八年级数学上册知识点归纳第二章
八年级上第二章数学知识点

八年级上第二章数学知识点概述八年级上册第二章是数学知识点较多的一个章节,主要讲解了分式的乘除、分式的加减、分式的化简、分式方程、正比例函数、反比例函数等重要知识点。
这些知识对于学生掌握数学基础知识,尤其是在日常生活中运用数学的过程中非常重要。
一、分式的乘除分式是数学知识的一个重要部分,它在数学中有着广泛的应用。
在乘除分式的运算中,我们需要把分母相乘或相除,然后把分子相乘或相除,最后对结果进行合理化简。
这样可以得到我们所需要的简单分式。
在运算过程中,我们需要注意分母是否为零,以及如何简化分式使得答案更加准确。
二、分式的加减分式的加减是我们在日常生活中应用最多的运算,例如在购物、比价以及账户余额计算等方面都需要运用到分式的加减运算。
在分式的加减中,我们需要首先找到所有的公因数,然后对分子进行化简,最后得到运算结果。
在具体计算的时候,还需要注意分母是否为零的情况。
三、分式的化简分式的化简在求解数学问题时也是非常重要的一个环节。
在化简过程中,我们需要把分子、分母的公因式约掉,从而使得分数的形式简单化。
同时,在化简运算时,还需要注意约分的原则和方法。
四、分式方程分式方程在数学中也是一个非常基础的知识点。
在分式方程中,我们需要把一个分式的值与一个已知的数或其他分数相等,然后通过分式的加减、乘除运算把变量求出来。
在计算分式方程的过程中,我们需要注意多种情况的处理,例如分母为零的情况、公因式处理等。
五、正比例函数和反比例函数正比例函数和反比例函数是八年级上册第二章中的重点内容之一。
这两种函数可以解决很多实际问题,例如距离、体积、面积等计算。
正比例函数的特点是变量之间成正比例关系,而反比例函数的特点是变量之间成反比例关系。
在解决问题的过程中,我们需要首先确定函数的性质,然后运用相应的解题方法,最后得出问题的答案。
综上所述,八年级上册第二章数学知识点是一个十分重要的知识点。
学生应该仔细阅读、认真理解,并在课堂上积极参与讨论,加强对这些知识点的掌握。
(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
八年级上册数学第二章知识点总结

八年级上册数学第二章知识点总结一、实数的概念与分类。
1. 有理数与无理数。
- 有理数:整数和分数统称为有理数。
整数包括正整数、零、负整数;分数包括有限小数和无限循环小数。
例如,2,-3,(1)/(2),0.25(有限小数,可化为(1)/(4)),0.3̇(无限循环小数,可化为(1)/(3))都是有理数。
- 无理数:无限不循环小数叫做无理数。
常见的无理数有三类:一是开方开不尽的数,如√(2),sqrt[3]{3}等;二是含有π的数,如π,2π等;三是有规律但不循环的无限小数,如0.1010010001·s(每两个1之间依次多一个0)。
2. 实数的分类。
- 按定义分类:实数可分为有理数和无理数。
有理数又可分为整数(正整数、零、负整数)和分数(正分数、负分数);无理数就是无限不循环小数。
- 按正负性分类:实数可分为正实数(正有理数、正无理数)、零、负实数(负有理数、负无理数)。
二、平方根、算术平方根与立方根。
1. 平方根。
- 定义:如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根(或二次方根)。
例如,因为(±2)^2=4,所以±2是4的平方根。
- 表示方法:正数a的平方根记为±√(a),读作“正负根号a”。
- 性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 算术平方根。
- 定义:正数a的正的平方根叫做a的算术平方根,记为√(a),0的算术平方根是0。
例如,4的算术平方根是√(4) = 2。
- 性质:算术平方根√(a)具有双重非负性,即a≥slant0且√(a)≥slant0。
3. 立方根。
- 定义:如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根(或三次方根)。
例如,因为2^3=8,所以2是8的立方根。
- 表示方法:a的立方根记为sqrt[3]{a}。
- 性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
北师大版数学八年级上册 第二章 实数 知识点总结

第二章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
北师大版数学八年级上册 第二章 实数 知识点总结

第二章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性: -a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
八年级上册数学第二章知识点

