当x2=240时,+,=+,=16+4,=20,不符合.∴原方程的解是x=65;方法二:令t=,则=t2,原方程可化为t2+t=12,解得t1=3,t2=﹣4(舍去),∴=3,两边4次方得,x+16=81,解得x=65.故答案为:65.10.解:∵第8行最后一个数是,第7行最后一个数是,第6行最后一个数是,∴第7行倒数第二个数是﹣=,第8行倒数第二个数是﹣=,∴第8行倒数第三个数是﹣=,故答案是:.11.解:从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为=.12.解:1到30中除以5余3,除以7余6的数只有13.13.解:(a﹣2017)(a﹣2018)===﹣2.故答案是:﹣2.14.解:如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴=,∴=,解得:DC=.即当x=时,代数式+有最小值,。

相关文档
最新文档