微积分(数学分析)练习题及答案doc

合集下载

微积分试题及答案

微积分试题及答案

微积分试题及答案1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。

解析:首先,我们需要求函数f(x)的导数。

对于一个二次函数 f(x) = ax^2 + bx + c,它的导数等于2ax + b。

因此,对于f(x) = 3x^2 - 2x + 1,其导数即为 f'(x) = 6x - 2。

接下来,我们需要求在 x = 2 处的导数。

将 x = 2 代入导数公式,得到 f'(2) = 6(2) - 2 = 10。

答案:函数f(x)在x = 2处的导数为10。

2. 求函数g(x) = sin(x) + cos(x)的定积分∫[0, π] g(x)dx。

解析:我们需要求函数 g(x) = sin(x) + cos(x) 在[0, π] 区间上的定积分。

首先,我们可以分别求 sin(x) 和 cos(x) 在[0, π] 区间上的定积分,然后将结果相加即可。

根据积分的基本性质,∫sin(x)dx = -cos(x) 和∫cos(x)dx = sin(x),所以:∫[0, π]sin(x)dx = [-cos(x)]|[0, π] = -cos(π) - (-cos(0)) = -(-1) - (-1) = 2∫[0, π]cos(x)dx = [sin(x)]|[0, π] = sin(π) - sin(0) = 0 - 0 = 0将上述结果相加,得到定积分的结果:∫[0, π]g(x)dx = ∫[0, π]sin(x)dx + ∫[0, π]cos(x)dx = 2 + 0 = 2答案:函数g(x) = sin(x) + cos(x)在[0, π]区间上的定积分为2。

3. 求曲线y = x^3在点(1, 1)处的切线方程。

解析:要求曲线 y = x^3 在点 (1, 1) 处的切线方程,我们需要确定切线的斜率和过切点的直线方程。

首先,我们求出这个曲线在点(1, 1)处的导数来获得切线的斜率。

微积分练习题带答案

微积分练习题带答案

微积分练习题带答案微积分是数学的分支之一,它研究的是函数的变化规律。

在微积分中,经常会出现各种各样的练习题,这些练习题有助于我们加深对微积分概念和原理的理解。

在这篇文章中,我们将分享一些微积分练习题,并附带答案,希望对你的学习有所帮助。

1. 求函数f(x) = 2x^3 - x^2 + 3x - 5的导数。

答案:f'(x) = 6x^2 - 2x + 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2)的导数。

答案:h'(x) = 2/x4. 求函数i(x) = ∫(0到x) t^2 dt的导数。

答案:i'(x) = x^25. 求函数j(x) = ∫(x到1) t^2 dt的导数。

答案:j'(x) = -x^26. 求函数k(x) = ∫(0到x) e^t * sin(t) dt的导数。

答案:k'(x) = e^x * sin(x)7. 求函数l(x) = e^(-x)的不定积分。

答案:∫ e^(-x) dx = -e^(-x) + C (C为常数)8. 求函数m(x) = 1/(x^2+1)的不定积分。

答案:∫ 1/(x^2+1) dx = arctan(x) + C (C为常数)9. 求函数n(x) = 2x * cos(x^2)的不定积分。

答案:∫ 2x * cos(x^2) dx = sin(x^2) + C (C为常数)10. 求函数o(x) = ∫(1到x) e^(t^2) dt的原函数。

答案:o(x) = ∫(1到x) e^(t^2) dt + C (C为常数)以上是一些微积分练习题及其答案。

通过解答这些题目,我们可以巩固对微积分概念和原理的理解,并提升解题能力。

微积分是应用广泛的数学工具,在物理、工程、经济等领域都有重要的应用,掌握微积分对于进一步深入学习这些领域十分必要。

微积分(数学分析)练习题及答案doc

微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。

在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。

下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。

一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。

答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。

答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。

答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。

答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。

答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。

答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = e^x。

答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。

3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。

答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分试卷(附答案)

微积分试卷(附答案)

微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。

9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。

A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。

(完整word版)《微积分》各章习题及详细答案

(完整word版)《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→x x k x 成立的k 为 。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。

解析:首先,我们需要找到函数的极值点。

极值点对应于函数的导数为零的点。

对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。

令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。

使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。

所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。

接下来,我们需要找到函数的拐点。

拐点对应于函数的二阶导数为零的点。

对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。

令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。

综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。

第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。

解析:切线方程的斜率 m 等于函数在给定点的导数。

对函数 f(x) = e^x 求导得到 f'(x) = e^x。

根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。

将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。

所以切线的斜率 m = 1。

切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。

由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。

将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。

综上所述,切线方程为 y = x + 1。

第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。

微积分练习100题及其解答

微积分练习100题及其解答
x 0 t x
2
1
x2

1
解: lim x e
x 0
2
1
lim
x2
et . t t
17.求极限: lim sin x ln x .
x 0
解: lim sin x ln x lim
x 0 x 0
1 ln x tan x sin x x lim lim 0. x 0 csc x x 0 csc x cot x x 1 x 2 1 x . 1 x2 lim x 1 1 x tan 2 1 x x
cos 2x 1 2 sin 2x lim 2 x 0 sin x 2 x sin 2 x x cos 2 x 2 sin 2x 6x cos 2x 2x2 sin 2x ; 2 sin 2x 1 2 x lim x 0 2 sin 2x 3 4 cos 2 x x sin 2 x 2x lim


2.求极限: lim
e x e sin x . x 0 x sin x
( x 0) ,∴ lim
解:∵ e x 1 ~ x
e x e sin x e x sin x 1 lim e sin x 1. x 0 x sin x x0 x sin x
x 0
2
13.求极限: lim
x1
1 1 . 1 x ln x
1 1 1 1 ln x 1 x x lim lim lim x 1 1 x x 1 x 1 1 x ln x (1 x) ln x ln x ; 解: x 1 x 1 1 lim lim x 1 1 x x ln x x 1 1 ln x 1 2

微积分基础考试题及答案

微积分基础考试题及答案

微积分基础考试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. 3x+2答案:A2. 曲线y=x^3-3x+1在x=1处的切线斜率为:A. 0B. 1C. -1D. 3答案:D3. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. x+C答案:A4. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. π/2D. ∞答案:B5. 函数f(x)=x^3+2x^2-5x+7的极值点个数为:A. 0B. 1C. 2D. 3答案:C6. 曲线y=e^x与直线y=ln(x)相切的切点坐标为:A. (1,1)B. (e,e)C. (ln(e),e)D. (e,ln(e))答案:A7. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C8. 函数f(x)=x^2-4x+3的单调递增区间为:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B9. 函数f(x)=x^3-3x的拐点个数为:A. 0B. 1C. 2D. 3答案:C10. 曲线y=x^2+2x+1与x轴的交点个数为:A. 0B. 1C. 2D. 3答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2+2x+1的最小值为_________。

答案:02. 函数f(x)=ln(x)的反函数为_________。

答案:e^x3. 曲线y=x^3+3x^2+2x+1在x=-1处的切线方程为_________。

答案:y=-x4. 函数f(x)=x^2-4x+3的极大值为_________。

答案:45. 曲线y=x^2与直线y=2x相切的切点坐标为_________。

答案:(1,1)三、计算题(每题10分,共30分)1. 计算定积分∫(0,1) (x^2-2x+1) dx。

微积分(数学分析)习题及答案.doc

微积分(数学分析)习题及答案.doc

统计专业和数学专业数学分析(3)练习题一 填空题1. 函数 xy xyz +=arcsin 的定义域是 . 2. 函数y x z -=的定义域是 .3. 设 )ln(),(22y x x y x f --=,其中 0>>y x ,则),(=-+y x y x f .4. 设 yx xy y x y x f tan ),(22-+=,则 =),(ty tx f .5. 设2R E ⊂为 点集,则E 在2R 中至少有一个聚点.6. 32),,(yz xy z y x f +=,则 =-)1,1,2(gradf 。

7. xyz z xy u -+=32在点)2,1,1(0P 处沿方向→l (其中方向角分别为00060,45,60)的方向导数为=→)(0P u l.8. ,y x z =其中,0>x ,0≠x 则=dz 。

