浙江大学概率论与数理统计第三章习题

合集下载

概率论与数理统计答案 浙江大学 张帼奋 主编

概率论与数理统计答案 浙江大学 张帼奋 主编

第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBCAC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生); 3(1)错。

依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率论与数理统计及其应用课后答案浙江大学盛骤版

概率论与数理统计及其应用课后答案浙江大学盛骤版

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计(浙大) 习题答案 第3章

概率论与数理统计(浙大) 习题答案 第3章

第三章 多维随机变量及其分布1. 在一箱子中装有12只开关, 其中2只是次品, 在其中取两次, 每次任取一只, 考虑两种试验: (1)放回抽样, (2)不放回抽样. 我们定义随机变量X , Y 如下:⎩⎨⎧=若第一次取出的是次品若第一次取出的是正品10X ,⎩⎨⎧=若第二次取出的是次品若第二次取出的是正品10Y .试分别就(1), (2)两种情况, 写出X 和Y 的联合分布律.解: (1)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有362512101210)0 ,0(=⋅===Y X P ,3651221210)1 ,0(=⋅===Y X P ,3651210122)0 ,1(=⋅===Y X P ,361122122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律(2)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有66451191210)0 ,0(=⋅===Y X P ,66101121210)1 ,0(=⋅===Y X P ,66101110122)0 ,1(=⋅===Y X P ,661111122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律2. 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以X 表示取到黑球的只数, 以Y 表示取到白球的只数, 求X , Y 的联合分布律.解: (X , Y )的可能取值为(i , j ), i =0, 1, 2, 3, j =0, 1, 2, i +j ≥2, 联合分布律为P (X =0, Y =2)=351472222=C C C ,P (X =1, Y =1)=35647221213=C C C C , P (X =1, Y =2)=35647122213=C C C C , P (X =2, Y =0)=351472222=C C C ,P (X =2, Y =1)=351247121223=C C C C ,P (X =2, Y =2)=353472223=C C C ,P (X =3, Y =0)=352471233=C CC ,P (X =3, Y =1)=352471233=C CC ,列成表格便得X 和Y 的联合分布律3. 设随机变量(X , Y )概率密度为⎩⎨⎧<<<<--=其它042 ,20)6(),(y x y x k y x f . (1)确定常数k ; (2)求P (X <1, Y <3); (3)求P (X <1.5); (4)求P (X +Y ≤4). 解: (1)因为 k dydx y x k dy dx y x f 8)6(),(1242=--==⎰⎰⎰⎰+∞∞-+∞∞-,所以81=k .(2)83)6(81)3 ,1(3210⎰⎰=--=<<dy y x dx Y X P .(3)3227)6(81) ,5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P .(4)32)6(81}4{4020=--=≤+⎰⎰-dy y x dx Y X P x .4. 将一枚硬币掷3次, 以X 表示前2次中出现H 的次数, 以Y 表示3次中出现H 的次数, 求(X , Y )的联合分布律及边缘分布律.故(X , Y )的联合分布律为(X , Y )关于X 的边缘分布律为即)21 ,2(~b X .(X , Y )关于Y 的边缘分布律为即)21 ,3(~b Y .5. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤≤≤-=其它00,10)2(8.4),(xy x x y y x f , 求边缘概率密度. 解: ⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.40x dy x y x⎩⎨⎧≤≤-=其它010)2(4.22x x x ,⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.41y dx x y y⎩⎨⎧≤≤+-=其它010)43(4.22y y y y . 6. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧<<=-其它00),(y x e y x f y , 求边缘概率密度.解:⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤>=⎰+∞-000x x dy e x y⎩⎨⎧≤>=-000x x e x . ⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤>=⎰-000y y dx e y y⎩⎨⎧≤>=-000y y ye y . 7. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤=其它01),(22y x y cx y x f . (1)试确定常数c ; (2)求边缘概率密度. 解: (1)因为l =⎰⎰⎰⎰⎰∞+∞-+-∞+∞-===c dy y c ydx cx dy dxdy y x f yy 21432),(1025210,所以421=c .(2)X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤-=⎰其它011421)(~122x ydy x x f X x X⎪⎩⎪⎨⎧≤≤--=其它011)1(82142x x x .X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤=⎰+-其它010421)(~2y ydx d y f Y y y Y⎪⎩⎪⎨⎧≤≤=其它0102725y y .8. 将某一医公司9月份和8月份收到的青霉素针剂的订货单数分别记为X 和Y , 据以往积累的资料知X 和Y 联合分布律为:(1)求边缘分布律;(2)求8月份的订单数为51时, 9月份订单数的条件人布律.解: 在表中运算得(2)因为j ijj j i i i p p y Y P y Y x X P y Y x X P ⋅=======)() ,()|(, 并且P (Y =51)=0.28=p ⋅j , 所以28628.006.0)51|51(====Y X P ,28728.007.0)51|52(====Y X P ,28528.005.0)51|53(====Y X P ,28528.005.0)51|54(====Y X P ,28528.005.0)51|55(====Y X P ,故当8月份的订单数为51时, 9月份订单数的条件分布律为9. 以X 记某一医院一天出生的婴儿的个数, Y 记男婴的个数, 记X 和Y 的联合分布律为)!(!)86.6()14.7() ,(14m n m e m Y n X P mn m -===--(m =0, 1, 2, ⋅⋅⋅, n ;n =0, 1, 2, ⋅⋅⋅ ).(1)求边缘分布律; (2)求条件分布律;(3)特别写出当X =20时, Y 的条件分布律. 解: (1)边缘分布律:∑∑=--=-=====nm mn m n m m n m e m Y n X P n X P 0140)!(!)86.6()14.7() ,()(∑=--⋅⋅⋅⋅=nm m n m m ne n C 014)86.6()14.7(!1 ∑=--⋅⋅=n m m n m mn C n e 014)86.6()14.7(! !14)86.614.7(!1414n e n e n n --⋅=+=(n =0, 1, 2, ⋅⋅⋅ ). ∑∑∞=--∞=-=====0140)!(!)86.6()14.7() ,()(n mn m n m n m e m Y n X P m Y P∑∞=---=014)!()86.6(!)14.7(n mn m m n m e m m m e e m e )14.7(!!)14.7(14.786.614--==(m =0, 1, 2, ⋅⋅⋅ ).(2)条件分布律:m mn m m e m n m e m Y P m Y n X P m Y n X P )14.7(!)!(!)86.6()14.7()() ,()|(14.714----======= )!()86.6(86.6m n e mn -⋅=--(n =m , m +1, ⋅⋅⋅ ).当m =0, 1, 2, ⋅⋅⋅ 时1414!14)!(!)86.6()14.7()() ,()|(----=======e n m n m e n X P m Y n X P n X m Y P nmn m m n m m n m n -⋅⋅-=)1486.6()1414.7()!(!! m m mn C -⋅⋅=20)49.0()51.0((m =0, 1, ⋅⋅⋅ , n ). (3)当X =20时, Y 的条件分布为m m mC X m Y P -⋅===2020)49.0()51.0()20|((m =0, 1, ⋅⋅⋅ , 20).10. 