整体法与隔离法(绝对经典)
整体法与隔离法
2、五个质量相等的物体置于光滑的水平面上,如 图所示.现向右施加大小为F、方向向右的水平恒力, 则第3个物体对第4个物体的作用力等于( B )
1
2ห้องสมุดไป่ตู้
A.5F
B.5F
考点二 整体法和隔离法
1、连接体与隔离体
两个或两个以上物体相互连接组成的系统称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体.
2、外力和内力
如果以系统为研究对象,受到系统以外的力,这些 力就是该系统受到的外力,而系统内相互作用的力则 称为内力。(举例)
应用牛顿第二定律求系统的加速度时,不考虑系统 的内力。如果把某物体隔离出来作为研究对象,则这 些力将转化为隔离体的外力。
3
4
C.5F
D.5F
3、如图所示,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M,水平面光滑,当在绳B端挂一质量为m的重物时, 物体A的加速度为a1.当在B端施以F=mg的竖直向下的拉力作 用时,A的加速度为a2.则a1与a2的大小关系是( C )
A.a1=a2 C.a1<a2
B.a1>a2 D.无法确定
5、如下图所示,用一根细线通过一只无摩擦、无 质量的滑轮,把静止在斜面上和悬挂在斜面边缘高 处的两块木块连接起来.悬挂木块的质量为M=16.0 kg,斜面上的木块的质量为m=8.0 kg.已知木块与斜 面间的动摩擦因数为μ=0.2.这两木块从静止释 放.(sin37°=0.6,cos37°=0.8,g=10 m/s2)
(1)木块的加速度为多大? (2)连接两木块的细线的张力为多大?
高中物理整体法与隔离法
整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
运用整体法解题的基本步骤:①明确研究的系统或运动的全过程。
②画出系统的受力图和运动全过程的示意图。
③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少。
②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来。
③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图。
④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3.整体和局部是相对统一的,相辅相成的。
隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用。
无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4.应用例析【例4】如图所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力F N。
解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。
整体法和隔离法
A
F
B
❖ A、B可能受到3个或者4个力的作用 ❖ B、斜面对B的摩擦力方向可能沿斜面向下 ❖ C、A对B的摩擦力可能为0 ❖ D、AB整体可能受到三个力作用
思考:
1、用整体法还是隔离法?
2、是先整体后隔离?还是先 隔离后整体?
分析方法:对于受力复杂的系统,先整体
研究对象的选择:
1、对于连结体问题,通常用隔离法,但有时也可 采用整体法.
2、如果能够运用整体法,我们应该优先采用整体 法,这样涉及的研究对象少,未知量少,方程少, 求解简便;
3、 不计物体间相互作用的内力,或物体系内的物 体的运动状态相同,一般首先考虑整体法.
4、 对于大多数动力学问题,单纯采用整体法并不 一定能解决,通常采用整体法与隔离法相结合的 方法.
G 2G
❖ 整体法:求系统外力
N
f地
F
ABC
3G
由图中可知:AB间的摩擦力为0,BC、 C与地面间的摩擦力为F。
(2)、若A、B、C一起以加速度a向右加速运动, AB、BC、C与地间的摩擦力又为多少?
(注:学生在练习本画受力分析)
❖ 练习题、如图所示,固定斜面上叠放着A、B两木块,木块 A与B的接触面是水平的,水平力F作用于木块A,使木块A、
后隔离。
N
N1
FN
f
f
F AB
FA
f f’ B mAg
G (1)、整体法
mAg
mBg
(2)、隔离法
❖ 例2、如图所示,人的质量为60kg,木板A的质量 为30kg,滑轮及绳的质量不计,若人想通过绳子拉 住木板,他必须用力的大小( )
❖ A. 225N B. 300N C. 450N D. 600N
二 小力学专题3 整体法与隔离法—2021届高三物理一轮复习讲义
专题3 整体法与隔离法1. 整体法和隔离法:连接体、叠加问题首先想到整体隔离法,尤其是求底层物体与地面、墙壁等接触的摩擦力与弹力问题时,优先选择整体法,对于力少的物体采用隔离法分析;①初级整体法:系统各个物体都处于平衡状态,例如一个物体匀速,一个静止,分析整体合力为0;②中级整体法:系统各个物体有共同的加速度,一般先隔离系统一部分求到加速度,再对整体用牛二;(牛顿定律中会详细分析)③一些物体是平衡的,一些物体有加速度;∑ F 外⋅⋅⋅+++= 332211a m a m a m或者∑ F 外x ⋅⋅⋅+++=3x 32x 21x 1a m a m a m , ∑F 外y ⋅⋅⋅+++= 3y 32y 21y 1a m a m a m 。
2.整体法的口诀整体法的三个层次:初级-中级-高级外力整体内隔离,优先分析简单体;初级整体都平衡,中级整体共加速;高级整体随意用,矢量性与系统性。
注意:内力与外力、天生的外力初级整体例1.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶3C.1∶2D.2∶1例2.质量均为m的a、b两木块叠放在水平面上,如图3所示,a受到斜向上与水平面成θ角的力F 作用,b受到斜向下与水平面成θ角等大的力F作用,两力在同一竖直平面内,此时两木块保持静止,则()A.b对a的支持力一定等于mgB.水平面对b的支持力可能大于2mgC.a、b之间一定存在静摩擦力D.b与水平面之间可能存在静摩擦力例3.a、b两个质量相同的球用线连接,a球用线挂在天花板上,b球放在光滑斜面上,系统保持静止,以下图示哪个是正确的()例4.(多选)如图所示,质量为m、顶角为α的直角劈和质量为M的正方体放在两竖直墙和一水平面间,处于静止状态。
