江苏省南通中学2020-2021学年高二上学期期中考试数学试卷

合集下载

江苏省南通中学2020-2021学年高二第一学期期中考试数学试卷 PDF版含答案

江苏省南通中学2020-2021学年高二第一学期期中考试数学试卷 PDF版含答案

江苏省南通中学2020-2021学年度第一学期期中考试高二数学一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个等比数列的首项为2,公比为3,则该数列的第3项为().8A .16B .18C .27D 【答案】C2.设,a R ∈.则“1a >”是“2a a >”的().A 充分不必要条件.B 必要不充分条件.C 充要条件.D 既不充分也不必要条件【答案】A3.不等式1021x x +≤-的解集为()1.1,2A ⎡⎫-⎪⎢⎣⎭1.1,2B ⎡⎤-⎢⎥⎣⎦(]1.,1,2C ⎛⎫-∞-+∞ ⎪⎝⎭()1.,1,2D ⎡⎫-∞-+∞⎪⎢⎣⎭【答案】A4.已知椭圆的准线方程为4,x =±离心率为12,则椭圆的标准方程为()22.12x A y +=22.12y B x +=22.143x y C +=22.134x y D +=【答案】C5.数列{}n a 中,112,21n n a a a +==-,则10a 的值为().511A .513B .1025C .1024D 【答案】B6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为()5.3A 10.3B 5.6C 11.6D 【答案】A7.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 和2F ,P 为椭圆C 上的动点,若a =,满足1290F PF ∠= 的点P 有()个.2A 个.4B 个.0C 个.1D 个【答案】A8.已知实数0,0a b >>且9a b ab +=,若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围为()[).3,A +∞(].,3B -∞(].,6C -∞[).6,D +∞【答案】A二.多项选择题(本大题共4小题,每小题5分,共计20分,在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案填涂在答题卡相应位置上)9.若实数0a >,0b >,1a b = ,若下列选项的不等式中,正确的是().A 2a b +≥.B 2≥.C 222a b +≥.D 112a b+≤【答案】ABC10.对任意实数a ,b ,c ,给出下列结论,其中正确的是().A “a b =”是“ac bc =”的充要条件.B “a b >”是“22a b >”的充分条件.C “5a <”是“3a <”的必要条件.D “5a +是无理数”是“a 是无理数”的充要条件【答案】CD11.设椭圆.22193x y +=.的右焦点为F ,直线(0y m m =<<与椭圆交于A ,B 两点,则下述结论正确的是().A AF BF +为定值.B ABF ∆的周长的取值范围是[]6,12.C 当m =ABF ∆为直角三角形.D 当1m =时,ABF ∆【答案】AD12.已知数列{}n a ,{}n b 均为递增数列,{}n a 的前n 项和为n S ,{}n b 的前n 项和为n T ,且满足12n n a a n ++=,()12n n n b b n N *+=∈ ,则下列结论正确的是().A101a <<.B 11b <<.C 22n nS T <.D 22n nS T ≥【答案】ABC三、填空题:本题共4小题,每小题5分,共20分。

江苏省2020—2021学年高二数学上学期期中考试卷题库(共9套)

江苏省2020—2021学年高二数学上学期期中考试卷题库(共9套)

