中考复习《统计》

合集下载

中考总复习数学31- 第一部分 第31讲 统计

中考总复习数学31- 第一部分 第31讲 统计
(3)统计表:一般涉及求频数和频率(百分比).
第31讲
返回思维导图
统计— 考点梳理
返回栏目导航
3.频数和频率
频数
(2)频率=
.
数据总个数
(1)频数:各组中数据的个数.
(3)各组的频率之和为
1
.
4.样本估计总体
用样本估计总体时,样本容量越大,通过样本对总体的估计也就
越精确 .
基本思想:利用样本的特征(平均数、方差等)估计总体的特征(平均数、方差
1
2
3
4
第31讲
返回题型清单
统计— 题型突破
返回栏目导航
2.(原创题)某篮球队10名队员的年龄结构如下表,已知该队队员年龄的
中位数是21.5,则篮球队的年龄的众数为( D )
A.20
年龄/岁
19
20
21
22
24
26
人数/名
1
1
m
n
2
1
B.22
C.24
D.21
1
2
3
4
第31讲
统计— 题型突破
返回题型清单
计算调查的样本容量:综合观察统计图(表),或得到某组的频数,或得到某
组的频数及该组对应的频率(百分比),利用样本容量=各组频数之和或样
某组的频数
本容量=
计算即可.
该组的频率
(1)条形统计图:一般涉及补图,也就是求未知组的频数.
(2)扇形统计图:一般涉及补图,也就是求未知组的百分比或其所占圆心角
的度数.
解析:在这次抽样调查中,共调查的学生数为60÷20%=300(名).
(2)C类所对应扇形的圆心角的度数是
全条形统计图;

中考复习讲座4(统计初步一

中考复习讲座4(统计初步一

例14、[02河南]为了解用电量的多少,李明 在6月初连续几天同一时刻观察电表示数, 记录如下:
日 期 1 120 124 129 135 138 142 145
估计李明家六月份总用电量是 120 度。 解:每天用电(3+4+5+6+3+4+3)÷7= 4度 所以六月份用电为4×30=120度.
0.005 2.42 100 600 350 0.5 10 0.07 7260(套)
3
(4)假如让你统计你所在省一年使用一次
性筷子所消耗的木材量,如何利用统计知
识去做,简要地用文字表述出来. 答:可先抽取若干个县做样本,再分别从中 抽取若干个饭店做样本统计一次性筷子的 用量.
1 解:由已知得: (1 2 3 4 a b c) 8 7
∴10+a+b+c=56
∴a+b+c=46
例7、[00吉林]某餐厅共有7名员工,所有员 工的工资的情况如下 人员 经理 厨师 厨师 会计 服务 服务 勤杂 甲 乙 员甲 员乙 工 1 1 1 1 1 1 人数 1
1 2 n
1 x ( x x ... x )将各数据均减去 a 则 n 1 x ( x a x a ... x a ) n 1 [( x x ... x ) na] x a n \ x x a.
1 2 n ' 1 2 n 1 2 n '
2
(2)样本方差(标准差)的大小反映了样本 波动的大小,方差(标准差)的值越大波 2 动就越大。S= s
例8、将一组数据中的各数都减去100,所得 新数组的平均数是8.5,方差为28,则原数组的 平均数是 108.5 ,方差为 28 。

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。

以下是对这些知识点的详细梳理。

1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。

概率的计算方法包括:理论概率、几何概率和频率概率。

-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。

-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。

-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。

2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。

统计的主要目的是对研究对象进行客观的描述和分析。

-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。

-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。

-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。

3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。

抽样调查的方法包括概率抽样和非概率抽样。

-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。

-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。

4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。

中考复习4 统计、概率

中考复习4 统计、概率

中考数学复习(4) 《概率、统计》1、青少年视力水平下降已引起全社会的广泛关注.为了解某市初中毕业年级5000名学生的视力情况,我们从中抽取了一部分学生的视力作为样本进行数据处理,得到如下的频率分布表和频(1)根据上述数据,补全频率分布表和频率分布直方图;(2)若视力在4.85以上属于正常,不需矫正,试估计该市5000名初中毕业生中约有多少名学生的视力需要..矫正.2、为了解某校初一学年男生的体能状况,从该校初一学生中抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频率分布直方图(如图8).已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2. (1)求第一小组的频数; (2)求第三小组的频率;(3)求在所抽取的初一学生50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生总人数的百分之多少?3、某研究性学习小组,为了了解本校初一学生一天中做家庭作业所用的大致时间(时间以整数记.单位:分钟),对本校的初一学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示),请结合统计图中提供的信息,回答下列问题:(1)这个研究性学习小组所抽取样本的容量是多少?(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?4、某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:这20个家庭的年平均收入为______万元;(2) 样本中的中位数是______万元,众数是______万元;(3) 在平均数、中位数两数中,______更能反映这个地区家庭的年收入水平.5、某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球A 袋中摸出1个球,再从装有编号为1、2、3的三个红球B 袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你人为这种方法公平吗?请说明理由.6、小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序,他们约定用“剪子、锤子、布”的方式确定,问在一个回合中三个人出手互不相同的情况有哪几种?在一个0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7 5%) 所占户数比回合中三个人都出剪子的概率是多少?7、有两个布袋,甲布袋有12只白球,8只黑球,10只红球;乙布袋中有3只白球,2只黄球,所有小球除颜色外都相同,且各袋中小球均已搅匀。