若不计一切摩擦,则()A.水平面对正方体的弹力大小为(M+m)gB.墙面对正方体的弹力大小为mgtan αC.正方体对直角劈的弹力大小为mg cos αD.直角劈对墙面的弹力大小为mg sin α例5.如图所示,两个光滑金属球a、b置于一个桶形容器中,两球的质量m a>m b,对于图中的两种放置方式,下列说法正确的是()A.两种情况对于容器左壁的弹力大小相同B.两种情况对于容器右壁的弹力大小相同C.两种情况对于容器底部的弹力大小相同D.两种情况两球之间的弹力大小相同例6.如图所示,水平地面粗糙,竖直墙面光滑,A是一个光滑圆球,B是与A半径相等的半圆球,A、B均保持静止。
整体法与隔离法
受力分析(整体法与隔离法)一、研究对象的选取在进行受力分析时,第一步就是选取研究对象。
选取的研究对象可以是一个物体(质点),也可以是由几个物体组成的整体(质点组)。
1、隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。
隔离法的原则:把相连结的各物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来,当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。
2、整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。
整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不易采用整体法)或都处于平衡状态(即a=0)时,命题要研究的是外力,而非内力时,选整体为研究对象。
(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用(内力)。
(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这们一种辩证的思想。
3、整体法、隔离法的交替运用。
对于连结体问题,多数情况即要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知内力)再整体的相反运用顺序。
1 如图所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。
下列说法正确的是()A. 在上升和下降过程中A对B的压力一定为零B. 上升过程中A对B的压力大于A对物体受到的重力C. 下降过程中A对B的压力大于A物体受到的重力D. 在上升和下降过程中A对B的压力等于A物体受到的重力2.(双选)物体b在水平推力F作用下,将物体a挤压在竖直墙壁上,如图所示.a、b处于静止状态,关于a、b两物体的受力情况,下列说法正确的是( )A.a受到两个摩擦力的作用B.a共受到四个力的作用C.b共受到三个力的作用D.a受到墙壁摩擦力的大小不随F的增大而增大A Bv3.两物体的重力都为10N ,各接触面之间的动摩擦因数均为0.3.A 、B 两物体同时受到F=1N 的两个水平力的作用,如图1-1-13所示,那么A 对B 、B 对地的摩擦力分别等于A .2N ,0NB .1N ,0NC .1N ,1ND .3N ,6N4.(2011·海南高考)如图2-16,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v 0匀速下滑,斜劈保持静止,则地面对斜劈的摩擦力A .等于零B .B .不为零,方向向右C .不为零,方向向左D .不为零,v 0较大时方向向左,v 0较小时方向向右5. 如图所示,质量为M 的楔形物块静止在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为( )A .(M +m)gB .(M +m)g -FC .(M +m)g +Fsin θD .(M +m)g -Fsin θ6.(2008年天津理综19)在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A , A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态。
高中物理力学方法-整体法 隔离法
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
高考 高中物理 力学专题 整体法和隔离法
专题整体法和隔离法一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
【例1】在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块()A.有摩擦力作用,摩擦力的方向水平向右B.有摩擦力作用,摩擦力的方向水平向左C.有摩擦力作用,但摩擦力的方向不能确定D.没有摩擦力的作用【例2】有一个直角支架 AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环 Q,两环质量均为m,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是()A.N不变,T变大 B.N不变,T变小C.N变大,T变大 D.N变大,T变小【例3】如图所示,设A重10N,B重20N,A、B间的动摩擦因数为0.1,B与地面的摩擦因数为0.2.问:(1)至少对B向左施多大的力,才能使A、B发生相对滑动?(2)若A、B间μ1=0.4,B与地间μ2=0.l,则F多大才能产生相对滑动?【例4】将长方形均匀木块锯成如图所示的三部分,其中B、C两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F作用时,木块恰能向右匀速运动,且A与B、A与C均无相对滑动,图中的θ角及F为已知,求A与B之间的压力为多少?【例5】如图所示,在两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为A.4mg、2mg B.2mg、0 C.2mg、mg D.4mg、mg【例6】如图所示,两个完全相同的重为G的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在A OBPQ绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。
牛二专题:整体法和隔离法
B恰好不移动时,即是绳子
拉力恰好为零时。此时推力 设为F.
