离散傅里叶变换(DFT)

合集下载

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

尾补L-M个零后,再形成第一行的循环倒相序列。
(2) 第1行以后的各行均是前一行向右循环移1位 形成的。 (3) 矩阵的各主对角线上的序列值均相等。
x( L 1) x( L 2) y (0)c x(0) y (1) x(1) x(0) x( L 1) c y (2)c = x(2) x(1) x(0) y ( L 1)c x( L 1) x( L 2) x( L 3) x(1) h(0) x(2) h(1) x(3) h(2) x (0) h( L 1)
主值序列 x(n)
DFT变换对
x(n)的长度为M点,N≥M
N点DFT 变换对
DFT [ x(n)] X (k ) x(n)WNkn
n 0 N 1
WN e
j
2 N
k 0,1,..., N 1 n 0,1,..., N 1
1 N 1 IDFT [ X (k )] x(n) X (k )WN kn N k 0
1 IDFT[ X (k )]N N
N 1
[ x(m)WNmk ]WN kn
k 0 m 0
N 1 N 1
1 x ( m) N m 0
1 N
WNk ( m n )
k 0
N 1
W
k 0
N 1
k ( mn ) N
1 N
e
k 0
N 1 j 2 k ( m n ) N
x(n)
L称为循环卷积区间长度,L≥max[N,M]。
用矩阵计算循环卷积的公式
L 1 yc (n) h(m) x((n m)) L RL (n) m0

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)
移位 设x(n)为有限长序列, 长度为N, 则x(n)的循环移 位定义为 y(n)=x((n+m))NRN(N) (3.2.2)
~
将 x(n)以N为周期进行周期延拓得到 x(n) = x(( n)) N 将
~
x(n) = x((n)) N 左移m位得到 x(n + m)
(3.2.4)
例: ( n) = 3e n , o ≤ n ≤ 15 ,求 f ( n) = x(( n + 5))15 R15 (n) x
的16点离散傅立叶变换DFT。
N=16; n=0:N-1; xn=3*exp(n); m=5; fn=xn(mod((n+m),N)+1); XK=fft(xn, N); subplot(2, 2, 1); stem(n,xn); subplot(2, 2, 2); stem(n,abs(XK)); FK=fft(fn,N); subplot(2, 2, 3); stem(n,fn); subplot(2, 2, 4); stem(n,abs(FK));
x(n)为长度为N的有限长序列
x(n) 是长度为N的有限长序列x(n)的周期延拓序列
x (n ) =
~
~
m =∞


x ( n + mN )
(3.1.5) (3.1.6)
x (n ) = x ( n ) RN (n )
~
~
主值区间:周期序列 x( n) 从n=0到N-1的第一个周期。
~
主值序列:而主值区间上的序列称为 x( n) 的主值序列。
m
~2 m )) N) R x 2 (( (( m )) N ( n ) x (m x
2

离散傅里叶变换(DFT)(图)

离散傅里叶变换(DFT)(图)

离散傅里叶变换(DFT)(图)上一回说到,在离散傅里叶级数(DFS)中,离散时间周期序列在时域是离散的n ,其频谱是离散频率周期序列,在频域也是离散的k,理论上解决了时域离散和频域离散的对应关系问题。

但由于其在时域和频域都是周期序列,所以都是无限长序列。

无限长序列在计算机运算上仍然是无法实现的。

为此我们必须取有限长序列来建立其时域离散和频域离散的对应关系。

一、DFS的主值序列上一回讨论我们知道,离散时间周期序列是一个无限长序列,其傅立叶级数展开式为(1)可以看出时间点序号n 是以N为周期的,如果只取其一个周期,称之为的主值序列:(2)主值序列x(n)就是一个长度为N的有限长离散时间序列。

同理,的DFS也是一个无限长序列,即傅立叶系数:(3)也可以看出频率点序号k 也是以N为周期的,如果只取其一个周期,称之为的主值序列:(4)主值序列X(k)是一个长度为N的有限长离散频率序列。

可见,离散时间周期序列在时域和频域的主值序列,均为有限长离散序列。

且主值序列的长度均为N(即n,k=0,1,2,…,N-1)。

二、离散傅里叶变换(DFT)的定义在离散傅立叶级数(DFS)中,取其时域和频域的主值序列,变换仍然成立。

这就是离散傅里叶变换(DFT),即:(5)和其逆变换(IDFT):(6)可见离散傅里叶变换(DFT)只不过是特殊的离散傅立叶级数(DFS),如果其时域和频域都仅取主值序列。