初三中考数学:《统计》专项练习复习题

初三中考数学:《统计》专项练习复习题

统计专项练习题一、选择题1. 下列调查中,最合适采用全面调查(普查)方式的是()A.对重庆市民知晓“中国梦”内涵情况的调查B.对2021年元旦节磁器口游客量情况的调查C.对全国中小学生身高情况的调查D.对全班同学参加“反邪教”知识问答情况的调查2. 下列调查中,属于抽样调查的是()A.了解某班学生的身高情况B.某企业招聘,对应聘人员进行面试C.检测某城市的空气质量D.乘飞机前对乘客进行安检3. 我市五月份连续五天的最高气温分别为,,,,(单位:),这组数据的中位数和众数分别是()A.,B.,C.,D.,4. 下列一组数据:、、、、的平均数和方差分别是()A.和B.和C.和D.和5. 为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果。

下列调查数据中最值得关注的是()A.平均数B.中位数C.众数D.方差6. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生B.调查七、八、九年级各30名学生C.调查全体女生D.调查全体男生7. 为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()A.2000名学生B.2000 C.200名学生D.2008. 甲乙丙三种糖果的售价分别每千克 6 元、7 元、8 元,若将甲种 8 千克、乙种 10 千克、丙种 3 千克混在一起出售,为确保不亏本售价至少应定为每千克()A.6.8 元B.7 元C.7.5 元D.8.6 元9. 要反映一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布图10. 若数据、、的平均数是3,则数据、、的平均数是 ( ) A.2 B.3 C.4 D.611. 某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是( )A.甲B.乙C.丙D.丁12. 济南某中学足球队的18名队员的年龄如下表所示:这18名队员年龄的众数和中位数分别是( )A.13岁,14岁B.14岁,14岁C.14岁,13岁D.14岁,15岁13. 某市统计部门公布的2016年6~10月份本市居民消费价格指数(CPI)的同比增长分别为2.3%,2.3%,2%,1.6%,1.6%,业内人士评论说:“这五个月的本市居民消费价格指数同比增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”反映的统计量是( )A.方差B.平均数C.众数D.中位数根据上表中的信息判断,下列结论中错误的是().A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分15. 小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080 B.900 C.600 D.10816. 我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差17. 为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量18. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.58,S乙2=0.52,S丙2=0.56,S丁2=0.48,则成绩最稳定的是()A.甲B.乙C.丙D.丁19. 为了了解我市参加中考的 120000 学生的视力情况,抽查了 1000 名学生的视力进行统计分析.样本容量是()A.120000 名学生的视力B.1000 名学生的视力C.120000 D.100020. 某市2021年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析,在这个问题中样本是指( )A.2 000 B.2 000名考生的数学成绩C.4万名考生的数学成绩D.2 000名考生21. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲 B.乙C.丙 D.丁22. 如图是某晚报“百姓热线”一周内接到热线电话的统计图,其中有关环境保护话题的电话最多,共70个,则本周“百姓热线”共接到热线电话有( )A.350个B.200个C.180个D.150个23. 凤江镇有10万人口,随机调查了1000人,其中有20人喜欢看晚间新闻联播,则该镇中喜欢看晚间新闻联播的人数大约有()人.A.1000 B.2000 C.3000 D.400024. 一组数据3、4、x、1、4、3有唯一的众数3,则这组数据的中位数是()A.3 B.2 C.1 D.425. 样本数据3、6、a、4、2的平均数是5,则这个样本的方差是A.8 B.5 C.22D.3二、填空题27. 若数,,,,五个数的平均数为,则的值为________.该小组学生在这次测试中成绩的中位数是_____分.29. 已知某班某次数学成绩中10名同学的成绩分别为89,70,65,89,75,92,88,87,90,86,这10名同学的成绩的中位数、众数分别是_____________。

中考统计与概率知识点大全

中考统计与概率知识点大全

中考统计与概率知识点大全一、统计1.调查与数据收集-掌握调查的目的,懂得合理选取样本。

-掌握使用各种调查方法,如问卷调查、抽样调查等。

-熟练掌握数值资料和非数值资料的调查和收集方法。

2.数据整理与归纳-掌握清理数据的方法,如查漏补缺、整理排序等。

-能够使用表格、图表等工具整理数据。

-能够对数据进行分类、分组,运用逐次求和法进行观察和总结。

3.数据的表示与分析-掌握如何使用折线图、柱状图、饼图等不同形式的图表展示数据。

-能够根据图表进行数据分析,提取有效信息。

-能够通过数据分析,进行简单的预测和推测。

4.数据的描述统计-掌握数据的中心位置度量,如算术平均数、中位数等。

-掌握数据的离散程度度量,如极差、方差等。

-掌握数据的分布情况度量,如频率分布、频率分布直方图等。

5.数据的应用-能够运用所学知识解决实际问题,如调查数据的分析、市场需求的预测等。

-能够使用计算机软件辅助数据处理和分析。

二、概率1.随机事件与概率-掌握随机事件的概念,了解样本空间和事件的关系。

-掌握概率的定义和计算方法。

-能够根据随机现象的规律性求解概率。

2.集合与概率-掌握集合的基本概念和基本运算。

-掌握集合与概率的关系,能够根据集合的运算求解概率。

3.概率计算的方法-掌握事件的互斥与独立性质,能够根据互斥与独立求解概率。

-掌握事件的和、积和差、和事件的概率计算方法。

4.条件概率与事件的独立性-掌握条件概率的定义和计算方法。

-掌握事件的独立性概念和判定方法。

5.事件间的关系与扩展-掌握事件的包含与相等关系,能够根据事件的关系求解概率。

-了解事件的理论计算方法,如贝叶斯定理、全概率公式等。

-能够应用概率知识解决实际问题,如抽奖问题、生日问题等。

总结:。

专题8.1 统计-2022年中考数学第一轮总复习课件(全国通用)

专题8.1 统计-2022年中考数学第一轮总复习课件(全国通用)