对A受力分析如图, 由三角形关系得:
ma tan
mg
对整体: F (M m )g (M m )a
联立求解可得: F (M m )g ( ta)n
即:这个拉力必须满整体与隔离体法
规律总结:一个重要结论拓展:如下图所示,倾角
为 α 的斜面上放两物体 m1 和 m2,用与斜面平行的力 F 推 m1,使两物体加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 FN=m1m+2m2F.
有相互作用力的系统 整体与隔离体法
【例2】A、B的质量分别为m1和m2,叠放置于光滑的水 平地面上,现用水平力F拉A时,A、B一起运动的最大
牛二专题:整体法和隔离法
一、连接体 当两个或两个以上的物体之间通过轻绳、轻杆、弹 簧相连或直接叠放在一起的系统。
二、处理方法——整体法和隔离法
使用原则:
1、整体法:系统内各物体的运动状态相同(具有相同的a或平衡态); 问题不涉及物体间的内力。
2、隔离法:系统内各物体的运动状态不同(具有不同的a); 问题涉及物体间的内力。
加速度为a1,若用水平力F改拉B时,A、B一起运动的最
大加速度为a2,则a1:a2等于:(
)
A 1:1 B m1:m2 C m2:m1
D m12:m22
B
有相互作用力的系统 整体与隔离体法
【例3】水平桌面上放着质量为M的滑块,用细绳 通过定滑轮与质量为m的物体相连,滑块向右加速 运动。已知滑块与桌面间的动摩擦因数为μ.试求 滑块运动的加速度和细绳中的张力。
例:A、B两物体用轻绳连接,置于光滑水平面上,它们的质
量分别为M和m,现以水平力F拉A,求AB间绳的拉力T1为多少?
(完整版)整体法和隔离法典型例题
匀变速直线运动难点1.概念、规律、推论之间的联系与区别(1)一个重要概念:加速度0t v v v a t t-∆==∆ (2)三个重要规律: ①速度-时间规律:0t v v at =+②位移-时间规律:2012x v t at =+③速度-位移规律:222t v v ax -= (3)三个重要推论:①相邻相等时间内的位移差是定值,即:2x aT ∆= ②中间时刻的瞬时速度等于生程的平均速度,即:022tt v v v +=③中间位置的瞬时速度等于初速度与末速度的方均根值,即:2x v =(4)五个二级结论(仅适用于初速度为零的匀变速直线运动,请注意推导过程) ①第1s 、第2s 、…第ns 的速度之比12:::1:2::n v v v n =②前1s 、前2s 、…前ns 的位移之比22212:::1:2::n x x x n =③第1s 、第2s 、…第ns 的位移之比:::1:3::(21)N x x x n I =-④前1m 、前2m 、…前nm 所用时间之比12:::1:2::n t t t n =⑤第1m 、第2m 、…第nm 所用时间之比:::1:(21)::(1)N t t t n n I =---7、用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A )(经常考试的实验)1、实验步骤:(1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路 (2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码. (3)将纸带固定在小车尾部,并穿过打点计时器的限位孔(4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带. (5)断开电源,取下纸带(6)换上新的纸带,再重复做三次 2、常见计算:(1)2B AB BC T υ+=,2C BC CDT υ+=(2)2C B CD BCa T T υυ--==整体法和隔离法典型例题1.(2011·天津理综·T2)如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力( )A. 方向向左,大小不变B. 方向向左,逐渐减小C. 方向向右,大小不变D. 方向向右,逐渐减小 【答案】选A .2.如图8所示,质量为M 的斜劈形物体放在水平地面上,质量为m 的粗糙物块,以某一初速度沿劈的斜面向上滑,至速度为零后又加速返回,而物体M 始终保持静止,则在物块m 上、下滑动的整个过程中 【 】(A )地面对物体M 的摩擦力方向没有改变 (B )地面对物体M 的摩擦力先向左后向右(C )物块m 上、下滑动时的加速度大小相同 (D )地面对物体M 的支持力总小于g m M )(+本题的正确答案是AD3.如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为( ) A .(M +m )gB .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θm FM θ • • •• •• O A B C D E3.07 12.3827.8749.62.77.40图2-54.有一个直角支架AOB ,AO 水平放置,表面粗糙, OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力F N 和摩擦力f 的变化情况是 ( )A .F N 不变,f 变大B .F N 不变,f 变小C .F N 变大,f 变大D .F N 变大,f 变小5(09年安徽卷)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。
整体法和隔离法
整体法和隔离法基础知识总览口诀:整体法求加速度,隔离法求相互作用力静力学整体法:把平衡系统看作整体,在整体上研究,不考虑内力,只考虑外力对系统的作用力,然后隔离法研究单个物体,在整体法上得出的受力情况对隔离法同样适用!一.选择研究对象选择研究对象是解决物理问题的首要环节。