离散傅立叶级数(DFS)中的无限长序列和都是以N为周期的周期序列,所以在计算离散时间周期序列及其频谱时,可以利用DFS的周期性,只需要在时域和频域各取一个主值序列,用计算机各计算一个周期中的N个样值,最后将所得的主值序列x(n)和X(k)进行周期延拓,即可得到原来的无限长序列和。

三、DFT的推广应用由DFT的导入过程可以发现,DFT不仅可以解决无限长周期序列的计算机运算问题,而且更可以解决有限长序列的计算机运算问题。

事实上,对于有限长离散序列,总可以把时域和频域的变换区间(序列长度)均取为N(包括适当数量的补0点),通常把N称之为等间隔采样点数,我们可以把这个N点的变换区间视为某个周期序列的一个主值序列,直接利用DFT的定义计算其N点变换。

dft与离散傅里叶变换

dft与离散傅里叶变换

dft与离散傅里叶变换DFT与离散傅里叶变换引言:数字信号处理中,频域分析是一项重要的技术。

DFT(离散傅里叶变换)和离散傅里叶变换(DFT)是两种常用的频域分析方法。

本文将介绍DFT和离散傅里叶变换的基本原理、应用领域以及它们之间的区别。

一、DFT的基本原理离散傅里叶变换(DFT)是一种将时域信号转换为频域信号的方法。

它的基本原理是将信号分解为不同频率的正弦和余弦波的叠加。

DFT 可以将信号从时域转换到频域,帮助我们分析信号的频谱特征。

DFT的计算公式是通过对信号的采样点进行离散计算得到的。

它将信号分解为一系列复数,表示不同频率的正弦和余弦波的振幅和相位信息。

通常情况下,DFT的输入信号是离散时间的有限长度序列,输出信号也是离散时间的有限长度序列。

二、DFT的应用领域DFT在信号处理领域有着广泛的应用。

以下是几个典型的应用领域:1. 音频信号处理:DFT可以用于音频信号的频谱分析,帮助我们了解音频信号的频率组成以及频谱特征。

它在音频编码、音频效果处理等方面有着重要作用。

2. 图像处理:DFT可以用于图像的频域分析,帮助我们了解图像的频率特征,如边缘、纹理等。

它在图像压缩、图像增强等方面有着广泛的应用。

3. 通信系统:DFT可以用于通信信号的频谱分析,帮助我们了解信号在频域上的特征,如信号的带宽、频率偏移等。

它在调制解调、信道估计等方面有着重要作用。

三、离散傅里叶变换(DFT)与傅里叶变换(FT)的区别离散傅里叶变换(DFT)是傅里叶变换(FT)在离散时间上的应用。

它们之间的区别主要体现在以下几个方面:1. 定义域:傅里叶变换是定义在连续时间上的,而离散傅里叶变换是定义在离散时间上的。

2. 输入信号类型:傅里叶变换可以处理连续时间的信号,而离散傅里叶变换可以处理离散时间的信号。

3. 计算方法:傅里叶变换通过积分计算得到频域信号,而离散傅里叶变换通过对输入信号的采样点进行离散计算得到频域信号。

4. 结果表示:傅里叶变换的结果是连续的频域信号,而离散傅里叶变换的结果是离散的频域信号。

离散傅里叶变换

离散傅里叶变换

c) 频域循环移位定理 若

21
3.2.3 循环卷积定理
长度分别为N1和N2的有限长序列x1(n)和x2(n)的N点DFT
分别为: ( N=max[ N1, N2 ])。
X1(k)=DFT[x1(n)]
X2(k)=DFT[x2(n)] 如果 则 X(k)=X1(k)· X2(k)
x n IDFT X k x1 m x2 n m N RN n
10
定义: 的主值区间:周期序列 中从n=0到N-1的范围 的主值序列:主值区间上的序列 为叙述方便,将式(3.1.5)该写成
x n N 表示x(n)以N为周期的周期延拓序列,符号((n))N表示n对模
N的余数,即
这里k是商。
11
例如,N=7,
=x((n))7,则有
x 7 x 7 7 x 0 x 8 x 8 7 x 1
类似
Note:对实序列有 X k X N k
DFT x N n X k , 0 k N 1
28
3.2.5 DFT的共轭对称性
1. 有限长共轭对称序列和共轭反对称序列
分别用xep(n)和xop(n) 表示有限长共轭对称序列和共轭反对称
由此对长度为N的序列x(n),且 x n x n N ,则
X k x n W
n 0 N 1 kn N
的DFS为
x n N W
n 0
N 1
kn N
kn x n WN n 0
N 1
1 N 1 1 N 1 kn kn x n X k WN X k WN N n 0 N n 0