考点聚焦 数据的分析---数据的代表据提供的信息,在现实生活中较为常用,但它受 极端值的影响较大. 2.中位数的优点是容易计算,不受极端值的影响.中位数代表了这组数据 值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息. 中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中 位数可能出现在所给数据中,也可能不在所给的数据中出现,当一组数据 中的个别数据变动较大时,可用中位数描述其趋势. 3.众数不易受数据中的极端值影响.众数也是数据的一种代表数,反映了 一组数据的集中程度,众数可作为描述一组数据集中趋势的量.当一组数 据中某些数据多次反复出现时,宜用众数来作为描述数据集中趋势的量, 众数也不受极端值的影响.一组数据的平均数和中位数是唯一的,而众数 则可能有多个.
C.每位考生的数学成绩是个体
D.1000名学生是样本容量
4.株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最
大时间段为( B )A.9:00~10:00 C.14:00~15:00
B.10:00~11:00 D.15:00~16:00
9:00~10:00
进馆人数
50
出馆人数
30
10:00~11:00 24 65
典例精讲
数据的描述
知识点一
【例1-3】某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C
,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,
绘制了如图所示的统计图.已知图中从左到右的五个长 人数
方形的高之比为2:3:3:1:1,据此估算该市80000名九
年级学生中“综合素质”评价结果为“A”的学生约
(记为F´).根据调查结果绘制了如下统计图表。

数学中考二轮复习专题卷---统计附答案解析

数学中考二轮复习专题卷---统计附答案解析

数学中考二轮复习专题卷-统计学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列统计量中,不能..反映一名学生在一学期的数学学习成绩稳定程度的是()A.标准差 B.方差 C.中位数 D.极差2.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.s2甲>s2乙B.s2甲=s2乙C.s2甲<s2乙D.不能确定3.一组数据:0,1,2,3,3,5,5,10的中位数是A.2.5 B.3 C.3.5 D.54.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.55.下列调查中适合采用全面调查的是A.调查市场上某种白酒的塑化剂的含量B.调查鞋厂生产的鞋底能承受弯折次数C.了解某火车的一节车厢内感染禽流感病毒的人数D.了解某城市居民收看辽宁卫视的时间6.若一组数据1、2、3、x的极差是6,则x的值为()A.7 B.8 C.9 D.7或—37.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是A.2013年昆明市九年级学生是总体 B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本 D.样本容量是1000该日最高气温的众数和中位数分别是A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃9.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性:A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定 D.无法确定10.孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)9 8 7 9 6则孔明射击成绩的中位数是A.6 B.7 C.8 D.911.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是A .16人B .14人C .4人D .6人 12.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【 】 A .1.71 B .1.85 C .1.90 D .2.3113.下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|5|-的算术平方根是5;④点P (1,2-)在第四象限,其中正确的个数是【 】 A .0 B .1 C .2 D .314.乐山大佛景区2013年5月份某周的最高气温(单位:0C )分别为:29,31,23,26,29,29。

中考数学总复习考点系统复习第一节 统计

中考数学总复习考点系统复习第一节  统计
所抽取该校七年级学生四月份“读书量”的统计图
第6题图
根据以上信息,解答下列问题: (1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的众数为__3_本_____;
第6题解图
(2)求本次所抽取学生四月份“读书量”的平均数;
(2)∵18÷30%=60(人), ∴x= 1 ×(1×3+2×18+3×21+4×12+5×6)=3(本).
第4题图
根据以上提供的信息,解答下列问题:
(1)求所统计的这组数据的中位数和平均数;
解:(1)∵ 10+11 =10.5(棵); x= 9×1+10×4+11×3+12×2=10.6(棵).
2
10
∴所统计的这组数据的中位数为10.5棵,平均数为10.6棵.(3分)
(2)求抽查的这10个小组中,完成本次植树任务的小组所占的百分比; (2)∵ 4+3+2×100%=90%. 10 ∴在抽查的10个小组中,90%的小组完成了植树任务.(5分)
返回思维导图
概念:一组数据中出现次数 最多 的数据
数 据众 的数 数代 据表 的
特点:表示一组数据中出现次数最多的数据,次数多能够反映一组数 据的集中程度 通用情况:日常生活中“最佳”、“最受欢迎”、“最满意”、“最 受关注”等,与众数有关,它是反映一组数据的集中程度
分 析
数据的
概念:s2= n1[(x1-x)2+(x2-x)2+…+(xn-x)2]
请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图; 解:(1)补全统计图如解图;(2分)
所抽取七年级学生早锻炼时间统计图
第7题解图
(2)所抽取的七年级学生早锻炼时间的中位数落在_2_0_≤_x_<__3_0_(或__填__C__) _区间内;

(中考复习)第20 讲 统计的应用

(中考复习)第20 讲 统计的应用

3.(2013· 玉林)如图20-1所示是某手机店今年1-5月份音乐手
机销售额统计图.根据图中信息,可以判断相邻两个月音 乐手机销售额变化最大的是 (
C )
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
图20-1
A.1月至2月
C.3月至4月
B.2月至3月
D.4月至5月
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 (3)补全折线统计图和条形统计图如图. 解:补全后的统计图如图20-7所示.
图20-7
基础知识 · 自主学习 题组分类 · 深度剖析
积极践行“节约用水,从我做起”,下表是从七年级400名学 生中选出10名学生统计各自家庭一个月的节水情况:
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固
0.25 2
0.3 2
0.4 4
0.5 1 ( A )
那么这组数据的众数和平均数分别是 A.0.4和0.34 C.0.25和0.34 B.0.4和0.3 D.0.25和0.3
课堂回顾 · 巩固提升
浙派名师中考 5.(2013· 日照)如图20-3所示是某学校全体教职工年龄的频数 分布直方图(统计中采用“上限不在内”的原则,如年龄为36
岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形
提供的信息,下列说法中错误的是 ( D )
图20-3
基础知识 · 自主学习 题组分类 · 深度剖析
(1)小丽看了统计图后说:“该市2011年新建保障房的套数比 2010年少了.”你认为小丽说法正确吗?请说明理由;

