尺规三大作图问题

合集下载

千古谜题--伽罗瓦的解答.

千古谜题--伽罗瓦的解答.
现代的眼光看
求方程根的问题!
(1)三等分任意角:设已知某角的角度为 3,得cos(3 ) a
则 cos(3 ) 4cos 3 3cos a 令 cos x
即问题转化为解方程: 4 x3 3 x a(, a为已知数)
(2)倍立方
x3 2
x3 2
(3)化圆为方
x2
x
花拉子米
早在古巴比伦时代,人们已经 掌握了解一次、二次方程的方法:
公元9世纪
“代数学”algebra) 这个词来源于花拉 子米所著的一本书
系统研究二次方程的一般解法并给出了求根公式
悲观派 乐天派
1494年,意大利数学家 帕西奥利
根本不可能
意大利波伦大学 教授费罗
x3 + mx n
数学史上称三次方程的求根公式为:
“卡尔达诺”公式
• 一位颇受欢迎的医生
• 哲学家和数学家, • 占星术家
塔尔塔利亚
卡尔达诺
撰写代数著作《大术》
1545年卡尔达诺出版《大术》一书,将三次方程解 的解法公诸于众,从而使自己在数学界声名鹊起。
ax2 + bx + c 0(a 0)
a( x + b )2 + 4ac b2 0
群的概念:
设G是一个集合,集合内的元素之间可以定义一个二元运算﹡
如果G满足如下的四条性质:
(1)(封闭性)集合中任意两个元素的积仍属于该集合
(2)(结合性)运算满足结合律,即 (a b) c a (b c)
e (3)(存在单位元)集合中存在单位元 ,对集合中任意元素 a
满足 ea ae a
用x 系数三分之一的三次方加上方程常数一半的平方;求这整个算

三大尺规作图问题

三大尺规作图问题

引人入胜的千古难题——三大尺规作图问题尺规作图是我们熟知的内容。

尺规作图对作图的工具——直尺和圆规的作用有所限制。

直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。

公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。

在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。

于是他们热衷于在尺规限制下探讨几何作图问题。

数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。

尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。

所谓三大几何作图难题就是在这种背景下产生的。

传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。

起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。

人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。

这就是古希腊三大几何问题之一的倍立方体问题。

用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。

任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。

于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。

但是,尽管费了很大的气力,却没能把看来容易的事做成。

于是,第二个尺规作图难题——三等分任意角问题产生了。

正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。

古希腊三大几何问题既引人入胜,又十分困难。

几何三大问题为尺规作图不能问题的证明

几何三大问题为尺规作图不能问题的证明

1.立方倍积问题假设已知立方体的棱长为c,所求立方体的棱长为x.按给定的条件,应有x3=2a3.令a=1,则上述方程取更简单的形式x3-2=0.根据初等代数知识,如果上述的有理系数三次方程含有有理根,不外是±1,±2.但经逐一代入试验,均不符合.可见方程x3-2=0必不能用尺规作出,这就证明了立方倍积问题是尺规作图不能问题.2.三等分任意角问题对于已知的锐角∠O=θ,设OP、OS是它的三等分角线.以O为圆心,单位长为半径画弧,交∠O的两边于点A、B,交三等分角线OS于点C.过点C作CD⊥OA,交OA于点D.这样,OS能否用尺规来作出,就等价于点C能否用尺规作出,也就是点D能否用尺规来作出.令OD=x,则有4x3-3x-cosθ=0.如果能证明上述三次方程的根一般不能仅用尺规作出,则点D不可得,于是射线OS也就不能作出.欲证明此事,可选一特例考察之.8x3-6x-1=0.以2x=y代入此方程,可得较简单的形式y3-3y-1=0.根据代数的知识,如果有理系数一元三次方程y3-3y-1=0含有有理根,不外是±1.但经逐一代入试验后,均不符合,可见此方程没有有理根.于是,根据本书第14页定理2可知,方程y3-3y-1=0的任何实根不能用尺规作图来完成,即60°角不能用尺规三等分.三等分60°角尚且不能,这就表明了三等分任意角属于尺规作图不能问题.当然,这个结论是对一般情形而言的,假如θ等于某些特殊值,则作图未必就不可能.例如,当θ=90°时,便有cos90°=0,此时方程4x3-3x-cosθ=0就变为4x3-3x=0.解之,得(见图6).注意,当cosθ取值为无理数时,如θ=30°、45°等,则我们所用的定理2就不再适用了.3.化圆为方问题假设已知圆的半径为r,求作的正方形的边长为x(图7).按条件,应有x2=πr2.令r=1,即得不可作.但π是超越数,自然不是有理系数的代数方程的根,更不是从1出发通过有限次加、减、乘、除及正实数开平方所能表示,即π不能仅用尺规作图来完成,所以化圆为方问题属尺规作图不能问题.4.正七边形和正九边形的作图问题正多边形的作图,亦即等分圆周问题,自古以来就一直吸引着人们.古希腊时期,人们已会运用尺规作出3,4,5,6.10,15边数的正多边形,但是企图作正七边形或正九边形却终归失败.现在来证明正七边形和正九边形都属尺规作图不能问题.(图8).∵7θ=2π,∴3θ=2π-4θ,∴ cos3θ=cos(2π-4θ)=cos4θ.根据三角恒等式,有cos3θ=4cos3θ-3cosθ,cos4θ=8cos4θ-8cos2θ+1,所以4cos3θ-3cosθ=8cos4θ-8cos2θ+1.即8cos4θ-4cos3θ-8cos2θ+3cosθ+1=x4-x3-4x2+3x+2=0.分解因式,得(x-2)(x3+x2-2x-1)=0.x3+x2-2x-1=0.由试验,知±1均不能满足这方程,可见上述三次方程无有理根.于是,运用本书第14页的定理2,可知上述三次方程的任何实根均不能用尺规作图来完成,因而正七边形属于尺规作图不能问题.的作图,而θ=40°角属于尺规作图不能问题(否则,利用作角平分线的办法,可作出20°角,将导致三等分60°角成为可能).所以正九边形也属尺规作图不能问题.由正七边形和正九边形是尺规作图不能问题,可直接推得边数为2n×7和2n×9(n为正整数)的正多边形也是尺规作图不能问题.对于尺规作图不能问题,除了直接应用本书第14页的定理来判断外,通常还有两种间接判断方法:1°有的作图问题,经过分析后发现可以归结为已知的作图不能问题,则可断定该问题也属尺规作图不能问题.例如正九边形属尺规作图不能问题的上述证明所采用的方法就是.2°有时,对问题的一般情形进行讨论既繁且难,而取其特例考察,则简易得多.因此欲决定某题属作图不能问题时,不妨相机证明它的特例不能作图,特例既经证实,一般情形的不能作图便不言而喻了(但特例可行则不等于这问题可作).例如解决三等分角问题时所采用的方法即是.。