9. 函数),(y x f 在),(00y x 处可微,则 =-∆df f 。

10. 若函数 ),(y x f 在区域D 上存在偏导数,且,0==y x f f ,则),(y x f 在区域上为 函数。

11. 由方程1(,)sin 02F x y y x y =--=确定的隐函数)(x f y =的导数'()f x = . 12. 设243340x y x y +-=, 则dy dx= . 13. 平面上点P 的直角坐标),(y x 与极坐标),(θr 之间的坐标变换公式为 .其雅可比行列式(,)(,)x y r θ∂=∂ .14. 直角坐标),,(z y x 与球坐标),,(θϕr 之间的变换公式为 . 其雅可比行列式(,,)(,,)x y z r ϕθ∂=∂ .15. 设平面曲线由方程0),(=y x F 给出, 它在点),(000y x P 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法线,其方程分别为切线: , 法线: .16. 设空间曲线由参数方程βα≤≤===t t z z t y y t x x L ),(),(),(:给出, 它在点0000000(,,)((),(),())P x y z x t y t z t =处的切线和法平面方程为 切线: ,法平面: . 17. 设空间曲线L 由方程组(,,)0,(,,)0F x y zG x y z =⎧⎨=⎩ 给出, 若它在点0000(,,)P x y z 的某邻域内满足隐函数定理的条件,则该曲线在点0P 处存在切线和法平面,其方程分别为切线: , 法平面: .18. 设曲面由方程0),,(F =z y x 给出,它在点),,(0000z y x P 的某邻域内满足隐函数定理条件,则该曲面在0P 处有切平面与法线,它们的方程分别是切平面: , 法线: . 19. 条件极值问题的一般形式是在条件组)(,,2,1,0),,,(21n m m k x x x n k <== ϕ的限制下,求目标函数 ),,,(21n x x x f y = 的极值.其拉格朗日函数是 , 其中m λλλ,,,21 为拉格朗日乘数.20. 若(,)f x y 在矩形区域R 上连续, 则对任何[]0,x a b ∈, 都有0lim (,)dcx x f x y dy →=⎰.21. (可微性)若函数),(y x f 与其偏导数),(y x f x∂∂都在矩形区域[][]d c b a R ,,⨯=上连续,则⎰=dcdy y x f x I ),()(在[]b a ,上可微,且(,)dcd f x y dy dx =⎰ .22. (可微性) 设),(),,(y x f y x f x 在[][]q p b a R ,,⨯=上连续,()()x d x c ,为定义在[]b a ,上其值含于[]q p ,内的可微函数,则函数⎰=)()(),()(x d x c dy y x f x F 在[]b a ,上可微,且'()F x = .23. (两个累次积分的关系)若),(y x f 在矩形区域[][]d c b a R ,,⨯=上连续,则(,)bdacdx f x y dy =⎰⎰ .24. 含参量反常积分(,)cf x y dy +∞⎰在[]b a ,上一致收敛的充要条件是:对任一趋于∞+的递增数列{}n A (其中c A =1),函数项级数 在[]b a ,上一致收敛. 25. 设有函数)(y g ,使得.,),(),(+∞<≤≤≤≤y c b x a y g y x f 若⎰+∞cdy y g )(收敛,则⎰+∞cdy y x f ),(在[]b a ,上 .26. (连续性)设),(y x f 在[][)+∞⨯,,c b a 上连续,若含参量反常积分⎰+∞=cdyy x f x I ),()(在[]b a ,上 ,则)(x I 在[]b a ,上 .27. (可微性)设),(y x f 与),(y x f x 在区域[][)+∞⨯,,c b a 上连续。

微积分综合练习题及参考答案精选全文完整版

微积分综合练习题及参考答案精选全文完整版

可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

微积分试题及答案

微积分试题及答案

微积分试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 在 \( x = 2 \) 处的导数是:A. 0B. 2C. 4D. 8答案:C2. 定积分 \( \int_{0}^{1} x dx \) 的值是:A. 0B. 0.5C. 1D. 2答案:B二、填空题1. 若 \( f(x) = 3x^3 - 2x^2 + x \),则 \( f'(x) \) 等于__________。

答案:\( 9x^2 - 4x + 1 \)2. 曲线 \( y = x^3 \) 与直线 \( y = 6x \) 相切的点的横坐标是__________。

答案:2三、简答题1. 请说明如何求函数 \( f(x) = \ln(x) \) 的导数。

答案:函数 \( f(x) = \ln(x) \) 的导数可以通过对数函数的导数公式求得,即 \( f'(x) = \frac{1}{x} \)。

2. 计算定积分 \( \int_{1}^{e} e^x dx \)。

答案:首先找到 \( e^x \) 的原函数,即 \( e^x \) 本身。

然后根据定积分的计算法则,代入上下限得到 \( e^e - e \)。

四、计算题1. 求曲线 \( y = x^2 + 3x - 2 \) 在 \( x = -1 \) 处的切线斜率及切点坐标。

答案:首先求导得到 \( y' = 2x + 3 \)。

将 \( x = -1 \) 代入得到切线斜率 \( m = 1 \)。

切点坐标为 \( (-1, 0) \)。

2. 计算由曲线 \( y = x^2 \),直线 \( y = 4x \) 及 \( x \) 轴所围成的平面图形的面积。

答案:首先求出两曲线的交点,然后计算定积分 \( \int_{0}^{2} (4x - x^2) dx \),结果为 \( \frac{16}{3} \)。

五、证明题1. 证明 \( \frac{d}{dx} [(x^2 + 1)^5] = 10x(x^2 + 1)^4 \)。

微积分(数学分析)练习题及答案doc

微积分(数学分析)练习题及答案doc

微积分(数学分析)练习题及答案doc统计专业和数学专业数学分练习题计算题1.试求极限2.试求极限3.试求极限4.试讨论5.试求极限lim2?xy?4xy222。

22(x,y)?(0,0)(x,y)?(0,0)lim1?cos(x?y)(x?y)e(x?y)sinxy224xy2..(x,y)?(0,0)lim1xsinylim(x,y)?(0,0)x?Y22(x,y)?(0,0)limx?y2.21? 十、Y16.你呢?F(x?Y,XY),F有连续的偏导数,求7z?arctanxy,y?前男友,求你了dzdx.UU十、y8。

找到抛物面Z?2x2?点m(1,1,3)处Y2的切平面方程和法向方程。

9找到f(x,y)?2x2?xy?y2?6x?3岁?5泰勒公式(1,±2)。

10找到函数f(x,y)了吗?E2x(x?Y2?2Y)的极值。

11.描述隐函数的定义12.叙述隐函数存在唯一性定理的内容.13.叙述隐函数可微性定理的内容.14.用隐函数解释反函数的存在性和导数。

15讨论笛卡尔叶线x?y?3axy?033确定的隐函数y?F(x)的一阶和二阶导数。

16讨论等式f(x,y,z)?xyz3?x?y?z?023在原点附近确定的二元隐函数及其偏导数。

17设函数f(x,y,z)?XYZ,方程x?y?z?3xyz.22223(1)验证了可微隐函数y可以由上述方程在点P0(1,1,1)附近确定吗?Y(Z,x)和Z?z(x,y);(2)找到FX(x,y(x,z),z)和FX(x,y,z(x,y)),以及它们在点y的位置?f(x)处的值。

18.讨论方程式1f(x,y,u,v)?u2乐队?v2?x2?Y0克(x,y,u,v)??U五、xy?1.0在点P0(2,1,1,2)附近,我们可以确定什么样的隐函数数组并求其偏导数。

19.设定方程式u2v2x2y21,uvxy0.问在什么条件下,(1)从方程组可以唯一地确定u和V是X和y的可微函数?(2)从方程组可以唯一地确定u,X是V,y的可微函数?20.求球面x2?y2?z2?50与锥面x2?y2?z2所截出的曲线的点(3,4,5)处的切线与法平面方程。

