二次根式的计算与化简练习题(提高篇)

合集下载

二次根式的化简求值题(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)

二次根式的化简求值题(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题2.25二次根式的化简求值50题(分层练习)(提升练)1.已知x =,y =,求下列各式的值:(1)22x y -.(2)22252x xy y -+.2.(1)先化简,再求值:)(x x x x ++-,其中x =(2)已知x y =,试求代数式22252x xy y -+的值.3.(1(2;(3)已知2x =,求代数式((272x x ++4.(1)已知x =y =,求22x xy y ++的值;(275.已知x =y =,求代数式223x xy y -+的值.6.在数学小组探究学习中,张兵与他的小组成员遇到这样一道题:已知a =2281a a -+的值.他们是这样解答的:2=-∴2a -=,∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-.请你根据张兵小组的解题方法和过程,解决以下问题:(1)a =,则2281a a -+=.(2)若a =43443a a a --+的值.7.已知a =,b =8.先化简,再求值:(()1x x x x -+-,其中2x =.9.已知a =,b =求:(1)22a b ab -的值;(2)22a ab b ++的值.10.先化简,再求值:(()22323a a a a --+,其中3a =.11.先化简下式,再求值:()()2237752x x x x -+----,其中1x =+.12.先化简,再求值:153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中12x =,3y =.13,其中:3a =,2b =.14.已知.已知1,1a b ==.(1)代数式221a a -+的值为________;(2)求代数式22a b +值.15.已知a =,求代数式229a a -+的值.16.(1)已知1α=+,求代数式((241αα-+的值(2)已知4y =x y 的值.17.已知:x =y =,求22x xy y ++的平方根.18.已知a =,b =(1)22a b ab -(2)22a b +19.在数学课外学习活动中,嘉琪遇到一道题:已知a =,求2281a a -+的值.他是这样解答的:∵2a ==∴2a -=.∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-,请你根据嘉琪的解题过程,解决如下问题:(1)化简:=__________;=__________;(2)(3)若a =2481a a -+的值.20.已知1a =+,1b ,求22a b -和abb a+的值.21.某同学在解决问题:已知a =2362a a -+的值.他是这样分析与解的:1a ===+ ,1a ∴-=()212a ∴-=,2212a a -+=,221a a ∴-=,()223623223125a a a a ∴-+=-+=⨯+=,请你根据这位同学的分析过程,解决如下问题:(1)++ (2)若a =;①求2281a a --的值;②求3236216a a a --+的值.22.(1=,=;(2)已知x =((272x x ++(323.阅读材料:像))221⨯=()0a a =≥,……这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号.数学课上,老师出了一道题“已知a =2361a a --的值.”聪明的小明同学根据上述材料,做了这样的解答:因为1a ===所以1a -=所以()212a -=,所以2212a a -+=所以221a a -=,所以2363a a -=,所以23612a a --=请你根据上述材料和小明的解答过程,解决如下问题:__________=______;2-的有理化因式是________=______;(2)若a =,求22123a a -++的值.24)0,0x y->>,其中1x =-,1y .25.先化简,再求值:(1a a a aa ⎛⎫++- ⎪⎝⎭,其中a =26.已知x =,y =(1)求222x xy y ++的值.(2)若x 的小数部分为a ,y 的整数部分为b ,求ax by +的平方根.27.已知非零实数a ,b 满足=28.先化简,再求值:()()()22282x y x y x y --++,其中1x =1y =.29.已知12x =,求()33420252022x x --.30.已知1,10,15a b c ==-=-31.已知:12x x +=,求221x x+的值.32.已知8a b +=-,12ab =,求33.(1)已知a 、b4b +,求a 、b 的值.(2)已知实数a 满足2021a a -,求22021a -的值.34.已知x =y =,求代数式22x y +的值.35.先化简,再求值:()()()22 2222a b a b a b b ⎡⎤++-⎣⎦+-2069b b ++=.36.已知x =y =,求代数式22205520x xy y ++的值.37.已知x =,y =.(1)求33x y xy +的值;(2)求y x x y +的值.38.若x ,y 为实数,且12y =39.已知x =y =.求:(1)x y +和xy 的值;(2)求22x xy y -+的值.40.已知x =y =,求下列各式的值:(1)22x y -(2)222x xy y ++.41.有这样一类题目:如果你能找到两个数m 、n ,使22m n a +=且mn =a ±将变成222m n mn +±,即变成2()m n ±(1)例如,∵222532+=++=++=,==______,请完成填空.(2)(3)利用上面的方法,设A =,B =,求A +B 的值.42.已知a =,b =,求b a a b+的值.43.先化简,再求值:⎛- ⎝,其中8x =,127y =.44.(12-+4x =.(2)已知x =y =,求22x xy y -+值.45.已知3y =+,若a b =a2+b 2+ab 的值.46.(1)已知x ,y ﹣2,求下列各式的值:①11x y +;②x 2﹣xy +y 2;(28=.47.已知x =1x 的值.48.已知=x x 的整数部分为a ,小数部分为b ,求2a b a b--+的值.49.(1)先化简,再求值:((26a a a a +---+,其中1a -.(2)已知2x =,2y =223x y xy+-50.已知a =b =(1)求22a ab b -+的值;(2)若a 的小数部分为m ,b 的小数部分为n ,求()()m n m n +-的值.参考答案1.(1);(2)42【分析】(1)先求解x y x y +-,再利用平方差公式进行因式分解,再直接代入计算即可;(2)先求解()2x y xy ,+再利用完全平方公式进行变形求值即可.(1)解:∵x =y ,∴x y +=,x y -=∴()()22x y x y x y -=+-=;(2)解:∵x =y ,∴x y +=,2xy ==-∴()22222529yx y y x x y x =+--+(()229242=-´-=.【点拨】本题考查的是二次根式的求值,二次根式的加减乘法的混合运算,掌握“利用平方差公式与完全平方公式进行变形求解代数式的值”是解本题的关键.2.(15-,1-(2)42【分析】(1)先计算整式的乘法,再合并同类项,然后把x =(2)先利用x 、y 的值计算出x y -=2xy =-,再利用完全平方公式得到222252(2)x xy y x y xy -+=--,然后利用整体代入的方法计算.(1)解:)(x x x x ++-225x x =-+-5=-,当x =原式56512=-=-=-(2)解:∵x =y ,∴x y -=,352xy =-=-,∴222252(2)x xy y x y xy-+=--(()222=⨯--42=.【点拨】本题主要考查了二次根式的混合运算,整式的混合运算,熟练掌握相关运算法则是解题的关键.利用整体代入的方法可简化计算.3.(1(2);(3)2【分析】(1)根据二次根式的乘除混合计算法则求解即可;(2)根据二次根式的混合计算法则求解即可;(3)直接把2x =((272x x ++++然后合并同类二次根式即可得到答案.解:(1)原式=(2)原式===(3)原式((27222=+-++-+()74343=+-+-+(7743=+-+-49481=-++2=【点拨】本题主要考查了二次根式的混合计算,二次根式的化简求值,二次根式的乘除混合计算,熟知相关计算法则是解题的关键.4.