中考数学复习专题19统计

中考数学复习专题19统计

专题19 统计一、单选题1.(2021·山东聊城市)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( )A .样本为40名学生B .众数是11节C .中位数是6节D .平均数是5.6节 【答案】D【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可.【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确.故选择:D .【点睛】本题考查样本,众数,中位数,平均数,熟练掌握样本,众数,中位数,平均数是解题关键. 2.(2021·湖北随州市)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是( )A .测得的最高体温为37.1℃B .前3次测得的体温在下降C .这组数据的众数是36.8D .这组数据的中位数是36.6【答案】D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1℃,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.3.(2021·湖南常德市)舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①【答案】D【分析】根据数据的收集、整理、制作拆线统计图及根据统计图分析结果的步骤可得答案.【详解】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.③按统计表的数据绘制折线统计图;①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;所以,正确统计步骤的顺序是②→④→③→①故选:D.【点睛】本题考查拆线统计图、频数分布表,解答本题的关键是明确制作频数分布表和拆线统计图的制作步骤4.(2021·四川广安市)下列说法正确的是()A.为了了解全国中学生的心理健康情况,选择全面调查B.在一组数据7,6,5,6,6,4,8中,众数和中位数都是6a ”是必然事件C.“若a是实数,则0D .若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则乙组数据比甲组数据稳定【答案】B【分析】根据抽样调查及普查,众数和中位数,随机事件,方差的意义分别判断即可.【详解】解:A 、为了了解全国中学生的心理健康情况,人数较多,应采用抽样调查的方式,故错误; B 、在一组数据7,6,5,6,6,4,8中,众数和中位数都是6,故正确;C 、0a ≥,则“若a 是实数,则0a >”是随机事件,故错误;D 、若甲组数据的方差20.02S =甲,乙组数据的方差20.12S =乙,则甲组数据比乙组数据稳定,故错误;故选B .【点睛】此题主要考查了抽样调查及普查,众数和中位数,随机事件,方差的意义,解答本题的关键是熟练掌握各个知识点.5.(2021·云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍 B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍 C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多 【答案】C【分析】分别计算单独生产各型号帐篷的天数,可判断A ,B ,C ,再根据条形统计图的数据判断D 即可. 【详解】解:A 、单独生产B 型帐篷的天数是2000030%1500⨯=4天,单独生产C 型帐篷的天数是2000015%3000⨯=1天,4÷1=4,故错误;B 、单独生产A 型帐篷天数为2000045%4500⨯=2天,4÷2=2≠1.5,故错误;C、单独生产D型帐篷的天数为2000010%1000=2天,2=2,故正确;D、4500>3000>1500>1000,∴每天单独生产A型帐篷的数量最多,故错误;故选C.【点睛】本题考查了条形统计图和扇形统计图综合,解题的关键是读懂题意,明确单独生产某一种帐篷的天数的计算方法.6.(2021·山东泰安市)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h【答案】C【分析】根据众数的定义及所给频数分布直方图可知,睡眠时间为7小时的人数最多,根据中位数的定义,把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,从而可得结果.【详解】由频数分布直方图知,睡眠时间为7小时的人数最多,从而众数为7h;把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,而第25位学生的睡眠时间为7h,第26位学生的睡眠时间为8h,其平均数为7.5h,故选:C.【点睛】本题考查了频数分布直方图,众数和中位数,读懂频数分布直方图,掌握众数和中位数的定义是解决本题的关键.7.(2021·广西玉林市)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环【答案】B【分析】根据中位数的求法可得98822x ++=,然后求解即可. 【详解】解:由题意得:甲乙两人的中位数都为第三次和第四次成绩的平均数, ∴98822x ++=,解得:7x =;故选B . 【点睛】本题主要考查中位数及一元一次方程的应用,熟练掌握中位数的求法及一元一次方程的应用是解题的关键.8.(2021·四川广元市)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】B【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意.故选:B .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键. 9.(2021·江苏宿迁市)已知一组数据:4,3,4,5,6,则这组数据的中位数是( ) A .3 B .3.5C .4D .4.5【答案】C【分析】将原数据排序,根据中位数意义即可求解.【详解】解:将原数据排序得3,4, 4,5,6,∴这组数据的中位数是4.故选:C【点睛】本题考查求一组数据的中位数,熟练掌握中位数的意义是解题关键,注意求中位数时注意先排序. 10.(2021·山西)每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是( )A .27点,21点B .21点,27点C .21点,21点D .24点,21点 【答案】C【分析】根据中位数与众数定义即可求解.【详解】解:将下列数据从小到大排序为15,21,21,21,27,27,30, 根据中位数定义,7个点数位于7+1=42位置上的点数是21点,∴这组数据的中位数是21点, 根据众数的定义,这组数据中重复次数最多的点数是21 点,所以这组数据的众数是21点,故选择C . 【点睛】本题考查中位数与众数,掌握中位数与众数定义是解题关键.11.(2021·山东菏泽市)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是( ) A .中位数是10.5 B .平均数是10.3C .众数是10D .方差是0.81【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9,9,10,10,10,10,11,11,11,12; 位于最中间的两个数是10,10,它们的平均数是10, 所以该组数据中位数是10,故A 选项不正确; 该组数据平均数为:()11211131049210.310⨯+⨯+⨯+⨯=,故B 选项正确; 该组数据10出现次数最多,因此众数是10,故C 选项正确; 该组数据方差为:()()()()222211210.331110.341010.32910.30.8110⎡⎤-+⨯-+⨯-+⨯-=⎣⎦,故D 选项正确;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.12.(2021·湖南长沙市)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,24【答案】C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C.