微积分练习100题及其解答

微积分练习100题及其解答

《微积分》练习100题及其解答1.求极限:.⎪⎭⎫ ⎝⎛--→x e x x 111lim 0解:∵,)0(~1→-x xe x ∴.()2121lim 1lim 11lim 111lim 02000-=-=+-=-+-=⎪⎭⎫ ⎝⎛--→→→→x e x e x e x e x x e x x x x x x x x x 2.求极限:.xx e e x x x sin lim sin 0--→解:∵,∴.)0(~1→-x xe x1sin 1lim sin lim sin sin 0sin 0=--⋅=---→→xx e e x x e e xx x x x x x 或者:记,则当时,在之间满足Lagrange 定理的条件,存x e x f =)(0≠x )(x f x x sin ,在(介于与之间),使得,从而ξξx x sin )(sin sin ξf x x e e xx '=--,所以,.1)0()(lim sin lim 0sin 0='='=--→→f f x x e e x x x x ξ1sin lim sin 0=--→xx e e x x x 3.求极限:.()x xx x e1lim+→解:;()11200lim lim 1xxe e xx xx x x x e xe e e →→⎡⎤⎛⎫⎢⎥+=⋅+= ⎪⎢⎥⎝⎭⎣⎦或者.()()12000ln 1limlim 2lim x x xx x x x x e x e e x e xe x →→→++==⇒+=+4.求极限:.01lim 1xx x +→⎛⎫+ ⎪⎝⎭解:,而,所以,.01lim ln 101lim 1x xx x x e x +→+⎛⎫+ ⎪⎝⎭→⎛⎫+= ⎪⎝⎭0ln(1)1lim ln 1lim0t x t x t x +→+∞→⎛⎫++== ⎪⎝⎭01lim 11xx x +→⎛⎫+= ⎪⎝⎭5.求极限:.())0,0,0(3ln ln lim0>>>-++→c b a xc b a x x x x解:.()00ln ln 3ln ln ln ln limlim 3x x x x x x x x x x x a b c a a b b c c abc xa b c →→++-++==++6.求极限:.()00x αα→>解:.()()112110001101lim lim 10111x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++7.求极限:.lim(0)x αα→>解:.()()22211000112202limlim022211x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++8.求极限:.(0)x αα→>解:.012x α→=-9.设函数在内,讨论的单调性.)(x f ()∞+∞-,0)0(,0)(≤>''f x f xx f y )(=解:,,⎥⎦⎤⎢⎣⎡-'=-'='⎪⎭⎫ ⎝⎛='x x f x f x x x f x f x x x f y )()(1)()()(20)0()()(--≤x f x f x x f 当时,,而,则,即,从而此时0>x )0()(f xx f '≤0)(>''x f )0()(f x f '≥'0>'y 递增;同理,当时,递增.x x f y )(=0<x xx f y )(=所以,在内单调增加.xx f y )(=()∞+∞-,10.设函数,求:(1)的极大值;(2)()220()2(0)xf x a ta dta =-+->⎰)(x f M 求极小时的值.M a 解:(1),而,所以xx f a x x f 2)(0)(=''±=⇒='0>a ;a a a f M 232)(3-=-=(2)时,,此时,0>a 102223223=⇒=-='⎪⎭⎫ ⎝⎛-='a a a a M a04>=''a M的极小值为.M 34)1(-=M 11.求极限:.22011lim sin x x x →⎛⎫-⎪⎝⎭解:()()2222224000sin sin 11sin lim lim lim sin sin x x x x x x x x x x x x xx →→→-+-⎛⎫-== ⎪⎝⎭.320000sin sin 1cos sin 1limlim 2lim 2lim 363x x x x x x x x x x x x x x →→→→-+-====12.求极限:.⎪⎭⎫ ⎝⎛-→x x x 220sin 11lim 解:2222222200011sin sin 22lim lim lim sin sin 2sin sin 2x x x x x x x x x x xx x x x →→→--⎛⎫-== ⎪+⎝⎭;222000cos 212sin 2limlimsin 2sin 2cos 22sin 26cos 22sin 22sin 212lim 2sin 234cos 2sin 22x x x x xx x x x x x x x x xx x x x x x x →→→--==+++--==-+-13.求极限:.⎪⎭⎫⎝⎛--→x x x ln 111lim 1解:;211ln 11lim ln 11lim ln 111lim ln )1(1ln lim ln 111lim 11111-=---=--+=--+=-+-=⎪⎭⎫ ⎝⎛--→→→→→x x x x x x xx xx x x x x x x x x x x 14.求极限:.1lim arcsin xx e x +→解:∵,∴.arcsin ~(0)x x x →11100lim arcsin lim lim t t xx x t x x ee x xe t ++=→+∞→→=====+∞15.求极限:.⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim解:.22221arctan 21lim arctan lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞⎛⎫-- ⎪⎛⎫⎝⎭+-==== ⎪+⎝⎭-16.求极限:.2120lim x x x e→解:.22112lim lim t tx x x t e x et=→→+∞====+∞17.求极限:.lim sin ln x x x +→解:.00001ln tan sin lim sin ln lim lim lim 0csc csc cot x x x x x x x x x x x x x x++++→→→→===-=-18.求极限:.1lim x -→解:11lim x x -→→=112sec 24x x ππ--→→===19.求极限:.xx xx x sin tan lim 20-→解:.22232200000tan tan sec 11cos sin21lim lim lim lim lim sin 3363x x x x x x x x x x x x x x x x x x →→→→→----=====20.求极限:.()ln 1ln limcot x x xarc x→+∞+-解:()222222111ln 111lim lim lim 1lim 1.111cot 1111x x x x x x x x x x arc x x xx x x →+∞→+∞→+∞→+∞⎛⎫+-- ⎪+⎝⎭==+==-+⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭21.求极限:.()2lim sec tan x x x π→-解:.()2221sin cos lim sec tan limlim 0cos sin x x x x xx x x x πππ→→→--===-22.求积分:.cos sin 1sin 2x xdx x --⎰解:()2cos sin cos sin 11sin 2cos sin cos sin x x x x dx dx dx x x x x x --==---⎰⎰⎰.1ln csc cot 2244sin 4dx x x C x πππ⎛⎫⎛⎫=-=---+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭⎰23.求积分:.cos sin 1sin 2x xdx x -+⎰解:.()()()22cos sin 11cos sin cos sin sin cos sin cos x xdx d x x C x xx x x x -=+=-++++⎰⎰24.求积分:.cos sin 1cos 2x xdx x -+⎰解:()2cos sin cos sin 1sec tan sec 1cos22cos 2x x x x dx dx xdx xdxx x --==-+⎰⎰⎰⎰.()1sec ln sec tan 2x x x C =--++25.求积分:.dx xxx ⎰--2cos 1sin cos 解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x --==--⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =-+-+26.求积分:.cos sin 1cos 2x xdx x +-⎰解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x ++==+-⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =---+27.求积分:.1sin 1cos2xdx x--⎰解:()221sin 1sin 1csc csc 1cos 22sin 2x x dx dx xdx xdx x x --==--⎰⎰⎰⎰.()1cot ln csc cot 2x x x C =-+-+28.求积分:.1sin 1cos2xdx x -+⎰解:()221sin 1sin 1sec sec tan 1cos 22cos 2x x dx dx xdx x xdx x x --==-+⎰⎰⎰⎰.()1tan sec 2x x C =-+29.求积分:.1cos 1cos2xdx x-+⎰解:()221cos 1cos 1sec sec 1cos22cos 2x x dx dx xdx xdx x x --==-+⎰⎰⎰⎰.()1tan ln sec tan 2x x x C =-++30.求积分:.1cos 1cos2xdx x--⎰解:.()()221sin 1sin 1csc csc 1cos22sin 211cot ln tan cot ln csc cot 222x x dx dx xdx xdxx x x x C or x x x C--==--⎛⎫=-++-+-+ ⎪⎝⎭⎰⎰⎰⎰31.求积分:.1arctan21xedx x +⎰解:.1arctan11arctan arctan 21arctan 1xx x e dx e d e C x x=-=-++⎰⎰32.求积分:.2x dx解:222211222xe t x x e dx =⎛⎫==== ⎪⎝⎭.(2211ln ln 222x x e c e C ⎛ '=++=++ ⎝33.求积分:.211x dx e +⎰解:⎰+dx e x 211⎰⎰----++-=+=)1(112112222xx x x e d e dx e e C e x ++-=-)1ln(212或者:⎰⎰+=+=xxx x x x de e e dx e e e 222222)1(121)1(.