各种流量计的优缺点及适合介质

合集下载

十大常见流量计及其特点

十大常见流量计及其特点

10大常见流量计原理图及特点流量计关于流量计的原理,其实一直都觉得很难搞懂,不知道你们是不是这样。

所以特地找了动态原理图以帮助理解,希望对你们也有用。

椭圆流量计产品特点1. 其依靠被测介质的压头推动椭圆齿轮旋转而进行计量。

2. 粘度愈大的介质,从齿轮和计量空间隙中泄漏出去的泄漏量愈小,因此核测介质的粘皮愈大,泄漏误差愈小,对测量愈有利。

3. 适用于高粘度介质流量的测量,但不适用于含有固体颗粒的流体(固体颗粒会将齿轮卡死,以致无法测量流量)。

如果被测液体介质中夹杂有气体时,也会引起测量误差。

腰轮流量计产品特点1. 重量轻、精度高,安装使用方便。

2. 压力损失小,量程范围大。

3. 主要用于石化、电力、冶金、交通、国防以及商贸等部门对汽油、煤油及轻柴油等油品的计量。

双转子流量计产品特点1. 适用于稀油、轻质油、稠油、含砂量大、含水量大的原油,被测量液体的粘度范围大。

2. 流量计通过的液体流量大。

3. 使用寿命长,准确度高,可靠性强。

4. 压内损失极小。

5. 可直接与计算机联网。

孔板流量计产品特点1. 节流装置结构易于复制,简单、牢固,性能稳定可靠,使用期限长,价格低廉。

2. 应用范围广,全部单相流皆可测量,部分混相流亦可应用。

3. 标准型节流装置无须实流校准,即可投用。

4. 一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。

转子流量计产品特点1. 工业上和实验室最常用的一种流量计。

2. 结构简单、直观、压力损失小、维修方便。

3. 须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。

涡轮流量计产品特点1.抗杂质能力强。

2.抗电磁干扰和抗振能力强。

3.其结构与原理简单,便于维修。

4.几乎无压力损失,节省动力电耗。

电磁流量计产品特点1. 双向测量系统。

2. 传感器所需的直管段较短,长度为5倍的管道直径。

3. 压力损失小4. 测量不受流体密度、粘度、温度、压力和电导率变化的影响5. 主要应用于污水处理方面。

各种流量计的特点介绍

各种流量计的特点介绍

各种流量计的特点介绍什么是流量计?流量计是广泛应用于工业、农业、航空、化工、环境保护等领域中的一种仪器,它用于测量液体、气体或蒸汽的体积流量或质量流量。

流量计可以分为多种类型,每种类型都有其特点和适用场景。

下面我们将介绍几种常见的流量计及其特点。

涡街流量计涡街流量计是一种基于涡街效应原理的流量计,适用于测量液体和气体的流量。

其工作原理是在流体中放置一个旋转的涡街,涡街受流体作用力旋转,流量大小与涡街旋转角速度成正比。

涡街流量计的优点是测量范围广,可测量的介质种类丰富;输出信号稳定,精度高;不管是大流量还是小流量都有较好的测量效果。

但涡街流量计也有其局限性,适用于流量较高、流体粘度较小的场景。

涡轮流量计涡轮流量计的工作原理是在流体中放置一个旋转的涡轮,流体通过涡轮使其旋转,旋转速度与流量大小成正比。

涡轮流量计适用于测量液体和气体的体积流量。

涡轮流量计的特点是精度高,线性度好;测量范围广,可测量的介质种类丰富;响应速度快,输出信号稳定。

不过,在测量流量小于设计值的时候,精度会变低。

质量流量计质量流量计用于测量流体的质量流量,可以测量气体、液体和蒸汽。

其工作原理是根据物质数量守恒定律,通过测量两个时间段内物体的变化量来计算质量流量。

质量流量计的优点是测量精度高、不受压力、温度变化的影响;可以测量含有颗粒或沉淀物的流体;测量稳定,响应速度快。

但质量流量计的缺点是成本高,而且需要进行复杂的安装和维护。

电磁流量计电磁流量计是一种应用电磁原理进行测量的流量计,适用于测量液体的体积流量。

其工作原理是在液体流动时,在液体中产生一个感应电压,通过测量感应电压大小计算流量大小。

电磁流量计的特点是测量精度高、线性度好、调节范围广;使用寿命长、可靠性高;可测量的介质种类丰富;不需要加压、减压装置。

但电磁流量计也有一些局限性,比如无法测量空气、气体和液体混合物等场景。

总结以上是几种常见的流量计及其特点介绍。

选择适合的流量计需要根据场景和测量要求综合考虑。

各种流量计的优缺点和适合的介质

各种流量计的优缺点和适合的介质

各种流量计的优缺点和适合的介质流量计是一种广泛应用于流体工程领域的仪器,用于测量和监测流体的流量。

根据工作原理和结构特点的不同,流量计可以分为多种类型,每种类型都有其独特的优点、缺点和适用介质。

下面将详细介绍几种常见的流量计。

1.机械式流量计机械式流量计是一种基于机械原理测量流体流量的仪器。

最常见的机械式流量计包括涡轮流量计、叶片式流量计和齿轮式流量计等。

(1)涡轮流量计优点:结构简单,易于安装和维护;适用范围广,可用于测量各种液态介质的流量;测量精度高,可达到±1%;响应速度快。

缺点:对流体介质的温度、压力和粘度等参数要求较高;易受颗粒物质的干扰。

适用介质:适用于各种液态介质,如石油、天然气、化工介质等。

(2)叶片式流量计优点:测量精度高,可达到±0.5%;结构简单,价格相对较低;可承受较高的工作压力。