江苏省2020—2021学年高二数学上学期期中考试卷(一)(考试时间120分钟满分160分)一.填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.数列{n+2n}中的第4项是.2.抛物线x2=4y的准线方程为.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.4.已知等差数列{a n},其中a1=,a2+a5=4,a n=33,则n的值为.5.若x,y满足,则目标函数z=x+2y的最大值为.6.设等比数列{a n}的前n项和为S n,若27a3﹣a6=0,则=.7.若正数x,y满足x+3y=5xy,则3x+4y的最小值是.8.已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.9.已知数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,求S5.10.已知椭圆:的焦距为4,则m为.11.若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是.12.椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.13.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=.14.若实数a,b满足a=+2,则a的最大值是.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,﹣6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.16.已知数列{a n}的通项公式是a n=n2+kn+4(1)若k=﹣5,则数列中有多少项是负数?n为何值时,a n有最小值.并求出最小值,(2)对于n∈N*,都有a n+1>a n,求实数k的取值范围.17.某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3﹣,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?18.(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.19.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的焦距为2.(1)若椭圆C经过点(,1),求椭圆C的标准方程;(2)设A(﹣2,0),F为椭圆C的左焦点,若椭圆C上存在点P,满足=,求椭圆C的离心率的取值范围.20.已知递增数列{a n}的前n项和为S n,且满足a1=1,4S n﹣4n+1=a n2.设b n=,n∈N*,且数列{b n}的前n项和为T n.(1)求证:数列{a n}为等差数列;(2)试求所有的正整数m,使得为整数;(3)若对任意的n∈N*,不等式λT n<n+18(﹣1)n+1恒成立,求实数λ的取值范围.二.高二数学试题21.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有辆.22.若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为.23.已知命题甲是“{x|≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)24.下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;②若命题P:∃x∈R,x2+x+1<0,则﹁p:∀x∈R,x2+x+1≥0;③若命题“﹁p”与命题“p或q”都是真命题,则命题q一定是真命题;④命题“若0<a<1则log a(a+1)<”是真命题.其中正确命题的序号是.(把所有正确命题序号都填上)25.设命题p:函数y=kx+1在R上是增函数,命题q:∃x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命题,p∨q是真命题,求k的取值范围.26.将扑克牌4种花色的A,K,Q共12张洗匀.(1)甲从中任意抽取2张,求抽出的2张都为A的概率;(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.参考答案一.填空题1.解:根据题意,数列{n+2n}的通项a n=n+2n,则其第4项a4=4+24=20;故答案为:20.2.解:∵抛物线方程为x2=4y,∴其准线方程为:y=﹣1.故答案为:y=﹣1.3.解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,故答案为:(0,2).4.解:在等差数列{a n},由a1=,a2+a5=4,得2a1+5d=4,即,.∴,由a n=33,得,解得:n=50.故答案为:50.5.解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.6.解:设等比数列{a n}的首项为a1,公比为q,由27a3﹣a6=0,得27a3﹣a3q3=0,即q=3,∴=.故答案为:28.7.解:∵x+3y=5xy,x>0,y>0∴∴3x+4y=(3x+4y)()=×3=5当且仅当即x=2y=1时取等号故答案为:58.解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.9.解:数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1=a1•a4,可得a4=2.再由a4与2a7的等差中项为,可得a4 +2a7 =,故有a7 =.∴q3==,∴q=,∴a1=16.∴s5==31.10.解:由题意,焦点在x轴上,10﹣m﹣m+2=4,所以m=4;焦点在y轴上,m﹣2﹣10+m=4,所以m=8,综上,m=4或8.故答案为:m=4或8.11.解:在等差数列中,a1+a2=x+y;在等比数列中,xy=b1•b2.∴===++2.当x•y>0时, +≥2,故≥4;当x•y<0时, +≤﹣2,故≤0.答案:[4,+∞)或(﹣∞,0]12.解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.13.解:根据题意,分析相邻两个图形的点数之间的关系:a2﹣a1=4,a3﹣a2=5,…由此我们可以推断:a n﹣a n﹣1=n+2(n≥2),又由a1=5,所以a100=a1+(a2﹣a1)+(a3﹣a2)+…+(a100﹣a99)=5+4+5+…+102=5+=5252;即a100=5252;故答案为:5252.14.解:设=x,=y,且x≥0,y≥0;∴b=x2,4a﹣b=y2,即a==;∴a=+2可化为=y+2x,即(x﹣4)2+(y﹣2)2=20,其中x≥0,y≥0;又(x﹣4)2+(y﹣2)2=20表示以(4,2)为圆心,以2为半径的圆的一部分;∴a==表示圆上点到原点距离平方的,如图所示;∴a的最大值是×(2r)2=r2=20故答案为:20.二.解答题15.解:(1)设椭圆的标准方程为=1,或,a>b>0,∵长轴长是短轴长的2倍,∴a=2b,①∵椭圆过点(2,﹣6),∴=1,或=1,②由①②,得a2=148,b2=37或a2=52,b2=13,故所求的方程为或.(2)设椭圆的标准方程为=1,a>b>0,∵在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6,如图所示,∴△A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且OF=c,A1A2=2b,∴c=b=3.∴a2=b2+c2=18.故所求椭圆的方程为.16.解:(1)若k=﹣5,则a n=n2﹣5n+4=(n﹣1)(n﹣4),令a n<0,则1<n<4,∴数列中第2、3项共2项为负数,∵f(x)=x2﹣5x+4是开口向上,对称轴x=的抛物线,∴当n=2或3时,a n有最小值22﹣5×2+4=﹣2;(2)依题意,a n+1>a n,即(n+1)2+k(n+1)+4>n2+kn+4,整理得:k>﹣2n﹣1,又∵对于n∈N*,都有a n+1>a n,∴k大于﹣2n﹣1的最大值,∴k>﹣2﹣1=﹣3.17.解:(1)由题意知,每件产品的销售价格为1.5×(万元),∴利润函数y=m[1.5×]﹣(8+16m+x)=4+8m﹣x=﹣[+(x+1)]+29(x≥0).(2)因为利润函数y=﹣[+(x+1)]+29(x≥0),所以,当x≥0时, +(x+1)≥8,∴y≤﹣8+29=21,当且仅当=x+1,即x=3(万元)时,y max=21(万元).所以,该厂家2016年的促销费用投入3万元时,厂家的利润最大,最大为21万元.18.解:(1)(a2+a﹣1)x>a2(1+x)+a﹣2,(a2+a﹣1)x﹣a2x>a2+a﹣2,(a﹣1)x>a2+a﹣2,(a﹣1)x>(a﹣1)(a+2),当a>1时,解集为{x|x>a+2};当a=1时,解集为∅;当a<1时,解集为{x|x<a+2};(2)解法一:由题意,或,分别化为:或,解得:a>3或﹣2<a<1,则实数a的取值范围为(﹣2,1)∪(3,+∞);解法二:将x=a2﹣4代入原不等式,并整理得:(a+2)(a﹣1)(a﹣3)>0,根据题意画出图形,如图所示:根据图形得:实数a的取值范围为(﹣2,1)∪(3,+∞).19.解:(1)由题意可得c=1,即a2﹣b2=1,又代入点(,1),可得+=1,解方程可得a=,b=,即有椭圆的方程为+=1;(2)由题意方程可得F(﹣1,0),设P(x,y),由PA=PF,可得=•,化简可得x2+y2=2,由c=1,即a2﹣b2=1,由椭圆+=1和圆x2+y2=2有交点,可得b2≤2≤a2,又b=,可得≤a≤,即有离心率e=∈[,].20.(1)证明:由,得,…所以,即,即(n≥2),所以a n﹣2=a n﹣1(n≥2)或a n﹣2=﹣a n﹣1(n≥2),即a n﹣a n﹣1=2(n≥2)或a n+a n﹣1=2(n≥2),…若a n+a n﹣1=2(n≥2),则有a2+a1=2,又a1=1,所以a2=1,则a1=a2,这与数列{a n}递增矛盾,所以a n﹣a n﹣1=2(n≥2),故数列{a n}为等差数列.…(2)解:由(1)知a n=2n﹣1,所以==,…因为,所以,又2m﹣1≥1且2m﹣1为奇数,所以2m﹣1=1或2m﹣1=3,故m的值为1或2.…(3)解:由(1)知a n=2n﹣1,则,所以T n=b1+b2+…+b n==,…从而对任意n∈N*恒成立等价于:当n为奇数时,恒成立,记,则≥49,当n=3时取等号,所以λ<49,当n为偶数时,恒成立.记,因为递增,所以g(n)min=g(2)=﹣40,所以λ<﹣40.综上,实数λ的取值范围为λ<﹣40.…二.高二数学试题21.解:由频率分布直方图得:时速在区间[40,60)内的汽车的频率为(0.01+0.03)×10=0.4.∴时速在区间[40,60)内的汽车有0.4×200=80(辆).故答案为:80.22.解:随机安排甲乙丙三人在3天节日中值班,每人值班1天,∵甲与丙都不在第一天值班,∴乙在第一天值班,∵第一天值班一共有3种不同安排,∴甲与丙都不在第一天值班的概率p=.故答案为:.23.解:命题甲:≥0,化为x(x﹣1)(x+1)≥0,且x≠1,解得:﹣1≤x≤0,或x>1.命题乙:log3(2x+1)≤0,化为0<2x+1≤1,解得:0.则甲是乙的必要不充分条件.故答案为:必要不充分.24.解:对于①,由于否命题是对命题的条件、结论同时否定,①只否定了结论,条件没否定,故①错;对于②,由于含量词的命题有否定公式是:量词交换,结论否定,故②对;对于③,因为”¬p“为真,故p假;因为“p或q”为真,所以p,q有真,所以q一定为真,故③对;对于④,因为0<a<1,y=log a x是减函数,∵∴,故④错.故答案为:②③25.解:∵y=kx+1在R递增,∴k>0,由∃x∈R,x2+(2k﹣3)x+1=0,得方程x2+(2k﹣3)x+1=0有根,∴△=(2k﹣3)2﹣4≥0,解得:k≤或k≥,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q假,则,∴<k<;②若p假q真,则,∴k≤0;综上k的范围是(﹣∞,0]∪(,).26.解:(1)将扑克牌4种花色的A,K,Q共12张洗匀.甲从中任意抽取2张,基本事件总数n==66,抽出的2张都为A包含的基本事件个数m=,∴抽出的2张都为A的概率p==.(2)甲已抽到了2张K后未放回,余下10张中抽出2张的方法有=45,抽出的两长都是A的方法有,∴乙抽到2张A的概率p==.江苏省高二数学上学期期中考试卷(二)(考试时间120分钟满分160分)一、填空题:本大题共14小题,每小题5分,共计70分.1.设集合M={﹣1,0,1},N={x|x2=x},则M∩N=.2.函数f(x)=+的定义域为.3.已知等差数列{a n}的公差为d,若a1,a3,a5,a7,a9的方差为8,则d的值为.4.现有4名学生A,B,C,D平均分乘两辆车,则“A乘坐在第一辆车”的概率为.5.如图是一个算法的流程图,则输出k的值是.6.函数f(x)=2x在点A(1,2)处切线的斜率为.7.为了得到函数y=cos3x的图象,可以将函数y=sin3x+cos3x的图象向左平移个单位.8.在平面直角坐标系xOy中,若直线ax+y﹣2=0与圆心为C的圆(x ﹣1)2+(y﹣a)2=相交于A,B两点,且△ABC为正三角形,则实数a的值是.9.已知圆柱M的底面半径为2,高为,圆锥N的底面直径和母线长相等,若圆柱M 和圆锥N的体积相同,则圆锥N的底面半径为.10.已知函数f(x)是R上的奇函数,且对任意实数x满足f(x)+f (x+)=0,若f(1)>1,f(2)=a,则实数a的取值范围是.11.向量,的夹角为60°,且•=3,点D是线段BC的中点,则||的最小值为.12.定义在R上的函数f(x)的导函数为f'(x),且满足f(3)=1,f(﹣2)=3,当x≠0时有x•f'(x)>0恒成立,若非负实数a、b满足f(2a+b)≤1,f(﹣a﹣2b)≤3,则的取值范围为.13.在各项均为正数的等比数列{a n}中,若2a4+a3﹣2a2﹣a1=8,则2a5+a4的最小值为.14.已知函数f(x)=的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象上,则实数k的取值范围是.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.15.已知函数f(x)=•﹣,=(sinx,cosx),=(cosx,﹣cosx).(1)求函数y=f(x)在x∈[0,]时的值域;(2)在△ABC中,角A、B、C所对的边分别为a、b、c,且满足c=2,a=3,f(B)=0,求边b的值.16.如图,在直三棱柱ABC﹣A1B1C1中,点M、N分别为线段A1B、AC1的中点.(1)求证:MN∥平面BB1C1C;(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.17.如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2.设∠AOC=xrad.(1)写出S关于x的函数关系式S(x),并指出x的取值范围;(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.18.在平面直角坐标系xOy中,记二次函数f(x)=x2+2x﹣1(x∈R)与两坐标轴有三个交点,其中与x轴的交点为A,B.经过三个交点的圆记为C.(1)求圆C的方程;(2)设P为圆C上一点,若直线PA,PB分别交直线x=2于点M,N,则以MN为直径的圆是否经过线段AB上一定点?请证明你的结论.19.已知函数f(x)=x2﹣x+ce﹣2x(c∈R).(1)若f(x)是在定义域内的增函数,求c的取值范围;(2)若函数F(x)=f(x)+f'(x)﹣(其中f'(x)为f(x)的导函数)存在三个零点,求c的取值范围.20.设各项均为正数的数列{a n}满足=pn+r(p,r为常数),其中S n为数列{a n}的前n项和.(1)若p=1,r=0,求证:{a n}是等差数列;(2)若p=,a1=2,求数列{a n}的通项公式;(3)若a2016=2016a1,求p•r的值.参考答案一、填空题:1.答案为:{0,1}2.答案为:(2,3).3.答案是:±1.4.答案为:.5.答案为:5.6.答案为:2ln2.7.答案为:.8.答案为:0.9.答案为:2.10.答案为a<﹣1.11.答案为:.12.答案为:13.答案为:12.14.答案为(,1).二、解答题15.解:(1)∵=(sinx,cosx),=(cosx,﹣cosx),∴f(x)=•﹣=sinxcosx﹣cos2x﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,…4分∵x∈[0,],∴2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,1],∴函数f(x)在[0,]的值域为[﹣,0];…8分(2)因为f(B)=0,即sin(2B﹣)=1,∵B∈(0,π),∴2B﹣∈(﹣,),∴2B﹣=,解得B=;…10分又有c=2,a=3,在△ABC中,由余弦定理得:b2=c2+a2﹣2accos=4+9﹣2×2×3×=7,即b=.…14分.16.证明:(1)如图,连接A1C,在直三棱柱ABC﹣A1B1C1中,侧面AA1C1C为平行四边形,又∵N分别为线段AC1的中点.∴AC1与A1C相交于点N,即A1C经过点N,且N为线段A1C的中点, (2)分∵M为线段A1B的中点,∴MN∥BC,…4分又∵NN⊄平面BB1C1C,BC⊂平面BB1C1C,∴MN∥平面BB1C1C…6分(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,又AD⊂平面ABC1,所以CC1⊥AD,…8分∵AD⊥DC1,DC1⊂平面BB1C1C,CC1⊂平面BB1C1C,CC1∩DC1=C1,∴AD⊥平面BB1C1C,…10分又∵BC⊂平面BB1C1C,∴AD⊥BC,…12分又由(1)知,MN∥BC,∴MN⊥AD…14分17.解:(1)由题意,S=+=800x+1600sinx(0≤x≤π);(2)S′=800+1600cosx,∴0≤x≤,S′>0,x>,S′<0,∴x=,S取得最大值+800m2.18.解:(1)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0得x2+Dx+F=0,则与x2+2x﹣1=0 是同一个方程,所以D=2,F=﹣1,由f(x)=x2+2x﹣1得,f(0)=﹣1,令x=0 得y2+Ey+F=0,则此方程有一个根为﹣1,代入解得E=0,所以圆C 的方程为x2+y2+2x﹣1=0;…6分(2)由f(x)=x2+2x﹣1=0得,x=或x=,不妨设A(,0),B(,0),设直线PA的方程:y=k(x++1),因以MN为直径的圆经过线段AB上点,所以直线PB的方程:,设M(2,k(3+)),N(2,),所以MN为直径的圆方程为,化简得,,由P点任意性得:,解得x=,因为,所以x=,即过线段AB上一定点(,0)…16分.19.解:(1)因为f(x)=x2﹣x+ce﹣2x(c∈R),所以函数f(x)的定义域为R,且f'(x)=2x﹣1﹣2ce﹣2x,由f'(x)≥0得2x﹣1﹣2c•e﹣2x≥0,即对于一切实数都成立…再令,则g'(x)=2xe2x,令g'(x)=0得x=0,而当x<0时,g'(x)<0,当x>0时,g'(x)>0,所以当x=0时,g(x)取得极小值也是最小值,即.所以c的取值范围是…(2)由(1)知f'(x)=2x﹣1﹣2c•e﹣2x,所以由F(x)=0得,整理得…令,则h'(x)=2(x2+2x﹣3)e2x=2(x+3)(x﹣1)e2x,令h'(x)=0,解得x=﹣3或x=1,列表得:x(﹣∞,﹣3)﹣3(﹣3,1)1(1,+∞)h'(x)+0﹣0+h(x)增极大值减极小值增由表可知当x=﹣3时,h(x)取得极大值;…当x=1时,h(x)取得极小值.又当x<﹣3时,,所以此时h(x)>0,故结合图象得c的取值范围是…20.(1)证明:由p=1,r=0,得S n=na n,∴S n﹣1=(n﹣1)a n﹣1(n≥2),两式相减,得a n﹣a n﹣1=0(n≥2),∴{a n}是等差数列.