[]C e x de e de e xx x x x ++-=⎥⎦⎤⎢⎣⎡+-=⎰⎰)1ln(221111212222234.求积分:.()21xxe dx x +⎰解:()()()2211(1)11111xxx xxxe xe xe dx d x xe d d xe x x x x x ⎛⎫=+=-=-+ ⎪+++⎝⎭++⎰⎰⎰⎰.11x x xxe e e dx C x x=-+=+++⎰35.求积分:.211dx x x -+⎰解:2221141133111422dx dx dxx x x x ==-+⎛⎫⎤⎫+-+- ⎪⎪⎥⎝⎭⎭⎦⎰⎰⎰.211122112d x x C x ⎤⎤⎫⎫=--+⎪⎪⎥⎥⎭⎭⎦⎦⎤⎫+-⎪⎥⎭⎦⎰36.求积分:.2141dx x x -+⎰解:()2221111413231dx dx dxx x x ==-+---⎰⎰⎰.21ln ln 3661d C C ⎫==+=⎪⎭⎫-⎪⎭⎰37.求积分:.dx解:22111ln 1111u u du du C u u u u -⎛⎫⎛⎫=-=+ ⎪ ⎪--++⎝⎭⎝⎭⎰⎰.))ln 2ln12ln1Cor x C or x C ⎛⎫=+-+-+ ⎝38.求积分:.解:设,则,,x e u +=1)1ln(2-=u x du u udx 122-=222112111u du du u u u ⎛⎫==+- ⎪--+⎝⎭⎰⎰12ln ln 1u u C C u ⎛⎫-⎛⎫=++=+ ⎪+⎝⎭.)2ln1orx C -+39.求积分:.21443dx x x +-⎰解:.21121ln 443823x dx C x x x -=++-+⎰40.求积分:.23222x dx x x --+⎰解:222323*********(1)x x dx dx x x x x x ⎡⎤--=+⎢⎥-+-+++⎣⎦⎰⎰.()23ln 22arctan(1)2x x x C =-++++41.求积分:.2dx x⎰解:设,则,,t x sin 2=t x cos 242=-tdt dx cos 2=.()222cot csc 1cot arcsin 2x dx tdt t dt t t C C x x ==-=--+=--+⎰⎰⎰42.求积分:.2dx x ⎰解:设,则,,θtan 2=x 2sec θ=θθd dx 2sec 2=.()Cxx x x C x x x x x x C d d d dx x x ++-++=++++--+-=++---=⎪⎭⎫⎝⎛-+=-==+⎰⎰⎰⎰22222222222244ln 44ln 2141sin 1sin ln 21csc sin sin 11sin 1sin sin )sin 1(1sin cos 14θθθθθθθθθθθθ43.求积分:.⎰++dx x x 1)2(1解:消去根号,记,t =122122+=+=-=t x tdtdx t x.()222arctan 21tdtt C C t t ==+=++⎰44.求积分:.⎰-+dx x x x21解:记,3122222+=+=+=⇒-=t x tdtdx t x x t ()()⎰⎰⎰⎰++=⎪⎭⎫ ⎝⎛++=++=-+dt t t dt t t t dt t t dx x x x 21222112232212222.C x x C tt +-+-=++=22arctan 2222arctan2245.求积分:.⎰++dx x x x21解:记,1122222-=+=-=⇒+=t x tdtdx t x x t ()()⎰⎰⎰⎰-+=⎪⎭⎫ ⎝⎛-+=--=++dt t t dt t t t dt t t dx x x x 21222112212212222.C x x x C t t t +++-+++=++-+=2222ln 222222ln 22246.求积分:.2dx x -⎰解:记,2213222t t t x dx tdt x +-=⇒==-=,.2222312212623332t dx dt dt t dt x t t t t C C⎛⎫==+=+ ⎪----⎝⎭=+=+⎰⎰⎰⎰47.求积分:.解:记,232212122+=+=-=⇒+=t x tdtdx t x x t .Cxx C t t dt t t dt t dt t t dx x x ++-+=+-=+-=⎪⎭⎫ ⎝⎛+-=+=++⎰⎰⎰⎰321arctan 322123arctan3223162331232221222248.求积分:.⎰++dx x 3111解:记,dt t dx t x x t 23323,211=-=⇒+=.22233313331ln 1212142233(1)ln 142t dx dt t dt t t t C t t x C ⎛⎫==-+=-+++ ⎪++⎝⎭=+-+++⎰⎰49.求积分:.()⎰-dx x xx 2321arcsin 解:设:,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1lnln 1ln 12x xu u u udx d u du ud uu u x u u udu u u u u C C x x C ===-=-=-++==-++-+⎰⎰⎰⎰⎰50.求积分:.()()2213xdx xx ++⎰解:.()()()222222211111ln 4134313xx dx d x C x x x x x ⎛⎫+⎛⎫=-=+ ⎪ ⎪+++++⎝⎭⎝⎭⎰⎰51.假设某种商品的需求量,商品的总成本是,每1200080Q P =-2500050C Q =+单位商品需要纳税2元,试求使销售利润最大时商品单价(单位:元)和最大利润额.P 解:收入,28012000)8012000(P P P P PQ R -=-==总成本,P Q C 40006250005025000-=+=总利润,649000161608022-+-=--=P P Q C R L 边际利润,16160160+-='-'='P C R L 令,得,此时,有最大利润(元).0='L 101=P 0160<-=''L 167080=Max L 52.一商家销售某种商品的价格(万元/吨),为销售量,商品的成本函数x P 2.07-=x 是(万元).(1)若每销售1吨商品,政府征税t (万元),求商家获取最大利润时13-=x C 的销售量;(2)t 为何值时,政府税收最大?解:(1)收入,总成本,22.07)2.07(x x x x Px R -=-==13-=x C 税收,总利润,tx T =1)4(2.02+-+-=--=x t x T C R L 边际利润;令,得,此时,有最t x L -+-='44.00='L t x 5.210-=04.0<-=''L 大利润;(2),,令,得,所以当时政府税25.210t t tx T -==t T 510-='0='T 2=t 2=t 收最大.53.求积分:.()322arcsin 1x xdx x -⎰解:设,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1ln 1ln 1.2x xu u u udx d u du ud u u ux u u udu u u u u C Cx x C ===-=-=-++==++-+⎰⎰⎰⎰⎰54.已知的一个原函数为,求积分:.()f x ()1sin ln x x +()xf x dx '⎰解:∵,()1sin ()1sin ln cos ln xf x x x x x x'+=+=+⎡⎤⎣⎦∴()()()()xf x dx xdf x xf x f x dx'==-⎰⎰⎰.()1sin cos ln 1sin ln x x x x x x C =++-++55.设是三阶可导函数,,而.求.()f t ()0f t ''≠()()()x f t y tf t f t '=⎧⎨'=-⎩33d y dx解:由已知,,,,从而;()dx f t dt ''=()dy tf t dt ''=dy dy dt t dx dx dt ==1d dy dt dx ⎛⎫= ⎪⎝⎭,.()221d y d dy dx dt dx dt dx f t ⎛⎫== ⎪''⎝⎭()()()323321()d f t d y d d y f t dx dx dx d f t f t ⎡⎤⎢'''''⎛⎫⎣⎦===- ⎪'⎡⎤''⎡⎤⎝⎭⎣⎦⎣⎦56.设,求.()22tan()sec x yx x y tdt x y ---=≠⎰22d ydx解:对等式两边求导.得,()()()()222sec 1sec 1x y y x y y ''---=--整理,得,2sin ()y x y '=-()()()222sin cos 1d yx y x y y dx '∴=---.()()()21sin 2()cos sin 22y x y x y x y '=--=--57.已知,其中二阶可微,求.()y f x y =+()f u 22d ydx 解:,.()()1y f x y y '''=++()'1()f x y y f x y '+∴='-+对两边再求导,()()1y f x y y '''=++,()()()21y f x y y y f x y ''''''''=++++.()()()211y f x y y f x y '''++''∴='-+3"()[1'()]f x y f x y +=-+58.已知,求.0sin ()xtf x dt t p =-ò0()f t dt p ò解:由已知,,或sin ()xf x xp ¢=-sin ()()x f x xf x p ¢¢=-01cos sin ()()t t tt xdx f x dx xf x dxp ¢¢-==-òòò,()(0)()()()()()t tt f t f xf x f x dx f t tf t f x dx p p p =--+=-+òò取,有,t p =021cos ()()()f f f x dx pp p p p p =-=-+ò.()2f t dt p\=ò59.求积分:.121211x x x e x +æö÷ç+-÷ç÷çèøò解:1111122222111112222221111x x x x x x x x x x I x e dx e dx x e dx e dx xd e x x +++++æöæöæö÷ç÷÷çç÷=+-=+-=+ç÷÷çç÷÷÷ççç÷çèøèøèøòòòòò.21521232x x xee +==60.求极限:.2240sin lim x x xx®-解:224300sin sin sin lim lim x x x x x x x x x x x ®®-+-=×302sin cos 222lim x x xx x®-=.3022sin cos 2lim 8t t t t t ®-=2011cos lim 2t t t ®-=2202sin 12lim 2t t t ®=20sin 12lim 42t t t ®æö÷ç÷ç÷çç=çç÷ç÷÷çèø14=而,22223200000sin sin sin 1cos 1sin 1lim lim lim 2lim 2lim sin 3323x x x x x x x x x x x x x x x x x x x ®®®®®-+--=×==´=请问以上方法错在哪里?61.计算.x ò解:记,代入,得()221ln 1x u e u x u ==+=+原式()()222ln 1121u u uduu u ++=+ò()()22222ln 12ln 121u u du u u duu =+=+-+òò.