(1)11;(2)【分析】(1)先计算出x y xy +,值,再根据()222x xy y x y xy ++=+-,代入计算即可得到答案;(2x y ==,则2222727936x y x y a a +=+=-++=,,从而可以求出=33<解:(1) x =y =,x y ∴+==321xy ==-=,∴()222x xy y x y xy ++=+-(2111=-=;(2x y ==,则2222727936x y x y a a +=+=-++=,,∴()()222213xy x y x y =+-+=,∴()222223x y x y xy -=+-=,∴x y -==33<=【点拨】本题考查了运用完全平方公式的变形进行求值,注()222x xy y x y xy ++=+-以及整体思想的运用.5.3【分析】先将x 、y 的值分母有理化,再代入到原式2)x y xy --=(计算可得.解:1x == ,1y =,∴原式()2=--x y xy))21111=--41=-3=【点拨】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式分母有理化的能力.6.(1)1-;(2)4【分析】(1)仿照例题,可以求得所求式子的值;(2)仿照例题,将a 的值分母有理化,然后变形,即可求得所求式子的值.(1)解:2a ==+ ,2a ∴-()223a ∴-=,2443a a ∴-+=,241a a ∴-=-,()()22281241211211a a a a ∴+=+=⨯-+=---+=-,故答案为:1-;(2)解:2a =+ ,2a ∴-=,()225a ∴-=,2445a a +-∴=,241a a ∴-=,()43222244344314343134a a a a a a a a a a a ∴+=-+=⨯-++--=-=+=-,即43443a a a --+的值为4.【点拨】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确题意,利用类比的方法解答.7.【分析】先分母有理化求出a b 、的值,再利用完全平方公式将222a b ++变形为2()22a b ab +-+,然后代入求值即可.解:2a =,2b =,====.【点拨】本题主要考查了二次根式的化简求值和完全平方公式的应用,熟练掌握化简方法和完全平方公式的变形是解题的关键.8.222x x --,32-.【分析】先用二次根式的混合运算法则化简,然后将2x =代入计算即可.解:(()1x x x x -+-,=222x x x -+-,=222x x --,当x =时,原式=22222--()(),=()212422---),=32-.【点拨】本题主要考查了二次根式的混合运算、代数式求值等知识点,正确运用二次根式的混合运算法则化简原式是解答本题的关键.9.(1)-;(2)11【分析】(1)根据二次根式的乘法法则求出ab ,根据二次根式的减法法则求出a b -,根据提公因式法把原式变形,代入计算即可;(2)根据完全平方公式把原式变形,代入计算,得到答案.(1)解:a = ,b =321ab ∴==-=,a b -=-=-则22a b ab -()ab a b =-(1=⨯-=-;(2)22a ab b ++2223a ab b ab=-++()23a b ab=-+2(31=-+⨯83=+11=.【点拨】本题考查的是二次根式的化简求值,掌握二次根式的加减法法则、乘法法则是解题的关键.10.26a a +,7-【分析】直接利用平方差公式以及二次根式的乘法将原式变形,进而合并同类项,进而把已知代入求出答案.解:原式2243363a a a =--++26a a =+,把3a 代入,得,原式))2336=+2918=+-7=-.【点拨】此题主要考查了平方差公式,多项式乘单项式以及二次根式的化简求值,正确化简原式是解题关键.11.224x x --,3-【分析】先去括号,然后合并同类项化简,最后代值计算即可.解:()()2237752x x x x -+----2237752x x x x -+--++=224x x =--,当1x =+时,原式())2222415115253x x x =--=--=--=-=-.【点拨】本题主要考查了二次根式的化简求值,正确计算是解题的关键.12.【分析】先确定00,x y >>,再利用二次根式的性质化简,然后计算二次根式的加减法,最后将x ,y 的值代入计算即可得.解:由题意得:100y x x >>,,∴00,x y >>,则153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2221153x y x x y ⎛⎛=⋅⋅-- ⎝⎝=-=当12x =,3y =时,原式6====【点拨】本题考查了二次根式的化简求值,熟练掌握运算法则是解题关键.13.a b -,1.【分析】利用二次根式的性质和平方差公式化简,然后代入求值即可.221·ab =-a b =-a b =-,当3a =,2b =时,原式32=-1=.【点拨】题目主要考查二次根式的化简求值及平方差公式,熟练掌握二次根式的运算法则是解题关键.14.(1)3;(2)8【分析】(1)将221a a -+变形为()21a -,再代入a 的值求解即可;(2)将22a b +变形为()22a b ab +-,再代入a ,b 的值利用平方差公式和完全平方公式求解即可.(1)解:∵1a +,∴())222211113a a a -+=-=+-=,故答案为:3;(2)解:22a b +2222a b ab ab =++-()22a b ab =+-,当1,1a b =+=时,22a b +()22a b ab=+-)))211211⎡⎤=+-⎣⎦()12231=-⨯-8=.【点拨】本题考查二次根式的化简求值,掌握平方差公式和完全平方公式是解决问题的关键.15.13【分析】先对a进行分母有理化求出1a =,再把所求式子变形为()218a -+,再把1a =整体代入求解即可.解:∵a =,∴)())24141411511a ⨯+⨯+⨯+===+--,∴229a a -+2218a a =-++()218a =-+)2118=-+28=+58=+13=.【点拨】本题主要考查了二次根式的化简求值,分母有理化,正确求出1a =+并把所求式子变形为()218a -+是解题的关键.16.(1)2;(2)16.【分析】(1)把4-)21,再代入数据利用平方差公式计算即可求解;(2)根据二次根式有意义的条件得到20x -≥,20x -≥,求得2x =,4y =,再代入数据计算即可求解.解:(1)∵1α=,∴((241αα-+))()221111=+-))21111⎡⎤=--⎣⎦()()23131=---42=-2=;(2)∵4y =++4y =+∴20x -≥,20x -≥,∴2x =,4y =,∴2416x y ==.【点拨】本题考查了二次根式有意义的条件,二次根式的化简求值,掌握平方差公式的结构特征是解题的关键.17.±【分析】先将x 、y 化简,然后即可得到x y xy +、的值,从而可以求得所求式子的值.解:∵25x ==+,25y==-∴(55105525241x y xy +=++-==+-=-=,,∴22x xy y ++222x xy y xy=++-()2x y xy =+-2101=-1001=-99=.∵99的平方根为±∴22x xy y ++的平方根为±【点拨】本题考查二次根式的化简求值,求一个数的平方根,解答本题的关键是明确二次根式化简求值的方法.18.(1)-;(2)14【分析】(1)先把a 、b进行分母有理化得到2a =-2b =+,进而求出a b -=-1ab =,再根据()22a b ab ab a b -=-进行代值求解即可;(2)根据()2222a b a b ab +=-+进行求解即可.(1)解:∵a =b =∴a=b =,∴2243a -==-2243b ==-∴22a b -=---(22431ab =+-=-=,∴22a b ab -()ab a b =-1=-=-(2)解:由(1)得a b -=-1ab=,∴()(22222212214a b ab a b =-+=-+=+=+.【点拨】本题主要考查了二次根式的化简求值,正确求出a b -=-1ab=是解题的关键.19.,1;(3)5【分析】(1)根据分母有理化的方法进行求解即可;(2)把各项进行分母有理化,从而可求解;(3)仿照所给的解答方式进行求解.(1)解:==;2⨯=(21=++1;(3)解:∵1a ==,∴1a -=∴()212a -=,即2212a a -+=,∴()224814211442148145a a a a -+=-++-=⨯+-=+-=.【点拨】本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.20.4【分析】将a ,b 的值分别代入要求的式子中,然后按照二次根式运算的法则计算即可.解:22221)1)44a b -=-=++=2222842a b a b b a ab ++=====.【点拨】本题考查了二次根式的混合运算,熟记二次根式的混合运算法则是解题的关键.