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)
倒相序列。注意,如果x(n)的长度M<L,则需要在x(n)末
尾补L-M
(2) 第1行以后的各行均是前一行向右循环移1位
(3) 矩阵的各主对角线上的序列值均相等。
y(0)c x(0) x(L1) x(L2)
y(1)c
x(1)
x(0) x(L1)
y(2)c
= x(2)
x(1)
x(0)
y(L1)c x(L1) x(L2) x(L3)
m0
n'm
精选课件
N1
N1
X(k) x1(m)WN km x2(n')WN kn '
m0
n'0
X1(k)X2(k), 0kN1
由于 X ( k ) D F T [ x ( n ) ] X 1 ( k ) X 2 ( k ) X 2 ( k ) X 1 ( k ), 因此
x (n ) ID F T [X (k)] x 1 (n ) x2(n)x2(n) x 1 ( n )
精选课件
若 则

D[F x(n)T ]X (k) D [ x ( F n (m T )N R )N ( n ) ] W N m X ( k k ) ID [X (k F ( l)T N ) R N ( k ) ] W N n x ( ln )
证明:
N 1
N 1
Y ( k ) D F T [ y ( n ) ] N x ( ( n m ) ) N R N ( n ) W N k n x ( ( n m ) ) N W N k n
m0
(3.2.5)
yc(n)=h(n) x(n)
L称为循环卷积区间长度,L≥max[N,M]。
精选课件

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

离散傅⾥叶变换(DFT) 对于第⼀幅图来说,它侧重展⽰傅⾥叶变换的本质之⼀:叠加性,每个圆代表⼀个谐波分量。

第⼆幅图直观的表⽰了⼀个周期信号在时域与频域的分解。

周期信号的三⾓函数表⽰ 周期信号是每隔⼀定时间间隔,按相同规律⽆始⽆终重复变化的信号。

任何周期函数在满⾜狄利克雷条件下(连续或只有有限个间断点,且都是第⼀类间断点;只有有限个极值点),都可以展开成⼀组正交函数的⽆穷级数之和。

使⽤三⾓函数集的周期函数展开就是傅⾥叶级数。

对于周期为T 的信号f(t),可以⽤三⾓函数集的线性组合来表⽰,即f(t)=a_0+\sum_{n=1}^{\infty }(a_n\cos n\omega t+b_n\sin n \omega t) 式中\omega=\frac{2\pi}{T}是周期信号的⾓频率,也成基波频率,n\omega称为n次谐波频率;a_0为信号的直流分量,a_n和b_n分别是余弦分量和正弦分量幅度。

根据级数理论,傅⾥叶系数a_0、a_n、b_n的计算公式为:\left\{\begin{matrix}a_0=\frac{1}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)dt \\ a_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\cos{n\omegat}dt,n=1,2,3,... \\ b_n=\frac{2}{T}\int _{\frac{-T}{2}}^{\frac{T}{2}}f(t)\sin{n\omega t}dt,n=1,2,3,... \end{matrix}\right. 若将式⼦中同频率的正弦项和余弦项合并,得到另⼀种形式的周期信号的傅⾥叶级数,即f(t)=A_0+\sum_{n=1}^{\infty}A_n\cos(n\omega t+\varphi_n) 其中,A_0为信号的直流分量;A_1\cos(\omega t+\varphi_1)为信号的基频分量,简称基波;A_n\cos(n\omega t+\varphi_n)为信号的n次谐波,n ⽐较⼤的谐波,称为⾼次谐波。

数字信号处理第3章 离散傅里叶变换(DFT)

数字信号处理第3章 离散傅里叶变换(DFT)

Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1(3.2.1)
其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
3.2.2 循环移位性质
1. 序列的循环移位 设x(n)为有限长序列,长度为N,则x(n)的循环移 位定义为 y(n)=x((n+m))NRN(N) (3.2.2)
其中 XR(k)=Re[X(k)]=DFT[xep(n)]
(3.2.17)
X(k)=DFT[x(n)]=XR(k)+jXI(k) (3.2.18)
jXI(k)=jIm[X(k)]=DFT[xop(n)]
设x(n)是长度为N的实序列,且X(k)=DFT[x(n)],则
(1) X(k)=X*(N-k),0≤k≤N-1 (2) 如果 x(n)=x(N-m) 则X(k)实偶对称,即X(k)=X(N-k) (3.2.20) (3.2.19)
如果序列x(n)的长度为M, 则只有当频域采样点
数N≥M时, 才有
xN(n)=IDFT[X(k)]=x(n) 即可由频域采样X(k)恢复原序列x(n),否则产生时 域混叠现象。 这就是频域采样定理。
下面推导用频域采样X(k)表示X(z)的内插公式和内
插函数。设序列x(n)长度为M,在频域0~2π之间等间隔 采样N点,N≥M,则有
的值。
图 3.2.3 共轭对称与共轭反对称序列示意图
如同任何实函数都可以分解成偶对称分量和奇对
称分量一样,任何有限长序列x(n)都可以表示成共轭对 称分量和共轭反对称分量之和,即
x(n)=xep(n)+xop(n)
0≤n≤N-1
(3.2.11)
(3.2.13) (3.2.14)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
在截取16点时,得到的是完整的余弦波形;而截取8点时, 得到的是半截的余弦波形,当然有大量的谐波成分。
10
例7.16 验证N点DFT的物理意义
j 4 1 e j x ( n ) R ( n ), 求得 X ( e ) FT [ x(n)] , (1) 4 j 1 e
这种方法计算DFT概念清楚、编程简单,但占用内存大、运行 速度低,所以不实用。MATLAB基础部分提供了fft、ifft、fft2、 ifft2等等快速计算傅里叶变换的函数,使DFT的运算速度量提高了 若干数量级,在后面的例题中均直接调用这些函数。
6
例7.15 序列的离散傅立叶变换
求复正弦序列 x1 (n) e 余弦序列
13
结论:若序列长度为L,频域采样点数(DFT的长度) 为N,且L≤N,则频域采样后可不失真地恢复原序 列 x ( n) ;但若L>N,则频域采样后不能不失真地恢复 原序列 x ( n) 。
图3-3-1 时域恢复示意图
14
例7.17 频域与时域采样对偶性
(1)产生三角波序列
n x(n) M n 0 n M /2 M /2 n M
j n 8
RN ( n)
x2 ( n) cos n RN ( n) 8
正弦序列
x3 ( n) sin n RN ( n) 8
的离散傅立叶变换,分别按N =16和N =8进行计算。 绘出幅频特性曲线, 进行比较讨论。 解:直接产生序列x1n、x2n和x3n,调用fft函数求解
绘出幅频曲线和相频曲线。
(2)计算并图示x(n)的8点DFT。 (3)计算并图示x(n)的16点DFT。
j 解: 序列x(n)的N点DFT的物理意义是 X (e )在[0,2]上进行 N点等间隔采样。
程序先密集采样,绘制出幅频曲线图。然后再分别做8点和16 点DFT来验证这个采样关系。 程序略。
n 0 kn X ( k ) DFT [ x( n)] x( n)W N n 0 N 1 N 1
0 k N-1
比较上面二式可得关系式
X (k ) X ( z )
ze
j 2 k N
, ,
0 k N -1 0 k N -1
(3.1.3) (3.1.4)
X ( k ) X (e j )
2 k N
(3.1.3)式表明序列x(n)的N点DFT是x(n)的Z变换在单位圆上 的N点等间隔采样; (3.1.4)式则说明X(k)为x(n)的傅里叶变 2 换X(ejω)在区间[0,2π] 上的N点等间隔采样。
三、DFT的隐含周期性
k ( k mN ) WN WN ,
7
• • • • • • • • • • • • • • • •
%第七章例7.15程序q715 % DFT计算 clear;close all N=16;N1=8; %产生序列x1(n),计算DFT[x1(n)] n=0:N-1; x1n=exp(j*pi*n/8); %产生x1(n) X1k=fft(x1n,N); %计算N点DFT[x1(n)] Xk1=fft(x1n,N1); %计算N1点DFT[x1(n)] %产生序列x2(n),计算DFT[x2(n)] x2n=cos(pi*n/8); X2k=fft(x2n,N); %计算N点DFT[x2(n)] Xk2=fft(x2n,N1); %计算N1点DFT[x1(n)] %产生序列x3(n),计算DFT[x3(n)] x3n=sin(pi*n/8); X3k=fft(x3n,N); %计算N点DFT[x3(n)] Xk3=fft(x3n,N1); %计算N1点DFT[x1(n)]
7.3 离散傅里叶变换(DFT)
一、DFT的定义