()22ln 12222u u u arctgu c c =+-++=-++62.求积分:.()12ln 11x dx x++ò解:令,,,,11t x t -=+211x t +=+()221dt dx t =-+()()22222111111t t x t t +æö-ç+=+=ççè++代入,则()12ln 11x I dx x +=+ò()()()()21122200ln 1122ln 11211x t I dx dt x t t t ++==×++++òò()()1112220001120ln 2ln 1ln 1ln 211112ln 2ln 214t x dt dt dx t t xI dt t p-++==-+++\==+òòòò.112011ln 221I dx x \=×+òln 28p =63.求积分:1ò解:记212t x t dx tdt==-=-当时,;当时,,则0x =t 1=1x =0t =原式.110202212dt arctgtt p ===-ò64.设在内有意义,且(1)可导;(2)有反函数;(3)()F x ()0,+¥()x j .求.()()5322115F x t dt x x j æö÷ç÷=-ç÷ç÷èøò()F x 解:由(3)可知,时,,0x =()()010F t dt j =ò()01F =记,则为其反函数()x F y =()y x j =且或()()F y y j =()()F x xj =对(3)的式子两边求导,有,即.()()()23321123F x F x x x j ¢=- ()23321123x F x x x ¢×=-化简有()F x ¢=()23321132F x dx x x c æö\==-+ò而,故.()01F =()233211132F x x x =-+65.求积分:1ò解:11I -==òò.112-==òò12arcsin tp ==66.求积分:1ò解:令sin 02x t t p =<<.()22202200sin cos cos 1cos 1cos 4t d t I dt arctg t tt p pp p==-=-=++òò67.证明:.()4011212n tg xdx n np<<+ò证明:记,则.14201n nn t I tg xdx dt t p==+òò()11212n I n n<<+68.求积分:.244sin 1xxdx ep p --+ò解:.224404sin 11sin 111x x x x dx xdx e e e pp p ---æö÷ç=+÷ç÷çèø+++òò2402sin 8xdx p p -==ò69.设,且,则方程0在()[],f x C a b Î()0f x >()()1xxabf x dx dx f x +=òò(),a b内有几个根.解:记,,()()()1xxabF x f t dt dt f t =+òò()()()110abbaF a dt dt f t f t ==-<òò,而.;()()0baF b f x dx =>ò()0f x >[],x a b Î()()()10F x f x f x ¢=+>在内严格单调增加.因此,在内只有一个根.()F x \(),a b ()F x (),a b 70.在上连续可微,且满足.试证存在一点.使()f x [)0,1()()1212f xf x dx =ò()0,1x Î.()()0f f x x x ¢+=证:设.则,()()F x xf x =()()0000F f =´=.()()()()112211122F f xf x dx F x dx =´==´òò由于在上可微,由积分中值定理,必存在一点,使得()F x []0,110,2h æö÷çÎ÷ç÷çèø,在上,满足Rolle 定理的三个条件,固而存在()()()1122F F F h h =´´=[],1h ()F x ,使得.即.x (),1h Î()0,1Ì()0F x ¢=()()0f f x x x ¢+=71.设求,.()11010x x xe x f x e x ìïïïï¹ï=íï+ïïï=ïî()0f -¢()0f +¢解:由知()()()000limx x f x f x f x x x ®-¢=-()0f -¢()()11000lim lim lim 0011txt t x x x f x f e e x e e --®-¥®®-====-++()0f +¢()()11000lim lim lim 1011txt t x x xf x f e e x ee ++®+¥®®-====-++另,时0x ¹()1121111xx x e e x f x e æö÷ç÷-+ç÷ç÷èø¢=æö÷ç÷+ç÷ç÷èø;()0f -¢()1121011lim lim 1xx x x xe e xf x e --®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()121lim01u u u xu u e u e e =®-¥-+¾¾¾®=+()0f +¢()1121011lim lim 1xx x x xe e xf x e ++®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()21lim1u u u u e u e e ®+¥-+=+()()()11lim21u u u u u uu e u e e e e e ®+¥-++-=+()22lim21u uu uu e ue e e ®+¥-=+.()221lim lim 1221u u u u u u e u e e e ®+¥®+¥--===+72.设在上连续,且,证明:必存在,使()f x []0,n ()()()0f f n n N =Î()0,n x Î.()()1f f x x +=证明:记,则在上连续,因而有最大(小)值()()()1x f x f x j =+-()x j []0,1n -,,;()M m ()m x M j ££[]0,1x n Î-而,,…,;()()()010f f j =-()()()121f f j =-()()()11n f n f n j -=--从而,()()()1110n n k k k f k f k m M nnj --==éù+-ëû£==£åå故而,必存在,使,即()0,n x Î()0j x =.()()1f f x x +=73.证明:函数在上一致连续.3)(x x f =[]1,0证明:任取两点,,不妨设,则,考虑到1x []1,02∈x 21x x ≠03231≠-x x ()321232312132232132121323121)()(x x x x x x x x x x x x x x x f x f +--≤++-=-=-;()2323121323121)()(x x x x x x x f x f --≤-=-即;2133231321)()(x x x x x f x f -≤-=-所以,对于任意小的正数,取,当时,必有0>ε3εη=η<-21x x 成立,ε<-≤-=-321323121)()(x x x x x f x f 故而函数在上一致连续.3)(x x f =[]1,074.函数在上有定义,且(1),(2)对于在,)(x f ()∞,0)1()(lim 1f x f x =→0>∀x ,则(为常数).)()(2x f x f =C x f ≡)(C 证明:任取,记,,,…,()∞+∈,0x x x =1x x x ==124123xx x x ===,….则1211-==-n x x x n n 由可知,,即)()(2x f x f =)()(x f x f =;)()()()()(321n x f x f x f x f x f ===== 而注意到,故)0(1lim >=+∞→x x n n ;)0(1lim lim 121>==-+∞→+∞→x x x n n n n 而,从而)1()(lim 1f x f x =→;)1()lim ()(lim )(11f x f x f x f n x n x ===→→所以,(为常数).C x f ≡)()1(f C =75.求极限:.21n n n tan n lim ⎪⎭⎫ ⎝⎛∞→解:注意到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛n tan n ln n exp n tan n n 1122,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-⋅=11111112n tan n n tan n ln n tan n n exp 且,111111=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+∞→ntan n n tan n ln lim n 而22111tan lim 11tan lim n n n n n n n n -=⎪⎭⎫ ⎝⎛-∞→∞→30201tan lim1tan lim y y y y y y y y ny -=-=→→=.yy tan lim y y sec lim y y 31331220220==-=→→故.e n tan n lim n n 3121=⎪⎭⎫⎝⎛∞→76.已知,,求.12a =()11112n n n a a n a +⎛⎫=+> ⎪⎝⎭lim n n a →∞解:很明显,,,,,12a =0n a >11112n n n a a a +⎛⎫=+≥ ⎪⎝⎭()12111122n n n a n a a +⎛⎫=+≤>⎪⎝⎭所以,,单调有界,存在;1212n n a a a +≤≤≤≤= {}n a lim n n a →∞记,则由得,注意到,解得.lim n n a l →∞=1112n n n a a a +⎛⎫=+ ⎪⎝⎭112l l l ⎛⎫=+ ⎪⎝⎭21≤≤l 1l =77.设函数,求.xx y +=12()n y 解:,,11112++-=+=x x x x y 2111111⎪⎭⎫⎝⎛+-='⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-='x x x y ,()()322121111+-='⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=''x x y 由数学归纳法可得:.()()())1(1!11>+-=+n x n yn n n 78.设函数在区间上连续,在内可导,且,()x f []0,1()0,1()()010==f f .试证:121=⎪⎭⎫ ⎝⎛f (1)存在,使;1,12η⎛⎫∈⎪⎝⎭()ηη=f (2)对任意实数,必存在,使得.λ()0,ξη∈()()1f f ξλξξ'--=⎡⎤⎣⎦证明:(1)设,则在区间上连续,在内可导,且()()h x x f x =-()h x []0,1()0,1,,,则存在,,即()00h =()11h =11022h ⎛⎫=-< ⎪⎝⎭1,12η⎛⎫∈ ⎪⎝⎭()()0h f ηηη=-=.()ηη=f (2)记,在区间上连续,在内可导,且,()()xF x f x x e λ-=-⎡⎤⎣⎦[]0,1()0,1()00F =,则由定理,必存在,使得,即()0F η=Rolle ()0,ξη∈()0F ξ'=.()()1f f ξλξξ'--=⎡⎤⎣⎦79.