缺点:叶片易受颗粒物与粘度高的介质的磨损;不适用于气体介质;需要一定的直管段来保证测量精度。

适用介质:适用于各种液态介质,如清水、石油和化工介质等。

(3)齿轮式流量计优点:测量精度高,可达到±0.2%;结构简单,工作可靠;适用于高温和高粘度液体的测量。

缺点:对流体介质的温度和粘度等参数要求较高;不适用于气体介质的测量;对颗粒物质敏感。

适用介质:适用于各种液态介质,尤其是粘度较高的液体。

2.电磁式流量计电磁式流量计是利用法拉第电磁感应原理进行测量的仪器,广泛用于液体和气体的流量测量。

优点:可适用于各种导电介质的流量测量;测量范围广,可达到远高于其他流量计的比例;无需添加额外的压力损失装置。

缺点:对被测流体的电导率要求较高;易受磁场干扰。

适用介质:适用于液体和气体,如腐蚀性介质、污水、纯水等。

3.热式流量计热式流量计是通过测量流体对热能的吸收或带走来确定流量的仪器。

优点:对流体介质的温度、压力和粘度要求较低;适用于小流量测量;响应速度快。

缺点:对流体介质的热导率要求较高;易受气泡和颗粒物的干扰。

各种流量计的优缺点及适合的介质

各种流量计的优缺点及适合的介质

各种流量计的优缺点及适合的介质流量计是用来测量介质(液体或气体)流动速度或流量的仪器。

根据其原理和工作方式的不同,可以分为多种不同类型的流量计。

下面将介绍一些常见的流量计,包括其优缺点以及适合的介质类型。

1.管式流量计:管式流量计适用于大流量和腐蚀性介质。

它的优点是结构简单,使用方便,且测量准确。

然而,该类型的流量计容易受到尺寸和形状限制,不适用于需要高精度测量的环境。

2.涡街流量计:涡街流量计适用于液体和气体介质。

它的优点是可测量低于或大于管道直径的流量,且具有较高的精度。

然而,该类型的流量计对介质的粘度和密度变化敏感,容易受到污染和腐蚀的影响。

3.转子流量计:转子流量计适用于中小流量以及液体介质。

它的优点是结构简单,使用方便,且适用于高温和高压环境。

然而,该类型的流量计对介质的粘度和密度变化较为敏感,对流体的脉动和振动也比较敏感。

4.浮子流量计:浮子流量计适用于小流量、低压和液体介质。

它的优点是结构简单,价格低廉,并且适用于粘度较高的流体。

然而,该类型的流量计对流体的侵蚀和污染较敏感,不适用于精度要求较高的场合。

5.磁流量计:磁流量计适用于导电液体介质。

它的优点是非侵入式的设计,不会对流体产生阻力,能够实现较高的精度和范围。

然而,该类型的流量计对介质的电导率敏感,且价格较高。

6.超声波流量计:超声波流量计适用于液体和气体介质。

它的优点是非侵入式的设计,不会对流体产生阻力,且不受介质密度和粘度的影响。

然而,该类型的流量计对管道内部有较强的要求,且价格较高。

总结起来,不同类型的流量计适用于不同的介质和环境条件。

在选择流量计时,需要考虑介质性质、流量范围、精度要求以及成本等因素。

同时,还需要考虑维护和校准流量计的难易程度。

综合考虑这些因素,选择适合的流量计可以确保测量过程的准确性和可靠性。

各种流量计选择的性能特点及要求

各种流量计选择的性能特点及要求

各种流量计选择的性能特点及要求流量计是一种用于测量流体或气体流量的仪器。

不同类型的流量计具有不同的性能特点和要求。

本文将详细介绍几种常见的流量计及其性能特点和要求。

1.转子式流量计转子式流量计是一种常见的机械式流量计。

它通过转子的旋转来测量流体的流速。

该类型的流量计具有以下性能特点和要求:-精度较高:转子式流量计通常具有较高的测量精度,可达到±0.1%-0.5%,适用于需要精确测量的应用。

-大范围测量:转子式流量计的测量范围相对较大,适用于不同流量范围的应用。

-适用于高温、高压介质:转子式流量计通常使用金属材料制成,能够在高温、高压条件下正常工作。

-能耗较低:由于转子式流量计是一种机械式流量计,它不需要外部能源供给,因此能耗较低。

2.涡轮流量计涡轮流量计通过测量在流体中旋转的涡轮的转速来确定流体的流速。

该类型的流量计具有以下性能特点和要求:-精度较高:涡轮流量计的测量精度通常较高,可以达到±0.2%-1%。

-快速响应:涡轮流量计的响应速度非常快,适用于需要快速测量的应用。

-是否适用于高温、高压介质取决于选用的材料:涡轮流量计的工作温度和压力范围取决于所使用的材料。

如使用高温、高压材料制成的涡轮流量计可适用于对高温、高压介质的测量。

-对流体的要求较高:涡轮流量计对流体的粘度和密度有一定要求,对于较大粘度或含有颗粒的流体,需要进行修正计算。

3.电磁流量计电磁流量计通过测量流体中的电磁感应来确定流体的流速。

该类型的流量计具有以下性能特点和要求:-精度较高:电磁流量计通常具有很高的测量精度,可达到±0.25%-0.5%。

-阻塞小:由于电磁流量计没有机械运动部件,所以不存在流体通过的阻塞问题。

-适用于各种导电流体:电磁流量计适用于各种导电流体,不受介质种类的限制。

-对介质的温度、压力要求较高:电磁流量计对介质的温度、压力要求较高,通常需要进行保温、降压等工艺处理。

4.耐压式流量计耐压式流量计通过测量流体通过特定结构的管道或孔隙的流速来确定流体的流速。

各类流量计工作原理优缺点与用途