求§1例1中的条件分布律: P (Y =k |X =i )=?解: 由于)(),()|(i X P i X k Y P i X k Y P ======, 而411) ,(⋅===i i X k Y P (i =1, 2, 3, 4, k ≤i ),41)(==i X P ,所以ii X k Y P 1)|(===(i =1, 2, 3, 4, k ≤i ),即11. 在第7题中(1)求条件概率f X |Y (x |y ), 特别, 写出当21=Y 时X 的条件概率密度; (2)求条件概率密度f Y |X (y |x ), 特别, 分别写出当31=X , 21=X 时Y 的条件概率密度; (3)求条件概率P (Y ≥1/4|X =1/2), P (Y ≥3|X =1/2). 解: (1)当0<y ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他027421)(),()|(252|y x y y yx y f y x f y x f Y Y X ⎪⎩⎪⎨⎧<<-=-其他023232y x y y x ,特别, ⎪⎩⎪⎨⎧<<-==-其他02121)21(23)21|(232|x x y x f Y X ⎪⎩⎪⎨⎧<<-=其他02121232x x .(2)当-1<x ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他01)1(821421)(),()|(2422|y x x x y x x f y x f x y f X X Y ⎪⎩⎪⎨⎧<<-=其他01)1(222y x x y ,特别, ⎪⎩⎪⎨⎧<<-==其他0191))3/1(1(2)31|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01914081y y ,⎪⎩⎪⎨⎧<<-==其他0141))2/1(1(2)21|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01411532y y .(3))21|41()21|1()21|41(=<-=<==≥X Y P X Y P X Y P1153215324141141=-=⎰⎰ydy ydy ,)21|43()21|1()21|43(=<-=<==≥X Y P X Y P X Y P157153214341=-=⎰ydy .12. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=其他010 ,||1),(x x y y x f , 求条件概率密度f Y |X (y |x ),f X |Y (x |y ). 解: f (x ,y )的边缘密度为⎪⎩⎪⎨⎧<<=⎰-其他0101)(x dy x f x x X ⎩⎨⎧<<=其他0102y x ,⎪⎩⎪⎨⎧<<-=⎰其他0111)(1||y dx x f y Y ⎩⎨⎧<<--=其他011||1y y ,所以当0<x <1时,⎪⎩⎪⎨⎧<==其他0||21)(),()|(|x y xx f y x f x y f X X Y , 当|y |<1时,⎪⎩⎪⎨⎧<-==其他0||||11)(),()|(|x y y x f y x f x y f Y Y X , 13. (1)问第1题中的随机变量X 和Y 是否相互独立?(2)问第12题中的随机变量X 和Y 是否相互独立?(需说明理由) 解: (1)有放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 独立. 不放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 不独立.(2)由于当|y |<x , 0<x <1时, f X (x )⋅f Y (y )=2x (1-|y |)≠f (x , y )=1, 故X 和Y 不独立.14. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y .(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0, 试求a 有实根的概率.解: (1)按已知X 的概率密度为⎩⎨⎧<<=其他0101)(x x f X .由于X 和Y 相互独立, 故(X , Y )的概率密度为⎪⎩⎪⎨⎧><<=⋅=-其他0,1021)()(),(2y x e y f x f y x f y Y X .(2)要使a 有实根, 必须方程a 2+2Xa +Y =0的判别式∆=X 2-Y ≥0,⎰⎰⎰---==≥-10202102)1(21)0(22dx e dy e dx Y X P x x y⎰⎰⎰∞--∞-----=-=02121022222121[211dx e dx e dx e x x x πππ 1445.0)]0()1([21=Φ-Φ-=π.15. 第1题中的随机变量X 和Y 是否相互独立. 