(2)解:令n=1,得p+r=1,∴r=1﹣p=,则S n=a n,a n﹣1,两式相减,=,∴a n=•…=•…•2=n(n+1),化简得a n=n2+n(n≥2),又a1=2适合a n=n2+n(n≥2),∴a n=n2+n.(3)解:由(2)知r=1﹣p,∴S n=(pn+1﹣p)a n,得S n﹣1=(pn+1﹣2p)a n﹣1(n≥2),两式相减,得p(n﹣1)a n=(pn+1﹣2p)a n﹣1(n≥2),易知p≠0,∴=.①当p=时,得=,∴===…==,满足a2016=2016a1,pr=.②当p时,由p(n﹣1)a n=(pn+1﹣2p)a n﹣1(n≥2),又a n>0,∴p(n﹣1)a n<pna n﹣1(n≥2),即,不满足a2016=2016a1,舍去.③当且p≠0时,类似可以证明a2015=2015a1也不成立;综上所述,p=r=,∴pr=.江苏省高二数学上学期期中考试卷(三)(考试时间120分钟满分160分)一、填空题:(本大题共10小题,每小题5分,共50分.)1.命题:“∃x<﹣1,x2≥1”的否定是.2.已知函数f(x)=x2+e x,则f'(1)=.3.“a,b都是偶数”是“a+b是偶数”的条件.(从“充分必要”,“充分不必要”,“必要不分”,“既不充分也不必要”中选择适当的填写)4.如图,直线l是曲线y=f(x)在x=4处的切线,则f(4)+f′(4)的值为5.抛物线x2+y=0的焦点坐标为.6.椭圆5x2+ky2=5的一个焦点是(0,2),那么k=.7.已知曲线y=x+sinx,则此曲线在x=处的切线方程为.8.双曲线x2﹣=1的离心率是,渐近线方程是.9.已知椭圆上一点P到左焦点的距离为,则它到右准线的距离为.10.已知函数f(x)=x2﹣8lnx,若对∀x1,x2∈(a,a+1)均满足,则a的取值范围为.二、解答题(本大题共11小题,共110分,解答时应写出文字说明、证明过程或演算步骤)11.求函数y=cos(2x﹣1)+的导数.12.已知方程=1表示椭圆,求k的取值范围.13.已知双曲线的对称轴为坐标轴,焦点到渐近线的距离为,并且以椭圆的焦点为顶点.求该双曲线的标准方程.14.已知p:﹣2≤≤2,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.15.倾斜角的直线l过抛物线y2=4x焦点,且与抛物线相交于A、B 两点.(1)求直线l的方程.(2)求线段AB长.16.已知a∈R,命题p:“∀x∈[1,2],x2﹣a≥0”,命题q:“∃x∈R,x2+2ax+2﹣a=0”若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.17.已知函数f(x)=x3﹣3x,(1)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程;(2)若关于x的方程f(x)﹣m=0有三个不同的实数根,求m的取值范围.18.已知椭圆C: +=1(a>b>0)过点P(﹣1,﹣1),c为椭圆的半焦距,且c=b,过点P作两条互相垂直的直线l1,l2与椭圆C 分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线l1的斜率为﹣1,求△PMN的面积.19.用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?20.若椭圆ax2+by2=1与直线x+y=1交于A,B两点,M为AB的中点,直线OM(O为原点)的斜率为2,又OA⊥OB,求a,b的值.21.已知函数,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.参考答案一、填空题:1.答案为:∀x<﹣1,x2<1.2.答案为:2+e.3.答案为:充分不必要.4.答案为:5.55.答案为:(0,﹣).6.答案为:1.7.答案为:6x﹣6y+3﹣π=0.8.答案为:2,y=.9.答案为:3.10.答案为:0≤a≤1.二、解答题11.解:函数的导数y′=﹣2sin(2x﹣1)﹣2•=﹣2sin(2x﹣1)﹣.12.解:根据题意,若方程=1表示椭圆,必有,解可得2<k<4且k≠3,即k的取值范围是(2,3)∪(3,4);故k的取值范围是(2,3)∪(3,4).13.解:椭圆的焦点坐标为(±2,0),为双曲线的顶点,双曲线的焦点到渐近线的距离为,∴=b=,∴a==,∴该双曲线的标准方程为=1.14.解:由:﹣2≤≤2得﹣6≤x﹣4≤6,即﹣2≤x≤10,由x2﹣2x+1﹣m2≤0(m>0),得[x﹣(1﹣m)][x﹣(1+m)]≤0,即1﹣m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,即q是p的必要不充分条件,即,即,解得m≥9.15.解:(1)根据抛物线y2=4x方程得:焦点坐标F(1,0),直线AB的斜率为k=tan45°=1,由直线方程的点斜式方程,设AB:y=x﹣1,(2)将直线方程代入到抛物线方程中,得:(x﹣1)2=4x,整理得:x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由一元二次方程根与系数的关系得:x1+x2=6,x1•x2=1,所以弦长|AB|=|x1﹣x2|=•=8.16.解:∵命题p:“∀x∈[1,2],x2﹣a≥0”,令f(x)=x2﹣a,根据题意,只要x∈[1,2]时,f(x)min≥0即可,也就是1﹣a≥0,解得a≤1,∴实数a的取值范围是(﹣∞,1];命题q为真命题时,△=4a2﹣4(2﹣a)≥0,解得a≤﹣2或a≥1.∵命题“p∨q”为真命题,命题“p∧q”为假命题,∴命题p与命题q必然一真一假,当命题p为真,命题q为假时,,∴﹣2<a<1,当命题p为假,命题q为真时,,∴a>1,综上:a>1或﹣2<a<1.17.解:(1)∵f′(x)=3x2﹣3,设切点坐标为(t,t3﹣3t),则切线方程为y﹣(t3﹣3t)=3(t2﹣1)(x﹣t),∵切线过点P(2,﹣6),∴﹣6﹣(t3﹣3t)=3(t2﹣1)(2﹣t),化简得t3﹣3t2=0,∴t=0或t=3.∴切线的方程:3x+y=0或24x﹣y﹣54=0.(2)由f'(x)=3x2﹣3=3(x+1)(x﹣1)=0,得x=1或x=﹣1.当x<﹣1或x>1时,f'(x)>0;当﹣1<x<1时,f'(x)<0,所以在(﹣∞,﹣1]和[1,+∞)上f(x)单调递增,在[﹣1,1]上f(x)单调递减,在R上f(x)的极大值为f(﹣1)=2,在R上f(x)的极小值为f(1)=﹣2.函数方程f(x)=m在R上有三个不同的实数根,即直线y=m与函数f(x)=﹣3x+x3的图象有三个交点,由f(x)的大致图象可知,当m<﹣2或m>2时,直线y=m与函数f(x)=﹣3x+x3的图象没有交点;当m=﹣2或m=2时,y=m与函数f(x)=﹣3x+x3的图象有两个交点;当﹣2<m<2时,直线y=m与函数f(x)=﹣3x+x3的图象有三个交点.因此实数m的取值范围是﹣2<m<2.18.解:(1)∵椭圆C: +=1(a>b>0)过点P(﹣1,﹣1),c为椭圆的半焦距,且c=b,过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N,∴,解得b2=,a2=4.∴椭圆方程为:=1.(2)设l1方程为y+1=k(x+1),联立,消去y得(1+3k2)x2+6k(k﹣1)x+3(k﹣1)2﹣4=0.∵P(﹣1,1),解得M(,).当k≠0时,用﹣代替k,得N(,),将k=1代入,得M(﹣2,0),N(1,1),∵P(﹣1,﹣1),∴PM=,PN=2,∴△PMN的面积为=2.19.解:根据题意可设容器的高为x,容器的体积为V,则有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)求导可得到:V′=12x2﹣552x+4320由V′=12x2﹣552x+4320=0得x1=10,x2=36.所以当x<10时,V′>0,当10<x<36时,V′<0,当x>36时,V′>0,所以,当x=10,V有极大值V(10)=19600,又V(0)=0,V(24)=0,所以当x=10,V有最大值V(10)=19600故答案为当高为10,最大容积为19600.20.解:设A(x1,y1),B(x2,y2),M(,).联立,得(a+b)x2﹣2bx+b﹣1=0.∴=,=1﹣=.∴M(,).∵k OM=2,∴a=2b.①∵OA⊥OB,∴=﹣1.∴x1x2+y1y2=0.∵x1x2=,y1y2=(1﹣x1)(1﹣x2),∴y1y2=1﹣(x1+x2)+x1x2=1﹣+=.∴=0.∴a+b=2.②由①②得a=,b=.21.解:(1)∵,g(x)=x+lnx,∴,其定义域为(0,+∞),∴.∵x=1是函数h(x)的极值点,∴h′(1)=0,即3﹣a2=0.∵a>0,∴.经检验当时,x=1是函数h(x)的极值点,∴;(2)对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e]都有[f(x)]min≥[g(x)]max.当x∈[1,e]时,.∴函数g(x)=x+lnx在[1,e]上是增函数.∴[g(x)]max=g(e)=e+1.∵,且x∈[1,e],a>0.①当0<a<1且x∈[1,e]时,,∴函数在[1,e]上是增函数,∴.由1+a2≥e+1,得a≥,又0<a<1,∴a不合题意;②当1≤a≤e时,若1≤x<a,则,若a<x≤e,则.∴函数在[1,a)上是减函数,在(a,e]上是增函数.∴[f(x)]min=f(a)=2a.由2a≥e+1,得a≥,又1≤a≤e,∴≤a≤e;③当a>e且x∈[1,e]时,,∴函数在[1,e]上是减函数.∴.由≥e+1,得a≥,又a>e,∴a>e;综上所述:a的取值范围为.江苏省高二数学上学期期中考试卷(四)(文科)(考试时间120分钟满分160分)一、填空题:(本大题共14小题,每小题5分,共70分)1.设命题P:∃x∈R,x2>1,则¬P为.2.函数y=x2+x在区间[1,2]上的平均变化率为.3.函数y=xe x的极小值为.4.已知抛物线y2=4x上一点M到焦点的距离为3,则点M到y轴的距离为.5.已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.6.设p:x<3,q:﹣1<x<3,则p是q成立的条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空).7.已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.8.若焦点在x轴上过点的椭圆焦距为2,则椭圆的标准方程为.9.若椭圆的离心率与等轴双曲线的离心率互为倒数,则m=.10.若函数y=ax+sinx在R上单调增,则a的最小值为.11.已知椭圆的右焦点为F.短轴的一个端点为M,直线l:3x﹣4y=0,若点M到直线l的距离不小于,则椭圆E的离心率的取值范围是.12.已知椭圆的左右焦点分别为F1,F2,C上一点P满足,则△PF1F2的内切圆面积为.13.如图平面直角坐标系xOy中,椭圆,A1,A2分别是椭圆的左、右两个顶点,圆A1的半径为2,过点A2作圆A1的切线,切点为P,在x轴的上方交椭圆于点Q.则=.14.若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定正确的有①,②,③,④f()>.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.已知a∈R,命题p:“∀x∈[1,2],x2﹣a≥0”,命题q:“∃x∈R,x2+2ax+2﹣a=0”.(Ⅰ)若命题p为真命题,求实数a的取值范围;(Ⅱ)若命题“p∧q”为假命题,求实数a的取值范围.16.设函数(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[1,e]上的最值.17.已知函数f(x)=x3+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a=0时,求曲线y=f(x)过点(1,f(1))处的切线方程.18.设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.19.已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(Ⅰ)求直线FM的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O 为原点)的斜率的取值范围.20.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,(Ⅰ)判断函数g(x)的奇偶性;(Ⅱ)证明函数g(x)在(0,+∞)上为减函数;(Ⅲ)求不等式f(x)>0的解集.参考答案一、填空题1.答案为:∀x∈R,x2≤1;2.答案为:4.3.答案为:.4.答案为:2.5.答案为:.6.答案为:必要不充分.7.答案为:x2﹣y2=1.8.答案为: +=1.9.答案为:1或2.10.答案为:1.11.答案为:(0,].12.答案为:4π.13.答案为:.14.答案为:①③.二、解答题15.解:(I)由命题p为真命题,a≤x2min,a≤1;(II)由命题“p∧q”为假命题,所以p为假命题或q为假命题,p为假命题时,由(I)a>1;q为假命题时△=4a2﹣4(2﹣a)<0,﹣2<a<1,综上:a∈(﹣2,1)∪(1,+∞).16.解:(I)定义域为(0,+∞)…得,令f'(x)=0,x=2x0<x<2x>2f'(x)﹣+所以f(x)的单调减区间为(0,2)单调增区间为(2,+∞)…(II)由(I),f(x)在[1,2]减,在[2,e]增,所以f(x)min=f(2)=2﹣4ln2…又f(1)=,…因为所以f(x)min=f(2)=2﹣4ln2,…17.解:(I)由函数f(x)=x3+lnx,f(1)=1,,f'(1)=4,所以在(1,f(1))处的切线方程为y﹣1=4(x﹣1),即4x﹣y﹣3=0;(II)函数f(x)=x3,f'(x)=3x2,设过(1,1)的直线与曲线相切于(m,n),则切线方程为y﹣1=3m2(x﹣1),所以,得或,所求切线方程为3x﹣y﹣2=0,3x﹣4y+1=0.18.解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.19.解:(Ⅰ)∵离心率为,∴==,∴2a2=3b2,∴a2=3c2,b2=2c2,设直线FM的斜率为k(k>0),则直线FM的方程为y=k(x+c),∵直线FM被圆x2+y2=截得的线段的长为c,∴圆心(0,0)到直线FM的距离d=,∴d2+=,即()2+=,解得k=,即直线FM的斜率为;(Ⅱ)由(I)得椭圆方程为: +=1,直线FM的方程为y=(x+c),联立两个方程,消去y,整理得3x2+2cx﹣5c2=0,解得x=﹣c,或x=c,∵点M在第一象限,∴M(c,c),∵|FM|=,∴=,解得c=1,∴a2=3c2=3,b2=2c2=2,即椭圆的方程为+=1;(Ⅲ)设动点P的坐标为(x,y),直线FP的斜率为t,∵F(﹣1,0),∴t=,即y=t(x+1)(x≠﹣1),联立方程组,消去y并整理,得2x2+3t2(x+1)2=6,又∵直线FP的斜率大于,∴>,6﹣2x2>6(x+1)2,整理得:x(2x+3)<0且x≠﹣1,解得﹣<x<﹣1,或﹣1<x<0,设直线OP的斜率为m,得m=,即y=mx(x≠0),联立方程组,消去y并整理,得m2=﹣.①当x∈(﹣,﹣1)时,有y=t(x+1)<0,因此m>0,∴m=,∴m∈(,);②当x∈(﹣1,0)时,有y=t(x+1)>0,因此m<0,∴m=﹣,∴m∈(﹣∞,﹣);综上所述,直线OP的斜率的取值范围是:(﹣∞,﹣)∪(,).20.解:(I)因为f(x)(x∈R)是奇函数,所以,所以g(x)是偶函数…(II)因为当x>0时xf'(x)﹣f(x)<0,所以,所以g(x)在(0,+∞)上为减函数…(III)由(I)f(﹣1)=0,g(﹣1)=g(1)=0,…x>0时f(x)>0等价于,即g(x)>g(1),由(II)所以0<x<1,…x<0时f(x)>0等价于,即g(x)>g(﹣1),由(I)(II)g(x)在(﹣∞,0)上为增函数,所以x<﹣1.…综上不等式f(x)>0的解集为(﹣∞,﹣1)∪(0,1)…江苏省2017—2018学年高二数学上学期期中考试卷(五)(考试时间120分钟满分160分)一、填空题:本大题共14小题,每小题5分,计70分.1.直线的倾斜角为.2.空间两条直线a,b都平行于平面α,那么直线a,b的位置关系是.3.过圆x2+y2=4上一点P(1,﹣)的切线方程为.4.如果方程x2+y2+x+y+k=0表示一个圆,则k的取值范围是.5.已知直线l:mx﹣y=4,若直线l与直线x+m(m﹣1)y=2垂直,则m的值为.6.已知正四棱柱的底面边长是3cm,侧面的对角线长是5cm,则这个正四棱柱的侧面积为.7.已知圆C:x2+y2=r2与直线3x﹣4y+10=0相切,则圆C的半径r=.8.若一个球的表面积为12π,则该球的半径为.9.若直线ax+y+1=0与连接A(2,3),B(﹣3,2)两点的线段AB相交,则实数a的取值范围是.10.设l,m是两条不同的直线,α,β是两个不同的平面,则下列命题为真命题的序号是(1)若m∥l,m∥α,则l∥α;(2)若m⊥α,l⊥m,则l∥α;(3)若α∥β,l⊥α,m∥β,则l⊥m;(4)若m⊂α,m∥β,l⊂β,l∥α,则α∥β11.若⊙O1:x2+y2=5与⊙O2:(x﹣m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是.12.若关于x的方程:有两个不相等的实数解,则实数k的取值范围:.13.已知三棱锥P﹣ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为,则三棱锥P﹣ABC的体积为.14.一只蚂蚁从棱长为1的正方体的表面上某一点P处出发,走遍正方体的每个面的中心的最短距离d=f(P),那么d的最大值是.二、解答题:本大题共6小题,共90分.请将解答填写在答题卡规定的区域内,否则答题无效.解答应写出文字说明、证明过程或演算步骤.15.如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.(1)求证:AB∥EF;(2)求证:平面BCF⊥平面CDEF.16.已知直线m:2x﹣y﹣3=0,n:x+y﹣3=0.(Ⅰ)求过两直线m,n交点且与直线x+3y﹣1=0平行的直线方程;(Ⅱ)直线l过两直线m,n交点且与x,y正半轴交于A、B两点,△ABO的面积为4,求直线l的方程.17.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长.18.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;(2)证明:平面D1AC⊥平面BB1C1C;(3)求点D到平面D1AC的距离.19.已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切.(1)求直线l1的方程;(2)设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.20.在平面直角坐标系xOy中.已知圆C经过A(0,2),O(0,0),D(t,0)(t>0)三点,M是线段AD上的动点,l1,l2是过点B(1,0)且互相垂直的两条直线,其中l1交y轴于点E,l2交圆C于P,Q两点.(1)若t=PQ=6,求直线l2的方程;(2)若t是使AM≤2BM恒成立的最小正整数,求△EPQ的面积的最小值.参考答案一、填空题1.解:将直线方程化为斜截式得,,故斜率为,∴,故答案为2.解:如图,在正方体ABCD﹣A1B1C1D1中,平面ACBD∥平面A1C1B1D1①记平面ABCD为α,若直线a、b为平面A1C1B1D1内的相交直线,则直线a、b都平行于平面α,此时直线a、b相交;②记平面ABCD为α,若直线a、b为平面A1C1B1D1内的平行直线,则直线a、b都平行于平面α,此时直线a、b平行;③设E、F分别为棱AA1、BB1的中点,直线a与直线B1C1重合,直线b与EF重合,若平面ABCD为α,则直线a、b都平行于平面α,此时直线a、b异面.故答案为:平行、相交或异面3.解:设切线的斜率为k,则切线方程可表示为y+=k(x﹣1)即kx﹣y﹣k﹣=0由圆与直线相切可得d=r,即=2化简得3k2﹣2k+1=0解得k=,。