判断级数的敛散性.11nn ¥=åò提示:.220001122n xdx n n>=®<òòò80.证明:当时,.0>x ()x x xx<+<+1ln 1证明:记,则在上连续因而可积.tt f +=11)()(t f []x 0由积分第一中值定理,比存在一点,使得:()x 0∈ξ,()()x f dt t x x⋅=+=+⎰ξ0111ln 即.()x x ξ+=+111ln 而,,x <<ξ011111<+<+ξx ∴,)0(11><+<+x x x x x ξ即.()x x x x<+<+1ln 181.求在条件下,()22212312323,,2334f x x x x x x x x =+++2221231x x x ++=()123,,f x x x 的最大值和最大值点.解:利用拉格朗日乘数法,设,()()22222212312323123,,,23341L x x x x x x x x x x x λλ=++++++-,则123112233322221234206240624010x x x L x x L x x x L x x x L x x x λλλλ'=+=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩.1231222312323(1)020121(2)05x x x x Maxf x x x x x Maxf x x λ≠⇒=-⇒==→=±⇒=⎧+=⎪=⇒⇒==⇒=⎨=⎪⎩82.设随机变量,问:当取何值时,落入区间的概率最大?()2~,X N μσσX ()1,3解:因为,()212~x X f x σ⎛⎫- ⎝⎭=,{}133113()X P X P g σσσσσσ∆⎧⎫⎛⎫⎛⎫<<=<<=Φ-Φ=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭利用微积分中求极值的方法,有223311()g σσσσσ⎛⎫⎛⎫⎛⎫'''=-Φ+Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;222222221311111422231111130e e σσσσ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎢⎥==-=⎢⎥⎣⎦令得,则;又,故.404ln 3σ=0σ=0()0g σ''<0σ=故当落入区间的概率最大.σ=X ()1,383.设,讨论方程的实数根.x e x f x λ-=)(0=-x e x λ解:(1)显然,当时,方程没有实根;0λ=0=-x e x λ(2)当时,方程有唯一实根;0λ<0=-x e xλ(3)当时,;曲线为下凸的,0>λ0)(,)(>=''-='x x e x f e x f λx e x f x λ-=)(呈∪型;由可知,驻点,极小值,0)(=-='λx e x f λln 0=x )ln 1()(0λλ-=x f 由此可知,当时,方程没有实根;e <<λ00=-x e x λ当,极小值,方程只有一个实根;e =λ0)ln 1()(0=-=λλxf 0=-x e x λλln 0=x 当,极小值,方程有2个实根.e >λ0)ln 1()(0<-=λλxf 0=-x e xλ84.函数的单调增减区间、凹凸区间与极值.()()()211f x x x =-+解:,()()()()()()()()()22111211131f x x x ,f x x x x x x '=-+=++-+=+-由得驻点:;()0f x '=113x ,=-由上可知,函数在与内单调递增,在内递减;极()f x ()1,-∞-13,⎛⎫+∞ ⎪⎝⎭113,⎛⎫- ⎪⎝⎭大值,极小值;()10f -=132327f ⎛⎫=-⎪⎝⎭由可得,因而函数曲线在内()()()211f x x x =-+()62f x x ''=+13,⎛⎫-∞- ⎪⎝⎭,函数曲线上凸;在内下凸,如下图.()0f x ''<13,⎛⎫-+∞ ⎪⎝⎭85.已知收益函数为,其中为价格,为需求量,求需求弹性时260R=Q Q -P Q 2d ε=-的边际收益.MR 解:因为,所以需求函数,边际收益函数为,且260R=Q Q -60P Q =-602R =Q '-需求弹性函数为;60601d P dQ Q Q dP Q Qε-==-=-当需求弹性时,,此时的边际收益.2d ε=-20Q =()20604020MR R '==-=86.设函数,求其渐近线.xx exe x f y 111)(+==解:首先考虑其水平渐近线和垂直渐近线:x()1,-∞-1-113,⎛⎫- ⎪⎝⎭1313,⎛⎫+∞ ⎪⎝⎭()f x '+0-0+()f x 增加极大值递减极小值递增因为,,,所以,1lim 1=∞→x x e +∞=+→x x e 100lim 0lim 100=-→xx e ;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e+-→+∞→+∞→⎛⎫==== ⎪++⎝⎭+;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e--→-∞→-∞→⎛⎫==== ⎪++⎝⎭+;110011limlim lim (1)(1)1t x t t x t t xxee t t e t e x e-→∞→→⎛⎫===∞=⎪++⎝⎭+故而没有水平渐近线和垂直渐近线;xx exex f y 111)(+==由于,()111limlim 21xx x xf x e a x e →∞→∞===+()1111111211lim lim lim 2211x x x x x x x x xe x e xe b fx x x e e →∞→∞→∞⎡⎤⎛⎫-+⎢⎥⎡⎤ ⎪⎡⎤⎝⎭⎢⎥⎢⎥=-=-=⎢⎥⎢⎢⎥⎣⎦++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,11011111122lim lim 2(1)41x t t x t xx xe e t t e x e→∞→-+-⎛⎫==== ⎪+⎝⎭+故而有斜渐近线:.xx exe x f y 111)(+==4121+=x y 87.求函数曲线的渐近线.()1ln 1x y e x=++解:显然,,为其垂直渐近线;()01lim ln 1x x e x→⎡⎤++=∞⎢⎥⎣⎦0x =,为其水平渐近线;()()1lim ln 1lim ln 10x xx x e e x →-∞→-∞⎡⎤++=+=⎢⎥⎣⎦0y =又,,,因而()()11ln 1ln 1x x y e x e x x -=++=+++()1lim ln 10x x e x -→+∞⎡⎤++=⎢⎥⎣⎦为其一条斜渐近线.y x=88.若,试证明:与具有相同的敛散性.lim (0)n n a a a →∞=≠∑∞=+-11n n n a a ∑∞=+-1111n nn a a 证明:问题为讨论两个正项级数的敛散性,可以用比较法的极限形式,因为不是具体的级数形式.记,则,111nn n a a V -=+0,0>>n n V U ==n n n V U ∞→limnn nn n a a a a 11lim11--=++∞→1.lim +∞→n n n a a )0(2≠a 可见,与具有相同的敛散性.∑∞=+-11n n n a a∑∞=+-1111n nn a a 89.讨论下列级数的敛散性:(1)2);(3);(4)1n ∞=11tan 2n n n ∞+=∑()3113nnn n n ∞=⎤+-⎣⎦∑()∑∞=+-+121211n n n n n(5);(6);(7).()()1111ln 1n n n ∞+=-+∑()211nn n n ∞=-+∑()()1111ln n n nn e e ∞+-=-+∑解:(1)当充分大时,比如时,有,从而n 3>n ()n n <+<1ln 1,而当时,,()n n n n <+<1ln 1∞→n 1→n n由极限的夹逼性定理知,当时,,所以,∞→n 1→1n ∞=(2)注意到,这是正项级数,当时,(等价无穷小),0→x x x ~tan 所以,而后者收敛,所以收敛.11tan ~2n n n π∞+=∑112n n n π∞+=∑11tan 2n nn π∞+=∑(3)利用柯西判别法:也是正项级数,,可见原()33113n+-=<→级数收敛;事实上,,,)())333111333nnnn nnnn nn ⎤+-+⎣⎦<<3113nnn n ∞=⎤⎣⎦∑都收敛,且同为正项级数,因而原级数收敛.3113nn n n ∞=⎤⎣⎦∑(4)因为,()()111111122221212112121→+⋅+⋅=+=+=+-+-nn nnnn n n n n n n nnnnnu 改用比较判别法:取,则21nv n =;()11lim 1lim lim 122121=⎪⎪⎭⎫⎝⎛+=+=+∞→++∞→∞→n n n n n nn n n n n nv u其中()(){}1122222lim lim exp lim 12ln ln 111n x n x x n x x x x n x ++→∞→+∞→+∞⎛⎫⎛⎫⎡⎤==+-+ ⎪ ⎪⎣⎦++⎝⎭⎝⎭,()()()()()22222222ln ln 1211exp lim exp lim exp lim 111111x x x x x x x x x x x x x →+∞→+∞→+∞⎧⎫⎧⎫⎪⎪-⎪⎪⎧⎫-++⎪⎪⎪⎪⎪⎪+===-=⎨⎬⎨⎬⎨⎬+⎪⎪⎪⎪⎪⎪-⎩⎭+⎪⎪⎪⎪+⎩⎭⎩⎭所以,与同时收敛.()∑∞=+-+121211n n n nn ∑∞=121n n(5)条件收敛.(6),发散.()()22111111nnn n n nn n n∞∞∞===-+-=+∑∑∑(7)=,()()1111ln n n n n e e ∞+-=-+∑()()12111ln 1n n n e n∞+=-+-∑,()222ln 1n n n e n e n e +-<-<()()()22222lim lim lim ln 1ln 1ln n x xn x x x n x x e e e e n e x e e -→∞→+∞→+∞==+-+-+==∞.()=+-=--+∞→x x x x xx e e e e e 22lim ()22221lim 1x x x x e e e →+∞+-x xx x ee e 2532106lim ++∞→另一方面,==,;()x x e e -+ln 1()xe x 21ln 1-++()x e xx x 1~1ln 11112-++()+∞→x 可见,原级数非绝对收敛;但是单调减少且趋于0,所以,原级数条件收敛.()x x e e -+ln 190.若正项级数与都发散,讨论与的敛散性.1nn v∞=∑1nn u∞=∑{}1max ,nnn u v ∞=∑{}1min ,nnn u v ∞=∑解:,,{}{}1max ,2n n n n n n u v u v u v =++-{}{}1min ,2n n n n n n u v u v u v =+--(1)显然,,或者,故而{}{}1max ,2n n n n n n n u v u v u v u =++-≥{}max ,n n n u v v ≥发散;{}1max ,nnn u v ∞=∑(2)而的敛散性未定.{}1min ,nnn u v ∞=∑例如,若,()222211111111123456212n n u n n ∞==+++++++++-∑ ,()222=11111111123456221n n v n n ∞=+++++++++-∑。