【点睛】本题考查了众数和中位数,熟记定义是解题关键.13.(2021·湖北十堰市)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是()A.8,15B.8,14C.15,14D.15,15【答案】D【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.14.(2021·四川眉山市)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( ) A .80,90 B .90,90C .86,90D .90,94【答案】B【分析】先将该组数据按照从小到大排列,位于最中间的数和出现次数最多的数即分别为中位数和众数. 【详解】解:将这组数据按照从小到大排列:80,86,90,90,94; 位于最中间的数是90,所以中位数是90;这组数据中,90出现了两次,出现次数最多,因此,众数是90;故选:B .【点睛】本题考查了学生对中位数和众数的理解,解决本题的关键是牢记中位数和众数的概念,明白确定中位数之前要将该组数据按照从小到大或从大到小排列,若该组数据个数为奇数,则位于最中间的数即为中位数,若该组数据为偶数个,则位于最中间的两个数的平均数即为该组数据的中位数.15.(2021·江苏苏州市)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kg B .4.8kgC .4.6kgD .4.5kg【答案】C【分析】根据平均数的定义求解即可. 【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.74.65kg =.故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.16.(2021·浙江台州市)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21 s ,则下列结论一定成立的是( )A . x x <1B . x x >1C .s 2>21s D .s 221<s【答案】C【分析】根据平均数和方差的意义,即可得到答案.【详解】解:∵顾客从一批大小不一的鸡蛋中选购了部分大小均匀的鸡蛋,∴21s<s2,x和x1的大小关系不明确,故选C【点睛】本题主要考查平均数和方差的意义,掌握一组数据越稳定,方差越小,是解题的关键.17.(2021·浙江嘉兴市)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33C︒B.众数是33C︒C.平均数是197C7︒D.4日至5日最高气温下降幅度较大【答案】A【分析】根据中位数,众数,平均数的概念及折线统计图所体现的信息分析求解.【详解】解:由题意可得,共7个数据,分别为26;30;33;33;23;27;25从小到大排列后为23;25;26;27;30;33;33 位于中间位置的数据是27,∴中位数为27,故选项A符合题意;出现次数最多的数据是33,∴众数是33,故选项B不符合题意;平均数为(26+30+33+33+23+27+25)÷7=197C7︒,故选项C不符合题意;从统计图可看出4日气温为33℃,5日气温为23℃,∴4日至5日最高气温下降幅度较大,故选项D不符合题意;故选:A.【点睛】本题考查求一组数据的中位数,众数和平均数,准确识图,理解相关概念是解题关键.18.(2021·四川成都市)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【答案】B【分析】根据中位数的意义求解即可.【详解】解:将数据30,40,34,36按照从小到大排列是:30,34,36,40,故这组数据的中位数是3436352+=,故选:B.【点睛】本题考查了中位数,解答本题的关键是明确中位数的含义,求出相应的中位数.19.(2021·浙江宁波市)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∵甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20.(2021·四川资阳市)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.二、填空题1.(2021·浙江丽水市)根据第七次全国人口普查,华东,,,,,A B C D E F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.【答案】18.75%【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.2.(2021·四川乐山市)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)【答案】甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x乙=(5+9+6+7+8)÷5=7(环),2s=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,甲2s=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.三、解答题1.(2021·北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:≤<≤<≤<≤<≤≤):x x x x x68,810,1012,1214,1416b .甲城市邮政企业4月份收入的数据在1012x ≤<这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8c .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为1p .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为2p .比较12,p p 的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)10.1m =;(2)12p p <,理由见详解;(3)乙城市邮政企业4月份的总收入为2200百万元.【分析】(1)由题中所给数据可得甲城市的中位数为第13个数据,然后问题可求解;(2)由甲、乙两城市的中位数可直接进行求解;(3)根据乙城市的平均数可直接进行求解.【详解】解:(1)由题意可得m 为甲城市的中位数,由于总共有25家邮政企业,所以第13家邮政企业的收入作为该数据的中位数,∵68x ≤<有3家,810x ≤<有7家,1012x ≤<有8家,∴中位数落在1012x ≤<上,∴10.1m =;(2)由(1)可得:甲城市中位数低于平均数,则1p 最大为12个;乙城市中位数高于平均数,则2p 至少为13个,∴12p p <;(3)由题意得:200112200⨯=(百万元);答:乙城市的邮政企业4月份的总收入为2200百万元.【点睛】本题主要考查中位数、平均数及统计与调查,熟练掌握中位数、平均数及统计与调查是解题关键. 2.(2021·江苏南京市)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t ,你对它与中位数的差异有什么看法? (2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?【答案】(1)6.6t ;差异看法见解析;(2)1113a ≤<(其中a 为标准用水量,单位:t )【分析】(1)从中位数和平均数的定义和计算公式的角度分析它们的特点即可找出它们差异的原因; (2)从表中找到第75和第76户家庭的用水量,即可得到应制定的用水量标准数据.【详解】解:(1)由表格数据可知,位于最中间的两个数分别是6.4和6.8,∴中位数为:6.4 6.8 6.62+=( t ),而这组数据的平均数为9.2t , 它们之间差异较大,主要是因为它们各自的特点决定的,主要原因如下:①因为平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动;主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。