江苏省南通市第二中学2020-2021学年高二第一学期期末数学试卷

江苏省南通市第二中学2020-2021学年高二第一学期期末数学试卷

高二数学期末试卷一.单项选择题:本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.等差数列{}n a 中,已知51a =,则456a a a ++=( ) A .1B .2C .3D .42. 若0<b <1,则“a ”是“a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3. 4. ()2,23,1a m =-,()4,2,32b n =--.若//a b .则实数mn 的值是( ) A. -2B.13C. 2D. 04. 设n S 是等比数列{}n a 的前n 项和,已知360S S +=,则189a a =( ) A. -512B. -8C. -2D. -15. 在平面直角坐标系xOy 中,设抛物线y 2=2px (p >0)上的点M 与焦点F 的距离为10,点M 到x 轴的距离为2p ,则p 的值为( )A .1B .2C .4D .86. 放射性元素由于不断有原子放射出微粒子而变成其它元素,其含量不断减少,这种现象称为衰变.假设、在放射性同位素铯137衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:30()6002tM t -=,则铯137含量M 在30t =时的瞬间变化率为( ) A .102ln ﹣(太贝克/年) B .3002ln (太贝克/年) C .3002ln ﹣(太贝克/年)D .300(太贝克/年)7. 已知双曲线()222210,0x y a b a b -=>>的焦点为1F ,2F ,其渐近线上横坐标为12的点P 满足120PF PF ⋅=,则a =( )A.14B.12C. 2D. 48. 双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=()21x <的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )A .90,77⎛± ⎝⎭B .135,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,±二.多项选择题:本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9. 若函数()12ln f x a x x x ⎛⎫=-- ⎪⎝⎭在[)1,+∞上为单调递增函数,则a 的可能取值为( ) A. 2B. 1C. 0D. 1-10.设正实数m 、n 满足2m n +=,则下列说法正确的是( )A .2n m n+的最小值为3 B .mn 的最大值为1C 的最小值为2D .22m n +的最小值为211.在平面直角坐标系xOy 中,若双曲线2214y x -=与直线y kx m =+(k ≠±2,m ∈R)有唯一的公共点,则动点P(k ,m )与定点Q(0,2)的距离可能为A .2BC .3D .412.已知等比数列{}n a 满足11a =,其前n 项和1n n S pa r +=+(n N *∈,p >0). A .数列{}n a 的公比为p B .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13n n a -= 三.填空题:本大题共4小题,每小题5分,题16第一问2分,第二问3分,共计20分.13.已知椭圆x 2100+y 236=1上有一点P ,它到左、右焦点距离之比为1∶3,则点P 到左准线的距离为________.14.已知四棱柱111ABCD A BC D -的底面ABCD 是矩形,5AB =,3AD =,14AA =,1160BAA DAA ∠=∠=︒,则1AC =________.15.已知函数,若直线过点,且与曲线相切,则直线的斜()ln f x x x =l ()0,e -()y f x =l率为______.16.在数列{}n a 中,11a =,点*1(,)()n n a a n N +∈在直线1y x =+上,数列{}n b 满足:2120n n n b b b ++-+=,35b =,数列{}n b 前9项和为63,令n nn n nb ac a b =+,记{}n c 的前n 项和为n T , 若2n T n k -<恒成立,则k 的最小值是_________四.解答题:本大题共6小题,共70分,解答时应写成文字说明、证明过程或演算步骤. 17.(本小题10分) 若关于x 的不等式22(21)0x a x a a -+++≤的解集为A ,不等式322x>-的解集为B .(1)已知B 是A 的必要不充分条件,求实数a 的取值范围.(2)设命题p :2,2(21)1<0x B x m x ∃∈-++,若命题p 为假命题,求实数m 的取值范围.18.(本小题12分)已知公比q 大于1的等比数列{}n a 满足1310a a +=,24a =. (1)求{}n a 的通项公式;(2)设n b = ,求数列{}n b 的前n 项和n S .请在①n n a ⋅;②22log 9n a -;③()()12121n n n a +++这三个条件中选择一个,补充在上面的横线上,并完成解答.如图,四边形ABCD 与BDEF 均为菱形,FA FC =,2AB =,且60DAB DBF ∠=∠=.(1)求证:AC BF ⊥;(2)求二面角E AF B --的余弦值.20.(本小题12分)如图,有一张长为8,宽为4的矩形纸片ABCD ,按图示的方向进行折叠,使每次折叠后点B 都落在AD 边上,此时将B 记为B '(图中EF 为折痕,点F 也可以落在边CD 上). 过B '作B T CD '∥交EF 于点T ,若以AB 的中点O 为原点,AB 边所在直线为y 轴建立平面直角坐标系求(1)点T 的轨迹方程,写出点T 横坐标x 的取值范围; (2)若将轨迹方程中T 横坐标x 取值范围变为R , 此时直线l 交曲线T 于M,N 两点,且OM ON ⊥, 求证直线l 过定点。

江苏省南通市2020-2021学年高三上学期期中数学试题及答案解析

江苏省南通市2020-2021学年高三上学期期中数学试题及答案解析

江苏省南通市2020-2021学年度第一学期期中考试数学试题考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分)1.若集合A ={0,1,2},B ={x |x 2-3x ≤0},则A ∩B 为()A .{1,2}B .{0,1,2}C .{0,1,2,3}D .{x |0≤x ≤3}2.已知复数z 满足(2-i)z =1+2i(i 为虚数单位),则z 的虚部为()A .1B .-1C .0D .i3.已知定义域为R 的奇函数f (x ),当x >0时,满足f (x )=23log (72),0,23(3),,2x x f x x ⎧--<⎪⎪⎨⎪->⎪⎩ 则f (1)+f (2)+f (3)+…+f (2020)等于()A .log 25B .2log 5-C .2-D .04.两正数a ,b 的等差中项为52,等比中项为,且a >b ,则双曲线22221x y a b-=的离心率e 为()A.13 B.53C.3D.35.设函数11()sin ||222f x x x πθθθ⎛⎫⎛⎫⎛⎫=+-+<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的图象关于原点对称,则θ的值为()A .6π- B.6πC .3π- D.3π6.过抛物线y 2=4x 的焦点作两条互相垂直的弦AB ,CD ,则四边形ACBD 面积的最小值为()A .8B .16C .32D .647.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2019的值为()A .1008B .1009C .1010D .10118.设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +b (a >0)的图象的公共点,以P 为切点可作直线与两曲线都相切,则实数b 的最大值为()A.232e 3 B.233e 2 C.322e 3 D.323e 2二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知0<b <a <1,c >1,则下列各式中不成立的是()A .a b <b a B .c b >c aC .log a c >log b cD .b log c a >a log c b10.下列四个命题中正确的是()A .函数y =a x (a >0且a ≠1)与函数y =log a a x (a >0且a ≠1)的定义域相同B .函数y y =3x 的值域相同C .函数y =|x +1|与函数y =2x +1在区间[0,+∞)上都是增函数D .1lg 1x y x+=-是奇函数11.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题中正确的是()A .若m ∥l ,且m ⊥α,则l ⊥αB .若m ∥l ,且m ∥α,则l ∥αC .若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥nD .若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m12.把函数sin 3y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短为原来的12(纵坐标不变),再将图象向右平移4π个单位长度得到函数g (x )的图象,则下列说法不正确的是()A .g (x )在,66ππ⎛⎫- ⎪⎝⎭上单调递增B .g (x )的图象关于,06π⎛⎫⎪⎝⎭对称C .g (x )的最小正周期为4πD .g (x )的图象关于y 轴对称第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若A ,B 互为对立事件,其概率分别为P (A )=1y,P (B )=4x ,且x >0,y >0,则x +y 的最小值为________.14.已知正方形ABCD 的边长为2,P 为平面ABCD 内一点,则()()PA PB PC PD +⋅+ 的最小值为________.15.将数列{a n }中的所有项排成如下数阵:其中每一行项数是上一行项数的2倍,且从第二行起每一行均构成公比为2的等比数列.a 1a 2,a 3a 4,a 5,a 6,a 7a 8,a 9,a 10,a 11,a 12,a 13,a 14,a 15……记数阵中的第1列a 1,a 2,a 4,…构成的数列为{b n },T n 为数列{b n }的前n 项和,T n =5n 2+3n ,则b n =________,a 1025=________.(本题第一空2分,第二空3分)16.已知函数f (x )=|ln |,0e,2ln ,e,x x x x <≤⎧⎨->⎩若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.四、解答题(本大题共6小题,共70分)17.(10分)已知等差数列{a n }的首项为a 1,公差为d (a 1∈Z ,d ∈Z ),前n 项的和为S n ,且S 7=49,24<S 5<26.(1)求数列{a n }的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项的和为T n ,求T n .18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b cos A+3a =c .(1)求cos B ;(2)如图,D为△ABC外一点,若在平面四边形ABCD中,D=2B,且AD=1,CD=3,BC=6,求AB的长.19.(12分)如图,四棱锥S-ABCD2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-S的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SC∶SE的值;若不存在,试说明理由.20.(12分)在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.A镇有基层干部60人,B镇有基层干部60人,C镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从A,B,C三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,[5,15),[15,25),[25,35),[35,45),[45,55],绘制成如图所示的频率分布直方图.(1)求这40人中有多少人来自C镇,并估计A,B,C三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从A,B,C三镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为X,求X的概率分布及均值.21.(12分)设椭圆22221x ya b+=(a>b>0)的离心率e=12,椭圆上的点到左焦点F1的距离的最大值为3.(1)求椭圆C的方程;(2)求椭圆C的外切矩形ABCD的面积S的取值范围.22.(12分)已知函数f(x)=e x-ax-a(其中e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若对任意x∈(0,2],不等式f(x)>x-a恒成立,求实数a的取值范围;(3)设n∈N*,证明:123ee1 n n nn nn n n n⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.答案精析1.B2.A3.B4.D5.D6.C 7.C [当n ≥2时,a n +2S n -1=n ,①故a n +1+2S n =n +1,②由②-①得,a n +1-a n +2(S n -S n -1)=1,即a n +1+a n =1(n ≥2),所以S 2019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2018+a 2019)=1010.]8.B [设P (x 0,y 0),由于点P 为切点,则1022032ln 02x ax a x b +=+,又点P 的切线相同,则f ′(x 0)=g ′(x 0),即x 0+2a =23a x ,即(x 0+3a )(x 0-a )=0,又a >0,x 0>0,∴x 0=a ,于是,b =52a 2-3a 2ln a (a >0),设h (x )=52x 2-3x 2ln x (x >0),则h ′(x )=2x (1-3ln x )(x >0),所以h (x )在(0,13e )上单调递增,在(13e ,+∞)上单调递减,b 的最大值为12333e e 2h ⎛⎫= ⎪⎝⎭.9.ABC [由于0<b <a <1,c >1,根据指数函数与幂函数的图象与性质有a b >a a >b a ,故选项A 错误;根据指数函数的图象与性质有c b <c a ,故选项B 错误;根据对数函数的图象与性质有log a c <log b c ,故选项C 错误;因为a b >b a ,c >1,则log c a b >log c b a ,即b log c a >a log c b ,故选项D 正确.]10.ACD [A 项,函数y =a x (a >0且a ≠1),y =log a a x (a >0且a ≠1)的定义域都是R ,故A 正确;B 项,函数y值域为[0,+∞),函数y =3x 的值域为(0,+∞),故B 错误;C ,当x ∈[0,+∞)时,函数y =|x +1|=x +1是增函数,函数y =2x +1是增函数,故C 正确;D 项,lg 11x y x+=-的定义域是(-1,1),令()1lg 1x f x x +=-,1111()lg lg lg ()111x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭,故函数1lg1x y x +=-是奇函数,故D 正确.]11.AD [A 正确,B 中直线l 可能平行于α也可能在α内,故B 错;C 中直线l ,m ,n 可能平行也可能相交于一点,故C 错;D 正确.]12.BCD [把函数sin 3y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短为原来的12得到sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再将图象向右平移4π个单位长度得到函数()sin 2sin 2436g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦的图象.若,66x ππ⎛⎫∈- ⎪⎝⎭,则2,626x πππ⎛⎫-∈- ⎪⎝⎭,∴()g x ,66ππ⎛⎫-⎪⎝⎭上单调递增,故A 正确;由1062g π⎛⎫=≠ ⎪⎝⎭知,g (x )的图象不关于点,06π⎛⎫⎪⎝⎭对称,故B 错误;g (x )的最小正周期为π,故C 错误;∵1(0)12g =-≠±,∴g (x )的图象不关于y 轴对称,故D 错误.]13.9解析由事件A ,B 互为对立事件,其概率分别P (A )=1y,P (B )=4x ,且x >0,y >0,所以P (A )+P (B )=1y +4x=1,所以144()5y x x y x y y x x y ⎛⎫+=++=++⎪⎝⎭524y x 9x y ≥+⋅=,当且仅当x =6,y =3时取等号,所以x +y 的最小值为9.14.-4解析由题意,以A 为坐标原点,AB 方向为x 轴,AD 方向为y 轴,建立平面直角坐标系,因为正方形ABCD 的边长为2,所以可得A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则PA =(-x ,-y ),PB =(2-x ,-y ),PC =(2-x,2-y ),PD =(-x,2-y ),所以PA +PB =(2-2x ,-2y ),PC +PD =(2-2x,4-2y ),因此(PA +PB )·(PC +PD )=4(1-x )2-4y (2-y )=4(x -1)2+4(y -1)2-4≥-4,当且仅当x =y =1时,取得最小值-4.15.10n -2216解析T n 为数列{b n }的前n 项的和,T n =5n 2+3n ,b n =T n -T n -1=(5n 2+3n )-[5(n -1)2+3(n -1)]=10n -2(n ≥2),验证n =1时,b 1=T 1=8也符合,故b n =10n -2,a 1024=b 11=108,a 1025=2a 1024=216.16.212e ,e 2e ⎛⎫++ ⎪⎝⎭解析画出函数f (x )=|ln |,0e 2ln ,e x x x x <≤⎧⎨->⎩的图象(如图所示).不妨令a <b <c ,则由已知和图象,得0<a <1<b <e<c <e 2,且-ln a =ln b =2-ln c ,则ab =1,bc =e 2,则a +b +c =221e 1e b b bb b +++=+,令21e ()g x x x+=+,因为221e ()10g x x+'=-<在x ∈(1,e)时恒成立,所以g (x )在(1,e)上单调递减,所以2211e 2e 2e eb b ++<+<+.17.解(1)由题意得1176749,25424526,2a d a d ⨯⎧+=⎪⎪⎨⨯⎪<+<⎪⎩∵a 1∈Z ,d ∈Z ,解得11,2,a d =⎧⎨=⎩∴a n =a 1+(n -1)d =2n -1(n ∈N *).(2)∵111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪⋅-+-+⎝⎭,∴1111111112335572121n T n n ⎛⎫=-+-+-++- ⎪-+⎝⎭ 21n n =+.18.解(1)在△ABC 中,由正弦定理得sin B cos A +33sin A =sin C ,又C =π-(A +B ),所以sin B cos A +3sin A =sin (A +B ),故sin B cos A +33sin A =sin A cos B +cos A sin B ,所以sin A cos B =33sin A ,又A ∈(0,π),所以sin A ≠0,故cos B =33.(2)因为D =2B ,所以cos D =2cos 2B -1=13-,又在△ACD 中,AD =1,CD =3,所以由余弦定理可得AC 2=AD 2+CD 2-2AD ·CD ·cos D =1+9-2×3×13⎛⎫- ⎪⎝⎭=12,所以AC =,在△ABC 中,BC ,AC =cos B =3,所以由余弦定理可得AC 2=AB 2+BC 2-2AB ·BC cos B ,即12=AB 2+6-2·AB ×33,化简得AB 2-AB -6=0,解得AB =.故AB 的长为19.(1)证明连结BD 交AC 于O ,连结SO ,由题意得,SO ⊥AC .在正方形ABCD 中,AC ⊥BD ,又SO ∩BD =O ,SO ,BD ⊂平面SBD ,6所以AC ⊥平面SBD ,所以AC ⊥SD .(2)解由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OS 分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系O -xyz如图所示.设底面边长为a ,则高SO =62a .则S 0,0,2a ⎛⎫ ⎪ ⎪⎝⎭,D ,0,02a ⎛⎫- ⎪ ⎪⎝⎭,C 0,,02a ⎛⎫ ⎪ ⎪⎝⎭,B ,0,02a ⎛⎫ ⎪ ⎪⎝⎭,又SD ⊥平面PAC ,则平面PAC 的一个法向量26,0,22DS a a ⎛⎫= ⎪ ⎪⎝⎭ ,平面SAC 的一个法向量2,0,02OD a ⎛⎫=- ⎪ ⎪⎝⎭ ,则1cos ,2||||DS OD DS OD DS OD ⋅==- ,又二面角P -AC -S 为锐二面角,则二面角P -AC -S 为60°.(3)解在棱SC 上存在一点E 使BE ∥平面PAC .由(2)知DS 是平面PAC 的一个法向量,且,0,22DS a ⎛⎫= ⎪ ⎪⎝⎭,0,,22CS a a ⎛⎫=- ⎪ ⎪⎝⎭,22,,022BC a ⎛⎫=- ⎪ ⎪⎝⎭ .设CE tCS = ,t ∈[0,1],则BE =BC +CE =BC +tCS =226,(1),222a a t at ⎛⎫-- ⎪ ⎪⎝⎭,又BE ∥平面PAC ,所以BE ·DS =0,解得t =13.即当SC ∶SE =3∶2时,BE ⊥DS ,而BE 不在平面PAC 内,故BE ∥平面PAC .所以侧棱SC 上存在点E ,当SC ∶CE =3∶2时,有BE ∥平面PAC .20.解(1)因为A ,B ,C 三镇分别有基层干部60人,60人,80人,共200人,利用分层抽样的方法选40人,则C 镇应选取80×40200=16(人),所以这40人中有16人来自C 镇,因为x =10×0.15+20×0.25+30×0.3+40×0.2+50×0.1=28.5,所以三镇基层干部平均每人走访贫困户28.5户.(2)由直方图得,从三镇的所有基层干部中随机选出1人,其工作出色的概率为35,显然X 可取0,1,2,3,且X ~B 33,5⎛⎫⎪⎝⎭,则28(0)35125P X ⎛⎫=== ⎪⎝⎭,12133236(1)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,21233254(2)C 55125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3327(3)5125P X ⎛⎫=== ⎪⎝⎭,所以X 的概率分布为X0123P 8125361255412527125所以均值E (X )=0×8125+1×36125+2×54125+3×27125=95.21.解(1)由题设条件可得c a =12,a +c =3,解得a =2,c =1.∴b 2=a 2-c 2=3,所以椭圆C 的方程为22143x y +=.(2)当矩形ABCD 的一组对边所在直线的斜率不存在时,得矩形ABCD 的面积S=,当矩形ABCD 四边所在直线的斜率都存在时,不防设AB ,CD 所在直线的斜率为k ,则BC ,AD 所在直线的斜率为1k-,设直线AB 的方程为y =kx +m ,与椭圆联立22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩可得(4k 2+3)x 2+8kmx +4m 2-12=0,由Δ=(8km )2-4(4k 2+3)(4m 2-12)=0,得m 2=4k 2+3,显然直线CD 的直线方程为y =kx -m ,直线AB ,CD间的距离1d ===同理可求得BC ,AD间的距离为2d ==所以四边形ABCD 的面积为S ABCD =d 1d 2==14=≤.(当且仅当k =±1时等号成立),又SABCD >=综上可得外切矩形面积的取值范围是[14].22.(1)解因为f (x )=e x -ax -a ,所以f ′(x )=e x -a ,①当a ≤0时,f ′(x )>0,函数f (x )在区间R 上单调递增;②当a >0时,令f ′(x )>0,x >ln a ,令f ′(x )<0,x <ln a ,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)解因为对任意的x ∈(0,2],不等式f (x )>x -a 恒成立,即不等式(a +1)x <e x 恒成立.即当x ∈(0,2]时,a <e x x -1恒成立.令g (x )=e xx -1(x ∈(0,2]),则g ′(x )=22(1)e x x -.令g ′(x )>0,1<x ≤2,g ′(x )<0,,0<x <1,所以g (x )在(0,1)上单调递减,在(1,2]上单调递增.∴x =1时,g (x )取最小值e -1.所以实数a 的取值范围是(-∞,e -1).(3)证明在(1)中,令a =1可知对任意实数x 都有e x -x -1≥0,即x +1≤e x (当且仅当x =0时等号成立).令x +1=k n(k =1,2,3,…,n ),则k n <1e k n -,即e e e k k n n k n n -⎛⎫<= ⎪⎝⎭,故()()123e e 11231e e e e e e (e 1)e (e 1)n n n n n n n n n n n n n -⎛⎫⎛⎫⎛⎫⎛⎫++++<++++=< ⎪ ⎪ ⎪ --⎝⎭⎝⎭⎝⎭⎝⎭ .。