中考数学-热点03 尺规作图问题(四川成都专用)(解析版)

中考数学-热点03 尺规作图问题(四川成都专用)(解析版)

热点03尺规作图问题尺规作图问题是四川成都中考数学的必考考点,常见以填空题的形式,主要是考查角平分线、垂直平分线性质等问题,一般出现在中考的第13题,以简单题为主,思路相对比较固定,但除了常规考法以外,日常练习中多注意新颖题目的考向。

【题型1角平分线问题】【答案】42【分析】利用基本作图得到BE 行线的性质证明F EBF∠=∠【详解】解:由作法得BE=【答案】25【分析】如图,先利用勾股定理计算出则AG =AO =25,从而求解.【详解】解:如图,∵▱AOBC 的顶点∴AC ∥OB ,OA =()()222040--+-由作法得OG 平分∠AOB ,∴∠AOG =∠BOG ,而AC ∥OB ,∴∠AGO =∠BOG ,∴∠AOG =∠AGO ,∴AG =AO =25故答案为:25.【点睛】本题考查了作图−基本作图,解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)行四边形的性质.【题型2中垂线问题】A.平行四边形【答案】C【分析】先根据作图∠=∠得到CFD AED⊥即可证明平行四边形结合EF AC【详解】解:由作图=,EF∴AD CD【答案】5【分析】根据题目作图方法可得理求出BM 的值.【详解】解:由题得PQ 为∴=90MNB ∠︒,12BN BC =【答案】106︒/106度【分析】由作图可知,MN 是AC DE BD =,32EDA A ∠=∠=︒,根据BFC DBE CDB ∠=∠+∠,计算求解即可.【详解】解:由作图可知,MN ∵CD AB ⊥,∴90CDA ∠=︒,【答案】50︒/50度【分析】根据作图可知DA DB =,∠根据CAD CAB DAB ∠=∠-∠即可求解.【详解】解:∵在Rt ABC 中,C ∠=∴70CAB ∠=︒,由作图可知MN 是AB 的垂直平分线,DA DB ∴=,(建议用时:30分钟)A .22+B .22+【答案】B 【分析】由题目作图知,AD 是【详解】解:过点D 作DH AB ⊥则2CD DH ==,∵ABC 为等腰直角三角形,∴45B ∠=︒,∴DHB △为等腰直角三角形,∴222BD HD ==,A.1B.2【答案】B⊥于M,【分析】如图所示,过点H作HM BC得到31==+,从而求出HM,CM CH BC∠,由作图方法可知,BH平分ABC∠=∠,∴ABH CBH∵四边形ABCD是平行四边形,∴31,,==+∥BC AD AB CD【答案】5则BAD E∠=∠,∠由作图知,AD平分BAC ∴∠=∠,CAD BAD∴∠=∠,CAD E∴==,10AC CE【答案】2【分析】本题主要考查了角平分线的性质,掌握角平分线的尺规作图是解题的关键.∠,如图:过点根据作图过程可知:AF平分BAC【详解】解:根据作图过程可知:AF平分∵90B Ð=°,∴FB AB ⊥,∵FG AC ^,∴2FG FB ==.∴点F 到AC 的距离为2.【答案】24【分析】本题考查了作图-基本作图,是菱形.连接BF 交AE 于点O ,证明四边形证明四边形ABEF 是菱形,进而可得四边形【详解】解:如图,连接BF 交∵AD BC EF AB ,∥∥,∴四边形ABEF 是平行四边形,根据作图过程可知:AE 平分∠【答案】22【分析】由题意可知,DE为线段即可得43∠=∠=︒,BACB BAE∠1∠=∠可得答案.EAF EAC【答案】8【分析】根据题意求出8AD DC +=【详解】解:ABCD 的周长为16,8AD DC ∴+=,由作图可知MN 垂直平分线段AC ,【答案】60︒/60度【分析】根据作图EF 是线段利用直角三角形的两个锐角互余计算即可.【详解】∵EF 是线段DB ∴DE BE =,∴EDB EBD ∠=∠,∵DE 平分ADB ∠,∴ADE BDE =∠∠,∴ADE BDE ABD =∠=∠∠;∵矩形ABCD ,∴90A ∠=︒,∴90ADE BDE ABD +∠+∠=︒∠,∴30ADE BDE ABD =∠=∠=︒∠,∴303060ADE BDE ∠+∠=︒+︒=︒ADB=∠,故答案为:60︒.【点睛】本题考查了矩形的性质,直角三角形的性质,线段垂直平分线和角的平分线的尺规作图,熟练掌握基本作图,直角三角形的两个锐角互余,矩形的性质是解题的关键.。