八年级上册数学第二章知识点八年级的数学课程中,第二章是关于代数式和方程的学习。
本章主要包括三个方面的知识点:代数式的概念及其基本运算、一元一次方程以及解一元一次方程的基本方法。
下面将对这三个方面进行详细的介绍与讲解。
一、代数式的概念及其基本运算代数式常常用字母表示数,而它的数值大小则与字母所代表的数有关系。
代数式的加减法是很简单的,同类项相加或相减即可。
同类项是指字母与它们的指数都相同的项。
比如,3x和5x就是同类项,因为它们的字母是一样的,指数也相同。
而3x和5y就不是同类项,因为它们的字母和指数都不相同。
乘法运算时,可以直接将代数式中各项的系数相乘,并且将各个字母的指数相加即可。
例如,(2x^2)(3x^3) = 6x^5。
同样地,除法运算也可以通过将代数式中各项的系数相除,并且将各个字母的指数相减来进行。
二、一元一次方程及解法一元一次方程是指只有一种字母,且这种字母的最高指数为1的方程。
一元一次方程的一般形式为ax+b=0,其中a和b都是已知数,x为未知数。
解一元一次方程的基本方法是移项、合并同类项、化简并求解。
具体来讲,就是通过将方程两边同时加上或减去一个数,使得方程中一边只有x,另一边则成为已知数的形式,从而解出未知数x的值。
三、解一元一次方程的基本方法解一元一次方程的方法有以下几种:1. 移项法。
这种方法是指将方程中含有未知量的项移到等式的另一侧,从而消去方程中的一部分数,并让含未知量的项单独出现在等式的一侧。
一般来说,可以通过加上或减去某个数来移项。
例如,对于方程2x+3=7,我们可以先将3移项,即2x=7-3,然后再将2x除以2,即得到x=2。
2. 相消法。
相消法是通过将方程中等式两边的相同项相减来消去其中一个项的方法。
通常情况下,相消法只适用于同时具有正负号的项,因为只有这种情况下它们才能相互抵消。
例如,对于方程2x-3=2x+5,我们可以将等式两边的2x相减,从而消去2x,即得到-3=5,但是这个方程明显无解。
八年级上册数学第一二章知识点

八年级上册数学第一二章知识点
第一章:有理数
1. 整数的表达形式及其运算法则
- 整数是由正整数、负整数和0组成的数集,用Z表示。
- 整数的加法:同号相加,异号相减。
- 整数的减法:加上相反数。
- 整数的乘法:不同号取负,相同号取正。
- 整数的除法:只要除数与被除数不同时,商的符号为负;若同号,商的符号为正;若余数有,则商的符号与被除数相同。
2. 分数的定义及其运算法则
- 分数是一个整数除以整数,它由一个有限个代表数的符号、一个整数(分子)和一个正的整数(分母)组成,常用a/b表示,或用带分数形式表示。
- 分数的四则运算法则:加法:通分后分子相加;减法:通分后分子相减;乘法:分子相乘,分母相乘;除法:乘以倒数,分子相乘,分母相乘。
第二章:方程与不等式
1. 一元一次方程及其解法
- 一元一次方程是指只含有一个未知数的一次方程,它的一般形式为ax + b = 0。
- 解一元一次方程的方法:可用加减法易方程、可以用除法等价方程、可以利用等式的性质转化方程、可以用分式转化方程、可以利用小学学过平衡法。
2. 一元一次不等式及其解法
- 一元一次不等式是指只含有一个未知数的一次不等式,它的一般形式为ax + b > 0或ax + b < 0。
- 解一元一次不等式的方法:可以通过对不等式的两边同时加减、乘或除同一个不为零的数来保持等号方向性质不变。
以上为八年级上册数学第一二章的知识点概述,详细内容请查阅教材。
八上数学第二章实数