在很多物理问题中,研究对象的选择方案是多样的。
研究对象的选择方法不同会影响求解的繁简程度。
对于连结体问题,如果能够运用整体法,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解方便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法,对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法和隔离法相结合的方法。
二.整体法整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。
整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析外力对系统的作用时,用整体法。
三.隔离法隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。
典型例题例1. 在粗糙的水平面上有一个三角形木块,在它的两个粗糙的斜面上分别放置两个质量为m1和m2的木块,,如图1所示,已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块()A. 在摩擦力作用,方向水平向右;B. 有摩擦力作用,方向水平向左;C. 有摩擦力作用,但方向不确定;D. 以上结论都不对。
整体法和隔离法
整体法和隔离法解决平衡问题(1)整体法:把几个物体视为一个整体,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。
(2)隔离法:对单个物体进行分析、研究。
使用原则:通常在分析外力对系统的作用时,用整体法,在分析系统内部物体间相互作用力时,用隔离法;有时候整体法和隔离法交替使用。
适用条件:两物体对地静止或作匀速直线运动.例题1、如图,质量m=5 kg的木块置于倾角θ=37︒、质量M=10 kg的粗糙斜面上,用一平行于斜面、大小为50 N的力F推物体,使木块沿静止在地上的斜面向上匀速运动,求地面对斜面的支持力和静摩擦力。
解:用整体法就可解出:以木块与斜面为一整体,则整体受到F与重力水平方向:Fcos37°=f摩竖直方向:N+Fsin37°=(m+M)g带入数据得:f摩=40NN=120N例题2、如图,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为θ。
质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱支持力和摩擦力各为多少?解答:解:选取A和B整体为研究对象,它受到重力(M+m)g,地面支持力N,墙壁的弹力F和地面的摩擦力f的作用(如图所示)而处于平衡状态.根据平衡条件有:N-(M+m)g=0,F=f,可得N=(M+m)g.再以B为研究对象,它受到重力mg,三棱柱对它的支持力N B,墙壁对它的弹力F的作用(如图所示),而处于平衡状态,根据平衡条件有:N B cosθ=mg,NsinθB=F,解得F=mgtanθ,所以f=F=mgtanθ.答:地面对三棱柱支持力为(M+m)g,摩擦力为mgtanθ例3、如图所示,人重600N,平板重400N,滑轮重力不计,如果人要拉住木板使其静止不动,他必须用力F______N,人对平台的压力为______N.对人和平板整体受力分析,受重力和三根绳子的拉力,根据平衡条件,有:T2+T3+F=(M+m)g其中:T2=2T3=2F4T3=(M+m)g解得:T3=0.25(M+m)g=250N,故人的拉力为250N;再对人受力分析,受重力、支持力和拉力,根据平衡条件和牛顿第三定律可得人对平台的压力等于重力减去绳子对人的拉力,为600-250N=350N ;故答案为:250,350.小试牛刀:1.在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放着质量为m 1和m 2的两个木块b 和c ,如图所示,已知m 1>m 2,三木块均处于静止状态,则关于粗糙地面对三角形木块下列说法正确的是( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力作用2.如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块, 小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为:A .(M+m )gB .(M+m )g -FC .(M+m )g +Fsin θD .(M+m )g -Fsin θ3.如图所示,人重700N ,平板重300N ,如果人要保持整个装置平衡,他须用多大的力拉绳(滑轮质量及摩擦均不计),及对板的压力是多少?4.如图所示,两木块的质量分别为m1和m 2,两轻质弹簧的劲度系数分别为K 1和K 2,上面木块压在上面的弹簧上(但不栓接),整个系统处于平衡状态。
(完整版)高中物理整体法和隔离法
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
牛顿第二定律的应用之整体法与隔离法
画出球的受力图和加速度的方向,
T+mg=ma=mV2/L T=m(V2/L-g)
再研究人,画人的受力图,N+T'=Mg
N=Mg-m(v2/L-g)=(M+m)g-mv2/L
a mg
T
N T
Mg
习题三
• 右示图中水平面光滑,弹簧 倔强系数为K,弹簧振子的 振幅为A,振子的最大速度 为V,当木块M在最大位移 时把m无初速地放在M的上 面,则要保持M与m在一起 振动二者间的最大静摩擦力 至小要多大?