尺规作图(一)

尺规作图(一)
(15). 已知线a,b,求作线段x = a2 b2; (16). 已知线a,b,求作线段x = a2 b2 (a b)..
五、解作图题的步骤
1. 分析:找作图的线索; 2. 作法:利用公法和成法说明作图过程; 3. 证明:证明所作图形满足条件; 4. 讨论:讨论图形的多寡、定位与否,已知
条件对图形的影响.
(9). 已知弓形的弦长和其内接角,求作弓形弧;
(10). 分一定线段成若干等分; (11). 内分、外分一定线段成已知比(正有理数、
部分特殊无理数); (12). 作三已知线段的第四比例项(a:b = c:x) ;
(13). 作二已知线段的第三比例项(a:b = b:x); (14). 作二已知线段的比例中项 (a:x = x:b) ;
尺规作图(一)
作图题:根据已知条件,做出具备此条件的图形.
一、作图题的地位和作用:
1. 它是几何学的根基; 2. 它是理论和实际的具体体现; 3. 它是学习其它学科的理论基础;
(如画法几何、绘图学) 4. 它是培养学生逻辑思维能力的重要手段.
二、作图可能、不可能问题:
1. 仅用直尺和圆规经过有限次运用能够作出的 图形,称为尺规作图可能问题; 2. 仅用直尺和圆规经过有限次运用不能够作出的 图形,称为尺规作图不能问题(或不可作问题); 3. 古代三大尺规作图不能问题:
三等分任意角,化圆为方,倍立方;
三、定位作图与不定位作图
1.定位作图:必须在指定位置作出图形; 如:求作圆周使其与定圆和定直线相切; 2.不定位作图:所作图形只要满足条件即可, 对其位置没有要求; 如:求作定圆内的最长弦; 注:不定位作图中,满足条件的彼此合同的图形
只算作一个解.
四、公法与成法

尺规作图的三大难题

尺规作图的三大难题

龙源期刊网
尺规作图的三大难题
作者:顾志勇
来源:《初中生世界·八年级》2015年第10期
古希腊人用尺规作图,主要目的在于训练智力,培养逻辑思维能力,所以对作图的工具有严格的限制.他们规定作图只能用直尺和圆规,而他们所谓的直尺是没有刻度的.正是在这种严格的限制下,产生了种种难题.
相传德利安人为了摆脱某种瘟疫,遵照神谕,必须把阿波罗的立方体祭坛的体积扩大一倍.后来,这个问题提到柏拉图那里,柏拉图又把它交给了几何学家.这就是著名的倍立方问题.除倍立方问题外,还有三等分任意角、化圆为方(作一正方形,使其面积等于给定的圆面积)等问题.
在数学史中,很难找到像这样长期被人关注的问题.两千多年以来,无数人的聪明才智倾注于这三个问题而毫无结果.但对这三个问题的深入探索,促进了希腊几何学的发展,引出了大量的发现.如圆锥曲线、许多二次和三次曲线以及几种超越曲线的发现等;后来又有关于有理数域、代数数、超越数、群论和方程论若干部分的发展.直到19世纪,即距第一次提出这三个问题两千年之后,这三个问题才被证实在所给的条件下是不可能解决的.
现在还有不少人创造了各种各样的辅助工具,用来解决这些尺规作图无法解决的问题.下面的工具就可以用来解决三等分任意角的问题(这样的作图就相当于用量角器三等分任意角,已不属于尺规作图范畴).你能说出其中的道理吗?
(作者单位:江苏省海安县城南实验中学)。

尺规作图专题

尺规作图专题
1【解析】
探索10:如图,在一组平行线 1、 2两侧各有两点 、 ,在 1、 2间找一条线段MN,使 ⊥ 1并且使得AM+MN+NB之和最短.
2【解析】
(1)问题描述
已知:直线MN外一点P
求作:直线a,使得点P在直线a上,且垂直于直线MN
(2)作法提要
(3)基本原理
5.尺规作图5-------过直线外一点做已知直线的平行线(选学)
(1)问题描述
已知:直线MN外一点P
求作:直线a,使得点P在直线a上,且平行于直线MN
(2)作法提要
(3)基本原理
专题2————与三角形有关的“心”
(1)原理分析
(2)应用举例
如图,三条公路两两相交,交点分别为A,B,C.现计划修建一个油库,要求到三条公路的居理想等,请你说出可以选择的地址
2到点的距离相等
(1)原理分析
(2)应用举例
如图,在公路l的同旁有两座城市A,B,为了方便市民就医治疗,政府决定在公路边建一所医院,这所医院应该建在什么位置,能使这两座城市到这个医院的距离相等?作图说明。
八年级上册尺规作图专题
专题1————尺规作图
1.尺规作图1------做线段等于已知线段
(1)问题描述
已知:线段AB
求作:线段CD,CD=AB
(2)作法提要
(3)基本原理
2.尺规作图2------做三角形与已知三角形全等
(1)问题描述
已知:三角形ABC
求作:三角形DEF,使得ABC DEF
(3)作法提要
使 的周长最小.
【解析】
探索7:如图,点 在锐角 的内部,在 边上求作一点 ,在 边上求作一点 ,
使 最小.
【解析】