各类流量计工作原理优缺点与用途

各类流量计工作原理优缺点与用途流量计是用来测量流体中的流量的仪器。

不同类型的流量计有不同的工作原理、优缺点和用途。

1.扬程罐:工作原理:扬程罐是一种基于液位高度来测量流量的设备。

它利用液位的变化来确定流体的流量。

当流体通过扬程罐时会造成液位变化,通过测量液位变化的速度来计算流体的流量。

优点:扬程罐结构简单,操作方便,适用于一般的低流速流体测量。

缺点:扬程罐不适用于高流速流体,精度有限。

用途:常用于低流速的物料流量测量,如水流量测量、油流量测量等。

2.差压流量计:工作原理:差压流量计是基于流体通过管道时,会产生差压的原理来测量流量。

通过测量流体通过流量计前后的压差来计算流体的流量。

优点:差压流量计精度高,可适用于各种流体和工况。

缺点:价格较高,需要定期校准。

用途:差压流量计适用于各种工况和流体,广泛应用于化工、石油、制药等行业中的流量测量。

3.涡街流量计:工作原理:涡街流量计是通过测量流体通过流量计时,产生的涡街频率和流体流速成正比的原理来测量流量。

利用流体通过流量计时形成的涡街产生的压力脉动,通过传感器将脉动转化为电信号,进而测量流体流速。

优点:具有良好的线性和重复性,可用于各种流体测量。

缺点:对液体含固体颗粒较大的流体不适用。

用途:涡街流量计适用于各种液体和气体的测量,广泛应用于供暖、供水、煤气等行业中的流量测量。

4.磁性流量计:工作原理:磁性流量计通过测量液体中的电磁感应来测量流体的流量。

当液体通过磁性流量计时,会在液体中产生垂直于流体流向的电磁感应,通过测量电磁感应的大小来计算流体流量。

优点:能够测量各种液体和气体,无压力损失。

缺点:对液体的电导率要求较高。

用途:磁性流量计适用于对液体和气体进行流量测量的场合,广泛应用于化工、石油、环保等行业中的流量测量。

5.超声波流量计:工作原理:超声波流量计利用超声波在流体中传播的速度来测量流体的流量。

通过向流体发送超声波信号,测量超声波传播的时间,根据传播时间来计算流体的流速和流量。

常用流量计分类及优缺点分析

常用流量计分类及优缺点分析

常用流量计分类及优缺点分析流量计是用于测量流体介质流量的仪器,广泛应用于工业生产和实验室研究等领域。

根据不同的原理和适用场景,流量计可以分为多种类型。

本文将对常用的流量计分类及其优缺点进行分析。

1.电磁流量计电磁流量计是利用法拉第电磁感应定律来测量导电液体流量的一种流量计。

优点是不受介质的压力、温度、密度、粘度等影响,适用于各种导电液体。

同时,电磁流量计没有活动零件,使用寿命长,可靠性高,维护方便。

缺点是价格较高,对介质的电导率要求较高。

2.涡街流量计涡街流量计是根据流体通过涡街产生旋涡的频率与流量成正比关系而设计的一种流量计。

优点是响应速度快,精度高,适用于不同介质的流量测量。

涡街流量计结构简单、体积小,不易堵塞,维护简单。

缺点是高压下的应用有限,且对介质的温度和粘度有一定要求。

3.超声波流量计超声波流量计利用超声波在流体内传播速度与流速成一定比例关系的原理进行流量测量。

优点是适用于各种液体和气体,无需接触介质,不会对流体产生压降,具有较低的能耗。

超声波流量计精度高,响应速度快,可靠性好。

缺点是价格较高,对传感器的安装和使用环境要求较高。

4.质量流量计质量流量计是通过测量介质受力或传感器受振动的质量变化来实现流量测量的。

质量流量计不受温度、压力、粘度等影响,适用于各种气体和液体的流量测量。

质量流量计响应速度快,精度高,具有大量自检和自校验功能。

然而,质量流量计价格较高,对安装条件和环境的要求严格。

综上所述,不同类型的流量计各有优劣。

在选择流量计时,应根据具体的应用场景和要求选取合适的类型。

常见流量计的测量原理及优缺点

常见流量计的测量原理及优缺点

常见流量计的测量原理及优缺点
流量计是一种直接测量流体流量的仪器,其测量原理主要有体积法、重力法、质量法等。

其中,体积法是流量计测量中最常用的方法,通过测量流体通过流量计时的体积来计算流量。

重力法是利用流体受到重力作用时流速的变化来测量流量。

质量法是通过测量流体通过流量计时的质量来计算流量。

1. 压差式流量计:压差式流量计是通过测量流体通过管道时的压差来计算流量的一种仪器。

其测量原理基于伯努利定理,即当流体通过管道时,流速越大,压力越小。

因此,通过在管道中设置压差传感器来测量流体通过管道时的压差,再根据伯努利定理计算流量。

2. 磁流量计:磁流量计是一种利用磁场感应原理测量导电流体流量的仪器。

其测量原理基于法拉第电磁感应定律,即当导电流体通过磁场时,会在流体中产生感应电动势。

通过在管道中设置磁场和电极,测量导电流体通过管道时感应电动势的大小和方向,再根据法拉第电磁感应定律计算流量。

3. 超声波流量计:超声波流量计是一种利用超声波传播速度和方向来测量流体流量的仪器。

其测量原理基于多普勒效应,即当超声波穿过流体时,会受到流体流动的影响,导致超声波频率的变化。

通过在管道中设置超声波发射器和接收器,测量超声波在流体中传播的时间
和频率,再根据多普勒效应计算流量。

4. 涡街流量计:涡街流量计是一种利用流体通过涡街时产生的旋涡频率来测量流量的仪器。