专题26统计(知识点总结+例题讲解)-2021届中考数学一轮复习

专题26统计(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学专题26 统计(知识点总结+例题讲解)一、调查收集数据的过程与方法以及统计学基本概念:1.调查方式:(1)普查:为了某一特定目的,而对考察对象进行全面的调查,叫普查;(2)抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况。

2.统计学中的几个基本概念:(1)总体:所有考察对象的全体叫做总体;(2)个体:总体中每一个考察对象叫做个体;(3)样本:从总体中所抽取的一部分个体叫做总体的一个样本;(4)样本容量:样本中个体的数目叫做样本容量;(5)样本平均数:样本中所有个体的平均数叫做样本平均数;(6)总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

【例题1】(2020•安顺)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【答案】C【解析】直接利用调查数据的方法分析得出答案.解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【变式练习1】某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况 B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况【答案】D【解析】根据样本抽样的原则要求,逐项进行判断即可.解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.【例题2】为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查 B.1000名学生是总体C.样本容量是80 D.被抽取的每一名学生称为个体【答案】C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:A、此次调查属于抽样调查,故本选项不合题意;B、1000名学生的视力情况是总体,故本选项不合题意;C、样本容量是80,正确;D、被抽取的每一名学生的视力情况称为个体.故本选项不合题意.故选:C.【变式练习2】为了解500人身高情况,从中抽取50人进行身高统计分析.样本是()A.500人B.所抽50人C.500人身高D.所抽50人身高【答案】D【解析】根据样本的意义得出判断即可.解:在这个问题中,“抽取50人的身高情况”是整体的一个样本,故选:D.二、频数、频率与统计图表:1.频数分布直方图:(1)把每个对象出现的次数叫做频数;(2)每个对象出现的次数与总次数的比(或者百分比)叫频率;频数和频率都能够反映每个对象出现的频繁程度;;频率=频数样本容量(3)频数分布表、频数分布直方图都能直观、清楚地反映数据在各个小范围内的分布情况;(4)频数分布直方图的绘制步骤是:①计算最大值与最小值的差(即:极差);②决定组距与组数,一般将组数分为5~12组;③确定分点,常使分点比数据多一位小数,且把第一组的起点稍微减小一点;④列频数分布表;⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.2.频率分布的意义:在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。

中考专题复习概率与统计

中考专题复习概率与统计

[问题1]某个事件发生的概率是21,这意味着在两次重复试验中,该事件必有一次发生吗?[问题2]连掷两枚骰子,它们的点数相同的概率是多少? [问题3]你认为50个人的班上有2人生日相同的概率大吗? [问题4]池塘里有多少条鱼,你能用怎样的方法去估计?知识点一 频率与概率概念1.频数、频率、概率:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小.2.概率的性质:P (必然事件)= 1,P (不可能事件)= 0,0<P (不确定事件)<1. 3.频率、概率的区别与联系: 频率与概率是两个不同的概念(1) 概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;(2) 频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率.小结:当试验次数很大时,一个事件发生频率也稳定在相应的概率附近。

因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.【例题讲析】1. 已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是( )A .连续抛一枚均匀硬币2次必有1次正面朝上B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的2. 掷一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子, 如图,观察向上的ー面的点数,下列属必然事件的是A.出现的点数是7B.出现的点数不会是0C.出现的点数是2D.出现的点数为奇数知识点二 计算简单事件发生的概率——列表法和树状图法 1. 理论依据:等可能性事件的概率如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m三个口袋各随机取出一个小球。

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

中考数学统计初步考点复习

中考数学统计初步考点复习

中考数学统计初步考点复习一、填空题1、一小组共6名先生,在一次引体向上的测试中,他们区分做了8、10、8、7、6、9个,这6名先生平均每人做了___________(个)。

2、某商场4月份随机抽查了6天的营业额,结果区分如下(单位:万元):2.8,3.2,3.4,3.7,3.0,3.1,试预算该商场4月份的总营业额,大约是_____________万元。

3、某校初三(1)班为希望工程捐款,该班共有50名同窗,其中20名同窗每人捐款15元,其他的30名同窗每人捐款10元,那么该班同窗平均每人捐款_________元。

4.、某校为了了解初一年级300名先生每天完成作业所用时间的状况,从中对20名先生每天完成作业作用时间停止了抽查,这个效果中的样本容量是___________。

5、假定一组数据6,7,5,6,x,1的平均数是5,那么这组数据的众数是。

6、甲、乙两战士在射击训练中,打靶的次数相反,且中环的平均数 = ,假设甲的射击效果比拟动摇,那么方差的大小关系是。

7、某餐厅共有7名员工,一切员工的工资状况如下表所示:解答以下效果(直接填在横线上):(1)餐厅一切员工的平均工资是__________元。

(2)一切员工工资的中位数是__________元。

(3)用平均数还是用中位数描画该餐厅员工工资的普通水平比拟恰当?答:__________。

(4)去掉经理的工资后,其他员工的平均工资是元,能否也能反响该餐厅员工工资的普通水平?答:__________。

8、为了了解本市初中一、二、三年级男生的身高状况,有关部门预备对180名初中男生的身高作调查现有三种调查方案:(A)测量少年体校中180名女子篮球、排球队员的身高;(B)查阅有关外地180名男生身高的统计资料;(C)在本市的郊区和郊县各任选一所完全中学、两所初级中学,在这六所学校有关年级的(1)班中,用抽签的方法区分选出10名男生,然后测量他们的身高。

问:为了到达估量本市初中这三个年级男主身高散布的目的,你以为采用上述哪一种调查方案比拟合理,为什么?(答案区分填在空格内)答:选________;理由:__________________。