可见解题时合理选取坐标轴会给解题带来方便。
例2. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因ቤተ መጻሕፍቲ ባይዱ为μ,用沿斜 面向上的恒力F 拉物块M 运动,求中间绳子的张力.
解:画出M 和m 的受力图如图示: 由牛顿运动定律,
对M有 F - T - Mgsinθ-μMgcosθ= Ma (1)
f2 m θ
T
Mg
例3. 一质量为M、倾角为θ的楔形木块,静止在水平桌面上, 与桌面的动摩擦因素为μ,一物块质量为m,置于楔形木块的斜
面上,物块与斜面的接触是光滑的,为了保持物块相对斜面静
止,可用一水平力F推楔形木块,如图示,此水平力的大小等
于
(m+M)g(μ。+ tgθ)
解:对于物块,受力如图示:
思路点拨
盘静止时KL=(M+m)g 放手时先研究整体K(L+ Δ L) -(M+m)g= (M+m)a
再研究盘中物体m N-mg=ma N=mg(L+ Δ L)/L
习题一
整体法与隔离法(绝对经典)
专题:整体法与隔离法【要点】1.体系(衔接体):几个互相接洽的.在外力感化下一路活动的物体系.互相感化的物体称为体系或衔接体,由两个或两个以上的物体构成.2.内力与外力:体系内物体间的互相感化力叫内力,体系外部物体对体系内物体的感化力叫外力.3.办法拔取原则:研讨体系内力,用隔离法;当研讨体系外力时优先斟酌整体法;对于庞杂的动力学问题,采取二者相联合.【经典题型练习】例1.向右的程度力F感化在物体B上,AB匀速活动,则地面临B的摩擦力为若干?若F感化在A上,成果若何?【变式】滑块和斜面均处于静止状况,斜面竖直角为,滑块的质量为m,斜面的质量为M,求地面临斜面的支撑力和摩擦力的大小.例 2.如图:在两块雷同的竖直木板间,有质量均为m的两块雷同的砖,用两个大小雷同均为F的程度力压木板,使砖静止不动,则第一块砖对第二块砖的摩擦力为若干?【变式】两块雷同的竖直木板间,有质量均为m的四块雷同的砖,用两个大小均为F的程度力压木板,使砖静止不动,(1)木板对第1块砖和第4块砖的摩擦力(2)第2块与第3块间的摩擦力(3)第3块与第4块间的摩擦力例3.甲图所示的两小球静止,对a球施加一个左偏下30°的恒力,对b球施加一个右偏上30°的同样大的恒力,再次静止时乙图中哪张准确?【变式】两个质量相等的小球用轻杆衔接后斜靠在竖直墙上处于静止状况,已知墙面滑腻,程度面光滑.现将A球向上移动一段距离,两球再次达到均衡,将两次比较,地面临B球的支撑力Fn和轻杆受到的压力F的变更情形是()A:Fn变小,F不变 B:Fn不变,F变大C:Fn变大,F变大 D:Fn不变,F变小例4.人的质量为60Kg,木板A的质量为30Kg,滑轮及绳的质量不计,一切摩擦不计,若人经由过程绳索拉住木板不动,则人的拉力的大小及人对木板的压力为若干?【变式】人的质量是m,木板的质量为M,木板与地面间的动摩擦因数为,在人的拉力感化下,人与木板一路向右匀速活动,求木板对人的摩擦力多大?【变式】质量为M的木板吊挂在滑轮组下,上端由一根绳C固定在横梁下,质量为m的人手拉住绳端,使全部装配保持在空间处于静止的状况(滑轮质量不计).求(1)绳对人的拉力多大?(2)人对木板的压力多大?例5:质量为m顶角为的直角劈和质量为M的正方体放在两竖直墙和程度面之间,处于静止状况.M与M接触不计一切摩擦,求(1)程度面临正方体的弹力大小;(2)墙面临正方体的弹力大小。
隔离法和整体法
隔离法和整体法隔离法和整体法是两种常用的解决问题的思维方法。
隔离法是通过分解问题,将其拆分为多个独立的部分来解决;整体法则是将问题作为一个整体来考虑和解决。
本文将分别介绍隔离法和整体法的概念、应用场景以及优缺点。
一、隔离法隔离法是指将一个复杂的问题分解为多个相对独立的部分,然后分别解决每个部分的方法。
通过将问题进行隔离,我们可以更加集中精力解决每个独立的部分,从而提高解决问题的效率。
在实际应用中,我们可以将隔离法运用于各种领域。
例如,在软件开发中,一个复杂的功能可以被拆分为多个子功能,每个子功能独立开发和测试,最后再进行整合。
在项目管理中,可以将整个项目分解为多个阶段或任务,每个阶段或任务分配给不同的团队或个人负责。
这样可以有效地提高工作的并行性和协作效率。
隔离法的优点是可以使问题更加清晰明确,减少了复杂度,易于解决。
同时,通过将问题分解为多个部分,可以提高工作的并行性和解决问题的效率。
然而,隔离法也存在一些缺点。
例如,分解问题可能导致信息的丢失或不完整,从而影响解决问题的准确性。
此外,对于某些问题,隔离法可能会导致解决方案的整体性差,不够综合。
二、整体法整体法是指将一个问题作为一个整体来考虑和解决。