尺规作图知识归纳+真题解析

尺规作图知识归纳+真题解析

尺规作图知识归纳+真题解析【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【知识归纳答案】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.真题解析一.选择题(共8小题)1.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.学科网7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC?AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=?BC?AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.学科网二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP 射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=56°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.学科网12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义..【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB 的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;。

尺规三大作图问题.

尺规三大作图问题.

尺规三大作图问题尺规作图是我们熟知的内容。

尺规作图对作图的工具——直尺和圆规的作用有所限制。

直尺和圆规所能的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、圆点、作一条直线与一个圆的交点。

公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。

在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。

于是他们热衷于在尺规限制下探讨几何作图问题。

数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。

尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。

所谓三大几何作图难题就是在这种背景下产生的。

传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。

起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。

人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。

这就是古希腊三大几何问题之一的倍立方体问题。

用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。

任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。

于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。

但是,尽管费了很大的气力,却没能把看来容易的事做成。

于是,第二个尺规作图难题——三等分任意角问题产生了。

正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。

另类做法:总述:人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.三等分任意角★作法一三等分角问题尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA★作法二帕斯卡(Pascal,B.1623—1662)的方法对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA★作法三帕普斯(Pappus,约公元320年)方法对于∠AOB,在它的两边上截取OA=OB.连结AB并三等分,设两分点分别为C和D.以点C为中心,点A、D分别为顶点,作离心率e=√2的双曲线.以点O为圆心,OB为半径作弧,交双曲线于点S.则∠BOS=1/3∠BOA★作法四玫瑰线方法交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA立方倍积★作法一倍立方问题倍立方问题柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边。

简述三大几何难题

简述三大几何难题

三大几何难题古希腊是世界数学史上浓墨重彩的一笔,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富。

其中,几何是希腊数学研究的重心,柏拉图在他的柏拉图学院的大门上就写着“不懂几何的人,勿入此门”。

历史上第一个公理化的演绎体系《几何原本》阐述的也基本上为几何内容。

古希腊的几何发展得如此繁荣,但有一个问题一直没有得到解决,那就是著名的尺规作图三大难题。

它们分别是化圆为方、三等分任意角以及倍立方问题。

这三个问题首先是“巧辨学派”提出并且研究的,但看上去很简单的三个问题,却困扰了数学家们两千多年之久。

这些问题的难处,是作图只能用直尺和圆规这两种工具,其中直尺是指只能画直线,而没有刻度的尺。

在欧几里得的《几何原本》中对作图作了规定,只有圆和直线才被承认是可几何作图的,因此在这本书的巨大影响下,尺规作图便成为希腊几何学的金科玉律。

并且,古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值。

因此,在作图中对规、矩的使用方法加以很多限制,在这里,就是要在有限的次数中解决这三个问题。

1.化圆为方圆和正方形都是常见的几何图形,人们自然会联想到可否作一个正方形和已知圆等积,这就是化圆为方问题。

2.三等分任意角用尺规二等分一个角很容易就可以作出来,那么三等分角呢?三等分180,90角也很容易,但是60,45等这些一般角可以用尺规作出来吗?3.倍立方关于倍立方问题是起源于一个祭祀问题,第罗斯岛上流行着一种可怕的传染病,一时人心惶惶,不可终日.人们来到阿波罗神前,请求阿波罗神像的指示.阿波罗神给了祈求人这样一个指示:“神殿前有一个正方体祭坛,如果能不改变它的形状而把它的体积增加1倍,那么就能消灭传染病.”人们连夜赶造了一个长、宽、高都比正方体祭坛大一倍的祭坛,可是,那传染病传播得更加厉害了.人们又来到阿波罗神像前祈求.神说:“我要你们增加一倍的是祭坛的体积,你们把长、宽、高都增加1倍,祭坛的体积不是要比原来体积大7倍了吗?”人们绞尽脑汁想找出一个答案,可是始终没有人能解答这个难题.由三大问题的起源,可以看出,化圆为方和三等分角是人们在已有知识的基础上,向更深层次,更一般的方向去思考、探索,这也是希腊数学的理论性的演绎推理与抽象性的表现。