注意做这类计算题时,一定要细心.21.1;(2)①3-;②0;【分析】(1)根据例题可得:对每个式子的分子和分母,同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)①将a =化简,再得到241a a -=-,再整体代入化简后的式子计算即可;②根据241a a -=-,将所求式子变形,再整体代入计算即可.(1+ 1=1=;(2)解:① 2a ==-2a ∴-=()223a ∴-=,2443a a -+=241a a ∴-=-,∴()()222812412113a a a a --=--=⨯--=-,②由①知241a a -=-,∴3236216a a a --+()()()2224246436a a a a a a a a a =-+-+-++()()()1216136a a a =⨯-+⨯-+⨯-++2636a a a =---++0=.【点拨】本题考查了二次根式的化简求值,解题的关键是明确题意,利用平方差和完全平方公式解答.22.(1)2,2;(2)2+(3)>【分析】(1)根据二次根式的分母有理化可进行求解;(2)直接把x 的值代入求解即可;(3=解:(12142222-==-2;(2)∵x =,∴22x==∴((272x x ++((72=+⨯+⨯2=(3=;故答案为>.【点拨】本题主要考查二次根式的运算及分母有理化,熟练掌握二次根式的运算及分母有理化是解题的关键.23.2或2;2;(2)7【分析】(1)根据有理化因式的定义,进行求解即可;(2)根据题干给出的解题方法,进行求解即可.(1)解:∵321 =-=,=∵))()22341,22431=-=--=-=,22+或2,22=-=;2+或2;2;(2)解:∵(232332a+==+∴3a-=∴()237a-=,∴2697a a+=-,∴262a a-=-,∴22124aa-+=,∴221237a a-++=.【点拨】本题考查分母有理化.理解并掌握有理化因式的定义,是解题的关键.24.4【分析】利用二次根式的性质将原式化简,然后由平方差公式得出4xy=,代入求解即可.==,∵1x =-,1y =+,∴1)4xy ==,∴原式4==.【点拨】题目主要考查二次根式的化简及求代数式的值,平方差公式,熟练掌握运算法则是解题关键.25.223a -,3【分析】根据二次根式的混合运算法则,平方差公式和单项式乘多项式法则计算即可化简,再将a =代入化简后的式子计算即可.解:(1a a a a a ⎛⎫++- ⎪⎝⎭2221a a =-+-223a =-.当a =22232(33a =-=⨯-=.【点拨】本题考查二次根式的化简求值,涉及二次根式的混合运算,平方差公式和单项式乘多项式.熟练掌握各运算法则是解题关键.26.(1)20;(2)1±.【分析】(1)先分母有理化求出x 、y 的值,再求出x y +和xy 的值,最后根据完全平方公式进行变形,代入求出即可;(2)先求出x 、y 的范围,再求出a 、b 的值,最后代入求出即可.(1)解:12 2x ⨯==,2y =-,))22x y +=+-=,∴()(2222220x xy y x y ++=+==;(2)解;∵23,∴4<25+<,0<21-<,∵x 的小数部分为a ,y 的整数部分为b ,∴=a 24+-=2-,0y =,∴))2220541ax by +=+⨯=-=,∴ax by +的平方根是1=±.【点拨】本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点,能求出x y +和xy 的值是解(1)的关键,能估算出x 、y 的范围是解(2)的关键.27.3【分析】利用因式分解将已知化为0=,得出a b =,然后代入所求代数式即可得解.解: 非零实数a ,b 满足=,由题意可知0,0a b >>,220∴+=,∴=0,0a b >> ,0∴,=,a b ∴=,2332a a a a a a++=+-62aa =3=.【点拨】此题考查了二次根式的化简求值,熟练掌握二次根式的性质、因式分解以及分式的性质是解答此题的关键.28.18xy -,18-【分析】根据完全平方差公式、多项式乘以多项式运算法则先运算,再根据整式加减运算法则,去括号、合并同类项即可得到化简结果,最后代值利用平方差公式求解即可得到结果.解:()()()22282x y x y x y --++()()22222448282x xy y x xy xy y =-+-+++22228828102x xy y x xy y =-+---()()()22228881022x x xy xy y y =-+--+-18xy =-,当1x =1y =时,原式)1811=-⨯2181⎡⎤=-⨯-⎢⎥⎣⎦()1821=-⨯-18=-.【点拨】本题考查整式化简求值,涉及完全平方差公式、多项式乘以多项式、整式加减运算、去括号法则、合并同类项、平方差公式及二次根式运算,熟练掌握相关运算法则及公式是解决问题的关键.29.1-.【分析】根据x =12x -=()22121442022x x x -=-+=,2442021x x -=,将原式化为()()3322444420212022x x x x x ⎡⎤-+---⎣⎦,再整体代入即可求解.解:∵12x =,∴112122x -=-⨯∴()22121442022x x x -=-+=,∴2442021x x -=,∴原式()()3322444420212022x x x x x ⎡⎤=-+---⎣⎦()32021202120212022x x =+--()31=-1=-.【点拨】本题主要考查二次根式的化简,能正确根据二次根式的运算法则进行计算是解题关键.30.【分析】把已知数据代入代数式,根据二次根式的性质化简即可.解:∵1,10,15a b c ==-=-,===【点拨】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.31.5+【分析】根据2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭进行计算求解即可.解:∵12x x +=,∴221x x +2112x x x x ⎛⎫=+-⋅ ⎪⎝⎭(222=+-432=+-5=+【点拨】本题主要考查了二次根式的化简求值,完全平方公式的变形求值,正确根据完全平方公式得到2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭是解题的关键.32【分析】根据题意可判断a 和b 都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:8a b +=-Q ,12ab =,∴a 和b 均为负数,()222240a b a b ab +=+-====b b a a-+-=22=22a b-+====3-=【点拨】此题考查的是二次根式的化简和完全平方公式的变形;掌握二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.33.(1)5a =,4b =-;(2)2022【分析】(1)根据二次根式有意义的条件先求出a 的值,进而求出b 的值即可;(2)根据二次根式有意义的条件得到2022a ≥,2021=,两边平方即可得到答案.解:(14b +要有意义,∴501020a a -≥⎧⎨-≥⎩,∴5a =,4b =+,∴4b =-;(2)∵2021a a -要有意义,∴20220a -≥,∴2022a ≥,∴2021a a -=,2021=,∴220222021a -=,∴220212022-=a 【点拨】本题主要考查了二次根式有意义的条件,化简绝对值,代数式求值,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.34.24【分析】先计算出x y +=2xy =-,,再利用完全平方公式变形得到()2222x y x y xy +=+-,然后利用整体代入的方法计算.解:∵x =y =,∴x y +=++=2xy =+=-,∴()(()222222220424x y x y xy +=+-=-⨯-=+=.【点拨】本题主要考查二次根式的化简求值,代数式求值,解题的关键是熟练运用完全平方公式化简二次根式.35+【分析】先根据整式的混合运算法则将所求整式化简,再根据算术平方根和偶次幂的非负性求出a 、b ,代入即可作答.解:()()()22+ 2+2+22a b a b a b b --⎡⎤⎣⎦()()22222442322a ab b a ab b b⎡⎤=+++-⎣⎦--()22222442322a ab b a ab b b =+++---()23a a b =+23b a a =+=+,2069b b ++=,()203b +=,0≥,()203b +≥,0=,()203b +=,∴20a -=,30b +=,∴=2a ,3b =-,将=2a ,3b =-3+中,原式()3332=+=+⨯-=【点拨】本题考查了二次根式的加减乘除混合运算,其中涉及到了算术平方根的非负性和完全平方公式等,解决本题的关键是牢记整式的混合运算法则.36.2015【分析】直接利用分母有理化将原式化简,再将多项式变形,进而代入得出答案.