其测量原理基于卡门涡街定律,即当流体通过涡街时,会产生旋涡。

通过在管道中设置涡街和传感器,测量涡街旋涡的频率,再根据卡门涡街定律计算流量。

以上是常见的流量测量原理,不同的测量原理适用于不同的流体和应用场景。

各种流量计优缺点

各种流量计优缺点

各种流量计优缺点流量计是一种用于测量液体、气体或蒸汽流量的仪器。

不同类型的流量计在不同的工作环境和应用中有各自的优缺点。

以下是常见的几种流量计的优缺点:1. 体积流量计(Positive Displacement Flowmeter)优点:-非常准确,适用于测量低流量。

-适用于高粘度和高温介质。

-不需要修正。

缺点:-需要频繁的校准和维护。

-由于流体必须通过一个移动的部件,流体中可能会存在一些污染物。

2. 旋转翅片流量计(Rotary Vane Flowmeter)优点:-测量响应时间快。

-体积小巧,安装方便。

-可用于粘度较高的流体。

缺点:-测量范围有限。

-没有液体密度的自动修正功能。

-翅片容易磨损。

3. 涡街流量计(Vortex Flowmeter)优点:-可以测量稳定的流体和蒸汽。

-几乎不受流体温度和压力的影响。

-长期可靠性高。

缺点:-对于液体中含有较高含固体颗粒的情况,可能会产生误差。

-较低的精度和准确度。

4. 质量流量计(Mass Flowmeter)优点:-可以直接测量液体或气体的质量流量。

-流体密度对测量结果没有影响。

-可以测量多种介质。

缺点:-高精度、高性能的质量流量计价格昂贵。

-对于高压、高温和腐蚀性介质,选择适合的传感器材料和结构变得困难。

5. 超声波流量计(Ultrasonic Flowmeter)优点:-不接触流体,无压降和泄漏。

-适用于大流量的液体和气体测量。

-耐压性能好。

缺点:-测量误差可能会受到气泡、颗粒物的干扰。

-对于含有杂质或气泡的流体测量效果差。

6. 磁性流量计(Magnetic Flowmeter)优点:-适用于大流量、腐蚀性液体的测量。

-不受温度和压力变化的影响。

-对于含固体颗粒的液体也有较好的测量效果。

缺点:-对于非导电液体无法进行准确测量。

-当液体的电导率较低时,测量结果可能有较大误差。

7. 系统测速仪(Pitot Tube)优点:-适用于测量气体和液体的流速。

各种流量计原理优缺点介绍

各种流量计原理优缺点介绍
腰轮流量计
腰轮流量计 原理 腰轮流量计的基本原理同椭圆齿轮流量计相同只是轮子形状略有不同。 腰轮流量计示意图
双转子流量计
双转子流量计 双转子流量计属于目前国际上最新一代容积式流量计,也称为 UF —‖流量计或螺杆流量计。是用于管道中液体流量的测量和控制的精密仪表。 工作原理 一对特殊齿型的螺旋转子直接啮合,无相对滑动,不需要同步齿轮。靠进、出口处较小的压差推动转子旋转。同一时刻,每一个转子在同一横截面上受到流体的旋转力矩虽然不一样,但两个转子分别在所有横截面上受到旋转力矩的合力矩是相等的。因此两个转子各自作等速、等转矩旋转,排量均衡无脉动。螺旋转子每转一周可输出 8 倍空腔的容积,因此,转子的转数与流体的累积流量成正比,转子的转速与流体的瞬时流量成正比。
压差式流量计
孔板流量计
孔板流量计 原理: 当充满管道的流体流经孔板时,将产生局部收缩,流束集中,流速增加,静压力降低,于是在孔板前后产生一个静压力差,该压力差与流量存在着一定的函数关系,流量越大,压力差就越大。通过导压管将差压信号传递给差压变送器,转换成4~20mA.DC标准信号,经流量显示仪,便显示出管道内的瞬时和累积流量。
涡街流量计原理示意图
涡街流量计
01
涡街流量计适用于气体、液体和蒸汽介质的流量测量,其测量几乎不受流体参数(温度、压力、密度、粘度)变化的影响。 涡街流量计在仪表内部无可动部件,使用寿命长;压力损失小;输出为频率信号;有较宽的范围度 30:1 ;测量精度也比较高,为±0.5%~ ±1%。
优点:
02
质量流量计
优点: 具有准确性、重复性、稳定性,而且在流体通道内没有阻流元件和可动部件; 可直接测得质量流量信号,不受被测介质物理参数的影响,精度较高; 可以测量多种液体和浆液,也可以用于多相流测量; 不受管内流态影响,因此对流量计前后直管段要求不高; 其范围度可达100:1。但是它的阻力损失较大,存在零点漂移,管路的振动会影响其测量 缺点: 不能用于测量低密度介质和低压气体;液体中含气量超过某一限制会显着著影响测量值。 对外界振动干扰较为敏感,为防止管道振动影响,大部分型号科里奥利质量流量计的流量传感器安装固定要求较高。 不能用于较大管径,目前尚局限于150(200)mm以下。 价格昂贵。国外价格5000 ~10000美元一套,约为同口径电磁流量计的2 ~5倍;

流量计优缺点分类

流量计优缺点分类

气体流量计工作原理、特点流量计的分类:按工作原理分:一、速度式流量计;二、容积式流量计;三、差压式流量计;四、质量流量计等。

(一)速度式流量计:通过测得气体流速来计算出气体流量的一类流量计。

涡轮流量计、旋进旋涡流量计等。

1、气体涡轮流量计①原理:当气流进放流量计时,首先经过机芯的前导流体并加速,在流体的作用下,由于涡轮叶片与流体流向成一定角度,此时涡轮产生转动力矩,在涡轮克服阻力矩和摩擦力后开始轮动。