古希腊三大作图问题讲解

古希腊三大作图问题讲解

尺规作图
古时候人们约定,所谓圆规直尺作图是指: 使用直尺,我们能过任何给定的不同两点, 作一条直线;使用圆规,我们能以给定点为 圆心,任意长为半径作一个圆. 在作图中,使 用的直尺是没有刻度标记的直尺;
只用圆规、直尺,古希腊三大作图问题不可 作。
不限制用圆规和直尺,三大作图问题 是可作的
数域“树”中每一个数都可以用尺规作出,而且, 尺规所能作出数的范围仅限于数域“树”中的数。
我们可以把它写成一个定理: 尺规能且仅能作出的数的范围为数域“树”。
没有针对一个问题,去寻找解决这类问题的 方法。
不可作图问题是如何解决的呢?
思路:我们对尺规作图一类问题进行考虑。 确定尺规作图的范围; 判断我们要求作的具体问题是否在这个范围
内。
不可作图问题证明的基本步骤
1)尺规作图代数化——几何问题代数化; 2)范围界定,与数域建立联系——数域与扩
可以用尺规作出; 某一个扩域可能出现在不同的扩域“列”中.
只能作图
对尺规作图而言, 从单位1出发, 利用尺规作图, 可以 作出有理数域中的每一个数。然后, 我们可以选择 有理数域中的一个数, 作它的算术平方根(这里要求), 进而作出所有形如的数,其中是数域中的任意数。从 而,用尺规可以作出一个新的数域.重复这样的过程, 我们就可以作出数域“树”。
一、古希腊三大作图问题 与尺规作图
古希腊三大作图问题
古希腊有三个十分著名的作图问题,这三个作 图问题规定只能用圆规和直尺解决.它们分别是: 倍立方体:求作一个立方体的边,使该立方体的体 积为给定立方体的两倍. 化圆为方:求作一个正方形,使其面积与一个给定 的圆的面积相等. 三等分角:求作一个角,使其等于给定的角的三分 之一.

三大几何作图问题

三大几何作图问题

三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角.由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究.早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法.当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响.三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能).关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料.以下选录部分内容,各节作者与出处将随文注明.倍立方A.赛翁论倍立方问题的可能起源于埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图.柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视.B.普罗克洛斯论希波克拉底对这一问题的简化.“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了.例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项.从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索.据说最先有效地简化这些困难作图的是希俄斯的希波克拉底民他还化月牙形为方,并作出许多几何学上的其他发现.说到作图,如果曾经有过这方面的天才的话,这个人就是希波克拉底.历史上传说,古代的一位悲剧诗人描述了弥诺斯为格劳科斯修坟,当弥诺斯发现坟墓的每一边都是一百尺时,他说:“你们设计显然这是一个错误.因为如果边长加倍,表面积变成原来的四倍,体积变成八倍.当今的几何学家们也在探索将已知立方体的体积加倍而不改变其形状的途径.这个问题以二倍立方体著称,即已知一个立方体,他们想办法将其变为两倍”.当长期以来所有的探索都徒劳无功时,希俄斯的希波克拉底最先发现,如果能找到一个方法,作出已知的两条线段间连比例中的两个比例中项,其中长线段是短线段的两倍,立方体就变成两倍.这样他的难点被分解成另一个不太复杂的问题.“后来传说,某些提洛岛的人为遵循先知的谕示,想办法将一个祭坛加倍,他们陷入了同样的困境.于是他们派代表去请求学园中柏拉图学派的几何学家帮他们找到解法.这些几何学家们积极地着手解决这个问题,求两条已知线段间顺个比例中项.据说塔林敦的阿尔希塔斯应用半圆柱体得到一种解法,而欧多克索斯用了所谓的“曲线”所有解决这一问题的人在寻找演绎的证明方面是成功的,但除门奈赫莫斯①(尽管他只是很勉强地做到),他们都不能用行之有效的方法证明这个作图小现在我发现了一种简单方法,通过应用一种器具,不仅能得到两线段问的两个比例中项,而且能得到所需要的许多比例中项.应用这一发现,我们能够将任何表面是平行四边形的已知立体化成立方体,或者将其从一种形状变成另一种形状,而且也可以作出一个与已知立体形状相同,但体积大一些的立体,也就是保持相似性.……化圆为方A.安蒂丰化圆为方安蒂丰画了一个圆,并作一个能够内接于它的多边形.我们假设这个内接图形是正方形.然后他将正方形的每边分成两部分,从分点向圆周作垂线,显然这些垂线平分圆周上的相应弧段.接着他从垂线与圆周的交点向正方形边的端点连线,于是得到四个以线段(即正方形的边)为底的三角形,整个内接的图形现在成为八边形.他以同样的方法重复这一过程,得到的内接图形为十六边形.他一再地重复这一过程,随着圆面积的逐渐穷竭,一个多边形将内接于圆,由于其边极微小,将与圆重合.正如我们从《原本》中所知,既然通常我们能够作出一个等于任何已知多边形的正方形,那么注意到与圆重合的多边形与圆相等,事实上我们就作出了等于一个圆的正方形.B.布里松化圆为方他作一个正方形外切于圆,作另一个正方形内接于圆,在这两个正方形之间作第三个正方形.然后他说这两个正方形(即内接和外切正方形)之间的圆及中间的正方形都小于外部的正方形且大于内部的正方形,他认为分别比相同的量大和小的两个量相等.因此他说圆被化成正方形.三等分角帕波斯论三等分一个角的方法当早期的几何学家们用平面方法探究上述关于角的问题时他们无法解决它,因为这个问题从性质来看是一个立体问题,由于他们还不熟悉圆锥曲线,因此陷于困惑.但是他们后来借助于圆锥曲线用以下描述的斜伸法将角三等分.用斜伸法解已知一个直角平行四边形ABΓΔ,延长BΓ,使之满足作出AE,使得线段EZ等于已知线段.假设已经作出这些,并作ΔH,HZ平行于EZ,EΔ.由于ZE已知且等于ΔH,所以ΔH 也已知.Δ已知,所以H位于在适当位置给定的圆周上.由于BΓ,ΓΔ包含的矩形已知且等于BZ,EΔ包含的矩形已知,即BZ,ZH包含的矩形已知,故H位于一双曲线上.但它也位于在适当位置给定的圆周上,所以H已知.证明了这一点后,用下述方法三等分已知直线角.首先设ABΓ是一个锐角,从直线AB上任一点作垂线AΓ,并作平行四边形ΓZ,延长ZA至E,由于Γz是一个直角的平行四边形,在EA,AΓ间作线段EΔ,使之趋于B且等于AB 的两倍——上面已经证明这是可能的,我认为EBΓ是已知角ABΓ的三分之一.因为设EΔ被H平分,连接AH,则三条线段ΔH,HA,HE相等,所以ΔE是AH的两倍.但它也是AB的两倍,所以BA等于AH,角ABΔ等于角AHΔ.由于AHΔ等于AEΔ,即ΓBΔ的两倍,所以ABΔ等于ΔBΓ的两倍.如果我们平分角ABΔ,那么就三等分了角ABΓ.用圆锥曲线的直接解法这种立体轨迹提供了另一种三分已知弧的方法,不必用到斜线.设过A,Γ的直线在适当的位置给定,从已知点A,Γ作折线ABΓ,使得角AΓB是角ΓAB 的2倍,我认为B位于一双曲线上.因为设BΔ垂直于AΓ并且截取ΔE等于ΓΔ,当连接BE时,它将与AE相等.设EZ等于ΔE,所以ΓZ=3ΓΔ.现在置ΓH等于AF/3,所以点H将给定,剩下部分AZ等于3*HΔ.由于BE*BE-EZ*EZ=BΔ*BΔ,且BE*BE一EZ*EZ=ΔA*AZ,所以ΔA*AZ=BΔ*BΔ,即3*A Δ*ΔH=BΔ*BΔ,所以B位于以AH为横轴,AH为共轭轴的双曲线上.显然Γ点在圆锥曲线顶点H截取的线段ΓH是横轴AH的二分之一.综合也是清晰的.因为要求分割AΓ使得AH是HΓ的2倍 ,就要过H以AH为轴画共轭轴为AH的双曲线,并且证明它将使我们作出上面提到的具有2倍之比的角度.如果A,Γ两点是弧的端点,那么以这种方法画的双曲线截得已知圆上的一段弧的三分之一就易于理解了.。