在运用整体法解决问题时,我们需要从整体的角度思考问题的本质、关联和影响,综合各个方面的因素,找出最优解决方案。
整体法在很多领域都有广泛的应用。
例如,在企业管理中,整体法强调整个企业的战略规划、组织结构、人力资源等各个方面的协同作用,以实现企业目标的最大化。
在市场营销中,整体法要求将产品设计、定价、推广和渠道管理等因素考虑在内,以达到市场竞争的优势。
在生态保护中,整体法强调人与自然的平衡和协调,以实现生态环境的可持续发展。
整体法的优点是可以从全局的角度思考问题,考虑各个方面的因素,并找出最优解决方案。
与隔离法相比,整体法更加综合和细致。
然而,整体法也存在一些挑战和局限。
例如,整体法需要对问题有全面的了解和把握,需要考虑的因素较多,可能需要投入更多的时间和资源。
整体法与隔离法
整体法与隔离法1基本方法: 整体法与隔离法(1)整体法:把物体组看成一个整体,作为一个物体来分析,这样就可以不用考虑物体之间的相互作用。
(2)法:把物体组中的某一个物体单独隔离出来研究。
这是分析物体间的力必须用的方法 一般做题思路是:优先整体;然后隔离;建立方程组求解。
2.整体的牛顿第二定律:整体的牛顿第二定律:2211a m a m F +=合 或者x 方向:x x x a m a m F 2211+=合y 方向:y y y a m a m F 2211+=合一.常见模型 (一)绳连模型例1.光滑水平面上质量分别为m 1,m 2的物体在水平拉力F 的作用下向右匀加速运动,求m 2对m 1的拉力?练习:如图,水平面上两个物体m 1,m 2经一细绳相连,在水平力F 的作用下处于静止状态,则连接两物体的绳的张力可能为( )A.零.B.2F C.接近F D.大于F例2.质量分别为M 和m (M>m )的两个物体通过细绳连接,跨过光滑的定滑轮,某时刻由静止释放两个物体,求细绳的拉力?.(二)滑轮和绳模型例1.地面光滑,M 和m 在拉力的作用下一起向右运动试判断:(1)M=m 时,f 的方向 (2M<m 时,f 的方向? (3)M>m 时,f 的方向?例2板的质量.M=40㎏,人的质量m=60㎏(1)若系统静止,求人对板的压力。
(2)若系统以加速度a=2m/s2向上加速运动,求人对板的压力。
例3.位于水平桌面的物体P,由跨过定滑轮的轻绳与物体Q相连,从滑轮到P和Q的两段绳都是水平的,已知Q与P之间以及P与桌面之间动摩擦因数都是µ,两物体的质量都是m,滑轮的质量,滑轮轴上的摩擦都不计。
若用一水平向右的力F拉P使它做匀速运动,则F 的大小为多少?例4.如图,物体A、B的质量m A=m B=6㎏,A和B、B和水平地面间的动摩擦因数都等于0.3,且最大静摩擦力等于滑动摩擦力,水平力F=30N,那么B对A的摩擦力和水平桌面对B的摩擦力各为多大?(三).摩擦力模型1.确定以下情况下B的摩擦力方向。
整体法和隔离法
整体法与隔离法选择研究对象是解决物理问题的首要环节.若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法.1.隔离法:(1)定义:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法.(2)原则:把相连接的各物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来.当然,对隔离出来的物体而言,它受到的各个力就应视为外力了.2.整体法:(1)把相互连接的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法.(2)原则:①当整体中各物体具有相同的加速度或都处于平衡状态(即a=0)时考虑运用整体法.②试题要分析的是外力,而不是分析整体中各物体间的相互作用(内力)时考虑运用整体法.整体法和隔离法不是完全独立的,很多情况下需要整体法和隔离法交替使用来解决问题,比如连接体问题,一般既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交替运用方法,当然个别情况也可按先隔离(由已知内力解决未知内力)再整体的顺序运用.3.整体法和隔离法的使用要点整体和部分是相对的,二者在一定条件下可以相互转化.一定层次上的整体是更大系统中的一个部分,具有部分的功能;一定层次上的部分也是由更小层次上的部分所组成的系统,具有整体的功能.由于整体和部分是辩证的统一,所以解决问题时不能把整体法和隔离法对立起来,而应该灵活地把两种方法结合起来使用;既可以先从整体考虑,也可以先对某一部分进行隔离,从整体到部分,由部分再回到整体,应据具体问题灵活选取研究对象,多方位、多角度地展开思路.【例1】在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的支持力为F3.