解:∵x 25===-,y 25===+22205520x xy y ∴++2220402015x xy y xy=+++()2220215x xy y xy=+++()22015x y xy=++((22055155252=⨯-++⨯-+()22010152524=⨯+⨯-2010015=⨯+200015=+2015=.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.37.(1)10;(2)10【分析】(1)先求出xy 及x +y 的值,再将33x y xy +因式分解,最后再整体代入求值;(2)先将y x x y+通分,再通过完全平方公式变形,最后代入求值.解:(1)x y ==1,xy ∴=⨯+=x y +==()33222()212110x y xy xy x y xy x y xy⎡⎤⎡⎤∴+=+=+-=⨯-⨯=⎣⎦⎣⎦(2)y x x y +22y x xy+=2()2x y xy xy+-=2211-⨯=10=【点拨】本题考查与二次根式相关的代数式求值问题,解题的关键是整体思想的应用.38.【分析】先根据二次根式有意义的条件求出x 的值,进而求出y 的值,然后代值计算即可.解:∵12y =要有意义,∴140410x x -≥⎧⎨-≥⎩,∴1144x ≤≤即14x =,∴1122y ==,∴122x y y x==,,==【点拨】本题主要考查了二次根式有意义的条件,二次根式的求值,正确求出x 、y 的值是解题的关键.39.(1)1;(2)9【分析】(1)根据二次根式的加法法则即可求出x y +,根据二次根式的乘法法则即可求出xy ;(2)先根据完全平方公式变成()2223x xy y x y xy =+--+,再代入求出答案即可.(1)解:∵x =y =,∴x y ==++321xy ⨯==-=.∴x y +的值为xy 的值为1.(2)∵x y +=1xy =,22x xy y -+()23x y xy=+-(231=-⨯123=-9=.∴22x xy y -+的值为9.【点拨】本题考查二次根式的化简求值,完全平方公式,平方差公式.能正确根据二次根式的运算法则进行计算是解题的关键.40.(1);(2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算.(1)解:x =Q y =,x y ∴+=,x y -=()()22x y x y x y -=+-=(2)由(1)知x y +=∴22222()12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.41.1-;(3)2+【分析】(1(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩,即可得出相应结果.(2)根据(1)中“222532+=++=++=”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A式和B式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B式的结果分别算出,最后把A式和B式再代入A+B中,求出A+B的值.解:(1)∵222 5232+=++=++==(2)∵)22 43111 -=+-=+-=-1-.(3)∵222 6422(2A=+++++⨯+∴2 A=+∵2212132B+-⨯⨯===∴B=====∴把A式和B式的值代入A+B中,得:222A B+=+=【点拨】本题考查二次根式的化简求值问题,完全平方公式.解本题的关键在熟练掌握二次根式的性(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩和熟练运用完全平方公式()2222a b a ab b±=±+.42.18【分析】先将条件变形为:2a=,2b=,然后将结论变形22a bab+,最后将化简后的条件代入变形后的式子就可以求出其值.解:∵a =,b =,∴2a +,2b -,∴ab =1,+=a b∴b a a b +()(22222218a b a b ab ab ++==-=-=.【点拨】本题主要考查了二次根式的分母有理化,完全平方公式的运用,正确求出2a =,2b =是解答本题的关键.43.2+3+.【分析】先根据二次根式的运算法则,在根据分式的运算法则计算即可,先化简,再代入8x =,127y =即可.解:原式2=-2=+,当8x =、127y =时,原式3=329=+⨯3=.【点拨】本题考查了二次根式及分式的运算法则,熟练掌握并应用二次根式及分式的运算法则是解答本题的关键.44.(1)(2)11【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =,∴x y -==231xy ==-=-,原式=x 2﹣2xy +y 2+xy=(x ﹣y )2+xy=(2﹣1=12﹣1=11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.45.3x +y ,15【分析】根据题意求出x 与y 的值,然后根据完全平方公式以及平方差公式进行化简,然后将x 与y 代入原式即可求出答案.解:∵3y =+有意义∴40x -≥且40x -≥∴x =4,∴y =3,∵a b =()222222a b ab a b ab ab a b ab++=++-=+-∴()2222a b ab a b ab ++=+-=+-(()2x y =--3x y=+把x =4,y =3代入上式中原式34315=⨯+=【点拨】本题主要考查了二次根式有意义的条件,二次根式的化简求解,完全平方公式和平方差公式,解题的关键在于能够熟练掌握相关知识进行求解.46.(1)①3;②19;(2)±【分析】(1)①根据x +2,y −2,可以得到xy 、x +y 的值,然后即可求得所求式子的值;②将所求式子变形,然后根据x2,y −2,可以得到xy 、x +y 的值,从而可以求得所求式子的值;(2)根据完全平方公式和换元法可以求得所求式子的值.解:(1)①11x y +=x yy x +,∵x 2,y ,∴x +y =,xy =3,当x +y =,xy =3时,原式=3;②x 2−xy +y 2=(x +y )2−3xy ,∵x 2,y ,∴x +y =,xy =3,当x +y ,xy =3时,原式=()2−3×3=19;(2x y ,则39−a 2=x 2,5+a 2=y 2,∴x 2+y 2=44,8,∴(x +y )2=64,∴x 2+2xy +y 2=64,∴2xy =64−(x 2+y 2)=64−44=20,∴(x −y )2=x 2−2xy +y 2=44−20=24,∴x −y =±,±故答案为:±【点拨】本题考查二次根式的化简求值、分式的加减法、平方差公式,解答本题的关键是明确它们各自的计算方法.47.32-【分析】先把=x x =再化简2154x x x --+得111x x ---,最后代入求值即可.解:x =+∵12<<∴34<<∴4x <1x1x=(4)1(4)(1)x x x x--=---111x x =---将x =代入上式得:原式=13(222-==-=【点拨】本题考查了二次根式的混合计算,熟练掌握运算法则是解答此题的关键.48.7-2=+12<得到3a =,1b =,将a 、b 代入即可计算即可.2=,12<<,∴3a =,1b =,∴(2312227a b a b -----===-+【点拨】本题考查二次根式的化简及计算,同时也考查了学生的估算能力,夹逼法是估算时常用的一种方法.49.(1)(a a ;5-(2)11【分析】(1)利用乘法公式化简,在代入求值计算即可;(2)把x ,y 代入代数式求解即可;解:(1)原式(222266a a a a a =--+=+=+,当1a -时,原式11=+,5=-.(2)由已知可得:1x y xy -==,原式=222x xy y xy -+-,()2=--x y xy,(21=-,121=-,11=.【点拨】本题主要考查了二次根式的化简计算,利用乘法公式化简是解题的关键.50.(1)13;(2)3-【分析】(1)利用二次根式的加法运算和乘法运算求得a b +和ab ,对所求式子利用完全平方公式变形,进而整体代入求出即可;(2)首先利用分母有理化法则求出a ,b的值,根据12<,可得m ,n 的值,进而代入求值即可.解:(1)22114442a b+-++====,1ab =,22a ab b -+()23a b ab=+-243=-13=;(2)2a ==,2b ==+∵12<<,21-<-,∴22221-<<-,21222+<<+,即021<,324<+∴2的整数部分是0,小数部分是2,即2m =2+31,即1n =,∴()()m n m n +-()()2121=3=-【点拨】本题主要考查了二次根式的化简求值,估算无理数的大小,根据12<<,得出m ,n 的值是解题关键,注意要分母有理化.。