阅读材料由尺规作图产生的三大难题-华东师大版八年级数学上册教案

阅读材料由尺规作图产生的三大难题-华东师大版八年级数学上册教案

阅读材料:由尺规作图产生的三大难题本文内容来自《华东师大版八年级数学上册教案》,主要介绍尺规作图时可能遇到的三大难题。

一、立方不可能倍
立方不可能倍,这是由公元五世纪时柏拉图学派数学家希帕索斯发现的。

他试图用尺规作图将边长为1的正方体的体积倍增,但失败了。

后来,正如哥德尔证明数学的不完备性一样,费马、笛卡尔等数学家证明了希帕索斯定理的正确性。

二、圆面积无理可求
圆却是无理数和欧拉数e的悖论。

早在公元前四世纪时,希腊数学家麦涅尼斯发现了圆周率,但直到二千年后人们才发现,用尺规作图无法得到一个正方形面积与一个圆面积相等的长和宽比。

这是因为圆的面积是不可理解的数学悖论,一如虚数,永远无法表示为一个有限的小数,因此也不能使用尺规作图。

三、三等分角度难题
尺规作图可以将一个角度分成2、4、8等份,但无法分成3、5、6等份。


是因为尺规作图中基本构件只有直线和圆,而三等分角度需要平分圆周角,这实际上是一种立方根问题,即要求解三次方程的根,而尺规作图仅适用于一、二次方程。

结语
尺规作图虽然有其限制性和局限性,但古希腊数学家依然用它成功地解决了许多几何问题。

今天,尺规作图也是数学勾股定理,勾股题等几何问题的重要工具之一。

同时,三大难题的发现也让人们更加深入地理解了数学及其应用的局限性。

华师大版数学八年级上册《阅读材料 由尺规作图产生的三大难题》教学设计3

华师大版数学八年级上册《阅读材料 由尺规作图产生的三大难题》教学设计3

华师大版数学八年级上册《阅读材料由尺规作图产生的三大难题》教学设计3一. 教材分析华师大版数学八年级上册《阅读材料由尺规作图产生的三大难题》是对几何学中尺规作图的基本原理和限制的深入探讨。