2020-2021学年江苏省南通市海门中学高二(上)期中数学试卷+答案解析(附后)

2020-2021学年江苏省南通市海门中学高二(上)期中数学试卷+答案解析(附后)

2020-2021学年江苏省南通市海门中学高二(上)期中数学试卷一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.已知i 为虚数单位,若复数是纯虚数,则实数( )A. B. 0C. 1D. 0或12.设,为椭圆C :的两个焦点,点P 在椭圆C 上,若,,成等差数列,则椭圆C 的离心率为( )A. 1B.C.D.3.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为符号使用.后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,,则下列命题正确的是( ) A. 若,则B. 若,,则C. 若,则D. 若,则4.设等比数列的前n 项和为若,则等比数列的公比为( )A. 2 B. 1或2 C.或2D.或1或25.不等式的解集是( )A. B.C.D.6.设等差数列的公差,前n 项和为若,则( )A. 9B. 5C. 1D.7.若,,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知数列满足,且,则时,使得不等式恒成立的实数a 的最大值是( )A. 19B. 20C. 21D. 22二、多选题(本大题共4小题,共20分。

在每小题有多项符合题目要求)9.已知复数z在复平面上对应的向量,则( )A. B. C. D.10.下面命题正确的是( )A. “”是“”的充分不必要条件B. 数列是等比数列的必要条件C. 命题“,”的否定是“,”D. 时,“”是“”的必要不充分条件11.设数列满足…,记数列的前n项和为,则( )A. B. C. D.12.已知,,且,则( )A. 的最小值为9B.C. D.三、填空题(本大题共4小题,共20分)13.已知,i为虚数单位,复数z满足:,则当k为奇数时,__________;当时,__________.14.若存在性命题:,使得是假命题,且全称命题:,是真命题,则实数m的取值范围是______.15.已知公差不为0的等差数列的前n项和为,且成等差数列,则______.16.已知,,则当取得最小值时,______.四、解答题(本大题共6小题,共70分。

江苏省南通中学高二上学期期中考试数学试题

江苏省南通中学高二上学期期中考试数学试题

一、填空题:本大题共14小题,每小题5分,共计70分.请注意文理科类,并把答案填写在答题..卡相应位置上....... 1. 抛物线x 2= - 4y 的焦点坐标为 ▲ .2. 已知椭圆上一点P 到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离 是 ▲ .3.(文)一个圆柱的底面直径..和它的高相等,且圆柱的体积为,则圆柱的高是 ▲ . (理) 已知空间两点轴上存在一点,使得,则点坐标为 ▲ .4.已知双曲线22221(0,0)x y a b a b-=>>的渐近线过点4(1,)3P ,则该双曲线的离心率为▲ .5. 若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 ▲ . 6.已知椭圆与双曲线()有相同的焦点F 1、F 2,P 是 两曲线的一个交点,则等于 ▲ . 7.,,是空间三条直线,则下列命题中正确命题的个数是 ▲ .(1),;(2), (3),,共面 ;(4),,共点,,共面8. 设是椭圆上的一点,则的最大值是 ▲ .9. 如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为2 cm ,高为5 cm , 则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最 短路线的长为 ▲ cm.10. 直线y=kx-2与抛物线交于A 、B 两点,且AB 的中点横坐标为2,则k 的值是 ▲ . 11. 设E 、F 、G 、H 依次是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,且AC+BD=a ,,则 ▲ .12.如图所示,等边的边长为a ,将它沿平行 于BC 的线段PQ 折起,使'A PQ BPQC ⊥平面平面 , 若折叠后的长为d ,则d 的最小值为 ▲ . 13. 已知P 是椭圆上任意一点,EF 是圆 M :的直径,则的最 大值为 ▲ .14.设短轴长为的椭圆C :和双曲线的离心率互为倒APBQCE FA ′数,过定圆E 上面的每一个点都可以作两条互相垂直的直线,且与椭圆的公共点都只有一个的圆的方程为 ▲ .二、解答题:本大题共6小题,共计90分.请注意文理科类,并在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.求与双曲线:有相同焦点,且经过点(,2)的双曲线标准方程,并写出其顶点坐标,焦点坐标,离心率,渐近线方程.16.如图,在四棱锥中,,2,AB CD CD AB AB PAD =⊥平面,E 为PC 的中点.(1)求证:;(2)若,AD PB PA ABCD ⊥⊥求证:平面.17.设,两点在抛物线上,是的垂直平分线.(1)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论; (2)当直线的斜率为2时,求在轴上截距的取值范围.18.如图,在直三棱柱中,,,直线与平面ABC 成 角.(1)求证:111B AC ABB A ⊥平面平面; (2)求到的距离; (3)求三棱锥的体积.BCA DPE (第16题) B 1C 1A 1B C19.已知圆224O x y +=:,若椭圆22221x y a b+=过点(01)P -,,且其长轴长等于圆O 的直径.(1)求椭圆的方程;(2)过点P 作两条互相垂直的直线1l 与2l ,1l 与圆O 交于A ,B 两点,2l 交椭圆于另一点C ,①设直线1l 的斜率为k ,求弦AB 的长;②求ABC ∆面积的最大值.20.已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.(1)求椭圆的方程;(2)若点D 为椭圆上不同于、的任意一点,,,求当内切圆的面积最大时内切圆圆心的坐标; (3)若直线:与椭圆交于、两点,证明直线与的交点在直线上.江苏南通中学2014-2015学年度第一学期期中考试高二数学答题纸一、填空题:(本大题共14小题,每小题5分,计70分. 请注意文理科类,不需写出解答过程,把答案写在答题纸的指定位置上)1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.二、解答题:(本大题共6小题,计90分. 请注意文理科类,解答应写出必要的文字说明,证明过程或演算步骤,把答案写在答题纸的指定区域内).班级___________ 答题卡号 _____________ 座位号__________ 姓名 ___________装订线内请勿答题15. (本题满分14分)题满分14分)18. (本题满分16分)江苏省南通中学2014—2015学年度第一学期期中考试高二数学答案一、填空题:本大题共14小题,每小题5分,共计70分.请注意文理科类,并把答案填写在答题..卡相应位置上....... 1.抛物线x 2=-4y 的焦点坐标为 (0,-1) .2.已知椭圆上一点P 到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离是 7 .3.(文)一个圆柱的底面直径..和它的高相等,且圆柱的体积为,则圆柱的高是4. (理) 已知空间两点轴上存在一点,使得,则点坐标为(1,0,0).4.已知双曲线22221(0,0)x y a b a b-=>>的渐近线过点4(1,)3P ,则该双曲线的离心率为53. 5.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.6.已知椭圆与双曲线()有相同的焦点F 1、F 2、P 是两曲线的一个交点,则等于. 7.,,是空间三条直线,则下列命题中正确命题的个数是 1 .(1),;(2), (3),,共面 ;(4),,共点,,共面 8.设是椭圆上的一点,则的最大值是.9.如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为2 cm ,高为5 cm , 则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短 路线的长为13 cm.10.直线y=kx-2与抛物线交于A 、B 两点,且AB 的中点横坐标为2,则k 的值是2. 11.设E 、F 、G 、H 依次是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,且AC+BD=a ,,则.12.如图所示,等边的边长为a ,将它沿平行 于BC 的线段PQ 折起,使,若折叠后的长为d ,则d 的最小值为. 13. 已知P 是椭圆上任意一点,EF 是圆M :的直径,则的最大值为23.14.设短轴长为的椭圆C :和双曲线的离心率互为倒数,过定圆E 上面的每一个点都可以作两条互相垂直的直线,且与椭圆的公共APBQCEFA ′点都只有一个的圆的方程为.二、解答题:本大题共6小题,共计90分.请注意文理科类,并在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.求与双曲线:有相同焦点,且经过点(,2)的双曲线标准方程,并写出其顶点坐标,焦点坐标,离心率,渐近线方程. 解:由题意得, 222222201218418a b a b a b ⎧+=⎧=⎪⎪⎨⎨-==⎪⎪⎩⎩解得 ,所求双曲线标准方程为:e .c a ±±=±顶点();焦点(离心率渐近线方程y=16.如图,在四棱锥中,,2,AB CD CD AB AB PAD =⊥平面,E 为PC 的中点.(1)求证:;(2)若,AD PB PA ABCD ⊥⊥求证:平面. 证明:(1)证法一:取PD 中点F ,连结EF ,AF . E 是PC 中点,F 是PD 中点,,2,,=,AB CD CD AB EFAB EF AB ABEF =∴∴又四边形是平行四边形.,,,BE AF AF PAD BE PAD BEPAD∴⊂⊄∴又平面平面平面证法二:延长DA ,CB ,交于点F ,连结PF . ,2,..,,.AB CD CD AB B CF E PC BEPF PF PAD BE PAD BEPAD =∴∴⊂⊄∴为的中点又为的中点,平面平面 平面(2),,,.,,,.,.,.AB PAD PA AD PAD AB AD AB PA AD AB AD PB AB PB B AD PAB PA PAB AD PA AB AD A PA ABCD ⊥⊂∴⊥⊥⊥⊥⋂=∴⊥⊂∴⊥⋂=∴⊥平面、平面平面又平面平面 17.设,两点在抛物线上,是的垂直平分线。