二次根式混合运算提高题

二次根式混合运算提高题

二次根式混合运算提高题
小试牛刀
(1)( 2+1)( 2-1);
(2)( 2- 3)2 .
再试一把: 2 + ?1 2 -1
1- 5 . 1+ 5
二次根式运算 (提高篇)
三更灯火五更鸡,正是男儿读书时; 黑发不知勤学早,白首方悔读书迟。
一:二次根式混合运算
例1、计算
(1)(3 2-1)(1+3 2)-(2 2-1)2
23
x y x y
( 2 )已 知 : a =1,b =1 ,求 a 2 2 a b b 2 7 的 值 5 2 5 2
三:注意二次根式运算中隐含条件
例3
已知:a=2+1

3

a2-1 a+1

a2-2a+1 a2-a
的值.
老师忠告
三解更题灯 示火范五—更—鸡规(,范1正步)是骤题男,目儿该读得中书的时分的;一分隐不丢含!条件为a= 1
(2)( 10-3)2010·( 10+3)2010
解题示范——规范步骤,该得的分一分不丢!
迁移:
(1) 62- 18-120;
(2)(-3)2- 4+12-1.
(3)已知 10 的整数部分为a,小数部分 为b,求a2-b2的值.
二:二次根式运算中的技巧
例 4 、 ( 1 ) 当 x = 1 ,y 1 时 , 求 代 数 式x y的 值
(1)题目中的隐含条件为a= <1,所以

2+
<1,所以 3
a2-2a+1 =
三三三更更更灯 灯 灯火火火五五五更更更鸡鸡鸡,,,正正正a是是是-男男男儿儿儿1读读读书书书2 =时时时;;;|a-1|=1-a,而不是a-1;

二次根式的计算与化简练习题(提高篇)

二次根式的计算与化简练习题(提高篇)

二次根式的计算与化简(一)练习题(提高篇)1、已知m2、化简(1(2)xx x x x 5022322123-+(30)a >3、当2x =2(7(2x ++的值。

4、先化简,再求值:221,39a b ==。

6、已知1a =222214164821442a a a aa a a a a --+++÷-+-+-,再求值。

7、已知:321+=a ,321-=b ,求b a b a 2222+-的值。

9、已知30≤≤x ,化简9622+-+x x x10、已知2a =a aa a a a a a 112121222--+---+-11、①已知2222x y x xy y ==++求:的值。

②已知12+=x ,求112--+x x x 的值.③)57(964222x x y x y +-+④3)2733(3a a a ÷-12、计算及化简:⑴. 22-⑵⑷. a ba b ⎛⎫+--13、已知:11a a +=221a a+的值。

14、已知()11039322++=+-+-y x x x y x ,求的值。

二次根式提高测试一、判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( ) 2.3-2的倒数是3+2.( )3.2)1(-x =2)1(-x .…( )4.ab 、31b a 3、b ax 2-是同类二次根式.…( )5.x 8,31,29x +都不是最简二次根式.( )二、填空题:(每小题2分,共20分)6.当x__________时,式子31-x 有意义.7.化简-81527102÷31225a =_.8.a -12-a 的有理化因式是____________. 9.当1<x <4时,|x -4|+122+-x x =________________. 10.方程2(x -1)=x +1的解是____________.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.12.比较大小:-721_________-341.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y2=____________. 三、选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+x x 等于………………………( )(A )x 2 (B )-x 2(C )-2x (D )2x19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---四、在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2; 22.4x 4-4x 2+1.五、计算题:(每小题6分,共24分) 23.(235+-)(235--);24.1145--7114--732+;25.(a 2m n -mab mn +mn n m )÷a 2b 2m n ;26.(a +b a abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221a x +的值.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).30.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-x yy x +-2的值.《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22. 11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ab =2)(ab (ab >0),∴ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵x <y <0,∴x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x 2 (B )-x 2(C )-2x (D )2x 【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵0<x <1,∴x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -mab mn +m nn m )÷a 2b 2m n ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n -m abmn +m nn m )·221b a nm=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +, ∴x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x(22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax + =)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x 1. 七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.30.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xy y x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴x =41.当x =41时,y =21. 又∵xy yx ++2-xy yx +-2=2)(xy yx +-2)(xy yx -=|xy y x +|-|x y y x -|∵x =41,y =21,∴y x <x y.∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

二次根式运算提高题

二次根式运算提高题

二次根式运算提高题(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--初二数学《二次根式》提高测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .………………………………………………………………( ) 【提示】2)2(-=|-2|=2. 【答案】×.2.3-2的倒数是3+2.……………………………………………………………( ) 【提示】231-=4323-+=-(3+2).【答案】×. 3.2)1(-x =2)1(-x .………………………………………………………………( ) 【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…………………………………………( ) 【提示】31b a 3、bax 2-化成最简二次根式后再判断. 【答案】√. 5.x 8,31,29x +都不是最简二次根式.………………………………………( ) 【提示】29x +是最简二次根式. 【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义x ≥0.分式何时有意义分母不等于零. 【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a=____________. 【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a . 【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数x -4是负数,x -1是正数. 【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少12-,12+. 【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=___________________. 【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=[1.] 【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________. 【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =小数部分y =[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则…………………………………………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x . 222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+x x 等于………………………( )(A )x 2 (B )-x2(C )-2x (D )2x 【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -. 【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y . 【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式. 【解】原式=(35-)2-2)2(=5-215+3-2 =6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7 =1.25.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2mn -m ab mn +m nn m)·221b a nm=21b nmm n ⋅-mab 1n mm n ⋅+22b ma n nmn m ⋅ =21b -ab 1+221ba =2221ba ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26. ∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +- =10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221a x +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1. 当x =1-2时, 原式=211-=-1-2. 【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221ax + =x1. 七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件].014041[⎩⎨⎧≥-≥-x x你能求出x ,y 的值吗].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x∴ x =41.当x =41时,y =21. 又∵x y y x ++2-x y y x +-2 =2)(x y yx+-2)(xy yx - =|x y y x +|-|xyy x -| ∵ x =41,y =21, ∴yx<x y . ∴ 原式=x y y x +-y x x y +=2yx当x =41,y =21时, 原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.四、链接中考同学们,我们以前学过完全平方公式222()2a b a ab b ±=±+,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:2221)211213=-⨯=-=-反之,23211)-=-=11 ∴231)-=∴ 223-=2-1仿上例,求:(1);324+(2)你会算124-吗(3)若n m b a +=±2,则m 、n 与a 、b 的关系是什么并说明理由.。

二次根式计算及化简练习题.doc

二次根式计算及化简练习题.doc

二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。

m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。

4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。

6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。

a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。

2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。

x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。

x 3yx 291的值。

14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。

(完整版)二次根式的计算与化简练习题(提高篇).doc

(完整版)二次根式的计算与化简练习题(提高篇).doc

二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。

m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。

4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。

6 4 96、已知a 2 1,先化简a2 2a 1 a 1 4a2 16 4a2 8a, 再求值。

a2 a a2 2a 1 a2 4a 4 a 27、已知:a 1 ,b 1 ,求a 2 b22 2a 的值。

2 3 3 2b9、已知0 x 3 ,化简x 2 2 6 9xx10、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x 23, y 23, 求: x2xy y2的值。

x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④( 3a 3 27a3 ) ax 9 312、计算及化简:1 22a b a b 2 ab⑴.1⑵ .aaababaa⑷.a 2 ab ba b a a baab bab bab13、已知: a1 1 10 ,求 a2 1 的值。