当诸力矩达到平衡时,转速稳定,涡轮转动角速度与流量成线性关系,对于机械计数器式的涡轮流量计,通过传动机构带动计数器旋转计数。

对采用电子式流量积算仪的流量计,通过旋转的发讯盘或信号传感器以及放大电路输出代表涡轮旋转速度的脉冲信号,该脉冲信号的频率与流体体积流量成正比。

②特点:主要优点:1、准确度高:气体涡轮流量计,全量程一般为1.0%~2.0%,高准确度型为0.5%~1.0%;可见所有流量计中,它是高准确度的一种。

2、重复性好,一般可达到0.05%~0.2%。

由于其具有良好的重复性,通过经常校准或在线校准后可达到极高的准确度,因此在贸易结算中是优先选用的流量计之一。

3、范围度宽,中大口径一般可达20:1以上,小口径为10:1,始动流量也较低。

4、压力损失较小,在常压下一般为0.1~0.5kPa。

5、结构紧凑,体积轻巧,安装使用比较方便,流通能力大。

6、可采用多种显示方式。

可只带机械计数器或只配普通型流量积算仪,也可以在机械计数器上增加温压补偿仪,且可长期采用电池供电(可连续运行两年以上,有的产品长达五年),使用方便。

7、由于一般采用脉冲频率信号输出,适于总量计量及与计算机连接,无零点漂移,抗干扰能力强。

同时若采用高频信号输出,可获得很高的频率信号(3~4)kHz,信号分辨力强。

8、对于大口径测量可制成插入型,压力损失小,价格低,可不断流取出,安装维护方便。

主要缺点:1、要长期保持校准特性,需要定期人。

四种常用流量计的优缺点

四种常用流量计的优缺点

四种常用流量计的优缺点一、孔板流量计孔板流量计是将标准孔板与多参量差压变送器(或差压变送、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及天然气的流量。

广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。

孔板流量计被广泛适用于煤炭、化工、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具在国民经济中占有重要的地位。

在过程自动化仪表与装置中,流量仪表有两大功用:作为过程自动化控制系统的检测仪表和测量物料数量的总量表。

(一)优点:1.标准节流件是全用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量传感器中也是唯一的;2.结构易于复制,简单、牢固、性能稳定可靠、价格低廉;3.应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆可以测量;4.检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产。

(二)缺点:1.测量的重复性、精确度在流量传感器中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高;2.范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1~4∶1;3.有较长的直管段长度要求,一般难于满足。

尤其对较大管径,问题更加突出;4.压力损失大;5.孔板以内孔锐角线来保证精度,因此传感器对腐蚀、磨损、结垢、脏污敏感,长期使用精度难以保证,需每年拆下强检一次;6.采用法兰连接,易产生跑、冒、滴、漏问题,大大增加了维护工作量。

二、容积式流量计容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类。

它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。

容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双转子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计、湿式气量计及膜式气量计等。