解: 放回抽样的情况P (X =0, Y =0)=P (X =0)⋅P (Y =0)3625=P (X =0, Y =1)=P (X =0)⋅P (Y =1)365=P (X =1, Y =0)=P (X =1)⋅P (Y =0)3651210122=⋅=P (X =1, Y =1)=P (X =1)⋅P (Y =1)361122122=⋅=.在放回抽样的情况下, X 和Y 是独立的. 不放回抽样的情况:P (X =0, Y =0)66451191210=⋅=,P (X =0)651210==,P (X =0)=P (X =0, Y =0)+P (Y =0, X =1) 6511101121191210=⋅+⋅=,P (X =0)⋅P (Y =0)36256565=⨯=,P (X =0, Y =0)≠P (X =0)P (Y =0), 所以X 和Y 不独立.14. 设X , Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布. Y 的概率密度为⎪⎩⎪⎨⎧≤>=00021)(2y y e y f y Y .(1)求X 和Y 的联合密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求有实根的概率. 解: (1)X 的概率密度为⎩⎨⎧∈=其它0)1 ,0(1)(x x f X ,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y ,可见且知X , Y 相互独立, 于是(X , Y )的联合密度为⎪⎩⎪⎨⎧><<==-其它0,1021)()(),(2y x e y f x f y x f y Y X .(2)由于a 有实根, 从而判别式∆=4X 2-4Y ≥0, 即Y ≤X 2. 记}0,10|),{(2x y x y x D <<<<=, ⎰⎰=≤Ddxdy y x f X Y P ),(}{2⎰⎰⎰⎰⎰----=-==10010102022222121x xx y y dx e de dx dy e dxdx e x ⎰-⋅-=00222121ππ)5.08413.0(21)]2()1([21--=Φ-Φ-=ππ 1445.08555.013413.05066312.21=-=⨯-=.15. 进行打靶, 设弹着眯A (X , Y )的坐标X 和Y 相互独立, 且都服从N (0, 1)分布, 规定点A 落在区域D 1={(x , y )|x 2+y 2≤1}得2分; 点A 落在D 2={(x , y )|1≤x 2+y 2≤4}得1分; 点A 落在D 3={(x , y )|x 2+y 2>4}得0分, 以Z 记打靶的得分, 写出X , Y 的联合概率密度, 并求Z 的分布律.解: (1)因为X ~N (0, 1), Y ~N (0, 1), X 与Y 独立, 故(X , Y )的联合概率密度为22221),(y x e y x f +-=π(-∞<x <+∞, -∞<y <+∞).(2)Z 的可能取值为0, 1, 2.⎰⎰>++-=∈==421222221)),(()0(x x y x dxdy e D Y X A P Z P π⎰⎰≤++--=422222211x x y x dxdy e π2202022211--=-=⎰⎰e rdr e d r ππθ,⎰⎰≤+≤+-=∈==4122222221)),(()1(x x y x dxdy e D Y X A P Z P π22120212221----==⎰⎰e e rdr e d r ππθ,⎰⎰≤++-=∈==121222221)),(()2(x x y x dxdy e D Y X A P Z P π21201021212---==⎰⎰e rdr e d r ππθ,故得Z 的分布律为16. 设X 和Y 是相互独立的随机变量, 其概率密度分别为⎩⎨⎧≤>=-000)(x x e x f x X λλ, ⎩⎨⎧≤>=-000)(y y e y f y Y μμ, 其中λ>0, μ>0是常数, 引入随机变量⎩⎨⎧>≤=Y X YX Z 当当01.(1)求条件概率密度f X |Y (x |y ); (2)求Z 的分布律和分布函数. 解: (1)由X 和Y 相互独立, 故⎩⎨⎧>>=⋅=+-其他00 ,0)()(),()(y x e y f x f y x f y x Y X μλλμ.当y >0时,⎩⎨⎧≤>===-000)()(),()|(|x x e y f y f y x f y x f x X Y Y X λλ. (2)由于⎩⎨⎧>≤=Y X YX Z 当当01,且 μλλλλμμλμλ+===≤⎰⎰⎰+∞+-+∞+∞+-0)(0)()(dx e dydx eY X P x xy x ,μλμμλλ+=+-=≤-=>1)(1)(Y X P Y X P ,故Z 的分布律为Z 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=111000)(z z z z F Z μλμ. 17. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为⎩⎨⎧<≤=其他0101)(x x f X , ⎩⎨⎧>=-其他00)(y e y f y Y , 求随机变量Z =X +Y 的概率密度.解: 由于X 和Y 是相互独立的, 故⎩⎨⎧><≤=⋅=-其他00 ,10)()(),(y x e y f x f y x f y Y X , 于是Z =X +Y 的概率密度为⎰+∞∞--⋅=dx x z f x f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧>-≤≤-=⎰⎰其他01)()(10)()(100z dxx z f x f z dx x z f x f Y X x YX ⎪⎪⎩⎪⎪⎨⎧>≤≤=⎰⎰----其他011010)(0)(z dxe z dx e x z x x z ⎪⎩⎪⎨⎧>-≤≤-=--其他01)1(101z e e z e zz .18. 设某种商品一周的需要量是一个随机变量, 其概率密度为⎩⎨⎧≤>=-000)(t t te t f t , 设各周的需要量是相互独立的, 试求: (1)两周需要量的概率密度; (2)三周需要量的概率密度.解: (1)设第一周需要量为X , 它是随机变量; 设第二周需要量为Y , 它是随机变量且与X 同分布, 其分布密度为⎩⎨⎧≤>=-000)(t t te t f t . Z =X +Y 表示两周需要的商品量, 由X 和Y 的独立性可知:⎩⎨⎧>>=--其它00,0),(y x ye xe y x f y x .因为z ≥0, 所以当z <0时, f z (z )=0; 当z >0时, 由和的概率公式知 ⎰∞+∞--=dy y f y z f z f Y X Z )()()(z yzy z e z dy ye ey z ----=⋅-=⎰6)(30)(, 所以 ⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z .(2)设Z 表示前两周需要量, 其概率密度为⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z ,设ξ表示第三周需要量, 其概率密度为:⎩⎨⎧≤>=-000)(x x xe x f x ξ,Z 与ξ相互独立, η=Z +ξ表示前三周需要量, 则因为η≥0, 所以u <0, f η(u )=0. 当u >0时 ⎰∞+∞--=dy y f y u f u f )()()(ξηdy ye e y u y uy u ---⋅-=⎰0)(3)(61u e u -=1205, 所以η的概率密度为⎪⎩⎪⎨⎧≤>=-00120)(5u u e u u f u η.19. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-其他00,0)(21),()(y x e y x y x f y x .(1)问X 和Y 是否相互独立? (2)求Z =X +Y 的概率密度. 解: (1)X 的边缘密度为⎪⎩⎪⎨⎧<>+=⎰∞++-000)(21)(0)(x x dy e y x x f y x X⎪⎩⎪⎨⎧<>+=-000)1(21x x e x x ,同理Y 的边缘密度为⎪⎩⎪⎨⎧<>+=-000)1(21)(y y e y y f y Y .因为当x >0, y >0时,)()()1)(1(41)(21),()()(y f x f e y x e y x y x f Y X y x y x =++≠+=+-+-,所以X 与Y 不独立. (2)Z 的概率密度为z z x Z e z dx e x z x dx x z x f z f --+∞∞-=-+=-=⎰⎰2021)(21),()((z >0).当z <0时, f Z (z )=0, 所以⎪⎩⎪⎨⎧<>=-0021)(2z z e z z f z Z .20. 设X , Y 是相互独立的随机变量, 它们都服从正态分布N (0, σ 2), 试验证随机变量22Y X z +=具有概率密度⎪⎩⎪⎨⎧>≥=-其他0,0)(2222σσσz e z z f z Z ,称Z 服从参数为σ(σ>0)的瑞利(Rayleigh 分布.解: 因为X , Y 相互独立且均服从正态分布N (0, σ 2), 它们的概率密度分别为22221)(σσπx e x f -=, 22221)(σσπy e y f -= , σ>0,故X 和Y 的联合密度为2222221)()(),(σπσy x e y f x f y x f +-=⋅=.22Y X z +=的分布函数为⎰⎰≤+=≤+=≤=222),()()((z)22z y x Z dxdy y x f z Y X P z Z P F⎰⎰-=zd e d 022202221ρρπσθσρπ2222202211σσρρρσz z ed e---==⎰(z >0),当z ≤0时, F Z (z )=0.