江苏省南通市海安市2020-2021学年高二上学期期中数学试题

江苏省南通市海安市2020-2021学年高二上学期期中数学试题

江苏省南通市海安市2020-2021学年高二上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.命题“x R ∀∈,3210x x -+≤”的否定是( )A .0x R ∃∈,320010x x -+> B .0x R ∃∈,320010x x -+≥C .不存在32000,10x R x x ∈-+≤D .32,10x R x x ∀∈-+>2.下列关于抛物线22y x =的图象描述正确的是( ) A .开口向上,焦点为10,8⎛⎫ ⎪⎝⎭B .开口向右,焦点为10,8⎛⎫ ⎪⎝⎭C .开口向上,焦点为10,2⎛⎫ ⎪⎝⎭D .开口向右,焦点为10,2⎛⎫ ⎪⎝⎭3.一个各项均正的等比数列,其每一项都等于它后面的相邻两项之和,则公比q =( )A .2B C .12D .12+ 4.在我国古代著名的数学专著《 九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢? () A .16 日B .12 日C .9 日D .8 日5.以双曲线221412x y -=的焦点为顶点,顶点为焦点的椭圆方程是( )A .221164x y +=B .221168x y +=C .221124x y +=D .2211612x y +=6.如果P 是Q 的必要不充分条件,Q 是R 的充分必要条件,S 是R 的充分不必要条件,那么P 是S 的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件7.设1F 和2F 为双曲线()222210,0x y a b a b-=>>的两个焦点,若点()0,2P b ,12,F F 是等腰直角三角形的三个顶点,则双曲线的渐近线方程是( )A .y =B .7y x =±C .y x =D .3y x =±8.已知数列{}n a 、{}n b 满足2log n n b a =,n *∈N ,其中{}n b 是等差数列,且920121=4a a ,则1232020b b b b ++++=( )A .2020B .-2020C .2log 2020D .1010二、多选题9.下列叙述中不正确的是( )A .“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件B .若,,a b c ∈R ,则“22ab cb >”的充要条件是“a c >”C .“1a >”是“11a<”的充分不必要条件 D .若,,a b c ∈R ,则“20ax bx c ++≥对x ∈R 恒成立”的充要条件是“240b ac -≤”10.(多选)设抛物线22(0)y px p =>的焦点为F .点M 在y 轴上,若线段FM 的中点B 在抛物线上,且点B ,则点M 的坐标为( ) A .(0,1)-B .(0,2)-C .(0,2)D .(0,1)11.某颗人造地球卫星的运行轨道是以地球的中心F 为一个焦点的椭圆,如图所示,已知它的近地点A (离地面最近的点)距地面m 千米,远地点B (离地面最远的点)距地面n 千米,并且F A B 、、三点在同一直线上,地球半径约为R 千米,设该椭圈的长轴长、短轴长、焦距分别为222a b c 、、,则( )A .a c m R -=+B .a c n R +=+C .2a m n=+D .b =12.已知各项均为正项的等比数列{}n a ,11a >,01q <<,其前n 和为n S ,下列说明正确的是( )A .数列{}ln n a 为等差数列B .若nn S Aq B =+,则0A B += C .232n n n S S S ⋅=D .记12n n T a a a =⋅⋅⋅,则数列{}n T 有最大值.三、填空题13.抛物线的准线方程是1y =,则其标准方程是______. 14.已知命题“x ∃∈R ,()214204x a x +-+<”是假命题,则实数a 的取值范围是______.15.1F ,2F 分别是椭圆22:1649x yC +=的左、右焦点,点P 在椭圆C 上,110PF =,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,则OM 的长为__________.四、双空题16.已知数列{}n a 的前n 项和公式为2n S n =,若2n a n b =,则n a =________;数列{}n b 的前n 项和n T =__________.五、解答题17.已知命题p :“曲线2122:128x yC m m +=+表示焦点在x 轴上的椭圆”,命题q :“曲线222:11x y m t m t C +=---表示双曲线”.(1)若命题p 是真命题,求m 的取值范围; (2)若p 是q 的必要不充分条件,求t 的取值范围. 18.已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前项和为,若12,,k k a a S +成等比数列,求正整数k 的值.19.已知点()1,0F ,直线:1l x =-,动点P 到点F 的距离等于它到直线l 的距离.(Ⅰ)试判断点P 的轨迹C 的形状,并写出其方程;(Ⅱ)若曲线C 与直线:1m y x =-相交于A B 、两点,求OAB ∆的面积. 20.设数列{}n a 满足123(21)2n a a n a n ++⋯+-=. (1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.21.设椭圆2222:1(0)x y C a b a b +=>>的一个顶点与抛物线2:C x =的焦点重合,12,F F 分别是椭圆的左、右焦点,且离心率12e =,过椭圆右焦点2F 的直线l 与椭圆交于M 、N 两点.(1)求椭圆C 的方程;(2)若2OM ON ⋅=-. 求直线l 的方程; 22.已知数列{}n a 满足()*123n n a a n n N++=+∈.(1)若数列{}n a 是等差数列,求数列{}n a 的通项公式;(2)若对任意的*n N ∈,都有20n a n +≥成立,求1a 的取值范围.参考答案1.A 【分析】根据全称量词的否定是存在量词可得结果. 【详解】因为全称量词的否定是存在量词,“≤”的否定是“>”,所以命题“x R ∀∈,3210x x -+≤”的否定是:0x R ∃∈,320010x x -+>.故选:A 【点睛】关键点点睛:根据全称量词的否定是存在量词求解是解题关键. 2.A 【分析】利用抛物线方程,判断开口方向以及焦点坐标即可. 【详解】抛物线22y x =,即212x y =, 可知抛物线的开口向上,焦点坐标为10,8⎛⎫ ⎪⎝⎭. 故选:A. 【点睛】本题考查了抛物线的简单性质的应用,属于基础题. 3.C 【分析】把已知条件用q 表示后可解得q . 【详解】由题意12n n n a a a ++=+,即2n n n a a q a q =+,又0n a >,所以21q q +=,解得q =(12--舍去). 故选:C .【点睛】本题考查等比数列通项公式,属于基础题. 4.C 【详解】解:由题可知,良马每日行程a n 构成一个首项为103,公差13的等差数列, 驽马每日行程b n 构成一个首项为97,公差为﹣0.5的等差数列, 则a n =103+13(n ﹣1)=13n +90,b n =97﹣0.5(n ﹣1)=97.5﹣0.5n , 则数列{a n }与数列{b n }的前n 项和为1125×2=2250,又∵数列{a n }的前n 项和为2n ⨯(103+13n +90)2n=⨯(193+13n ), 数列{b n }的前n 项和为2n ⨯(97+97.5﹣0.5n )2n =⨯(194.512-n ),∴2n ⨯(193+13n )2n+⨯(194.512-n )=2250, 整理得:25n 2+775n ﹣9000=0,即n 2+31n ﹣360=0, 解得:n =9或n =﹣40(舍),即九日相逢. 故选C点睛:本题以数学文化为背景,考查等差数列,考查转化思想,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题. 5.D 【分析】先求出双曲线的顶点和焦点,从而得到椭圆的顶点和焦点,即可写出椭圆方程. 【详解】双曲线221412x y -=的焦点为()4,0-,()4,0,顶点为()2,0-,()2,0,所以椭圆的焦点坐标为()2,0-,()2,0,顶点为()4,0-,()4,0,所依椭圆的方程为2211612x y +=.故选:D 6.A 【分析】由题设条件知S R Q P ⇒⇔⇒,但是P 推不出Q ,R 推不出S ,所以P 推不出S ,即可判断. 【详解】根据题意得,Q P ⇒,P 推不出Q ,R Q ⇔,S R ⇒,R 推不出S ,∴S R Q P ⇒⇔⇒,即S P ⇒,但是P 推不出R ,R 推不出S ,则P 推不出S ,∴P 是S 的必要不充分条件.故选:A. 【点睛】本题考查了充分条件与必要条件的判断,属于基础题. 7.C 【解析】若()0,2P b ,设()()12,0,,0F c F c -,则1F P =()12,,0,2F F P b 是等腰直角三角形的三个顶点,222,42c b c =∴+=,()222242c c ac∴+-=,2234c a ∴=,即222334,b a b a a ∴+==,∴双曲线的渐近线方程为b y x a =±,即为y x =,故选C. 8.B【分析】由条件有201292b b +=-,由于{}n b 是等差数列, 则2012009212b b b b +=+,利用等差数列的求和公式即可解得. 【详解】 因为920121=4a a ⋅,则()2012201220129292292log log log 124log b a a a b a ++=⋅==-= 由{}n b 是等差数列,则2012009212b b b b +=+()1202012320201202022020202022b b b b b b +++++=⨯=⨯-⨯=- 故选:B9.BD 【分析】对A,B,C,D 四个选项,根据相关知识逐个判断是否正确即可. 【详解】对A,令2()f x x x a =++,方程20x x a ++=有一个正根和一个负根,则(0)0f <,则有0a <,∴“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件,正确;对B,当0b =时,若“a c >”成立,而220ab cb ==,充分性不成立,错误; 对C,111a a>⇒<,111a a <⇒>或0a <,∴“1a >”是“11a <”的充分不必要条件,正确;对D,20ax bx c ++≥对x ∈R 恒成立可以推出0a >且240b ac -≤,但是240b ac -≤,没有0a >这个条件时,不可以推出20ax bx c ++≥,错误. 故选:BD. 【点睛】本题主要考查充要条件,充分不必要条件,必要不充分条件的判断,涉及一元二次方程的根的分布,不等式的性质,以及一元二次不等式恒成立等价条件的应用,属于基础题. 10.BC 【分析】设0(0,)M y ,可得0,42y p B ⎛⎫⎪⎝⎭,结合抛物线的性质可得142p p BB =+,可求出p ,由B 在抛物线上,可求出0y ,即可求出答案. 【详解】设0(0,)M y ,易知,02p F ⎛⎫⎪⎝⎭,则0,42y p B ⎛⎫ ⎪⎝⎭,如图所示.则142p p BB =+=p =.∴抛物线方程为2y =,且042y B ⎛⎫⎪⎪⎝⎭,又B 在抛物线上,20144y ∴=,因此204y =,解得02y =±. 所以点M 的坐标为(0,2)或(0,2)-. 故选:BC . 【点睛】本题考查抛物线的性质,考查学生的计算求解能力,属于基础题. 11.ABD 【分析】根据条件数形结合可知m a c Rn a c R =--⎧⎨=+-⎩,然后变形后,逐一分析选项,得到正确答案.【详解】因为地球的中心是椭圆的一个焦点, 并且根据图象可得m a c Rn a c R =--⎧⎨=+-⎩,(*)a c m R ∴-=+ ,故A 正确; a c n R +=+,故B 正确;(*)两式相加22m n a R +=-,可得22a m n R =++,故C 不正确;由(*)可得m R a c n R a c+=-⎧⎨+=+⎩ ,两式相乘可得()()22m R n R a c ++=- 222a c b -= ,()()2b m R n R b ∴=++⇒=,故D 正确.故选ABD 【点睛】本题考查圆锥曲线的实际应用问题,意在考查抽象,概括,化简和计算能力,本题的关键是写出近地点和远地点的方程,然后变形化简. 12.ABD 【分析】结合题意可直接判断数列是递减数列,A 项结合对数性质即可判断;B 项表示出通项再化简,根据对应关系求解;C 项进行基本运算再判断;D 项先表示出n T ,再结合函数性质判断 【详解】由题可知,11n n a a q-=,()111nn a q S q-=-;对A ,()111l ln ln 1ln n n n a qa n q a -==+-,111ln l ln n ln n n a q a a n q +==+,1ln ln ln n n a a q +-=,A 对;对B ,()1111111n n n a q a a S q qq q-==-+---,又nn S Aq B =+,则11011a a A B q q +=-+=--;B 对; 对C ,()()311311,11n n n n a q a q S S qq--==--,()()()23132111n n n n a q q S S q --⋅=-,()()()222211222211,11n n n n a q a q S S qq --==--,明显232n n n S S S ⋅≠,C 错误;对D ,12n n T a a a =⋅⋅⋅,由于数列11a >,01q <<,故数列为单调递减数列,总存在从某一项开始使得()110,1k k a a q -=∈,故1121k k T a a a --=⋅⋅⋅有最大值,故D 正确;故选ABD 【点睛】本题考查等比数列的基本性质,前n 项和公式的应用,正向等比递减数列的判断,属于中档题13.24x y =- 【分析】由准线方程可判断抛物线开口的方向及p 的值,然后确定抛物线的标准方程. 【详解】由抛物线的准线方程是1y =可知,抛物线开口向下,焦点为坐标()0,1-,则抛物线的标准方程为24x y =-. 故答案为:24x y =-. 14.[]0,4 【分析】求出()21424x a x +-+的最小值,只需其小于零即可求得命题为真的参数范围,再求其补集即可. 【详解】令()()21424f x x a x =+-+,故可得()()24216min a f x --=,若命题为真,只需()242016a --<,整理可得()224a ->,即可得4a >,或0a <. 则命题为假时,[]0,4a ∈. 故答案为:[]0,4. 【点睛】本题考查根据命题的真假求参数的范围,属基础题. 15.2 【分析】延长1F M 和2PF 交于点N ,根据椭圆定义以及110PF =可得2||6PF =,根据△1PF M ≅△PNM 可得2||4NF =,根据中位线可得OM 的长度.【详解】延长1F M 和2PF 交于点N ,如图所示:由椭圆22:1649x y C +=可得8a =,由椭圆的定义可得12||||216PF PF a +==, 由1||10PF =,可得2||6PF =,依题意可得△1PF M ≅△PNM ,所以1||||10PN PF ==, 所以22||||||NF PN PF =-1064=-=, 由OM 为△12F F N 的中位线,可得21||||22OM F N ==. 故答案为:2 【点睛】本题考查了椭圆的定义,三角形全等,三角形的中位线,属于基础题. 16.21n - ()2413n- 【分析】根据1n n n a S S -=-可求出n a ,根据等比数列求和公式可求出n T . 【详解】数列{}n a 的前n 项和公式为2n S n =,当1n =时,111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,满足11a =,21n a n ∴=-,则2112224na n n nb --===⨯,{}n b ∴是首项为2,公比为4的等比数列, ()()214142413n nn T ⨯-∴==--. 故答案为:21n -;()2413n-. 17.(1)(4,2)(4,)--+∞;(2)[4,3][4,)--+∞.【分析】(1)根据椭圆的标准方程,得到p 为真命题,则满足228280m m m ⎧>+⎨+>⎩,即可求解;(2)求得命题q 为真时,得到1t m t <<+,再根据p 是q 的必要不充分条件,结合集合的包含关系,即可求解. 【详解】(1)命题:p “曲线2122:128x yC m m +=+表示焦点在x 轴上的椭圆”,若p 为真命题,则满足228280m m m ⎧>+⎨+>⎩,解得42m -<<-或4m >,即m 的取值范围(4,2)(4,)--+∞.(2)若命题q 为真,则())(10m t m t ---<,即1t m t <<+,因为p 是q 的必要不充分条件,则{|}142{|m t m t m m ≠⊂<<+-<<-或4}m > 即412t t -≤≤+≤-或4t ≥,解得43t -≤≤-或4t ≥. 即实数t 的取值范围[4,3][4,)--+∞. 【点睛】本题主要考查了椭圆的标准方程的应用,以及利用充分、必要条件求解参数问题,其中解答熟记椭圆的标准方程,以及合理利用充分、必要条件转化为集合的包含关系是解答的关键,着重考查了推理与运算能力,属于基础题. 18.:(Ⅰ)n a =2n (Ⅱ)6k = 【解析】试题分析:(Ⅰ)设等差数列{a n }的公差等于d ,则由题意可得,解得 a 1=2,d=2,从而得到{a n }的通项公式.(Ⅱ) 由(Ⅰ)可得 {a n }的前n 项和为S n ==n (n+1),再由=a 1 S k+2 ,求得正整数k 的值.解:(Ⅰ)设等差数列{a n }的公差等于d ,则由题意可得,解得 a 1=2,d=2.∴{a n }的通项公式 a n =2+(n ﹣1)2=2n . (Ⅱ) 由(Ⅰ)可得 {a n }的前n 项和为S n ==n (n+1).∵若a 1,a k ,S k+2成等比数列,∴=a 1 S k+2 ,∴4k 2 =2(k+2)(k+3),k="6" 或k=﹣1(舍去),故 k=6. 考点:等比数列的性质;等差数列的通项公式.19.(Ⅰ)点P 的轨迹C 是以F 为焦点、直线l 为准线的抛物线,其方程为24y x =(Ⅱ)【分析】(Ⅰ)根据抛物线的定义得知点P 的轨迹为抛物线,确定抛物线的焦点和准线,于此得出抛物线的方程;(Ⅱ)设点()11,A x y 、()22,B x y ,将直线m 与曲线C 的方程联立,利用抛物线的定义求出AB ,并利用点到直线的距离公式求出原点到直线m 的距离d ,然后利用三角形的面积公式计算出AOB ∆的面积. 【详解】(Ⅰ)因点P 到点F 的距离等于它到直线l 的距离,所以点P 的轨迹C 是以F 为焦点、直线l 为准线的抛物线,其方程为24y x =;(Ⅱ)设()()1122,,,A x y B x y , 联立241y xy x ⎧=⎨=-⎩,得 2610x x -+=, 126x x ∴+=,直线m 经过抛物线C 的焦点F , 12628AB x x p ∴=++=+=点O 到直线的距离d ==,11822OAB S AB d ∆∴=⋅=⨯= 【点睛】本题考查抛物线的定义、以及直线与抛物线中的三角形面积的计算,考查韦达定理设而不求思想的应用,解题关键在于利用相关公式计算弦长与距离,这类问题计算量较大,对计算要求较高,属于中等题. 20.(1) 221n a n =-;(2)221n n +. 【分析】(1)利用递推公式,作差后即可求得{}n a 的通项公式.(2)将{}n a 的通项公式代入,可得数列21n a n ⎧⎫⎨⎬+⎩⎭的表达式.利用裂项法即可求得前项和.【详解】(1)数列{}n a 满足()123212=n a a n a n ++⋯+-2n ≥时,()()12132321n a a n a n ++⋯+--﹣= ∴()212n n a -= ∴221n a n =- 当1n =时,12a =,上式也成立 ∴221n a n =- (2)21121(21)(21)2121n a n n n n n ==-+-+-+ ∴数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和1111113352121n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1212121nn n =-=++ 【点睛】本题考查了利用递推公式求通项公式,裂项法求和的简单应用,属于基础题.21.(1)22143x y+=;(2)1)y x =-或1)y x =-. 【分析】(1)求出抛物线的焦点坐标,可得b =.(2)先验证直线斜率不存在时的可求,然后当直线斜率存在时,设出方程与椭圆方程联立,写出韦达定理,由12122OM ON x x y y ⋅=+=-,将韦达定理代入可得答案. 【详解】解:(1)由题意得,抛物线2:C x =的焦点为 ∴椭圆的一个顶点为,∴b =又∵12c e a ==, 222231114b e a a =-=-=, 所以2a =∴椭圆的标准方程为22143x y +=.(2)由题意可知,直线l 与椭圆必相交,①当直线斜率不存在时,直线l 的方程为:1x =,则331,,1,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭则9124OM ON ⋅=-≠-,所以不合题意, ②当直线斜率存在时,设直线l 为(1)y k x =-且1122(,),(,)M x y N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, ∴221222228412,3434k k x x x x k k-+=⋅=++.∴[]21212121212()1OM ON x x y y x x kx x x x ⋅=+=+-++2222222224124128512(1)234343434k k k k k k k k k----=+-+==-++++. ∴22k =∴k =0∆> ∴直线l的方程为1)y x =-或1)y x =-.【点睛】关键点睛:本题考查求椭圆的方程和椭圆与直线的位置关系,解得本题的关键是联立直线方程与椭圆方程结合韦达定理得到221222228412,3434k k x x x x k k-+=⋅=++,由[]21212121212()1OM ON x x y y x x k x x x x ⋅=+=+-++,然后将韦达定理代入,属于中档题.22.(1)1n a n =+;(2)[]1,9-. 【分析】(1)设等差数列{}n a 的公差为d ,由条件可得21132125237a a a d a a a d +=+=⎧⎨+=+=⎩,从而解出d ,1a ,得到答案.(2)由条件可得112n n a a +--=,即数列2{}n a 是以2a 为首项,2为公差的等差数列,数列{}21n a -是以1a 为首项,2为公差的等差数列,再分别写出奇数项和偶数项的通项公式,再根据20n a n +≥恒成立,分奇、偶分别讨论即可得出答案.【详解】解(1)设等差数列{}n a 的公差为d ,由123n n a a n ++=+, 则21132125237a a a d a a a d +=+=⎧⎨+=+=⎩,解得1d =,12a =因此,数列112n n a a +--={}n a 的通项公式为()111n a a n d n =+-=+; (2)当2n ≥时,123n n a a n ++=+,①,12(1)3n n a a n -+=-+,② 两式相减得,112n n a a +--=∴数列2{}n a 是以2a 为首项,2为公差的等差数列,数列{}21n a -是以1a 为首项,2为公差的等差数列 又125a a +=215a a ∴=-,当n 为偶数时,211125232n n a a a n n a ⎛⎫=+-⨯=-+-=+-⎪⎝⎭; 当n 为奇数时,1111212n n a a n a +⎛⎫=+-⨯=-+⎪⎝⎭. ()()()111,21*3,2n n a n k a k N n a n k ⎧-+=-⎪∴=∈⎨+-=⎪⎩.因为对任意的n *∈N 都有20n a n +≥成立,当n 为奇数时,22110n a n n a n +=-++≥恒成立,211a n n ∴-≤+-在n 为奇数时恒成立,11a ∴-≤即,11a ∴≥-;同理当n 为偶数时,22130n a n n a n +=+-+≥恒成立,213a n n ∴≤++在n 为偶数时恒成立,19a ∴≤.综上所述,1a 的取值范围是[]1,9-. 【点睛】关键点睛:本题考查求等差数列的通项公式和数列与不等式恒成立问题,解答本题的关键是由递推公式得出112n n a a +--=,再分奇偶求出通项公式,根据对任意的n *∈N 都有20n a n +≥成立,分奇偶讨论,属于中档题.。