专题15 统计(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【无答案】

专题15 统计(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【无答案】

专题15 统计复习考点攻略考点一全面调查与抽样调查1.全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.2. 抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.3. 调查的选取:当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.4. 抽样调查样本的选取:(1)抽样调查的样本要有代表性(2)抽样调查的样本数目要足够大.【例1】下列采用的调查方式中,合适的是()A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式考点二总体、个体、样本及样本容量1.总体:所要考察对象的全体叫做总体.2. 个体:总体中的每一个考察对象叫做个体.3. 样本:从总体中抽取的部分个体叫做样本.4. 样本容量:样本中个体的数目叫做样本容量.【例2】为了了解我县4000名初中生的身高情况,从中抽取了400名学生测量身高,在这个问题中,样本是()A.4000 B.4000名C.400名学生的身高情况D.400名学生考点三几种常见的统计图表1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.特点(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.2. 折线统计图:用几条线段连成的折线来表示数据的图形. 特点: 易于显示数据的变化趋势.3.扇形统计图:(1)用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.(2)百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.(3)扇形的圆心角=360°×百分比. 4.频数分布直方图:(1)每个对象出现的次数叫频数.(2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.(3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.(4)频数分布直方图的绘制步骤: ①计算最大值与最小值的差; ②决定组距与组数;③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点; ④列频数分布表;⑤画频数分布直方图:用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.【例3】某校为了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示的两幅统计图.由图中所给信息知,扇形统计图中C 等级所在的扇形圆心角的度数为( )考点四 平均数、众数、中位数1. 平均数:一般地,如果有n 个数1x ,2x ,…,n x ,那么,121()n x x x x n=+++…叫做这n 个数的平均数,x 读作“x 拔”.2. 加权平均数:如果n 个数中,1x 出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里12k f f f n +++=…),那么,根据平均数的定义,这n 个数的平均数可以表示为1122k kx f x f x f x n+++=…,这样求得的平均数x 叫做加权平均数,其中f 1,f 2,…,f k 叫做权.3. 众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.4. 中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【例4】某鞋店试销一种新款男鞋,试销期间销售情况如下表:则该组数据的下列统计量中,对鞋店下次进货最具有参考意义的是( ) A .中位数B .平均数C .众数D .方差方差在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即2222121[()()()]n s x x x x x x n=-+-++-…. 【例5】 已知一组数据x 1,x 2,x 3,…,x n 的方差为2,则另一组数据3x 1,3x 2,3x 3,…,3x n 的方差为 .第一部分 选择题一、选择题(本题有10小题,每题3分,共30分)1. 今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是( ) A .这1000名考生是总体的一个样本 B .近4万名考生是总体 C .每位考生的数学成绩是个体D .1000名学生是样本容量2. 某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是()A.6B.6.5C.7D.83.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°4.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8D.选“感恩”的人数最多5. 某校七年级共720名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀,估计该校七年级学生在这次数学测试中,达到优秀的学生人数约有()A.140人B.144人C.210人D.216人6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是187D.中位数是137.如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A .甲比乙大B .甲比乙小C .甲和乙一样大D .甲和乙无法比较8. 某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况.图中描述了这天相关的情况,现在知道7是这一天加工零件数的唯一众数.设加工零件数是7件的工人有x 人,则( )A .16x >B .16x =C .1216x <<D .12x =9.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是( )A .甲平均分高,成绩稳定B .甲平均分高,成绩不稳定C .乙平均分高,成绩稳定D .乙平均分高,成绩不稳定10.某科普小组有5名成员,身高分别为(单位:cm )160,165,170,163,167,增加1名身高为165 cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A .平均数不变,方差不变B .平均数不变,方差变小C .平均数变小,方差不变D .平均数不变,方差变大第二部分 填空题二、填空题(本题有6小题,每题4分,共24分)11.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为 .12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_____.14.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.15.我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有人16.某5人学习小组在寒假期间进行线上测试,其成绩(分)分别为:86,88,90,92,94,方s=.后来老师发现每人都少加了2分,每人补加2分后,这5人新成绩的方差差为28.02s=__________.新第三部分解答题二、解答题(本题有6小题,共46分)17. 小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.18.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70;72;74;75;76;76;77;77;77;78;79 c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9 m八79.2 79.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.20.天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了__________名学生.(2)请你补全条形统计图.(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为__________度.(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?21.由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了____________名学生;(2)在扇形统计图中,m的值是___________,D对应的扇形圆心角的度数是________________;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.22.某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.5 25 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制如图不完整的频数分布表及频数分布直方图:(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?。

中考数学总复习《统计》专项测试卷带答案

中考数学总复习《统计》专项测试卷带答案

中考数学总复习《统计》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·济宁微山县一模)下列调查中,适宜抽样调查的是( )A.了解某班级学生的身高情况B.选拔出某校跑最快的学生参加全省比赛C.调查某批次汽车的抗撞击能力D.调查某校九年级一班学生课外体育锻炼时间2.(2024·赤峰中考)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是( )视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城中考)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·上海中考)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )种类甲种类乙种类丙种类丁种类平均数2.32.32.83.1方差1.050.781.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.(2024·德阳中考)为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是( )A.平均数B.中位数C.众数D.方差6.(2024·福建中考)学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是.(单位:分)7.(2024·德阳中考)某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为分..8.(2024·北京中考)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100).c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为,n的值位于学生评委打分数据分组的第组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x则x91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是,表中k(k为整数)的值为.B层·能力提升9.(2024·宜宾中考)某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是( )A.方差为0B.众数为75C.中位数为77.5D.平均数为7510.(2024·苏州中考)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A.甲、丁B.乙、戊C.丙、丁D.丙、戊11.(2024·天津中考)为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为_________,图①中m的值为_________,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为_________和_________;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9 h的人数为多少?C层·素养挑战12.(2024·河南中考)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________ (填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为_________ 分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.参考答案A层·基础过关1.(2024·济宁微山县一模)下列调查中,适宜抽样调查的是(C)A.了解某班级学生的身高情况B.选拔出某校跑最快的学生参加全省比赛C.调查某批次汽车的抗撞击能力D.调查某校九年级一班学生课外体育锻炼时间2.(2024·赤峰中考)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是(D)视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城中考)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况(A)A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·上海中考)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是(B)种类甲种类乙种类丙种类丁种类平均数2.32.32.83.1方差1.050.781.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.(2024·德阳中考)为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是(C)A.平均数B.中位数C.众数D.方差6.(2024·福建中考)学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是90.(单位:分)7.(2024·德阳中考)某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为85.8分..8.(2024·北京中考)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100).c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为91,n的值位于学生评委打分数据分组的第4组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x则x<91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是甲,表中k(k为整数)的值为92.B层·能力提升9.(2024·宜宾中考)某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是(B)A.方差为0B.众数为75C.中位数为77.5D.平均数为7510.(2024·苏州中考)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择(C)A.甲、丁B.乙、戊C.丙、丁D.丙、戊11.(2024·天津中考)为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为_________,图①中m的值为_________,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为_________和_________;【解析】(1)a=3+7+17+15+8=50(人);=34%;m%=17503+7+17=27(人),中位数位于8 h这组;众数是8 h;答案:503488(2)求统计的这组学生每周参加科学教育的时间数据的平均数;【解析】(2)观察题中条形统计图∵6×3+7×7+17×8+15×9+8×1050=8.36(h)∴这组数据的平均数是8.36.(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9 h的人数为多少?【解析】(3)∵在所抽取的样本中,每周参加科学教育的时间是9 h的学生占30%∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9 h 的学生占30%,有500×30%=150(人)∴估计该校八年级学生每周参加科学教育的时间是9 h的人数为150.C层·素养挑战12.(2024·河南中考)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为_________分.【解析】(1)由题中折线图可得甲得分更稳定把乙的六次成绩按从小到大的顺序排序,第三次、第四次的成绩分别为28和30故中位数=28+30=29.2答案:甲29(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.【解析】(2)因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好.(答案不唯一,合理即可)(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【解析】(3)甲的综合得分为26.5×1+8×1.5+2×(-1)=36.5.乙的综合得分为26×1+10×1.5+3×(-1)=38.因为38>36.5,所以乙队员表现更好.。