于是随机变量22Y X z +=的概率密度为⎪⎩⎪⎨⎧>≥==-其他00 ,0)()(2222σσσz e z dz z dF z f z Z Z .21. 设随机变量(X , Y )的概率密度为⎩⎨⎧+∞<<<<=+-其他00 ,10),()(y x be y x f y x . (1)试确定义常数b ;(2)求边缘概率密度f X (x ), f Y (y );(3)求函数U =max(X , Y )的分布函数. 解: (1)由10)(1=⎰⎰+∞+-dy be dx y x , 即1)1(1010=-=⎰⎰+∞--e b dy e dx e b y x ,得1111-=-=-e e e b .(2)⎪⎩⎪⎨⎧<<-=⎰∞++-其他0101)(0)(x dy e e e x f y x X⎪⎩⎪⎨⎧<<-=-其他0101x e e e x ,⎩⎨⎧≤>==-∞+∞-⎰000),()(y y e dx y x f x f y X . 显然X 与Y 独立.(3)⎪⎩⎪⎨⎧≥<≤--<=-1110)1(100)(x x e e e x x F x X⎩⎨⎧≤>-=-0001)(y y e x F y Y , 故U =max(X , Y )的分布函数为F U (u )=P (U ≤u )=P (max(X , Y )≤u ) =P (X ≤u , Y ≤u )=P (X ≤u )P (Y ≤u )⎪⎩⎪⎨⎧≥-<≤--<==--1110)1(100)()(2u eu e e e u u F u F uu Y X .22. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.解: 设X 1, X 2, X 3, X 4为4只电子管的寿命, 它们相互独立, 同分布, 其概率密度为:22202)160(2021)(⨯--⋅=t T et f π,⎰∞-⨯-==<18022202)160(20121)180(}180{dt t F X f X π ⎰∞--=-======1220160221du e u ut π令 8413.0)2060180(=-Φ=.设N =min{X 1, X 2, X 3, X 4}, 则P {N >180}=P {X 1>180, X 2>180, X 3>180, X 4>180} =P {X >180}4={1-p [X <180]}4 =(0.1587)4=0.00063.23. 对某种电子装置的输出测量了5次, 得到观察值X 1,X 2, X 3, X 4, X 5, 设它们是相互独立的随机变量且都服从参数σ=2的瑞种分布.(1)求Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数; (2)求P (Z >4).解: 由20题知, X i (i =1, 2, ⋅⋅⋅ , 5)的概率密度均为⎪⎩⎪⎨⎧≥=-其他004)(82x e x x f x X ,分布函数为821)(x X e x F --=(x >0).(1) Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数为 585m ax )1()]([)(2z e z F z F --== (z ≥0), 当z <0时, F max (z )=0.所以Z 的分布函数为⎩⎨⎧<≥-=-000)1()(58m ax 2z z e z F z .(2)P (Z >4)=1-P (Z ≤4)=1-F Z (4)5167.0)1(1)1(1525842=--=--=--e e .24. 设随机变量X , Y 相互独立, 且服从同一分布, 试证明 P (a <min{X , Y }≤b )=[P (X >a )]2-[P (X >b )]2 . 解: 因为X 与Y 相互独立且同分布, 故P (a <min{X , Y }≤b )=P (min{X , Y }≤b )-P (min{X , Y }≤a ) =1-P (min{X , Y }>b )-[1-P (min{X , Y }>a )] =P (min{X , Y }>a )-P (min{X , Y }>b ) =P (X >a , Y >a )-P (X >b , Y >b ) =P (X >a )P (Y >a )-P (X >b )P (Y >b ) =[P (X >a )]2-[P (Y >b )]2 .25. 设X , Y 是相互独立随机变量, 其分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ). 证明随机变量Z =X +Y 的分布律为∑=-==ik k i q k p i Z P 0)()()( (i =0, 1, 2, ⋅⋅⋅ ),证明: 因为X 与Y 独立, 且X 与Y 的分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ), 故Z =X +Y 的分布律为∑==+===ik i Y X k X P i Z P 0) ,()( ∑=-===i k k i Y k X P 0) ,( ∑=-===i k k i Y P k X P 0)()( ∑=-=i k k i q k p 0)()( (i =0, 1, 2, ⋅⋅⋅ ).26. 