四种常见流量计的应用范围

四种常见流量计的应用范围

四种常见流量计的应用范围流量计是工业自动化中常用的一种仪表,它通常用来测量液体或气体的流量。

随着技术的不断发展和进步,现今市场上出现了很多种流量计,各种流量计的适用场景也有所不同。

本文将介绍四种常见流量计的应用范围。

涡轮流量计涡轮流量计是一种常见的流量计,它利用涡轮转子转动的原理来测量液体或气体的流速。

它适用于较干净的液体,例如水和汽油等。

涡轮流量计的特点是精度高,可以测量较小的流量,而且响应速度比较快。

因此,涡轮流量计广泛应用于工业和实验室的测量领域,例如化学实验中的物质流速测量以及各种流体系统的流速控制。

磁性流量计磁性流量计是另一种常见的流量计,它是通过液体中的电导率变化来测量流速的。

磁性流量计适用于导电液体,如水和混合液等。

磁性流量计的优点是精度高,而且不受液体的粘度、密度及温度的变化影响。

磁性流量计广泛应用于石油、化学、医药、食品和饮料工业等。

超声波流量计超声波流量计是一种通过超声波测量液体或气体流速的流量计。

这种流量计适用于各种液体和气体,而且不会影响液体的流动。

超声波流量计的优点是精度高、测量范围广、响应时间短、维护简单等。

因此,超声波流量计适用于各种流量测量需求严格的场合,例如水电站、石油化工、市政工程等。

振荡管流量计振荡管流量计是利用振荡管内振动的原理来测量液体或气体流动的一种流量计。

这种流量计适用于低粘度的气体和液体,例如水和油。

振荡管流量计的优点是响应速度快、精度高、结构简单、维护方便等。

振荡管流量计广泛应用于航空、冶金、制药、石油和化工等领域。

综上所述,四种常见流量计各有其适用场景。

涡轮流量计和磁性流量计适用于不同种类的液体或气体测量,超声波流量计适用于各种流量测量需求严格的场合,振荡管流量计适用于低粘度气体和液体。

在选择流量计的时候,需要根据具体的测量需求和实际情况进行选择。

10种流量计的说明

10种流量计的说明

10种流量计的说明流量计是用于测量液体、气体、蒸汽等流体在管道内的流量的设备。

根据测量原理的不同,流量计也可以分为多种类型。

本文将介绍10种常见的流量计,并分别从其原理、优缺点等方面进行说明。

1. 纯浮子式流量计纯浮子式流量计的主要原理是利用一根垂直的管道,内部设置有一个浮子,并用取压孔来测量压力差,从而推算出流量大小。

纯浮子式流量计的特点是测量简单、成本较低,但测量范围较窄。

2. 激磁式流量计激磁式流量计是一种电磁测量流量的装置,主要由测量管、电极、激磁线圈和送信器等组成。

其工作原理是通过电磁感应作用,测量液体或气体在管道中的流量。

使用时需要被测流体具有一定的导电性。

3. 转子式流量计转子式流量计是一种利用液体或气体的动力作用测量流量的装置,主要由转子、测量管、传感器等组成。

其工作原理是通过液体或气体的旋转作用,驱动转子旋转并从而测量流量。

转子式流量计优点是测量准确,缺点是易被介质中的固体颗粒等物质卡住。

4. 涡街流量计涡街流量计是利用流体的惯性作用来完成流量测量的装置,主要由测量管、涡轮、传感器等组成。

其优点是适用范围广,可以精确地测量多种流体,但对介质粘度等性质有一定的要求。

5. 爆破片流量计爆破片流量计是一种由一般管道中可以容纳的气体产生爆炸所以能的流量计。

其主要原理是当管道内的气体流量达到一定程度时,会产生滞留作用,促使元件产生爆炸,再通过测量声音或振动等参数来推算流量大小。

爆破片流量计的优点是精度较高,但因其设置有爆破装置,使用时较为危险。

6. 落体式流量计落体式流量计利用重力来完成测量液体流量的装置,主要由测量管、落体装置等组成。

其工作原理是通过让被测液体自由落体,并通过时间和液体测量管的标定来计算流量大小。

落体式流量计的主要优点是结构简单、适用于粘度较高的液体,但数据处理较为麻烦。

7. 均质器流量计均质器流量计是利用液体在均质器中的压力平衡来测量流量的装置,主要由均质器、流量计、变送器等组成。

各种流量计的优缺点和适合的介质

各种流量计的优缺点和适合的介质

各种流量计的优缺点及适合的介质一、电磁流量计1、优点(1)电磁流量计可用来测量工业导电液体或浆液。

(2)无压力损失。

(3)测量范围大,电磁流量变送器的口径从到。

(4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。

2、缺点(1)电磁流量计的应用有一定的局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。

另外在高温条件下其衬里需考虑。

(2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。

按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。

如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。

(3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。

变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。

在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。

安装地点不能有振动,不能有强磁场。

在安装时必须使变送器和管道有良好的接触及良好的接地。

变送器的电位与被测流体等电位。

在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。

(4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。

(5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。

如100mm口径仪表内径变化1mm会带来约2%附加误差。

(6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。

为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。

应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。

电磁流量计和超声波流量计哪个更好用

电磁流量计和超声波流量计哪个更好用

电磁流量计和超声波流量计哪个更好用电磁流量计和超声波流量计各有其优势和局限性,哪个更好用取决于具体的应用场景和需求。

以下是对两者优缺点的详细比较:电磁流量计优点高精度测量:电磁流量计不受流体密度、粘度、温度、压力变化的影响,在一定电导率范围内,测量精度高。

宽量程比:量程比宽,可达1:100,适用于不同的流量测量需求。

无压力损失:由于测量管内无阻碍流动部件,不会对流体造成额外的压力损失。

良好的耐腐蚀性:可选用不同的电极和衬里材料,适合测量多种腐蚀性介质。

无机械惯性:响应灵敏,可以测量瞬时脉动流量,线性好。

安装简便:直管段要求相对较低,安装和维护相对简单。

局限性对介质电导率有要求:不能测量电导率很低的液体介质,如蒸馏水、石油制品或有机溶剂等。

不能测量非导电介质:如气体、蒸汽等,仅限于测量导电液体。

受温度限制:由于测量管绝缘衬里材料受温度的限制,不能测量高温高压流体。

易受电磁干扰:流量计的传感器信号较小,易受外界电磁干扰的影响。

维护需求:如果测量介质中含有污垢,电极上污垢物达一定厚度可能导致仪表测量误差加大。

成本问题:相比于某些其他类型的流量计,电磁流量计的购置和维护成本可能较高。

超声波流量计优点非接触式测量:不会改变流体的流动状态,不会产生压力损失,且便于安装。

测量范围广:可以测量不易接触、不易观察的流体流量和大管径流量。

可测非导电介质:能够测量强腐蚀性介质和非导电介质的流量。

测量不受流体物性参数影响:测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。

局限性稳定性较差:长时间测量下,换能器可能产生疲劳,影响稳定性。

直管段要求高:如果直管段不能满足标准,测量精度会受到影响。

抗干扰能力差:易受气泡、结垢、泵及其它声源混入的超声杂音干扰,影响测量精度。

温度测量范围有限:一般只能测量温度低于200℃的流体。

安装不确定性:安装的不确定性会给流量测量带来较大误差。

结论综上所述,电磁流量计和超声波流量计各有优劣,选择哪个更好用需要根据具体的应用场景和需求来决定。

常用流量计的基础知识和比较

常用流量计的基础知识和比较

常用流量计的基础知识和比较流量计是一种用于测量流体流动速度和体积的仪器。

常用的流量计主要有:差压式流量计、涡街式流量计、电磁式流量计、超声波流量计和质量流量计。

本文将为您介绍这些常用流量计的基础知识和比较。

一.差压式流量计差压式流量计是通过测量绕流体管道的压差(即扩压器前后的压差)来计算流量的。

其优点是测量范围较宽,从小到几毫升/分钟到大量的水/秒不等,测量误差较小、可靠性高。

但是,差压式流量计对管道结构和管道粗糙度的要求较高,对于粘度和密度变化较大的流体,测量误差会增大。

涡街式流量计是通过测量涡轮绕轴线自转的角速度来计算流量的。

其优点是测量范围广泛,可以适应不同流体粘度的测量,并且安装与使用方便。

但是,涡街式流量计对流体在管道中的流动方向要求比较苛刻,具有一定的压力损失,且易受流体中颗粒物的影响。

电磁式流量计是通过测量液体通过磁场产生的电动势来测量液体的流量,其优点在于测量范围非常广泛,测量误差小,使用寿命长,对于含有颗粒物和腐蚀性强的流体,电磁式流量计有很好的稳定性和精度。