九年级数学统计知识点

九年级数学统计知识点

九年级数学统计知识点数学统计是数学的一个重要分支,主要研究数据的整理、分析和推断。

在九年级数学学习中,统计知识点是必不可少的。

本文将围绕九年级数学统计知识点展开论述,分别介绍数据收集、数据整理、数据分析以及概率等方面的内容。

一、数据收集数据收集是统计的基础步骤,主要包括调查、观察和实验三种方式。

调查是指通过问卷调查或面对面的访谈方式,收集样本数据;观察是指通过对现象或行为进行观察,收集数据;实验是指安排实验条件进行探究,收集数据。

在数据收集过程中,需要注意采样方法的选择、调查问题的设计以及数据的真实性和可靠性。

二、数据整理数据整理是对收集到的原始数据进行整理和归类的过程,主要包括数据的分类、数据的表格形式展示以及数据的图表形式展示等方面。

数据的分类是将数据按照某种特征或属性进行分类;数据的表格形式展示是将数据整理到表格中,便于对数据进行分析;数据的图表形式展示是通过直方图、折线图、饼图等方式将数据在平面上形象地展示出来。

三、数据分析数据分析是统计的核心内容,通过对数据进行整理、描述和推理,得出结论并进行预测。

数据分析方法主要有统计量的计算、数据的描述、相关性的分析和预测等。

统计量的计算包括众数、中位数、平均数等统计指标的计算;数据的描述是通过频数分布表、频数分布图等方式对数据进行描述;相关性的分析是研究两个或多个变量之间的关联程度;预测是通过对已有数据进行分析,运用数学模型对未来数据进行预测。

四、概率概率是统计学中的重要概念,用来描述随机事件发生的可能性。

在概率的学习中,主要包括样本空间、事件、概率计算以及概率的运算规则等方面。

样本空间是所有可能结果的集合;事件是样本空间的子集,表示某种特定的结果;概率计算是通过等可能性原则或频率计算来确定事件发生的可能性;概率的运算规则包括加法规则、乘法规则以及互斥事件的概率计算等。

综上所述,九年级数学统计知识点涉及到数据的收集、整理、分析以及概率的计算等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲统计考点一:数据的收集
1.调查方式:(1)普查 (2)抽样调查. 2.总体、个体和样本、样本容量.
考点二:数据的代表
1、平均数:
(1)算术平均
(2)加权平均
2、众数
3、中位数
考点三:数据的波动
1.极差2.方差:3.标准差:方差的算术平方根。

考点四:频数与频率
(1)算术平均
(2)加权平均
2、众数
3、中位数
考点四:数据的波动
1.极差2.方差:
3.标准差:方差的算术平方根。

考点五:频数与频率
(请学生回答相关概念)
一、数据的收集
1.调查方式:
(1)普查:为了一定目的而对考察对象进行的全面调查,称为普查.
(2)抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查.
2.总体、个体和样本、样本容量:
(1)总体:所要考察的对象的全体叫做总体.
(2)个体:组成总体的每一个对象叫做个体.
(3)样本:从总体中抽取的一部分用于调查的个体叫做总体的一个样本.
(4)样本容量:样本中所包括的个体的数目叫做样本容量.
注:(1)当总体中数目较少时,调查范围小时可用普查方式调查;当总体数目过于庞大不需要太过准确或调查具有破坏性时,可用抽样调查方式调查.
(2)总体是“物”的全体而非“数”的全体,样本中个体的数目叫“样本容量”,它是一个正整数.
二、数据的代表
1.平均数
2.众数
3.中位数
缺点:平均数的计算会用到所有的数据,在现实生活中较为常用,但它受极端值的影响;中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数.
三、数据的波动
(填入结果和补全图形):
(1)问卷调查的学生数为;
(2)扇形统计图中a的值为;
(3)补全条形统计图;
(4)该校共有学生1500人,请你估计”活动时间不少于5天“的大约有___人;(5)如果从全校1500名学生中任意抽取一位学生准备作交流发言,则被抽到的学生,恰好也参加了问卷调查的概率是________ .
(2016)24.(本题12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x≤100,将其按分数段分为五组,绘制出以下不完整表格:。

相关文档
最新文档