aa 2x 3yx 291的值。

14、已知20,求x x 3y 1二次根式提高一、判断 :(每小1 分,共 5 分)1. ( 2)2ab =- 2ab .⋯⋯⋯⋯⋯⋯⋯()2. 3- 2 的倒数是3+ 2.() 3.(x 1)2( x 1) 2. ⋯ ()=1a 3b 、2 a4.ab 、 3 xb是同 二次根式.⋯ ()1x 25.8x ,3 , 9 都不是最 二次根式. ()二、填空 :(每小2 分,共 20 分)16.当 x__________ ,式子x3有意 .15 2 10257.化 -827 ÷ 12 a 3 = _.8. a - a21的有理化因式是 ____________.9.当 1< x < 4 , |x - 4|+ x 2 2x1= ________________ .10.方程2( x - 1)= x +1 的解是 ____________ .ab c 2 d 211.已知 a 、 b 、c 正数, d 数,化abc 2d 2 = ______.1112.比 大小:- 27_________ -43 .13.化 : (7-5 2)2000 (·- 7- 52)2001= ______________.14.若x1+ y3= 0, (x - 1)2+ (y + 3)2= ____________.15. x , y 分 8-11的整数部分和小数部分,2xy - y2= ____________.三、 :(每小3 分,共 15 分)16.已知 x33x 2=- x x3, ⋯ ⋯⋯⋯⋯⋯()(A ) x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y < 0,x 2 2 xy y 2 + x 22xy y 2 =⋯ ⋯⋯⋯⋯⋯⋯⋯⋯( )(A ) 2x(B )2y (C )- 2x ( D )- 2y( x1 )2 4(x1 )2 418.若 0<x < 1,x-x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯ ⋯()22(A ) x( B )- x( C )- 2x(D ) 2xa 319.化 a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a(B )-a( C )-a ( D )a20.当 a < 0,b < 0 , - a + 2 ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )(A )( ab) 2 ( B )-(ab )2 ( C )(ab )2 ( D )(ab )2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m25.( a2m-mmn +m nn)÷ a2b2m;b ab a b a b26.(a+a b)÷(ab b+ab a-ab)(a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x 2 y3 的值.x 2x x2 a 2 1 28.当 x=1- 2 ,求 x2 a2 x x2 a2 + x2 x x2 a2 + x2 a2 的.七、解答:(每小 8 分,共 16 分)1 1 1 129.算( 2 5+ 1)(12 + 23 + 34 +⋯+ 99 100 ).1 x2 y x 2 y30.若 x, y 数,且 y=14x +4x 1 + 2 y x -yx的..求《二次根式》提高(一)判断 : (每小1 分,共 5 分)1.( 2) 2 ab =- 2 ab .⋯⋯⋯⋯⋯⋯⋯()【提示】( 2) 2= |- 2|= 2.【答案】×.2.3 -2 的倒数是3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 2 =1) 2. (x 1) 2 = (x .⋯( )【提示】 ( x 1) |x - 1| , ( x = x -13( x ≥ 1).两式相等,必 x ≥ 1.但等式左 x 可取任何数. 【答案】×.4. ab 、1 a 3b 、 2a是同 二次根式.⋯()【提示】1 a 3b 、2 a3 xb3x b化成最 二次根式后再判断. 【答案】√.5. 8x ,1 , 9 x2 都不是最 二次根式. ()9x 2 是最 二次根式.【答3案】×.(二)填空 : (每小 2 分,共 20 分)6.当 x__________ ,式子1有意 .【提示】 x 何 有意 ? x ≥0.分式何x3有意 ?分母不等于零. 【答案】 x ≥0 且 x ≠ 9.7.化 -15 2 10 ÷25= _.【答案】- 2aa .【点 】注意除法法 和 的82712a 3算 平方根性 的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a -a 21 )( ________)=a 2- ( a 21) 2 . a + a 2 1 .【答案】 a + a 2 1 .9.当 1< x < 4 , |x - 4|+ x22x 1 = ________________ .【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1< x < 4 , x - 4, x - 1 是正数 是 数? x - 4 是 数, x -1 是正数.【答案】 3.10.方程2 ( x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成ax =b 的形式后, a 、 b 分 是多少? 2 1 , 2 1.【答案】 x = 3+2 2 .11.已知 a 、b 、c 正数, d 数,化ab c 2d 2 =______ .【提示】 c 2 d 2 =ab c 2 d 2|cd|=- cd .【答案】ab + cd .【点 】∵ab = ( ab )2(ab > 0),∴ ab - c 2d 2 =( abcd )( ab cd ).12.比 大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 74 3【答案】<.【点 】先比 28, 48 的大小,再比1 1的大小,最后,4828比 -1 与- 1 的大小.284813.化 : ( 7-52 ) 2000·(-7- 52 ) 2001= ______________.【提示】 ( - 7-52 ) 2001= ( - 7- 5 2 ) 2000·( _________) [ - 7- 5 2 . ]( 7- 5 2 ) ·(- 7- 5 2 )=? [ 1. ] 【答案】- 7-5 2 . 【点 】注意在化 程中运用 的运算法 和平方差公式.14.若 x 1 + y 3 =0, ( x -1) 2+ ( y + 3) 2= ____________.【答案】 40. 【点 】x1 ≥0,y 3 ≥ 0.当 x 1 + y 3 = 0 , x +1= 0, y -3= 0.15. x , y 分 8- 11 的整数部分和小数部分, 2xy - y 2=____________ .【提示】 ∵3< 11 < 4,∴ _______ < 8-11 < __________.[ 4,5] .由于 8- 11 介于 4 与 5 之 , 其整数部分 x =?小数部分 y =? [ x =4, y = 4-11 ] 【答案】 5.【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次根式的取 范 后,其整数部分和小数部分就不 确定了.(三) : (每小3 分,共15 分)16.已知x 33x 2 =- x x3 , ⋯⋯⋯⋯⋯⋯()(A ) x ≤0( B ) x ≤- 3( C ) x ≥- 3(D )- 3≤ x ≤ 0【答案】D .(A )、( C )不正确是因 只考 了【点 】本 考 的算 平方根性 成立的条件, 其中一个算 平方根的意 .17.若 x < y < 0, x 2 2 xy y 2 + x 2 2 xy y 2 =⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) 2x(B ) 2y( C )- 2x (D )- 2y【提示】∵x <y < 0,∴ x - y < 0,x +y < 0.∴x 2 2xy y 2 = ( x y)2 = |x - y|= y - x .x 2 2xy y 2 = ( x y) 2 = |x + y|=- x - y .【答案】 C .【点 】本 考 二次根式的性a 2 = |a|.18.若 0< x < 1,(x1 )2 4 - ( x 1) 2 4 等于⋯⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2( B )-2( C )- 2x( D ) 2xxx【提示】 ( x -1) 2+ 4= ( x +1) 2, ( x +1) 2 -4= ( x -1) 2.又∵0< x < 1,xxxx∴ x + 1> 0,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.xa 319 . 化a( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a ( B )- a( C )-a ( D ) a【提示】a 3 = a a 2 =a · a 2 = |a|a =- aa .【答案】 C .20.当 a <0, b < 0 ,- a +2ab - b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )( A ) ( a b) 2( B ) - ( ab)2( C ) (ab) 2( D )( ab )2【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = ( a )2,- b = ( b )2 , ab = ( a)( b) .【答案】 C .【点评】本题考查逆向运用公式( a )2 =a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b <0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2 ;【提示】 用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+ 1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 (2 x+ 1) 2( 2 x - 1) 2.(五)计算题: (每小题 6 分,共 24 分)23.( 5 32 )( 5 32 );【提示】将 5 3 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 53 ) 2- ( 2) 2 = 5- 2 15 + 3- 2= 6- 2 15 .24.5-4-2;【提示】先分别分母有理化,再合并同类二次根117 37 411式.【解】原式=5( 411) - 4( 11 7 7 ) - 2(3 7 )= 4+ 11 - 11 - 7 - 3+16 11 11 9 77 = 1.25.( a 2n - ab mn + n m)÷ a 2b 2 n ;mmmnm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=( a2n - abmn +nm ) · 1mm mmna 2b 2n= 1n m -1 mn m+n m mb 2m nmab nma 2b 2 n n= 1 - 1 + 1 =a 2 ab 1 .a 2b 2b 2 ab a 2b 226.( a +bab)÷(a + b- a b)(a ≠ b ).abab b ab a ab【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=aab bbab ÷ a a ( a b) b b ( a b ) (a b)( a b)aab ( a b )( a b )=a b÷ a2a ab b ab b 2 a 2 b 2a bab( ab )( a b )=a b · ab ( a b)( ab) =-ab .a bab(a b) 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值: (每小题 7 分,共 14 分)27.已知 x =3 2,y =3 2,求x 3 xy 2x 2 y 3 的 .3232x 4 y 2x 3 y 2【提示】先将已知条件化 ,再将分式化 最后将已知条件代入求 .【解】∵x =3 2= ( 32) 2 = 5+ 2 6 ,3 2y =3 2= ( 32) 2 = 5-2 6 .32∴ x + y =10, x - y =4 6 , xy =52-( 26 ) 2= 1.x 4 y x 3xy 2x 2 y 3 = x( x y)( x y) = x y =4 6 = 26 . 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点 】 本 将 x 、y 化 后, 根据解 的需要, 先分 求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求 的 程更捷.28.当 x = 1-2 ,求x 2a 2x a 2 + 2xx 2 a 2 + 1的 .x x 2x 2 x x 2 a 2x 2 a 2【提示】注意: x 2 +a 2= ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x2a 2= x2a 2(x2a 2 - x ),x 2-x x 2a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x 2a 2+x 2 a 2x) x)= x 2x 2a 2 (2xx 2 a 2 ) x( x 2a 2 x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2 a 2 ( x 2a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2x)x x 2 a 2 ( x 2 a 2 x)x 2 a 2 ( x 2 a 2 x) x x 2a 2 ( x 2a 2 x)= 1.当 x = 1- 2 ,原式=1 =- 1-2 .【点 】本 如果将前两个“分式”x12分拆 成两个“分式”之差,那么化 会更便.即原 式=x-x 2a 2 (x 2a 2x)2xx 2 a 2 +1x( x 2 a 2 x)x 2 a 2= (11) - (11 ) +1= 1.a 2x 2x 2 a 2xx x 2 a 2x 2 xa 2x七、解答 : (每小8 分,共 16 分)29. 算( 25 +1)(1 + 1 + 1 +⋯+1).23991001 2 3 4【提示】先将每个部分分母有理化后,再 算.【解】原式=(2 5 + 1)(2 1 +3 2 + 43+⋯+ 10099 )2 13 24 3 100 99= ( 25 + 1 ) [ ( 21 ) + ( 32 )+ ( 43 )+ ⋯ +( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做 裂项相消法. 30.若 x ,y 为实数,且 y =1 4x + 4x1 + 1.求 x 2 y - x 2 y 的2 y x y x 值.【提示】要使 y 有意义,必须满足什么条件?[ 1 4x 0x , y 的值吗?4x 1 ] 你能求出0.x 14[]y1.214 x 0 x14x =1.当 x = 1时, y =1【解】要使 y 有意义,必须 [,即∴ .4x1 0x 1 .4424又∵x 2y - x 2y = x y2-x y 2y x yx()()yxyx= | xy|- | xy|∵ x = 1, y = 1,∴x < y .yxyx42y x∴原式= xy - y x= 2 x 当 x = 1, y =1时,yxxyy421原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。