本节课通过介绍尺规作图产生的三大难题,即:立方体倍积问题、三等分角问题、圆周率精确化问题,使学生了解几何学中的这些经典问题,并理解这些问题背后的数学原理和方法。

教材分析主要从以下几个方面进行:1.内容解析:本节课主要介绍了尺规作图的基本原理,以及通过尺规作图产生的三大难题。

学生在学习本节课之前,应该已经掌握了基本的尺规作图方法,如作直线、圆、角等。

2.教材结构:本节课是华师大版数学八年级上册第二章《几何图形的性质》的最后一节阅读材料,是对前面所学内容的拓展和延伸。

3.教学目标:通过本节课的学习,学生应该能够理解尺规作图的基本原理,了解并掌握三大难题的解决方法,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了基本的尺规作图方法,对几何图形的性质有一定的了解。

但学生在解决实际问题时,往往缺乏解决问题的方法和策略。

因此,在教学过程中,需要引导学生通过小组合作、讨论交流等方式,探索并解决问题。

三. 教学目标1.知识与技能:学生能够理解尺规作图的基本原理,掌握三大难题的解决方法。

2.过程与方法:学生能够通过小组合作、讨论交流等方式,提高解决问题的能力。

3.情感态度价值观:学生能够认识数学在实际生活中的应用,培养对数学的兴趣和好奇心。

四. 教学重难点1.重点:尺规作图的基本原理,三大难题的解决方法。

2.难点:如何引导学生通过小组合作、讨论交流等方式,解决实际问题。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生探索并解决问题。

2.小组合作法:学生分组进行讨论交流,共同解决问题。

3.实例分析法:教师通过具体的实例,讲解并引导学生理解尺规作图的原理和方法。

六. 教学准备1.教具准备:尺规作图工具、多媒体设备。

华师大版数学八年级上册《阅读材料 由尺规作图产生的三大难题》说课稿3

华师大版数学八年级上册《阅读材料 由尺规作图产生的三大难题》说课稿3

华师大版数学八年级上册《阅读材料由尺规作图产生的三大难题》说课稿3一. 教材分析华师大版数学八年级上册《阅读材料由尺规作图产生的三大难题》是一节阅读材料课,通过介绍尺规作图产生的三大难题,让学生了解数学史上的重要事件,提高学生学习数学的兴趣,培养学生数学思维能力。

本节课的内容包括:了解尺规作图的定义,掌握尺规作图的基本方法,了解三大难题及其历史背景,了解三大难题的解决过程及对数学发展的影响。

二. 学情分析八年级的学生已经掌握了初中数学的基本知识,对几何图形的认识有一定的基础。

但是,对于尺规作图的定义和方法,以及尺规作图产生的三大难题的历史背景和解决过程,学生可能比较陌生。

因此,在教学过程中,需要引导学生逐步理解尺规作图的概念,了解三大难题的产生背景,以及感受数学发展的历程。

三. 说教学目标1.了解尺规作图的定义和基本方法。

2.了解尺规作图产生的三大难题及其历史背景。

3.了解三大难题的解决过程及对数学发展的影响。

4.培养学生的数学思维能力,提高学生学习数学的兴趣。

四. 说教学重难点1.尺规作图的定义和基本方法。

2.尺规作图产生的三大难题及其历史背景。

3.三大难题的解决过程及对数学发展的影响。

五. 说教学方法与手段本节课采用讲授法、阅读法、讨论法等多种教学方法。

在讲解尺规作图的定义和方法时,采用讲授法,引导学生掌握基本概念;在介绍三大难题及其历史背景时,采用阅读法,让学生自主阅读教材,了解数学发展历程;在讲解三大难题的解决过程时,采用讨论法,引导学生分组讨论,共同探讨问题的解决方法。

六. 说教学过程1.导入:引导学生回顾已学的几何知识,提问:“你们知道什么是尺规作图吗?”让学生复习旧知识,为新课的学习做好铺垫。

2.讲解尺规作图的定义和方法:详细讲解尺规作图的定义,通过示例让学生掌握尺规作图的基本方法。

3.阅读教材:让学生自主阅读教材,了解尺规作图产生的三大难题及其历史背景。

4.讲解三大难题的解决过程:针对三大难题,分别讲解其解决过程,让学生了解数学发展的历程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺规三大作图问题尺规作图是我们熟知的内容。

尺规作图对作图的工具——直尺和圆规的作用有所限制。

直尺和圆规所能的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、圆点、作一条直线与一个圆的交点。

公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。

在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。

于是他们热衷于在尺规限制下探讨几何作图问题。

数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。

尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。

所谓三大几何作图难题就是在这种背景下产生的。

传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。

起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。

人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。

这就是古希腊三大几何问题之一的倍立方体问题。

用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。

任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。

于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。

但是,尽管费了很大的气力,却没能把看来容易的事做成。

于是,第二个尺规作图难题——三等分任意角问题产生了。

正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。

另类做法:总述:人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.三等分任意角★作法一三等分角问题尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA★作法二帕斯卡(Pascal,B.1623—1662)的方法对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA★作法三帕普斯(Pappus,约公元320年)方法对于∠AOB,在它的两边上截取OA=OB.连结AB并三等分,设两分点分别为C和D.以点C为中心,点A、D分别为顶点,作离心率e=√2的双曲线.以点O为圆心,OB为半径作弧,交双曲线于点S.则∠BOS=1/3∠BOA★作法四玫瑰线方法交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA立方倍积★作法一倍立方问题倍立方问题柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边。