若F缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中( )A.F1保持不变,F3缓慢增大B.F1缓慢增大,F3保持不变C.F2缓慢增大,F3缓慢增大D.F2缓慢增大,F3保持不变【解析】本题考查物体的平衡和隔离法、整体法分析受力等知识点.把AB看做整体,在竖直方向由平衡条件得F+m A g+m B g=F,,据此可知当,缓慢增大时,F3缓慢增大.隔离物体B分析受力,物体B 受到竖直向下的重力m B g、力F、水平向右的墙对B的作用力F1,斜向左上方的A对B的作用力F2′,设F2′的方向与竖直方向夹角为α,由平衡条件得F2′cosα=F+m B g,F2′sinα=F1,由这二式可知当F缓慢增大时,F2′缓慢增大,由牛顿第三定律可知,B对A的作用力F2也缓慢增大,F1也缓慢增大.所以正确选项是C.【练习1】半圆柱体P放在粗糙的水平面上,其右端有竖直挡板MN,在P和MN之间放一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图是这个装置的纵截面图,若用外力使MN保持竖直且缓慢地向右移动,在Q落到地面前,P始终保持静止.此过程中,下列说法正确的是(A.挡板MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C. P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大【解析】小圆柱体Q受重力、挡板MN对Q的弹力、P对Q的弹力作用处于平衡状态,即Q所受合力为零,由于重力大小方向不变,挡板MN对Q的弹力方向不变,对Q的动态变化过程分析可判断出挡板MN对Q的弹力逐渐增大,P对Q的弹力逐渐增大.运用整体法分析可知地面对P的摩擦力大小应等于挡板MN对Q的弹力,所以地面对P的摩擦力逐渐增大.答案:B【例2】两刚性球a和b的质量分别为m a和m b直径分别为d a和d b(d a>d b).将a、b球依次放入一竖直放置、内径为d(d a<d<d a+d b)的平底圆筒内,如图所示.设a、b两球静止时对圆筒侧面的压力大小分别为f1和f2,筒底所受的压力大小为F.已知重力加速度大小为g.若所有接触都是光滑的,则A.F=(m a+m b)g,f1=f2B.F=(m a+m b)g,f1≠f2C.m a g<F<(m a+m b)g,f1=f2D. m a g<F<(m a+m b)g,f1≠f2【解析】本题考查物体的受力分析和整体法的应用,意在考查考生用受力分析和整体法综合分析物体受力情况的能力;以a、b整体为研究对象,其重力方向竖直向下,而侧壁产生的压力水平,故不能增大对底部的挤压,所以F=(m a+m b)g;水平方向,由于两球处于平衡状态,所以受力也是平衡的,因此力的大小是相等的,即f1=f2,故正确答案为A.【练习2】有一个直角支架AOB,AO杆水平放置,表面粗糙,OB杆竖直向下,表面光滑.AO杆上套有小环P,OB杆上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和摩擦力f的变化情况是( )A.F N不变,f变大B.F N不变,f变小C.F N变大,f变大D.F N变大,f变小【解析】以两环和细绳整体为研究对象,可知竖直方向上始终受力平衡,F N=2mg不变;以Q环为研究对象,在重力、细绳拉力F和OB杆弹力N作用下平衡,如右图所示,设细绳和竖直方向的夹角为α,则P环向左移的过程中α将减小,N=mgtanα将减小.再以整体为研究对象,水平方向只有OB 杆对Q的压力N和OA杆对P环的摩擦力,作用,因此,f=N,则f也减小.故选项B正确.答案:B【例3】如右图所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在其上匀速下滑,直角劈仍保持静止,那么下列说法正确的是( )A.直角劈对地面的压力等于(M+m)gB.直角劈对地面的压力大于(M+m)gC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力【解析】方法1:隔离法先隔离物体,物体受重力mg、斜面对它的支持力N、沿斜面向上的摩擦力f,因物体沿斜面匀速下滑,所以支持力N和沿斜面向上的摩擦力f可根据平衡条件求出.再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力N′,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力N′和沿斜面向下的摩擦力f′,直角劈相对地面有没有运动趋势,关键看f′和N′在水平方向的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定.