二次根式提高练习题(含答案)

二次根式提高练习题(含答案)

一.盘算题:1.(235+-)(235--);2.1145--7114--732+;3.(a2mn -m abmn +mn nm )÷a 2b2mn ;4.(a +ba abb +-)÷(bab a ++a ab b--abb a +)(a ≠b ). 二.求值:x =2323-+,y =2323+-,求32234232yx y x y x xy x ++-的值.x =1-2时,求2222ax x a x x+-++222222ax x x ax x +-+-+221ax +的值.三.解答题:1.盘算(25+1)(211++321++431++…+100991+).x ,y 为实数,且y =x41-+14-x +21.求xy y x ++2-xy y x +-2的值.盘算题: 1.【提醒】将35-算作一个整体,先用平方差公式,再用完整平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.2.【提醒】先分离分母有理化,再归并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.3.【提醒】先将除法转化为乘法,再用乘法分派律睁开,最后归并同类二次根式.【解】原式=(a2mn -mab mn +mn n m )·221ba n m=21b nmm n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅=21b -ab 1+221b a =2221ba ab a +-. 4.【提醒】本题应先将两个括号内的分式分离通分,然后分化因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba b a ++÷))((2222b a b a ab ba b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-ba +.【点评】本题假如先分母有理化,那么盘算较烦琐. 求值:1..【提醒】先将已知前提化简,再将分式化简最后将已知前提代入求值.【解】∵x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xyx ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652.【点评】本题将x .y 化简后,依据解题的须要,先分离求出“x +y ”.“x -y ”.“xy ”.从而使求值的进程更简捷. 2.【提醒】留意:x 2+a 2=222)(a x +,∴x 2+a 2-x22ax +=22ax +(22ax +-x ),x 2-x22ax +=-x(22ax +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)(()2(22222222222x a x a x x ax x a x x a x x -+++++-+- =)()(22222222222222x a x a x x xa x x a x a x x x -++-+++++-=)()(222222222x a x a x x ax x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题假如将前两个“分式”分拆成两个“分式”之差,那么化简会更轻便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222ax xa x +--+-)11(22x x a x --++221ax +=x1.解答题:1.【提醒】先将每个部分分母有理化后,再盘算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不合分母,不成能通分.这里采取的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种办法也叫做裂项相消法.2.【提醒】要使y 有意义,必须知足什么前提?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴x =41.当x =41时,y =21.又∵xyy x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|x yyx -|∵x =41,y =21,∴yx <xy .∴ 原式=xy y x +-yx x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的症结是应用二次根式的意义求出x 的值,进而求出y 的值.。

(2021年整理)二次根式的计算与化简练习题

(2021年整理)二次根式的计算与化简练习题

二次根式的计算与化简练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二次根式的计算与化简练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二次根式的计算与化简练习题的全部内容。