微积分考试题目及答案

微积分考试题目及答案

微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。

解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。

代入x=1得斜率为7。

又因为该点经过(1,3),故切线方程为y = 7x - 4。

8. 求曲线y = x^3上与x轴围成的面积。

解:首先确定曲线截距为(0,0),解方程得x=0。

利用定积分区间求解:∫[0,1] x^3dx = 1/4。

以上为微积分考试题目及答案,希望对您的学习有所帮助。

感谢阅读!。

微积分考试题及答案文件

微积分考试题及答案文件

微积分考试题及答案文件一、选择题(每题5分,共20分)1. 函数f(x)=x^2+3x-4的导数是:A. 2x+3B. 2x-3C. x^2+3xD. x^2-3x答案:A2. 定积分∫(0,1)x^2dx的值是:A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. ∞答案:B4. 函数y=e^x的不定积分是:A. e^x + CB. e^(-x) + CC. ln(x) + CD. 1/x + C答案:A二、填空题(每题5分,共20分)1. 如果f'(x)=6x^2+12x+10,那么f(x)=______。

答案:x^3+3x^2+5x+C2. 函数y=ln(x)的导数是______。

答案:1/x3. 定积分∫(1,e)1/xdx的值是______。

答案:14. 极限lim(x→∞) (1/x)的值是______。

答案:0三、解答题(共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

(15分)答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1和x=11/3。

检查二阶导数f''(x)=6x-12,f''(1)=-6<0,f''(11/3)=2>0,所以x=1是极大值点,x=11/3是极小值点。

2. 求定积分∫(0,2)(2x-1)dx。

(15分)答案:∫(0,2)(2x-1)dx = [x^2-x](0,2) = (4-2)-(0-0) = 2。

3. 求极限lim(x→0) (x^2*sin(1/x))。

(15分)答案:由于sin(1/x)的值在-1和1之间,所以lim(x→0)(x^2*sin(1/x)) = 0。

4. 求函数y=x^2e^x的不定积分。

(15分)答案:∫x^2e^xdx = x^2e^x - ∫2xe^xdx = x^2e^x - 2∫xe^xdx,令u=x,则du=dx,dv=e^xdx,v=e^x,所以∫xe^xdx = xe^x -∫e^xd x = xe^x - e^x,代入原式得:x^2e^x - 2(xe^x - e^x) + C= x^2e^x - 2xe^x + 2e^x + C。

微积分(数学分析)证明题及参考答案.doc

微积分(数学分析)证明题及参考答案.doc

统计专业和数学专业数学分析练习题1. 证明极限yx yx y x -+→)0,0(),(lim不存在。

2. 用极限定义证明: .0lim 22)0,0(),(=++→yx yx y x3. 证明极限22222)0,0(),()(lim y x y x y x y x -+→不存在.4. 设),(),(x f y x F =)(x f 在 0x 连续,证明:对,0R y ∈∀),(y x F 在),(00y x 连续.5. 证明:如果),(y x f 在 ),(000y x P 连续,且0),(00>y x f ,则对任意),(00y x f r <,),;(0δP ⋃∃对一切),;(),(0δP y x P ⋃∈有.),(r y x f >6. 证明:22),(y x y x f +=在点)0,0(处连续且偏导数不存在.7. 证明;2222221sin 0(,)00y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在)0,0(点连续,且0)0,0(,0)0,0(==y x f f 不存在.8. 证明222222221()sin 0(,)00x y x y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩在 点)0,0(处连续且偏导数存在.9. 设 函数),(y x f 在),(00y x 的某邻域内存在偏导数,若),(y x 属于该邻域,则存在)(010x x x -+=θξ和 )(020y y y -+=θη,,10,1021<<<<θθ 使得00000(,)(,)(,)()(,)()x y f x y f x y f y x x f x y y ξη-=-+-。

10. 证明:2222220(,)00xy x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩,在点)0,0(不可微.11. 证明: 对任意常数,ρϕ, 球面2222x y z ρ++=与锥面2222tan x y z ϕ+=⋅是正交的. 12. 证明: 以λ为参数的曲线族221() x y a b a b λλ+=>-- 是相互正交的(当相交时).13. 证明: 由方程()z y x z ϕ=+所确定的隐函数(,)z z x y =满足222()z z z x y y ϕ⎡⎤∂∂∂=⎢⎥∂∂∂⎣⎦, 其中ϕ二阶可导. 14. 设()20()ln 12cos F a a x a dx π=-+⎰, 证明20,10,()ln , 1. 若且 若a a F a a a π⎧<≠⎪=⎨>⎪⎩15. 证明含参量反常积分⎰+∞sin dy yxy 在[)+∞,δ上一致收敛()0>其中δ,但在()0,+∞内不一致收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果我们想求得 的偏导数,只需对方程组分别关于 求偏导数,得到
(1)
(2)
由(1)解出
由(2)解出
19.解:设
,
.
(1) 关于 的雅可比行列式是
,
当 时,在满足方程组的任何一点 的一个邻域内,由方程组可以唯一确定 是 的可微函数;
(2) 关于 的雅可比行列式是
,
当 时,在满足方程组的任何一点 的一个邻域内,由方程组可以唯一确定 是 的可微函数.
.
其中 为 所围立体的表面的外侧.
49.求 ,其中 是 的表面,取外侧为正侧 .
50.计算积分 ,其中S是椭球面 的
外侧.
1. 试求极限