八上数学第二章实数八年级数学上册第二章“实数”主要涉及实数的概念、性质及其运算。
以下是该章节的主要内容:1.平方根和算术平方根:非负实数a的算术平方根是满足x^2=a的实数x;非负实数a的平方根是满足x^2=a的实数x,正数有两个平方根,它们互为相反数,0只有一个平方根,即0本身,负数没有平方根。
2.无理数:无限不循环小数称为无理数。
常见的无理数包括无限不循环小数、开方开不尽的数等。
3.实数的分类:实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是指不能表示为两个整数的比的数。
4.实数的运算:实数的加、减、乘、除运算与正数和0的运算规则相同,但需要注意负数的运算。
在运算过程中,需要注意运算法则和运算顺序,以免出现错误。
5.实数的应用:实数在实际生活中有着广泛的应用,例如测量、计算、工程设计等方面都需要用到实数。
在学习这一章时,学生需要理解并掌握实数的概念、性质和运算规则,同时还需要能够运用所学知识解决实际问题。
此外,学生还需要注意与之前所学有理数知识的联系和区别,以便更好地掌握数学基础知识。
实数这一章的重点内容还包括以下几个方面:1.平方根的性质:实数的平方根具有一些重要的性质,例如正实数的平方根有两个,它们互为相反数,其中正的平方根就是算术平方根。
此外,当被开方数的小数点向右每移动两位时,其算术平方根的小数点会向右移动一位。
2.立方根的性质:实数的立方根也有其独特的性质。
例如,当被开方数的小数点每向右移动三位时,其立方根的小数点会向右移动一位。
3.实数的表示:实数可以用不同的方式来表示,例如根号形式、小数形式和分数形式等。
此外,实数还可以在数轴上表示出来,这样可以更直观地理解实数的性质和运算。
4.实数的运算性质:实数的加、减、乘、除等运算具有一些重要的性质,例如运算法则、运算律和运算顺序等。
学生需要理解和掌握这些性质,以便能够正确地进行实数的运算。
5.实数的应用:实数在实际生活中有着广泛的应用,例如测量、计算、工程设计等方面都需要用到实数。
浙教版八年级数学上册第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形的轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.2.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合的点是对应点,叫做对称点.[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.ﻭ[图形轴对称的性质]①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称.[轴对称与轴对称图形的区别][线段的垂直平分线](1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.2。
2等腰三角形+2。
3等腰三角形性质定理+2。
4等腰三角形判定定理[等腰三角形]★1. 有两条边相等的三角形是等腰三角形。
★2。
在等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.[等腰三角形的性质]★性质1:等腰三角形的两个底角相等(简写成“等边对等角”)★性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).特别的:(1)等腰三角形是轴对称图形。
(2)等腰三角形两腰上的中线、角平分线、高线对应相等.[等腰三角形的判定定理]★如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边").特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形. (2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.[等边三角形]三条边都相等的三角形叫做等边三角形,也叫做正三角形.[等边三角形的性质]★等边三角形的三个内角都相等,•并且每一个内角都等于60°[等边三角形的判定方法]★(1)三条边都相等的三角形是等边三角形;★(2)三个角都相等的三角形是等边三角形;★(3)有一个角是60°的等腰三角形是等边三角形.2。
八年级数学上册知识点总结

《数学》(八年级上册)知识点总结(北师大版)第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222a b c += 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222a b c +=,那么这个三角形是直角三角形。
3、勾股数:满足222a b c +=的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
八年级上册数学-第二章-知识点复习总结

第二章:实数本章的知识网络结构:知识梳理: 知识点一:平方根如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:当a=0时,它的平方根只有一个,也就是0本身;当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
当a <0时,也即a 为负数时,它不存在平方根。
例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。
(3)若x 的平方根是±2,则x= ;16的平方根是 (4)当x 时,x 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?知识点二:算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
特别规定:0的算术平方根仍然为0。
(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
(3) 算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; C.81的平方根是3±; D.0没有平方根; (2)下列各式正确的是 ( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。
(4)若x x -+有意义,则=+1x ___________。
(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。
浙教版八年级上册数学第二章知识点