江苏省南通中学2020学年度第一学期高二数学期中考试卷 苏教版

江苏省南通中学2020学年度第一学期高二数学期中考试卷 苏教版

江苏省南通中学2020学年度第一学期高二数学期中考试卷(时间120分钟,满分150分)第I卷一、选择题(每小题5分,共10小题,合计50分):1、频率分布直方图中,小长方形的高与成正比.A、组距B、组数C、频率D、极差2、某学校有小学生125人,初中生280人,高中生95人,为了调查学生的身体状况,需要从他们当中抽取一个容量为100的样本,采用方法较为恰当.A、简单随机抽样B、系统抽样C、分层抽样D、以上都不对3、已知M(-2, 0),N (2, 0),PM-PN= 3,则动点P的轨迹是 .A、双曲线B、双曲线左支C、双曲线右支D、不存在4、已知P:| 2x-3 |>1;q:1x2+x-6>0,则┐p是┐q的_______________.A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件5、椭圆22221x ya b+=的两个焦点F1, F2三等分它的两条准线间的距离,那么它的离心率是____.A、32B、33C、63D、666、以圆锥曲线过焦点的弦为直径的圆与对应的准线无交点,则此圆锥曲线是_____________.A、椭圆B、双曲线C、抛物线D、不能确定7、已知椭圆x225+y29= 1的两个焦点为F1、F2,P为椭圆上一点,且PF1⊥PF2,则△F1PF2的面积为_______________.A、9B、12C、10D、188、曲线221259x y+=与曲线221259x yk k+=--( k<25,且k≠9 ) 具有的等量关系是_______.A 、有相等的长、短轴B 、有相等的焦距C 、有相等的离心率D 、有相同的准线9、曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数k 的取值范围是_______.A 、01k ≤≤B 、304k ≤≤C 、314k -<≤ D 、10k -<≤ 10、过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,若AB =4,则这样的直线l 有_______________.A 、1条B 、2条C 、3条D 、4条第Ⅱ卷(共100分)二、填空题(每小题5分,共6小题,合计30分): 11、某班5次数学测验中,甲、乙两同学的成绩如下:甲:90 92 88 92 88 乙:94 86 88 90 92 则甲、乙两人成绩相比较,得出结论是 稳定.12、一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是 . 13、命题“2,10∃∈+<x R x ”的否定是 . 14、椭圆 x 24+ y 23= 1内有一点P (1,1),F 为右焦点,椭圆上的点M 使得│MP│+2│MF│的值最小,则点M 的坐标为 .15、若直线y =kx -2与焦点在x 轴上的椭圆 x 25+ y2m= 1恒有公共点,则实数m 的取值范围为___________.16、动点P (x , y )满足|3410|x y +-,且P 点的轨迹是椭圆,则a 的取值范围是 . 三、解答题(共5小题,合计70分):17、下表是某中学对本校初中二年级女生身高情况进行抽测后所得的部分资料(身高单位:cm,测量时精确到1cm)。

江苏省南通市海门实验学校2020-2021学年高二上学期期中考试数学试题(学生版)

江苏省南通市海门实验学校2020-2021学年高二上学期期中考试数学试题(学生版)