二次根式的计算与化简练习题(提高篇)1、已知是的小数部分,求的值.2、化简(1) (2)(3)3、当时,求的值。

4、先化简,再求值:,其中。

5、计算:6、已知,先化简,再求值。

7、已知:,,求的值.8、已知:,,求代数式的值。

9、已知,化简10、已知,化简求值11、①已知的值。

②已知,求的值.③12、计算及化简:⑴. ⑵.⑶。

⑷。

13、已知:,求的值。

14、已知的值。

二次根式提高测试一、判断题:(每小题1分,共5分)1.=-2.…………………()2.-2的倒数是+2.( )3.=.…( )4.、、是同类二次根式.…( )5.,,都不是最简二次根式.( )二、填空题:(每小题2分,共20分)6.当x__________时,式子有意义.7.化简-÷=_.8.a-的有理化因式是____________.9.当1<x<4时,|x-4|+=________________.10.方程(x-1)=x+1的解是____________.11.已知a、b、c为正数,d为负数,化简=______.12.比较大小:-_________-.13.化简:(7-5)2000·(-7-5)2001=______________.14.若+=0,则(x-1)2+(y+3)2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy-y2=____________.三、选择题:(每小题3分,共15分)16.已知=-x,则………………( )(A)x≤0 (B)x≤-3 (C)x≥-3 (D)-3≤x≤017.若x<y<0,则+=………………………()(A)2x (B)2y (C)-2x (D)-2y18.若0<x<1,则-等于………………………( )(A) (B)- (C)-2x (D)2x19.化简a<0得………………………………………………………………()(A)(B)-(C)-(D)20.当a<0,b<0时,-a+2-b可变形为………………………………………( ) (A)(B)-(C)(D)四、在实数范围内因式分解:(每小题3分,共6分)21.9x2-5y2; 22.4x4-4x2+1.五、计算题:(每小题6分,共24分)23.()();24.--;26.(+)÷(+-)(a≠b).(六)求值:(每小题7分,共14分)27.已知x=,y=,求的值.28.当x=1-时,求++的值.七、解答题:(每小题8分,共16分)29.计算(2+1)(+++…+).30.若x,y为实数,且y=++.求-的值.《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.=-2.…………………()【提示】=|-2|=2.【答案】×.2.-2的倒数是+2.()【提示】==-(+2).【答案】×.3.=.…( )【提示】=|x-1|,=x-1(x≥1).两式相等,必须x≥1.但等式左边x可取任何数.【答案】×.4.、、是同类二次根式.…()【提示】、化成最简二次根式后再判断.【答案】√.5.,,都不是最简二次根式.()是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x__________时,式子有意义.【提示】何时有意义?x≥0.分式何时有意义?分母不等于零.【答案】x≥0且x≠9.7.化简-÷=_.【答案】-2a.【点评】注意除法法则和积的算术平方根性质的运用.8.a-的有理化因式是____________.【提示】(a-)(________)=a2-.a+.【答案】a+.9.当1<x<4时,|x-4|+=________________.【提示】x2-2x+1=()2,x-1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.【答案】3.10.方程(x-1)=x+1的解是____________.【提示】把方程整理成ax=b的形式后,a、b分别是多少?,.【答案】x=3+2.11.已知a、b、c为正数,d为负数,化简=______.12.比较大小:-_________-.【提示】2=,4=.13.化简:(7-5)2000·(-7-5)2001=______________.14.若+=0,则(x-1)2+(y+3)2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy-y2=____________.(三)选择题:(每小题3分,共15分)16.已知=-x,则………………()(A)x≤0 (B)x≤-3 (C)x≥-3 (D)-3≤x≤0【答案】D.17.若x<y<0,则+=………………………()(A)2x (B)2y (C)-2x (D)-2y18.若0<x<1,则-等于………………………( )(A)(B)-(C)-2x (D)2x19.化简a<0得………………………………………………………………()(A) (B)-(C)-(D)20.当a<0,b<0时,-a+2-b可变形为………………………………………()(A)(B)-(C) (D)(四)在实数范围内因式分解:(每小题3分,共6分)21.9x2-5y2). 22.4x4-4x2+1.(五)计算题:(每小题6分,共24分)23.()();24.--;25.(a2-+)÷a2b2;26.(+)÷(+-)(a≠b).(六)求值:(每小题7分,共14分)27.已知x=,y=,求的值.28.当x=1-时,求++的值.二次根式的计算与化简练习题七、解答题:(每小题8分,共16分)29.计算(2+1)(+++…+).30.若x,y为实数,且y =++.求-的值.11。

二次根式的计算与化简练习题提高篇

二次根式的计算与化简练习题提高篇

二次根式的计算与化简练习题提高篇1.已知 $m$ 是 $2$ 的小数部分,求 $m^2+\frac{1}{2}-2$ 的值。

2.化简 $(1)(1-x)-x^2-8x+16$,$(2)\frac{1}{x^5}+\frac{3}{2x^3}-\frac{x}{2}$,$(3)4a-4b+(a-b)-a-ab(a>0)$。

3.当 $x=2-\sqrt{3}$ 时,求$(7+4\sqrt{3})x^2+(2+3\sqrt{3})x+3$ 的值。

4.先化简,再求值:$2a^3b^3-\frac{1}{b^3}\div27a^3b^3+2ab\sqrt{ab}$,其中$a=\frac{9}{64}$,$b=3$。

6.已知 $a=2-\sqrt{3}$,先化简,再求值:$\frac{2}{a^2-2a+1}+\frac{a}{a^2-4a+4}-\frac{1}{2a-1}\div(a-\sqrt{a}+1)$。

7.已知:$a=\frac{1}{2\sqrt{3}+1}$,$b=\frac{1}{2\sqrt{3}-1}$,求 $\frac{2a+2b^2-3}{2\sqrt{3}+3}$ 的值。

9.已知 $1\leq x\leq 3$,化简 $x^2+\frac{x^2-6x+9}{2}$。

10.已知 $a=2-\sqrt{3}$,化简求值 $\frac{1-2a+a^2}{a-2a^2+1}-\frac{1}{2a-1}\div(a-\sqrt{a}+1)$。

11.已知 $x=2-3$,$y=2+3$,求:$(1)x^2+xy+y^2$,$(2)x+1-\frac{x^2}{x-1}$,$(3)\frac{4}{x+3}+\frac{6}{9}-\frac{7x+5x^2}{3a}$。

13.已知:$a+\frac{1}{a}=3$,求 $a^2+\frac{1}{a^2}$ 的值。

14.已知 $\frac{a+2ab+b}{a-b}=\frac{ab}{b+ab-a}$,求$\frac{a}{b}+\frac{b}{a}$ 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*二次根式的计算与化简练习题(提高篇)1、已知m2、化简(1(2)xx x x x 5022322123-+(30)a >3、当2x =2(7(2x ++4、先化简,再求值:221,39a b ==。

6、已知1a =,222214164821442a a a aa a a a a --++÷-+-+-,再求值。

创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*7、已知:321+=a ,321-=b ,求b a b a 2222+-的值。

9、已知30≤≤x ,化简9622+-+x x x10、已知2a =a aa a a a a a 112121222--+---+-11、①已知2222x y x xy y ==++求:的值。

②已知12+=x ,求112--+x x x 的值.③)57(964222x x y x y +-+ ④3)2733(3a a a ÷-12、计算及化简:⑴. 22- ⑵创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*⑷-13、已知:11a a +=221a a+的值。

14、已知()11039322++=+-+-y x x x y x ,求的值。

二次根式提高测试一、判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( ) 2.3-2的倒数是3+2.( )3.2)1(-x =2)1(-x .…( )4.ab 、31b a 3、b ax 2-是同类二次根式.…( )5.x 8,31,29x +都不是最简二次根式.( )二、填空题:(每小题2分,共20分)6.当x__________时,式子31-x 有意义.7.化简-81527102÷31225a =_.8.a -12-a 的有理化因式是____________. 9.当1<x <4时,|x -4|+122+-x x =________________. 10.方程2(x -1)=x +1的解是____________.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.12.比较大小:-721_________-341.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y2=____________. 三、选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+x x 等于………………………( )(A )x 2 (B )-x 2(C )-2x (D )2x19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---四、在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2; 22.4x 4-4x 2+1.五、计算题:(每小题6分,共24分) 23.(235+-)(235--);创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*24.1145--7114--732+;25.(a 2m n -mab mn +mn n m )÷a 2b 2m n ;26.(a +b a abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221a x +的值.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).30.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-x y y x +-2的值.创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a=_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22. 11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x 2 (B )-x 2(C )-2x (D )2x 【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x+5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1. 25.(a 2m n -mab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a n m=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-.26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a ba ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +, ∴ x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x 1. 七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.30.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21. 又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x - =|xy yx +|-|xy yx -|∵ x =41,y =21,∴ yx <xy.∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*。

相关文档
最新文档