浙教版八年级上册数学第二章知识点第二章数的开方1. 正数的开方:如果一个正数 a 的平方等于 b(a^2=b),那么 b 就是 a 的平方根,记作√b=a。
2. 平方根的性质:- 非负数的平方根也是非负数。
√b≥0。
- 如果 a>0,那么 a 的平方根是唯一的。
即若 a>0,b≥0,并且 a 的平方根是 b,那么 b 的平方也必然等于 a。
- √a的值域是 [0,+∞),当 a>0 时,a=0的平方根是0。
- 0的唯一平方根是0。
3. 开方与乘方的关系:- 开平方和乘方互为逆运算,即 a 的平方根的平方等于 a,a≥0,√a^2=a。
- 乘方和开平方的运算顺序要分清楚,a 的 m 次方开 n 次方等于 a 的 m/n 次方,即(√a)^m=√(a^m)。
4. 完全平方的性质:- 如果一个正整数 a 可以表示成 b 的平方,那么 a 可以表示成两个相等的数的和。
即 a=b^2=a/2+a/2。
5. 开立方与立方根:- 正数 a 的三次方等于 b(a^3=b),那么 b 就是 a 的立方根,记作∛b=a。
6. 立方根的性质:- 非负数的立方根也是非负数。
∛b≥0。
- 任何一个实数的立方根都是唯一的。
- ∛a的值域是 (-∞,+∞),当 a>0 时,a=0的立方根是0。
7. 二次根式:- 形如√a 的式子称为二次根式,其中 a 是非负实数。
8. 二次根式的性质:- 如果 a 和 b 都是非负实数,则有以下性质:a) 二次根式的加法减法:√a±√b,只有当 a=b 时,二次根式才能相加减。
b) 二次根式的乘法:(√a)(√b)=√(ab)。
c) 带有二次根式的乘法:a(√b)=√(ab^2)。
d) 二次根式的除法:(√a)/(√b)=(√a)/(√b)×(√b)/(√b)=√(a/b)。
其中, b 不等于0。
以上是浙教版八年级上册数学第二章的知识点总结。
最全面人教版八年级上册数学第二单元知识点归纳总结

最全面人教版八年级上册数学第二单元知
识点归纳总结
本文汇总了《人教版八年级上册数学》第二单元的知识点,旨在帮助同学们系统复和总结。
知识点一:有理数的乘除运算
在该单元中,我们研究了有理数的乘法和除法运算。
有理数的乘法遵循交换律、结合律和分配律,并且正数乘以正数为正数,负数乘以负数为正数,正数乘以负数为负数。
有理数的除法可通过乘法的逆运算来实现。
知识点二:有理数的加减法运算
除了乘除法运算外,本单元还涉及有理数的加法和减法运算。
同号数相加,结果的符号和绝对值均为原来的数;异号数相加,结果的符号和绝对值由大数决定。
知识点三:绝对值与相反数
绝对值指一个数到零的距离,绝对值是非负的。
相反数指与一个数相加为零的数,具有相反符号但绝对值相等。
知识点四:数轴与有理数的比较
数轴是用于表示有理数的一个直线,可以通过数轴判断有理数的大小关系。
数轴上,数越往右越大,数越往左越小。
知识点五:有理数的平方与平方根
本单元还介绍了有理数的平方和平方根的概念。
一个数的平方是指该数自乘的结果,而平方根是指一个数的正平方根。
我们研究了如何求一个数的平方和平方根。
知识点六:小数的运算
在该单元中,我们还涉及了小数的加减乘除运算。
小数之间的运算遵循正数和正数、负数和负数的规律。
小数的运算可以通过转换为分数进行简化。
以上就是本文对《人教版八年级上册数学》第二单元知识点的总结。
希望同学们能够通过复习和巩固这些知识点,提高数学学习的效果。
加油!。
人教版八年级上册数学各单元知识点归纳总结

人教版八年级上册数学各单元知识点归纳总结
第一章:三角形的初步知识
1. 三角形的基本性质:稳定性、内角和定理(三角形内角和为180度)。
2. 三角形的分类:等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
3. 三角形的边与角的关系:边长与角度的关系,如a:b:c=sinA:sinB:sinC。
第二章:全等三角形
1. 全等三角形的定义及性质。
2. 全等三角形的判定方法:SSS(三边全等)、SAS(两边及夹角全等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)、HL(直角边斜边公理)。
3. 全等三角形的证明方法。
第三章:轴对称与中心对称
1. 轴对称与中心对称的基本性质。
2. 轴对称与中心对称图形的识别与证明。
3. 图形变换的基本方法。
第四章:四边形
1. 四边形的性质:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等的基本性质。
2. 四边形的判定方法。
3. 四边形的面积计算。
第五章:一次函数
1. 函数的基本概念:自变量、因变量、常数。
2. 一次函数的定义及性质。
3. 一次函数的图象表示方法。
4. 一次函数的解析式及求法。
5. 一次函数的应用:求最值、求交点等。
第六章:一元一次不等式
1. 不等式的基本性质。
2. 一元一次不等式的解法:去分母、去括号、移项合并同类项等。
3. 一元一次不等式的应用:比较大小、求解最值等。
北师大版八年级数学上册 第二章 二次函数知识整理及基础训练(含答案)