但是,其安装必须采用同轴式电极或成对电极,仪器成本较高,也需要较高的安装精度。

四.超声波流量计超声波流量计是通过测量超声波传播速度和方向,来测量流量的。

其优点在于测量范围广泛,不易受流体颜色、浊度、气泡和颗粒物的影响,具有使用方便等优点。

但是,超声波流量计在某些情况下会受到流体波动和结构振动的影响,其测量精度和稳定性有待更进一步改善。

五.质量流量计质量流量计是一种基于质量守恒原理和热力学平衡原理测量瞬时流量的仪器。

其优点在于可以不受温度、压力和流体密度等参数的影响,能够精确测量几乎所有的流体,并且可以反映温度、压力等流体参数变化的影响,具有系统灵敏性和速度性能高等优点。

但是,质量流量计具有高昂的价格和较高的维护成本,需要使用优质的精密元器件,并需要高级的使用和维护技术人员。

总体来看,不同的流量计具有不同的优缺点,一般应根据实际需要选择合适的流量计。

各种流量仪表的原理、优缺点、特点和注意事项

各种流量仪表的原理、优缺点、特点和注意事项
适应于小管径和底流速测量2.用于低雷诺数流体测量3.对上游直管道的长度的要求低4.有较宽的流量范围度。5.压力损失小
·耐高温、高压:从-80℃至+200℃·可测量低流速介质,流速大于0.1m/s即可测量·可测量粘度大,含有泥沙的介质·计量准确,精度高·压损小,小口径是标准孔板的一半·安装维护简单便捷
2.金属管转子流量计
三.容积式流量计
1.椭圆齿轮流量计
冲击力作用
15~300mm
体积小,流量范围大,测量精度高,
含机械杂质的流体
1.适应于各种不同黏度和含有小颗粒固体杂质2.压力损失小3.振动及噪声很小
1.容积式流量计没有前置直管段要求2.容积式流量计结构复杂,体积大,笨重,尤其较大口径的容积式流量计体积庞大,故一般只适用于中小口径。
3避免附近有大电机、大变压器等,以免引起电磁场干扰;
4.易于实现传感器单独接地的场所;
尽.可能避开周围环境有高浓度腐蚀性气体
1.测量管内无组件,压力损失为零,不易堵塞2。电磁流量计可用来测量工业导电液体或浆液。3.无压力损失。4.测量范围大 电磁流量变送器的口径从2.5m到2.6m5.电磁流量计测量被测流体工作状态下的体积流量6.测量原理中不涉及流体的温度、压力、密度和粘度的影响
1.尽可能避免测量管内会变成负压;
2.选择振动小的场所,特别对一体型仪表;
二.转子流量计
1.玻璃转子流量计
节流
50mm以下的小流量测量最小可以是1.5~4mm
1.适应于小管径和底流速测量2.用于低雷诺数流体测量3.对上游直管道的长度的要求低4.有较宽的流量范围度。5.压力损失小
1.结构简单,工作可靠,压力损失小,维修方便2.结构简单,价格便宜,使用方便
绝大部分转子流量计必须垂直安装在无振动的管道上,不应有明显的倾斜,流体自下而上流过仪表
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、电磁流量计1、优点(1)电磁流量计可用来测量工业导电液体或浆液。

(2)无压力损失。

(3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。

(4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。

2、缺点(1)电磁流量计的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。

另外在高温条件下其衬里需考虑。

(2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。

按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。

如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。

(3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。

变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。

在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。

安装地点不能有振动,不能有强磁场。

在安装时必须使变送器和管道有良好的接触及良好的接地。

变送器的电位与被测流体等电位。

在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。

(4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。

(5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。

如100mm口径仪表内径变化1mm会带来约2%附加误差。

(6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。

为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。

应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。

但改进的仪表结构复杂,成本较高。

(7)价格较高。

二、超声波流量计1、优点(1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。

它不会改变流体的流动状态,不会产生压力损失,且便于安装。

(2)可以测量强腐蚀性介质和非导电介质的流量。

(3)超声波流量计的测量范围大,管径范围从20mm~5m.(4)超声波流量计可以测量各种液体和污水流量。

(5)超声波流量计测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。

可以做成固定式和便携式两种形式。

2、缺点(1)超声波流量计的温度测量范围不高,一般只能测量温度低于200℃的流体。

(2)抗干扰能力差。

易受气泡、结垢、泵及其它声源混入的超声杂音干扰、影响测量精度。

(3)直管段要求严格,为前20D,后5D。

否则离散性差,测量精度低。

(4)安装的不确定性,会给流量测量带来较大误差。

(5)测量管道因结垢,会严重影响测量准确度,带来显著的测量误差,甚至在严重时仪表无流量显示。

(6)可靠性、精度等级不高(一般为1.5~2.5级左右),重复性差。

(7)使用寿命短(一般精度只能保证一年)。

(8)超声波流量计是通过测量流体速度来确定体积流量,对液体应该测量它的质量流量,仪表测量质量流量是通过体积流量乘以人为设定的密度后得到的,当流体温度变化时,流体密度是变化的,人为设定密度值,不能保证质量流量的准确度。

只能在测量流体速度的同时,又测量了流体密度,才能通过运算,得到真实质量流量值。

(9)价格较高。

三、涡街流量计1、优点(1)涡街流量计无可动部件,测量元件结构简单,性能可靠,使用寿命长。

(2)涡街流量计测量范围宽。

量程比一般能达到1:10。

(3)涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。

一般不需单独标定。

它可以测量液体、气体或蒸汽的流量。

(4)它造成的压力损失小。

(5)准确度较高,重复性为0.5%,且维护量小。

2、缺点(1)涡街流量计工作状态下的体积流量不受被测流体温度、压力、密度等热工参数的影响,但液体或蒸汽的最终测量结果应是质量流量,对于气体,最终测量结果应是标准体积流量。

质量流量或标准体积流量都必须通过流体密度进行换算,必须考虑流体工况变化引起的流体密度变化。

(2)造成流量测量误差的因素主要有:管道流速不均造成的测量误差;不能准确确定流体工况变化时的介质密度;将湿饱和蒸汽假设成干饱和蒸汽进行测量。

这些误差如果不加以限制或消除,涡街流量计的总测量误差会很大。

备注:在水达到饱和温度后,如定压加热,则饱和水开始汽化,在水没有完全汽化之前,含有饱和水的蒸汽叫湿饱和蒸汽,简称湿蒸汽。

湿饱和蒸汽继续在定压条件下加热,水完全汽化成蒸汽时状态叫干饱和蒸汽,干饱和蒸汽继续定压加热,蒸汽温度上升而超过饱和温度时,就变成过热蒸汽。

(3)抗振性能差。

外来振动会使涡街流量计产生测量误差,甚至不能正常工作。

通道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。

大管径影响更为明显。

(4)对测量脏污介质适应性差。

涡街流量计的发生体极易被介质脏污或被污物缠绕,改变几何体尺寸,对测量精度造成极大影响。

(5)直管段要求高。

专家指出,涡街流量计直管段一定要保证前40D后20D,才能满足测量要求。

(4)耐温性能差。

涡街流量计一般只能测量300℃以下介质的流体流量。

四、孔板流量计1、优点(1)标准节流件是全世界通用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量计中亦是唯一的。