设x(n)是一个长度为M的有限长序列, 则定义x(n) 的N点离散傅里叶变换为
kn X ( k ) DFT [ x(n)] x(n)WN , k=0, 1, n 0 N 1
, N-1 (3.1.1)
X(k)的离散傅里叶逆变换为
1 x( n) IDFT [ X ( k )] N
8
• • • • • • • • • • • • • • • • • • • •
%绘图 subplot(2,3,1);stem(n,abs(X1k),'.'); title('16点 DFT[x1(n)]'); xlabel('k');ylabel('|X1(k)|') subplot(2,3,2);stem(n,abs(X2k),'.'); title('16点 DFT[x2(n)]'); xlabel('k');ylabel('|X2(k)|') subplot(2,3,3);stem(n,abs(X3k),'.'); title('16点 DFT[x3(n)]'); xlabel('k');ylabel('|X3(k)|') k=0:N1-1; subplot(2,3,4);stem(k,abs(Xk1),'.'); title('8点 DFT[x1(n)]'); xlabel('k');ylabel('|X1(k)|') subplot(2,3,5);stem(k,abs(Xk2),'.'); title('8点 DFT[x2(n)]'); xlabel('k');ylabel('|X2(k)|') subplot(2,3,6);stem(k,abs(Xk3),'.'); title('8点 DFT[x3(n)]'); xlabel('k');ylabel('|X3(k)|')

k 0
N 1
kn X ( k )WN , n 0, 1,
, N -1 (3.1.2)
式中, W e N
j
2 N
,N称为DFT变换区间长度, N M
1
二、DFT和Z变换的关系
设序列x(n)的长度为N, 其Z变换和DFT分别为:
X ( z ) ZT [ x( n)] x( n) z n

x1 (n) IDFT[ X1 (k )] ,n = 0, 1, ,31
15
(5)绘出 x1 (( n))32 的波形图,评述它与x(n)的关系。

% 第七章例7.17程序q717 % 时域与频域采样的对偶性验证 clear;close all M=40;N=64;n=0:M; %产生M长三角波序列x(n) xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb]; Xk=fft(xn,64);%64点FFT[x(n)] X1k=Xk(1:2:N);%隔点抽取Xk得到X1(K) x1n=ifft(X1k,N/2);%32点IFFT[X1(k)]得到x1(n) nc=0:3*N/2; % 取97点为观察区 xc=x1n(mod(nc,N/2)+1);%x1(n)的周期延拓序列 subplot(3,2,1);stem(n,xn,'.') title('40点三角波序列x(n)');xlabel('n');ylabel('x(n)')
19
用DFT计算线性卷积
如果
y(n) x1 (n)
x2 (n) x1 (m ) x2 ((n m )) L RL ( n)
m0
L 1
X1 (k ) DFT [ x1 (n)] X 2 (k ) DFT [ x2 (n)]
则由时域循环卷积定理有 Y(k)=DFT[y(n)]=X1(k)X2(k),
(2)对M = 40,计算x(n)的64点DFT,并图示x(n)和 X(k) = DFT[x(n)],k = 0, 1, …, 63。 (3)对(2)中所得X(k)在 [0,2] 上进行32点抽样得
X1 (k ) X (2k ),k 0, 1, , 31
(4)求 X1 (k ) 的32点IDFT,即
k, m, N 均为整数

实际上, 任何周期为N的周期序列 x( n) 都可以看 作长度为N的有限长序列x(n)的周期延拓序列, 即
x ( n)
m


x( n mN )
(3.1.5) (3.1.6)
x( n) x( n) RN ( n)
为了以后叙述方便, 将(3.1.5)式用如下形式表示:
16

k=0:N-1; subplot(3,2,3);stem(k,abs(Xk),'.') title('64点DFT[x(n)]');xlabel('k');ylabel('|X(k)|') k=0:N/2-1; subplot(3,2,4);stem(k,abs(X1k),'.') title('X(k)的隔点抽取');xlabel('k');ylabel('|X1(k)|') n1=0:N/2-1; subplot(3,2,2);stem(n1,x1n,'.') title('32点IDFT[X1(k)]');xlabel('n');ylabel('x1(n)') subplot(3,1,3);stem(nc,xc,'.') title('x1(n)的周期延拓序列');xlabel('n');ylabel('x(mod(n,32))') set(gcf,'color','w')
相关文档
最新文档