.
2. 试求极限
解 由
.
3. 试求极限
解 由于
,
又 ,
所以
, ,
所以
.
4. 试讨论
解 当点 沿直线 趋于原点时,
.
当点 沿抛物线线 趋于原点时,
.
因为二者不等,所以极限不存在.
24.叙述含参量 的正常积分的连续性定理的内容.
答:设二元函数 在区域
上连续,其中 为 上的连续函数,则函数
(6)
在 上连续.
25.叙述含参量 的无穷限反常积分定义.
答:设二元函数 定义在无界区域 上,若对于 上每一固定的 值,反常积分
(1)
都收敛,则它的值是 在 上取值的函数,当记这个函数为 时,则有
(Ⅱ).原式= .
50.解:由Gauss公式,得 ,由广义球坐标变换 , ,得
15. 解:显然 及 在平面上任一点都连续,由隐函数定理知道,在使得 的点 附近,方程 都能确定隐函数 ;所以,它的一阶与二阶导数如下:
对方程求关于 的导数(其中 是 的函数)并以3除之,得
,

(1)
于是
(2)
再对(1)式求导,得: 即
(3)
把(2)式代入(3)式的右边,得
再利用方程就得到
16.解:由于 处处连续,根据隐函数定理18.3,在原点 附近能惟一确定连续可微得隐函数 ,且可求得它得偏导数如下:
41.解:(Ⅰ).画出积分区域
(Ⅱ). .
42.解:
.
43.解:
(Ⅰ). 由 ,得 .
于是 ,故 是抛物线.令 ,得
.故 与 轴相交于 .
(Ⅱ).令 ,则 ,故 .
(Ⅲ).
.
44.解:
.
45.解:
.
.
46.解:因为 ,故 ,
.
于是 .
47.解:S是 分解为两部分:
,
.

.
48.解:原式=
.
49.解:(Ⅰ).画出积分区域
答:用积分形式所定义的这两个函数
(1)
与 ,(2)
通称为定义在 上含参量 的(正常)积分,或简称含参量积分.
(1)式的意义如下:设 是定义在矩形区域 上的二元函数。当 取 上某定值时,函数 则是定义在 上以y为自变量的一元函数.倘若这时 在 可积,则其积分值是 在 上取值的函数,记它为 ,就有 .
(2)式的意义如下:一般地,设 为定义在区域 上的二元函数,其中 为定义在 上的连续函数,若对于 上每一固定的 值, 作为 的函数在闭区间 上可积,则其积分值是 在 上取值的函数,记作 时,就有
17.解: (1)令 ,则有
.
由于 均连续,且
,
故在点 附近由上述方程能确定隐函数 和 .
(2)当 时,由定理知
;
同理,当 时,由定理知
.
于是求得
并且有
, .
18.解:首先, 即 满足初始条件.再求出F,G的所有一阶偏导数
容易验算,在点 处的所有六个雅可比行列式中只有
因此,只有 难以肯定能否作为以 为自变量的隐函数.除此之外,在 的近旁任何两个变量都可作为以其余两个变量为自变量的隐函数.
23.叙述含参量 的正常积分定义.
24.叙述含参量 的正常积分的连续性定理的内容.
25.叙述含参量 的无穷限反常积分定义.
26.叙述含参量 的无穷限反常积分的一致收敛性定义.
27.叙述含参量 的无穷限反常积分的一致收敛的柯西收敛准则.
28.叙述含参量反常积分一致收敛的狄利克雷判别法.
29.叙述含参量反常积分一致收敛的阿贝尔判别法.
又由(22)式
在上式中,令 ,则有 .
34.解:由于 对任一实数 成立及反常积分 收敛①,所以原积分在 上收敛.
考察含参量反常积分
, (24)
由于 对一切 成立及反常积分 收敛,根据魏尔斯特拉斯M判别法,含参量积分(24)在 上一致收敛.
综合上述结果由定理19.10即得
于是有
,
.
从而 ,又由原积分, ,所以 ,因此得到
30.叙述含参量反常积分的可积性定理内容.
31.求
32.计算积分 .
33.计算
并由此计算
34.利用公式 ,计算
.
35.利用可微性计算关于参数 的含参量反常积分
.
并由此计算
36.计算 ,其中L为单位圆周 .
37.计算 ,其中L为从(0,0,0)到(1,2,3)的直线段.
38.求积分 ,其中曲线 与 轴围成的面积为 .
则含参量反常积分
在 上一致收敛.
29.叙述含参量反常积分一致收敛的阿贝尔判别法.
答:设
在 上一致收敛;
对每一个 ,函数 为 的单调函数,且对参量 , 在 上一致有界,则含参量反常积分
在 上一致收敛。
30.叙述含参量反常积分的可积性定理内容.
答:设 在 上连续,若 在 上一致收敛,则 在 上可积,且
设 在 上连续.若
20.解:设 , .它们在 处的偏导数和雅可比行列式之值为:

, , .
所以曲线在 处的切线方程为:


法平面方程为


.
21.解:令 ,则,故ຫໍສະໝຸດ ,因此曲面在点 处的法向量为,
所求切平面方程为
,

.
法线方程为

22.解:这个问题实质上就是要求函数
(空间点 到原点 的距离函数的平方)
在条件 及 下的最大、最小值问题.应用拉格朗日乘数法,令
统计专业和数学专业数学分练习题
计算题
1. 试求极限
2. 试求极限
3. 试求极限
4. 试讨论
5. 试求极限
6. , 有连续的偏导数,求
7. 求
8. 求抛物面 在点 处的切平面方程与法线方程.
9. 求 在 处的泰勒公式.
10. 求函数 的极值.
11.叙述隐函数的定义.
12.叙述隐函数存在唯一性定理的内容.
答: 设 , ,函数 对于方程 , 若存在集合 与 ,使得对于任何 ,恒有唯一确定的 ,使得 满足方程 ,则称由方程 确定了一个定义在 上,值域含于 的隐函数。一般可记为 且成立恒等式
12.叙述隐函数存在唯一性定理的内容.
答:若 满足下列条件:
(i)函数F在以 为内点的某一区域 上连续;
(ii) (通常称为初始条件);
答:含参量反常积分 在 上一致收敛的充要条件是:对任给正数 ,总存在某一实数 ,使得当 时,对一切 ,都有
.
28.叙述含参量反常积分一致收敛的狄利克雷判别法.
答:设
对一切实数N>c,含参量正常积分 对参量 在 上一致有界,即存在正数M,对一切N>c及一切 ,都有
对每一个 ,函数 关于y是单调递减且当 时,对参量 一致地收敛于0.
18.讨论方程组
在点 近旁能确定怎样的隐函数组,并求其偏导数。
19.设方程组
问在什么条件下,
(1)由方程组可以唯一确定 是 的可微函数?
(2)由方程组可以唯一确定 是 的可微函数?
20.求球面 与锥面 所截出的曲线的点 处的切线与法平面方程。
21.求曲面 在点 处的切平面与法线方程.
22.抛物面 被平面 截成一个椭圆.求这个椭圆到原点的最长与最短距离.
(iii)在D内存在连续的偏导数 ;
(iv) 0,
则在点 的某邻域 内,方程 =0唯一地确定了一个定义在某区间 内的函数(隐函数) ,使得
1º , 时 且 ;
2° 在 内连续.
13.叙述隐函数可微性定理的内容.
答:若 满足下列条件:
(i)函数F在以 为内点的某一区域 上连续;
(ii) (通常称为初始条件);
关于 在任何闭区间 上一致收敛,
关于 在任何区间 上一致收敛;
积分 (18)
中有一个收敛,
则(18)中另一个积分也收敛,且
31. 解: 因为 所以 由于函数 在 上满足定理 的条件,所以交换积分顺序得到
32.解:因为
,
所以该积分是正常积分.
交换积分次序,得
.
在上面的内层积分中作变换 ,有
,
于是
.
解法二:取 为参量,利用积分号下求导数的方法,有
13.叙述隐函数可微性定理的内容.
14.利用隐函数说明反函数的存在性及其导数.
15.讨论笛卡儿叶形线
所确定的隐函数 的一阶与二阶导数.
16.讨论方程
在原点附近所确定的二元隐函数及其偏导数.
17.设函数 ,方程
.
(1)验证在点 附近由上面的方程能确定可微的隐函数 和 ;
(2)试求 和 ,以及它们在点 处的值.
(iii)在D内存在连续的偏导数 ;
(iv) 0,
又设在D内还存在连续的偏导数 ,则由方程 所确定的隐函数在 在其定义域 内有连续导函数,且
14.利用隐函数说明反函数的存在性及其导数.
答:设 在 的某邻域内有连续的导函数 ,且 ;考虑方程
相关文档
最新文档