数的整除知识点总结精品

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】方法、条件、继续、建立、特点、基础、需要、关系、检验、拓展

一. 数的分类

第一种分法 : 树状图 韦恩图 整数

第二种分法

整数

第三种分法:

正整数

一些关于数的结论:

1.0是最小的自然数,-1是最大的负整数,1是最小的正整数

2.没有最大的整数,没有最小的负整数,没有最大的正整数

3.正整数、负整数、整数的个数都是无限的

二.整除

1.整除定义(概念):整数a 除以整数b ,如果除得的商是整数而余数为零,我们就说a 能

被b 整除;或者说b 能整除a

注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a 相当于被除数,b 相当于除数

2.整除的条件:1.除数、被除数都是整数

2.被除数除以除数,商是整数而且余数为零

注意点:区分整除与除尽:整除是特殊的除尽(如正方形是特殊的长方形一样),即a 能被

b 整除,则a 一定能被b 除尽,反之则不一定(即a 能被b 除尽,则a 不一定能被b 整除)。如4÷2=2, 4既能被2除尽,也能被2整除;4÷5=0.8, 4能被5除尽,却不能说4能被5整除

三.因数与倍数

1.因数与倍数的定义:整数a能被整数b整除,a 就叫做b的倍数,b就叫做a的因数(约

数)。

注意点:1.因数和倍数是相互依存的,不能简单的说某个数是因数,某个数是倍数。如:6÷3=2,不能说6是倍数,3是因数;要说6是3的倍数,3是6的因数。

2.因数与倍数是建立在整除的基础上的,所以如4÷0.2=20,一般是不说4是0.2

的倍数,0.2是4的因数。

2.因数与倍数的特点:一个整数的因数中最小的因数是1,最大的因数是它本身。

一个数的倍数中最小的倍数是这个数本身,没有最大的倍数。

因数的个数是有限的,都能一一列举出来,倍数的个数是无限的。3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,

那么这两个数就是这个数的因数。如16=1×16=2×8=4×4,那么

16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本

身都是它的因数,注意按照一定的顺序以防遗漏。

4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5……(即正整数)得到的积就

是这个数的倍数。若用n表示所有的正整数,则2的倍数可表示为

2n, 5的倍数可表示为5n

四.能被2、5、3整除的数的特点

1.能被2整除的数(即2的倍数)个位上的数字是0、2、4、6、8,反之,个位上的数字是0、2、4、6、8的数也能被2整除

2.能被5整除的数(即5的倍数)个位上的数字是0、5,反之,个位上的数字是0、5的数都能被5整除

3.能被3整除的数(即3的倍数)各个位数上的数字之和是3的倍数,反之,各个位数上的数字之和是3的倍数的数都能被3整除

4.能被2、5同时整除的数的个位数字都是0,个位数字为0的数也能被10整除,能被10整除的数一定能被2或5其中的一个或两个同时整除。

五.奇数、偶数

1.奇数与偶数的定义:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数。(按照能否被2整除来划分奇数与偶数)

2.奇数个位数上的数的特点:1、3、5、7、9

偶数个位数上的数的特点:0、2、4、6、8

3.在连续的正整数中(除1外),与奇数相邻的两个数是偶数,与偶数相邻的两个数是奇数

4.相邻的奇数或偶数数字相差2,奇数可用2n-1或2n+1表示,偶数可用2n表示。

5.奇数与偶数加法和乘法的运算特点

奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数

奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数

利用此结论可检验一些运算是否正确,同时也要注意结论的逆向运用,如偶数(奇数)可拆成哪些奇数或偶数的和、积

六.素数、合数

1.素数与合数定义:一个正整数如果只有1和它本身两个因数,这样的数叫做素数(质数),

如果除了1和它本身以外还有别的因数,这样的数叫做合数。

注意点:1.素数与合数的分类方法是根据它们因数的个数来分的,素数只有2个因数(1和本身),合数至少有三个因数;任何一个数(除1外)都有1和它本身两个因数。

2. 1既不是素数也不是合数。

3.最小的素数是2,最小的合数是4

2.素数与奇数的联系和区别

奇数不一定都是素数。√(1既不是素数也不是合数,9、15等是奇数但是合数)

所有素数都是奇数。×(2是素数,但2是偶数)

3.合数与偶数的联系与区别

合数不一定都是偶数。√(9、15等都是合数,但它们是奇数)

偶数都是合数。×(2是偶数但2是素数)

注意:判断题对的要说明原因,错的要举出反例。

七.素因数与分解素因数

1.素因数与分解素因数的定义:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数。把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

注意:1.求一个数的素因数时,先把这个数分解素因数,有几个素因数就写几个。

如24=2×2×2×3,则素因数是2、2、2、3,而不是2、3

2.因数与素因数的区别:因数可以是素数或合数,素因数一定是素数。一个数的素因

数一定是这个数的因数,因数的个数一定比素因数的个数多。

2.分解素因数的方法

树枝分解法:过程中注意不要漏写乘号,分解要彻底,直到没有合数出现,也不能出现1.

要分解的合数写在等号左边,把它的素因数用相乘的形式写在等号右边,再把

这几个素因数按从小到大的顺序排列。

短除法:1.先用一个能整除这个合数的素数去除(通常从最小的开始,偶数肯定先用2除,奇数一般从3开始一个个带入验算)

2.得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止。

3.然后把各个除数和最后的商按从小到大的顺序写成连乘的形式。

3.由一个数分解素因数求这个数的因数

12=2×2×3,素因数是2、2、3,除1外由单个的素因数组成因数有2、3,由两个素因数组成的因数有2×2=4,2×3=6,由三个素因数组成的因数有2×2×3=12,所以12的因数有1、2、3、4、6、12.

4. 由一个数分解素因数求这个数因数的个数

(1)所有素因数都相同时,因数的个数是它素因数的个数+1,如8=2×2×2,素因数是2、2、2,则8的因数的个数是它素因数的个数+1,即4个

(2)素因数不完全相同时,因数的个数是每个素因数个数+1后相乘的积,如12=2×2×3,素因数2的个数是2,素因数3的个数是1,则12的因数的个数是(2+1)×(1+1)=6

八.公因数与最大公因数

1.公因数与最大公因数定义:几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.

2.互素定义:如果两个整数只有公因数1,那么称这两个数互素。如8和9

注意:互素是两个数之间,素数是指一个数,互素的两个数的最大公因数就是1.

两个互素的数未必都是素数。√(8和9互素,但8和9都是合数)

两个不同的素数一定互素. √(若缺少“不同的”,则错,因为3和3都是素数但不互素)3. 求两个数最大公因数的方法:

(1) 一般方法:写出两个数所有的因数,再找出它们共同的最大的因数

(2) 分解素因数的方法:把这两个数分解素因数,再找出相同的素因数,把它们所有的公有的素因数相乘,所得的积就是它们的最大公因数。

相关文档
最新文档