海门实验学校2020—2021学年第一学期期中考试高二数学(满分:150分,考试时间:120分钟, 制卷人: 审题人:)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1. 已知集合}{022>--=x x x A ,则=A C R ( )A .{12}-<<x xB .{12}-≤≤x xC .{|1}{|2}<->x x x xD .{|1}{|2}-≤≥x x x x2. 一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0秒B .1秒末C .2秒末D .1秒末和2秒末 3. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不 为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计 算结果是( ) A .96里B .90里C .86里D .80里4. 函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1) 5.已知双曲线的一条渐近线方程为,且与椭圆有公共焦点,则的方程为( )A. B. C. D.6. 手机屏幕面积与整机面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在(0,1)间,设计师将某手机的屏幕面积和整机面积同时增加相同的数量,升级为一款新手机的外观,则该手机“屏占比”和升级前比有什么变化?( )A .“屏占比”不变B .“屏占比”变小C .“屏占比”变大D .变化不确定 7. 两正数a ,b 的等差中项为52,等比中项为6,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率e 为( )A .13B .53C .53D .1338.已知a ,b 为正实数,直线2y x a =-+与曲线1x b y e +=-相切,则11a b+的最小值 为( )A .1B .2C .4D .8二、多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案填涂在答题卡相应位置上) 9.下列求导数运算正确的有( )A .(x 2sin x )′=2x sin x +x 2cos x B .'1⎪⎭⎫⎝⎛x =1x 2C .(log 3x )′=13ln x D .(ln x )′=1x10.下面命题正确的是( )A .“1a >”是“11a<”的充分不必要条件 B .命题“x R ∀∈,则210++<x x ”的否定是“x R ∃∈,则210++≥x x ”. C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件 D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件11. 设0a >,0b >,称2ab a b +为a ,b 的调和平均数,称222a b+为a ,b 的加权平均数如图,C 为线段AB 上的点,且AC a =,CB b =,O 为AB 中点,以AB 为直径作半圆, 过点C 作AB 的垂线交半圆于D ,连接OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E , 取弧AB 的中点F ,连接FC ,则( ) A .OD 的长度是a ,b 的几何平均数 B .DE 的长度是a ,b 的调和平均数 C .CD 的长度是a ,b 的算术平均数 D .FC 的长度是a ,b 的加权平均数12. 设数列{}n a 前n 项和为n S (N )n *∈,关于数列{}n a 有下列命题,其中正确的命题是( )A .若1n n a a +=(N )n *∈则{}n a 既是等差数列又是等比数列B .若2n S an bn =+(,R)a b ∈,则{}n a 为等差数列C .若{}n a 为等比数列,则若{}n a 为等比数列,则 ,,,232n n n n n S S S S S --成等比数列D .若1(1)n n S =--,{}n a 是等比数列三、填空题(本大题共4小题,每小题5分,共计20分.请把答案填写在答题卡相应位置上) 13.设等差数列{}n a 的前n 项和为n S ,且418,2a a ==,则53S S -=__________. 14.在平面直角坐标系xOy 中,过抛物线C :y 2=mx 的焦点F 作斜率为1的直线,与抛 线C 交于A ,B 两点.若弦AB 的长为6,则实数m 的值为________.15.已知f (x )=ln(x 2+1),xx g ⎪⎭⎫⎝⎛=21)(-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________. 16.已知数列的前项和为,且,,则 ;若恒成立,则实数的取值范围为 .(本题第一空2分,第二空3分)四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.设函数()()()2230f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求,a b 的值;(2)若()12f =,()1f x >在R 上恒成立,求实数a 的取值范围.18.已知命题p :实数m 满足的方程221(0)34x y a m a m a+=>--表示双曲线,命题q :实数m 满足的方程x 2m -1+y 22-m =1表示焦点在y 轴上的椭圆. (1)若命题p 为真命题,求实数m 的取值范围; (2)若p 是q 的充分不必要条件,求a 的取值范围.{}n a n n S 12a =11122n n a a +=+n S =12n n S na t≤+t19.给出以下三个条件:①34a ,43a ,52a 成等差数列;②对于*n N ∀∈,点(,)n n S 均在函数2x y a=-的图象上,其中a 为常数;③37S =.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{}n a 是一个公比为(0,1)q q q >≠的等比数列,且它的首项11a =.(1)求数列{}n a 的通项公式;(2)令*22log 1()n n b a n N =+∈,证明数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和12nT <.20. 椭圆E :12222=+b y a x (a >b >0)的左焦点为F 1,右焦点为F 2,焦距为2,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)若AB ⊥x 轴,求△ABF 2的面积.21.某厂家拟在2020年“双十一”举行大型的促销活动,经测算某产品当促销费用为x 万元时,销售量t 万件满足t =5-2x +1(其中0≤x ≤k ,k 为正常数).现假定产量与销售量相等,已知生产该产品t 万件还需投入成本(10+2t )万元(不含促销费用),产品的销售价格定为⎝⎛⎭⎫4+20t 元/件.(1)将该产品的利润y 万元表示为促销费用x 万元的函数; (2)促销费用投入多少万元时,厂家的利润最大.22.已知椭圆)0(12222>>=+b a by a x C :的焦距为2,左、右顶点分别为P B A ,,是椭圆上一点,记直线PB PA 、的斜率为21k k 、且有2121-=k k . (1)求椭圆C 的方程;(2)若直线)0(≠+=k m kx y l :与椭圆C 交于N M 、两点,以MN 为直径的圆经过原点,且线段MN 的垂直平分线在y 轴上的截距为21-,求直线l 的方程.。

江苏省南通中学2020-2021学年高二上学期期末考试数学试题(解析版)

江苏省南通中学2020-2021学年高二上学期期末考试数学试题(解析版)

2021年江苏省南通中学高二年级期末考试数学注意事项:1. 本试卷分选择题与非选择题两部分。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.数列{a n}是等比数列,公比为q,且a1>0.则“q<−1”是“∀n∈N∗,2a2n−1+a2n<a2n+1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知等差数列{a n}的前n项和为S n,且S n=n2.定义数列{b m}如下:m+1mb m(m∈N∗)是使不等式a n≥m(m∈N∗)成立的所有n中的最小值,则b1+b3+b5+⋯+b19=()A. 25B. 50C. 75D. 1003.电影《夺冠》讲述中国女排姑娘们顽强奋斗、为国争光的励志故事,打造一部见证新中国体育改革40年的力作,该影片于2020年09月25日正式上映.在《夺冠》,上映当天,一对夫妇带着他们的两个小孩一起去观看该影片,订购的4张电影票恰好在同一排且连在一起.为安全起见,影院要求每个小孩子要有家长相邻陪坐,则不同的坐法种数是()A. 8B. 12C. 16D. 204.小李年初向银行贷款M万元用于购房,购房贷款的年利率为P,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还()万元.()A. M10B. MP(1+P)10(1+P)10−1C. M(1+P)1010D. MP(1+P)9(1+P)9−15.已知抛物线y2=2px(p>0)的焦点为F,准线l与x轴交于点H,过焦点F的直线交抛物线于A,B两点,分别过点A,B作准线l的垂线,垂足分别为A1,B1,如图所示,则:①以线段AB为直径的圆与准线l相切;②以A1B1为直径的圆经过焦点F;③A,O,B1(其中点O为坐标原点)三点共线;★绝密启用前④若已知点A 的横坐标为x 0,且已知点T(−x 0,0),则直线TA 与该抛物线相切. 则以上说法中正确的个数为( )A. 1B. 2C. 3D. 46. 《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA′是铅垂面,下宽AA′=3m ,上宽BD =4m ,深3m ,平面BDEC 是水平面,末端宽CE =5m ,无深,长6m(直线CE 到BD 的距离),则该羡除的体积为( )A. 24m 3B. 30m 3C. 36m 3D. 42m 37. 如图,某伞厂生产的“太阳”牌太阳伞的伞蓬是由太阳光的七种颜色组成,七种颜色分别涂在伞蓬的八个区域内,且恰有一种颜色涂在相对区域内,则不同的颜色图案的此类太阳伞至多有( ) A. 40320种 B. 5040种C. 20160种D. 2520种8. 已知点P 是椭圆x 216+y 212=1(xy ≠0)上的动点,F 1、F 2为椭圆的左、右焦点,O 为坐标原点,若M 是∠F 1PF 2的角平分线上的一点,且F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MP ⃗⃗⃗⃗⃗⃗ =0,则|OM ⃗⃗⃗⃗⃗⃗⃗ |的取值范围是( ) A. (0,2)B. (0,√3)C. (0,4)D. (2,2√3)二、选择题:本题共4小题,每小题5分,共20分。

江苏省南通中学2020-2021学年高二上学期期末考试数学试题(解析版)

江苏省南通中学2020-2021学年高二上学期期末考试数学试题(解析版)

★绝密启用前2021年江苏省南通中学高二年级期末考试数学注意事项:1. 本试卷分选择题与非选择题两部分。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.数列是等比数列,公比为q ,且则“”是“,”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知等差数列的前n 项和为,且定义数列如下:是使不等式成立的所有n 中的最小值,则A. 25B. 50C. 75D. 1003.电影夺冠讲述中国女排姑娘们顽强奋斗、为国争光的励志故事,打造一部见证新中国体育改革40年的力作,该影片于2020年09月25日正式上映.在夺冠,上映当天,一对夫妇带着他们的两个小孩一起去观看该影片,订购的4张电影票恰好在同一排且连在一起.为安全起见,影院要求每个小孩子要有家长相邻陪坐,则不同的坐法种数是A. 8B. 12C. 16D. 204.小李年初向银行贷款M万元用于购房,购房贷款的年利率为P,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还万元.A. B. C. D.5.已知抛物线的焦点为F,准线l与x轴交于点H,过焦点F的直线交抛物线于A,B两点,分别过点A,B作准线l 的垂线,垂足分别为,,如图所示,则:以线段AB为直径的圆与准线l相切;以为直径的圆经过焦点F;,O,其中点O为坐标原点三点共线;若已知点A的横坐标为,且已知点,则直线TA与该抛物线相切.则以上说法中正确的个数为A. 1B. 2C. 3D. 46.九章算术与几何原本并称现代数学的两大源泉.在九章算术卷五商功篇中介绍了羡除此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深3m,平面BDEC是水平面,末端宽,无深,长直线CE到BD的距离,则该羡除的体积为A. B. C. D.7.如图,某伞厂生产的“太阳”牌太阳伞的伞蓬是由太阳光的七种颜色组成,七种颜色分别涂在伞蓬的八个区域内,且恰有一种颜色涂在相对区域内,则不同的颜色图案的此类太阳伞至多有A. 40320种B. 5040种C. 20160种D. 2520种8.已知点P是椭圆上的动点,、为椭圆的左、右焦点,O为坐标原点,若M是的角平分线上的一点,且,则的取值范围是A. B. C. D.二、选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南通中学2020-2021学年度第一学期期中考试
高二数学
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一
项是符合题目要求的。

1.一个等比数列的首项为2,公比为3,则该数列的第3项为().8A .16B .18C .27D
2.设,a R ∈则“1a >”是“2a a >”的(

.A 充分不必要条件.B 必要不充分条件.C 充要条件
.D 既不充分也不必要条件
3.不等式1
021
x x +≤-的解集为()
1.1,2A ⎡⎫-⎪⎢⎣⎭
1.1,2B ⎡⎤-⎢⎥⎣⎦
(]1.,1,2C ⎛⎫
-∞-+∞ ⎪
⎝⎭
()1.,1,2D ⎡⎫
-∞-+∞⎪
⎢⎣⎭
4.已知椭圆的准线方程为4,x =±离心率为
1
2
,则椭圆的标准方程为()
2
2.12x A y +=2
2.1
2
y B x +=22.143
x y C +=22
.134
x y D +=5.数列{}n a 中,112,21n n a a a +==-,则10a 的值为()
.511
A .513
B .1025
C .1024
D 6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的1
7
是较小的两份之和,则最小的一份为()5.3
A 10.3
B 5.6
C 11.6
D 7.椭圆()22
22:10x y C a b a b
+=>>的左、右焦点分别为1F 和2F ,P 为椭圆C 上的动点,若
a =,满足
1290F PF ∠= 的点P 有()个
.2A 个
.4B 个
.0C 个
.1D 个
8.已知实数0,0a b >>且9a b ab +=,若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围为(

[).3,A +∞(].,3B -∞(].,6C -∞[)
.6,D +∞二.多项选择题(本大题共4小题,每小题5分,共计20分,在每小题给出的四个选项中,
至少有两个是符合题目要求的,请把答案填涂在答题卡相应位置上)
9.若实数0a >,0b >,1a b = ,若下列选项的不等式中,正确的是().2
A a b +≥2
≥22.2
C a b +≥11.2D
a b
+≤
10.对任意实数a ,b ,c ,给出下列结论,其中正确的是()
.A “a b =”是“ac bc =”的充要条件
.B “a b >”是“22a b >”的充分条件.C “5a <”是“3a <”的必要条件
.D “5a +是无理数”是“a 是无理数”的充要条件
11.设椭圆22
193
x y +
=的右焦点为F ,直线(0y m m =<<与椭圆交于A ,B 两点,则下述结论正确的是().A AF BF +为定值
.B ABF 的周长的取值范围是[]6,12.C 当m =ABF 为直角三角形
.D 当1m =时,ABF
12.已知数列{}n a ,{}n b 均为递增数列,{}n a 的前n 项和为n S ,{}n b 的前n 项和为n T ,且满足12n n a a n ++=,()
12n n n b b n N *+=∈ ,则下列结论正确的是()
.A
101
a <<.B 11
b <<.C 22n n
S T <.D 22n n
S T ≥三.填空题:本题共4小题,每小题5分,共20分。

13.命题“,0x R ax b ∀∈+≤”的否定是___________.
14.不等式210x kx -+>对任意实数x 都成立,则实数k 的取值范围是________.
15.若椭圆2215x y m +=的离心率为10
5
,则m 的值为________.
16.对于数列{}n a ,定义11222n n
n a a a A n
-+++= 为数列{}n a 的“好数”,已知某数列{}n a 的
“好数”12n n A +=,记数列{}n a kn -的前n 项和为n S ,若7n S S ≤对任意的n N *∈恒成立,则实数k 的取值范围是________.
四.解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求适合下列条件的椭圆的标准方程;
(1)与椭圆2212x y +=有相同的焦点,且经过点31,2⎛⎫
⎪⎝⎭;
(2)经过A 2,⎛ ⎝⎭
,B ⎛ ⎝⎭
两点.
18.(本小题满分12分)已知在等比数列{}n a 中,11a =,且2a 是1a 和31a -的等差中项(1)求数列{}n a 的通项公式;
(2)若数列{}n b 满足()
2n n b n a n N *=+∈,求数列{}n b 的前n 项和n
S 19.(本小题满分12分)已知函数2()2
f x ax bx a =+-+(1)若关于x 的不等式()0f x >的解集是()1,3-,求实数,a b 的值;(2)若2,0b a =>,解关于x 的不等式()0
f x >20.(本小题满分12分)某工厂年初用98万元购进一台新设备,第一年设备维修及燃料,动力消耗(称为设备的低劣化)的总费用为12万元,以后每年都增加4万元,工厂因新设备每年可收益50万元。

(1)工厂第几年开始获利?
(2)若干年后,该工厂有两种处理该设备的方案:①年平均获利最大时,以26万元出售该设备;②总获利最大时,以8万元出售该设备,问哪种方案对工厂合算?
21.(本小题满分12分)已知椭圆22
221(0)x y C a b a b
+=>>:的长轴长为4,且短轴的两个端点
与右焦点是一个等边三角形的三个顶点,O 为坐标原点。

(1)求椭圆C 的方程;
(2)过椭圆的右焦点F 作直线l ,与椭圆相交于,A B 两点,求OAB 面积的最大值,并求此时直线l 的方程。

22.(本小题满分12分)已知各项均为正数的两个数列{}{},n n a b 满足22112,n n n a a a +-=+2212log log 1,n n n a b b +=++且11 1.
a b ==(1)求证:数列{}n a 为等差数列;(2)求数列{}n b 的通项公式;
(3)设数列{}{},n n a b 的前n 项和分别为,,n n S T 求使得等式236m m i S a T +-=成立的有序数对
*(,)(,)m i m i N ∈.。

相关文档
最新文档