★作法二门纳马斯(Menaechmus,约公元前375—325年)方法:从a∶x=x∶y=y∶2a可得y2=2ax,x2=ay.所以,在直角坐标平面上画出上述两个二次方程所对应的两条抛物线(图16).这两条抛物线交于O、A两点,那么点A在x轴上的投影到原点的距离,就是所求的立方体的棱长。

★作法三阿波罗尼(Apollonius de Perge,约公元前260—200年)方法:作一矩形ABCD,这里AB=a、AD=2a.以此矩形对角线交点G为圆心,以适当长度为半径作圆,与AB、AD之延长线分别交于E、F,使E、C、F三点共线,则AB∶DF=DF∶BE=BE∶AD,线段DF之长即为所求立方体的棱长。

化圆为方问题★作法:对于已知圆O,化圆为方问题化圆为方问题作出它在第一象限的圆积线①l.连结这一圆积线的两个端点B、F,过点B引BF的垂线BG,交x轴于G.在OA上取一点H,使HA=1/2GO.以H为圆心,HG为半径画弧,交y轴于点K.则以OK为一边的正方形,即为所求作的与圆O 等积的正方形。

例题:三等分任意角是三大几何作图不能问题之一,古希腊数学家阿基米德就设计出了一个巧妙的三等分角的方法:在直尺边缘上添加一点P,命尺端为O(如图①);设所要三等分的角是∠MCN,以C为圆心,OP为半径作半圆交给定角的两边CM、CN于A、B两点;移动直尺,使直尺上的O点在AC的延长线上移动,P点在圆周上移动,当直尺正好通过B点时,连OPB,则有∠AOB=∠MCN.这种方法由于在直尺上作了一个记号,不符合尺规作图中直尺只能用来连线的规定,因此还不能算是严格意义上的尺规作图.(1)动手实践操作,用以上方法三等分∠MCN,在图②中画出图形并标明相应字母;(2)请你就阿基米德的作图方法给出证明.问题的解决:用直尺和圆规能不能解决三大问题呢?答案是否定的,三大问题都是几何作图不能解决的.证明三大问题不可解决的工具本质上不是几何的而是代数的,再带舒缓没有发展到一定水平时是不能解决这些问题的.1637年迪卡儿创解析几何,沟通了几何学和代数学这两大数学分支,从而为解决尺规作图问题奠定了基础.1837年法国数学家旺策(PierreL.W Antzel)证明了,三等分任意角和立方倍积问题都是几何作图不能解决的问题,化圆为方问题相当于用尺规作出的值.1882年法国数学家林得曼证明了∏是超越数,不是任何整系数代数方程的根,从而证明了化圆为方的不可能性. 但是,正是在研究这些问题的过程中促进了数学的发展.两千多年来.三大几何难题起了许多数学家的兴趣,对它们的深入研究不但给予希腊几何学以巨大影响,而且引出了大量的新发现.例如,许多二次曲线、三次曲线以及几种超越曲线的发现,后来又有关于有理数域、代数数与超越数、群论等的发展在化圆为方的研究中几乎从一开始就促进了穷竭法的发展,二穷竭法正是微积分的先导。

用圆规直尺可以做什么图:用欧几里得的直尺圆规可以完成哪些作图呢?下面的5种基本作图是可以胜任的(图15-4):(1)用一条直线连接两点.(2)求两条直线的交点.(3)以一点为心,定长为半径作一圆(4)求一个圆与一条直线的交点,或切点.(5)求两个圆的交点,或切点.还有,用直尺圆规作图必须在有限次内完成,不允许无限次地作下去.换言之,不允许采取极限手段完成作图根据直尺的基本功能,我们有下面的重要结论:一个作图题可否用直尺完成,决定于是否能反复使用上面5种基本作图经有限次而完成. 这就是用直尺圆规可能与不可能的基本依据.最终发现是不能的原因:高斯的发现:历史的车轮转到了17世纪。

法国数学家笛卡尔创立解析几何,为判断尺规作图可能性提供了从代上进行研究的手段,解决三大难题有了新的转机。

最先突破的是德国数学家高斯。

他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。

他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。

由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。

高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。

他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥庭根大学学习。

由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。

紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费尔马数,那么正P边形就可以用尺规作图法作出,否则不能出。

由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。

高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。

他被人们赞誉为“数学王子。

高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。

最后的胜利:解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。

而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已量)经过有限次的加、减、乘、除和开平方求得。

因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。

这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。

1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方倍积与三等分任意角不可能用尺规作图法解决。

实际上万芝尔还证明了一个被称为高斯——万芝尔定理:如果边数N可以写成如下形式N=2t·P1·P2…Pn,其中P1、P2、…P n都是各不相同的形如22k+1的素数,则可用尺规等分圆周N份,且只有当N可以表成这种形式时,才可用尺规等分圆周N份。

根据这一定理,任意角的三等分就不可能了。

1882年,林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.,宣布了多年来,人类征服几何三大难题取得了重大胜利。

正十七边形:步骤一:给一圆O,作两垂直的半径OA、OB,在OB上作C点使O C=1/4O B,在OA上作D点使∠O C D=1/4∠O C A作AO延长线上E点使得∠D C E=45度。

步骤二:作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点,再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。

步骤三:过G4作OA垂直线交圆O于P4,过G6作OA垂直线交圆O于P6,则以圆O为基准圆,A为正十七边形P 为第四顶点,P6为第六顶点。

相关文档
最新文档