(2)结构易于复制,简单、牢固、性能稳定可靠、价格低廉;(3)应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆有产品。

(4)检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产。

2、缺点(1)测量的重复性、精确度在流量计中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高。

(2)范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1 ~ 4∶1 (3)有较长的直管段长度要求,一般难于满足。

尤其对较大管径,问题更加突出。

(4)压力损失大;通常为维持一台孔板流量计正常运行,水泵需要附加动力克服孔板的压力损失。

该附加耗电量可直接由压力损失和流量计算确定。

一年约需多耗电数万度,折合人民币数万元。

下表中列出了孔板在正常压力损失情况下的能耗计算结果。

其中运行天数按三百五十天计算,电价按0.35元/度计算。

由表中计算电耗数据可见,孔板的附加运行费用是极高的,而采用弯管流量计该运行费用为零。

(5)孔板以内孔锐角线来保证精度,因此对腐蚀、磨损、结垢、脏污敏感,长期使用精度难以保证,需每年拆下强检一次。

(6)采用法兰连接,易产生跑、冒、滴、漏问题,大大增加了维护工作量。

五、热式质量流量计(恒温差)1、优点(1)球阀安装,安装拆卸方便。

并可以带压安装。

(2)基于金氏定律,直接测量质量流量。

测量值不受压力和温度影响。

(3)响应迅速。

(4)量程范围大,管道式安装最小可以测量8.8mm管道的流量,最大可以测到30‘’(5)插入式类型的流量计,一支流量计可以用于测量多种管径。

2、缺点(1)精度不及其他类型流量计,一般为3%。

(2)适用范围窄,只能用于测量干燥的非爆炸性的气体,如压缩空气、氮气、氩气及其他中性气体。

六、弯管流量计1、优点(1)无任何附加节流件或插入件,无附加阻力损失,可大量降低流体在管道内输送的动力消耗,节约能源。

(2)弯管传感器对微量磨损不敏感,可保证流量计长期高精度运行。

这一点弯管流量计有着不可比拟的优势,而应用最经典的孔板流量计,也同样存在磨损问题,如孔板流量计的重要部位入口锐角对微量磨损就十分敏感,对精度影响很大,所以孔板每年必须进行一次或一次以上的强制性磨损检查。

(3)可测量较脏污流体,由于弯管传感器是一个90°标准弯头,没有阻力件,不会被脏污介质堵塞。

(4)可采用直接焊接法进行安装,而孔板的不耐磨损给焊接式孔板流量计保持长期高精度正常使用带来了困难,而弯管流量计完全可以满足直接焊接法安装的一切技术条件,它的耐磨损、免维护、长周期、高精度的特点,使焊接法安装这一优势得到了充分发挥。

(5)量程范围宽,直管段要求不严,适应性强直管段要求不太严,一般只需要保证前5D后2D即可(6)安装环境广适应力强。

弯管传感器可在高温、高压、粉尘、振动、潮湿及其它恶劣环境、安装条件差的场合中正常使用。

(7)结构简单,价格低廉,使用寿命长。

2、缺点(1)小流速测量困难。

气体流速需大于2m/s,液体流速需大于0.2m/s。

(2)在工作现场需要增加转弯或使用”S”型直管段传感器。

(3)高精度传感器的加工成本较高。

(4)弯管传感器几何结构尺寸决定了流量系数a(R*D)。

现有管道弯头打孔取压并不能取代弯管传感器。

从而限制了弯管流量计使用的广泛性及方便程度。

弯管流量计只宜安装在弹性变形的管道,而不宜在塑性变形的管道。

七、V锥流量计1、优点(1)主管段要求短,在前后没有其他节流作用的设备时,可以没有直管段。

因为锥形结构使得它就有校正流场,使流场变均匀的功能。

(2)测量量程比宽。

因为低压取压在管道中央取得,管道中央为流场相对于整个截面内流场最稳定的地方,取得的压力震荡小,故可以测量的下限更低,在上限不变的情况下,下限降低则量程比变的更宽可达10:1。

(3)测量精度可以达到标准孔板流量计相同的精度,甚至更高,轻易达到1.5级。

(4)压损更小。

在同样的流通面积及流速下,V锥流量计造成的压损更小。

一般为孔板流量计压损的1/4。

(5)节流边缘不易被磨损,流出系数能保持长期稳定不变,(因为节流装置为一锥形,当流体经过该锥体时会产生一个边界层效应,即会使流体离开节流边缘一个微小的距离,正是这个微小的距离保护了节流边缘不易被磨损)使其标校周期可以更长。

2、缺点(1)对每一台流量计都要实流标定它的流出系数,增加制造成本。

没有国家标准支持。

(2)只能测量单方向流体,因为v锥的形式决定了它只能测量单向流体。

八、楔式流量计1、优点(1)特别适合于高粘度、低雷诺数、带悬浮颗粒或气泡的介质测量。

(2)测量精度不受流体介质介电常数等特性的影响和限制。

(3)具有流体粘度变化、温度变化、密度变化等补偿功能。

(4)具有双向流量测量功能。

(5)测量精度高。

(6)结构简单、牢固、高可靠性,安装方便,运行维护费用低。

(7)无运动部件,无磨损,长期使用时不需要重新标定。

2、缺点(1)(2)(3)。

相关文档
最新文档