对物体:建立坐标系如图甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力N =mgcos θ,摩擦力f =mgsin θ.对直角劈:建立坐标系如图乙所示,由牛顿第三定律得,N =N′,f =f′,在水平方向上,压力N′的水平分量N ′sin θ=mgcos θsin θ,摩擦力f′的水平分量f′cosθ=mgsinθcos θ,可见f′cosθ=N ′s inθ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力.在竖直方向上,整体受力平衡,由平衡条件得:N 地=F′sinθ+N ′cos θ+Mg =mg +Mg.所以正确答案为:AC.方法2:整体法 直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等,方向相反。
牛顿第二定律的应用之整体法与隔离法
碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
整体法、隔离法(经典)
例:如图所示,叠放、静止在水平地面上的
两个物体A、B,在水平拉力F的作用下,物
体A、B仍保持静止;
(1)求地面对B的摩擦力。
A
(2)求B对A的作用力。 (3)求B的受力情况。
B
F
N
f静
A
F
B
G
整体法
NA
A
B
f静
G
隔离法
NBABiblioteka FBFN G
引伸:如图所示,物体a、b、c叠放在水平桌面上,水 平力Fb=5N,Fc=10N,分别作用于物体b、c上,a、b、 c仍保持静止。以F1、F2、F3分别表示a与b、b与c、c与 桌面间的静摩擦力的大小,则(C )
整体法、隔离法
西安市第一中学 李老师
物体受力分析的基本步骤
1、明确研究对象(方法:隔离法,整体法)。
2、按顺序画力: 重力 弹力 摩擦力
外力或其它场力
3、检查、验证。防止错画力、多画力和漏画力。
注意:
(1)不要把研究对象的受力与其他物体的受力 情况相混淆。 (2)每一个都必须要明确它的来源,每一个力 都应找到与它对应的施力物体。 (3)只分析性质力,不分析效果力。 (4)对有些难于确定的力,可用假设法来判断。 (5)研究对象的受力应与其运动状态相对应。 (6)作图时,可以将其它力的作用点平移到物 体的重心上,可转动的物体除外 。
受力分析的方法:整体法和隔离法
(一)概念:
整体法:就是将几个物体视为一个整体来进行 分析的方法。 隔离法:将研究对象从周围其他物体中分离出来, 单独进行分析的方法。
(二)两种方法的选择原则:
当整体内各个物体均处于平衡时,且求的力 是系统外其他物体对系统的作用,一般优先采用 整体法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
专题:整体法与隔离法
【要点】
1、系统(连接体):几个相互联系的、在外力作用下一起运动的物体系。
相互作用的物体称为系统或连接体,由两个或两个以上的物体组成。
2、内力与外力:系统内物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。
匀速运动,
【变式】滑块和斜面均处于静止状态,斜面倾斜角为,滑块的质量为m,斜面的,求地面对斜面的支持力和摩擦力的大小。
【变式】两个质量相等的小球用轻杆连接后斜靠在竖直墙上处
状
态,
已
知
墙面光滑,水平面粗糙。
现将A 球向上移动一段距离,两球再次达到平衡,将两次比较,地面对B 球的支持力Fn 和轻杆受到的压力F 的变化情况是 ( ) A :Fn 变小,F 不变 B :Fn 不变,F 变大
C :Fn 变大,F 变大
D :Fn 不变,F 变小
例4.人的质量为60Kg ,木板A 的质量为30Kg ,滑轮及绳的质量
精心整理
不计,一切摩擦不计,若人通过绳子拉住木板不动,则人的拉力的大小及人对木板的压力为多少?
【变式】人的质量是m,木板的质量为M,木板与地面间的动摩擦因数为,在人的拉力作用下,人与木板一起向右匀速运动,求木板对人的摩擦力多大?
【变式】质量为M的木板悬挂在滑轮组下,上端由一根绳C固定在横梁下,质量为m的人手拉住绳端,使整个装置保持在空间处于静止的状态(滑轮质量不计)。
求(1)绳对人的拉力多大?(2)人对木板的压力多大?
例5:质量为m顶角为的直角劈和质量为M的正方体放在两
竖直墙和水平面之间,处于静止状态。
M与M接触不计一切
摩擦,求(1)水平面对正方体的弹力大小;(2)墙面对正方。