第二章 二次函数知识整理及基础训练【知识整理】1. 定义:形如:c bx ax y ++=2(其中a,b,c 是常数,且a ≠0)的函数是二次函数。
2. 本质:二次函数是用自变量的二次式表示的函数。
3. 图象:二次函数的图象是抛物线,抛物线是轴对称图形,对称轴和抛物线的交点叫做抛物线的顶点。
4. 二次项的系数a 对抛物线的影响:当 a>0时,抛物线的开口向上, 当 a<0时,抛物线的开口向下;a 越大开口越小, a 越小开口越大、综上所述:a 决定抛物线的开口大小和方向,即a 决定抛物线的形状。
5. 一次项的系数b 对抛物线的影响: 当b=0时,抛物线的对称轴是y 轴; 当a,b 同号时,对称轴在y 轴的左边;当a,b 异号时,对称轴在y 轴的右边。
即“左同右异” 综上所述:a,b 决定抛物线的左右位置。
6. 常数项c 对抛物线的影响:当c>0时,抛物线与y 轴的交点在y 轴的正半轴; 当c<0时,抛物线与y 轴的交点在y 轴的负半轴; 当c=0时,抛物线经过原点、综上所述:c 决定抛物线的上下位置。
7. 判别式⊿对抛物线的影响:当⊿>0时,抛物线与x 轴有两个交点;当⊿=0时,抛物线与x 轴有一个交点,即顶点在x 轴上; 当⊿<0时,抛物线与x 轴没有交点。
综上所述:⊿决定抛物线与x 轴交点的个数。
8. 当 a>0且⊿<0时, 二次函数c bx ax y ++=2的值恒为正;当 a<0且⊿<0时, 二次函数c bx ax y ++=2的值恒为负。
9. 当x=0, 二次函数c bx ax y ++=2的值为c, 当x=1, 二次函数c bx ax y ++=2的值为c b a ++, 当x=-1, 二次函数c bx ax y ++=2的值为c b a+-,……10. 二次函数c bx ax y ++=2的对称轴为直线abx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,2211. 二次函数的解析式有如下三种形式:12. 当 a>0时,若a bx 2-<,y 随着x 的增大而减小,若a b x 2->,y 随着x 的增大而增大,当 a<0时,若a bx 2-<,y 随着x 的增大而增大,若ab x 2->,y 随着x 的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册知识点归纳第二章
八年级数学上册知识点归纳第二章
1、实数的概念及分类
①实数的分类
②无理数
无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
开方开不尽的数,如√7 ,3 √2等;
有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;
有特定结构的数,如0.1010010001…等;
某些三角函数值,如sin60°等
2、实数的倒数、相反数和绝对值
①相反数
实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
②绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
|a|≥0。
0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
③倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
0没有倒数。
④数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
⑤估算
3、平方根、算数平方根和立方根
①算术平方根
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
性质:正数和零的`算术平方根都只有一个,0的算术平方根是0。
②平方根
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方求一个数a的平方根的运算,叫做开平方。
注意√a的双重非负性:√a≥0 ; a≥0
③立方根
一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。
表示方法:记作3 √a
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。
4、实数大小的比较
①实数比较大小
正数大于零,负数小于零,正数大于一切负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
②实数大小比较的几种常用方法
数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a <b 。
求商比较法:设a、b是两正实数,
绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。
平方法:设a、b是两负实数,则 a2>b2a<b 。
5、算术平方根有关计算(二次根式)
①含有二次根号“ √ ”;被开方数a必须是非负数。
②性质:
③运算结果若含有“ √ ”形式,必须满足:
被开方数的因数是整数,因式是整式
被开方数中不含能开得尽方的因数或因式
6、实数的运算
①六种运算:加、减、乘、除、乘方、开方。
②实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
③运算律
加法交换律 a+b= b+a
加法结合律(a+b)+c= a+( b+c )
乘法交换律 ab= ba
乘法结合律(ab)c = a( bc )
乘法对加法的分配律 a( b+c )=ab+ac
下载全文。