设X , Y 是相互独立的随机变量, X ~π(λ1), Y ~π(λ2), 证明Z =X +Y ~π(λ1+λ2).证明: 因为X , Y 分别服从参数为λ1, λ2的泊松分布, 故X , Y 的分布律分别为 1!)(1λλ-==e k k X P k (λ1>0),2!)(2λλ-==e r r Y P r (λ2>0),由25题结论知, Z =X +Y 的分布律为 ∑=-====ik k i Y P k X P i Z P 0)()()(∑=----⋅=ik ki k e k i e k 02121)!(!λλλλ∑=-+-⋅-=i k k i k k i k i i e 021)()!(!!!21λλλλ i i e )(!21)(21λλλλ+=+-(i =0, 1, 2, ⋅⋅⋅ ), 即Z =X +Y 服从参数为λ1+λ2的泊松分布.27. 设X , Y 是相互独立的随机变量, X ~b (n 1, p ), Y ~b (n 2, p ), 证明Z =X +Y ~b (n 1+n 2, p ).证明: Z 的可能取值为0, 1, 2, ⋅⋅⋅ , 2n , 因为 {Z =i }={X +Y =i }={X =0, Y =0}⋃{X =1, Y =i -1}⋃ ⋅⋅⋅ ⋃{X =i , Y =0}, 由于上述并中各事件互不相容, 且X , Y 独立, 则∑=-====ik k i Y k X P i Z P 0) ,()(∑=-===ik k i Y P k X P 0)()(∑=+-----⋅-=ik k i n ki k i n k n k k n p p C p p C 02211)1()1( ∑=--+⋅-=ik ki n k n k n n i C C p p 02121)1( in i i n n p p C -+-=2)1(21(i =0, 1, 2, ⋅⋅⋅ , n 1+n 2), 所以 Z =X +Y ~b (n 1+n 2, p ),即Z =X +Y 服从参数为2n , p 的二项分布.提示:上述计算过程中用到了公式i n n ik k i n k n C C C21210+=-=⋅∑,这可由比较恒等式2121)1()1()1(n n n n x x x ++=++两边x i 的系数得到.28. 设随机变量(X , Y )的分布律为(1)求P {X =2|Y =2), P (Y =3|X =0); (2)求V =max{X , Y }的分布律; (3)求U =min{X , Y }的分布律; (4)求W =V +U 的分布律. 解: (1)由条件概率公式)2()2,2()2|2(======Y P Y X P Y X P08.005.005.005.003.001.005.0+++++=2.025.005.0==.同理 31)0|3(===X Y P .(2)变量V =max{X , Y }.显然V 是一随机变量, 其取值为V : 0, 1, 2, 3, 4, 5. P (V =0)=P (X =0, Y =0)=0,P (V =1)=P (X =1, Y =0)+P (X =1, Y =1)+P (X =0, Y =1) =0.01+0.02+0.01=0.04,P (V =2)=P (X =2, Y =0)+P (X =2, Y =1)+P (X =2, Y =2) +P (Y =2, X =0)+P (Y =2, X =1)=0.03+0.04+0.05+0.01+0.03=0.16, P (V =3)=P (X =3, Y =0)+P (X =3, Y =1) +P (X =3, Y =2)+P (X =3, Y =3)+P (Y =3, X =0)+P (Y =3, X =1)+P (Y =3, X =2), =0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28 P (V =4)=P (X =4, Y =0)+P (X =4, Y =1) +P (X =4, Y =2)+P (X =4, Y =3) =0.07+0.06+0.05+0.06=0.24, P (V =5)=P (X =5, Y =0)+ ⋅⋅⋅ +P (X =5, Y =3) =0.09+0.08+0.06+0.05=0.28. (3)显然U 的取值为0, 1, 2, 3.P (U =0)=P (X =0, Y =0)+ ⋅⋅⋅ +P (X =0, Y =3)+P (Y =0, X =1)+ ⋅⋅⋅ +P (Y =0, X =5)=0.28. 同理 P (U =1)=0.30, P (U =2)=0.25, P (U =3)=0.17. (4)W =V +U 的取值为0, 1, ⋅⋅⋅ , 8. P (W =0)=P (V =0, U =0)=0,P (W =1)=P (V =0, U =1)+P (V =1, U =0). 因为V =max{X , Y }=0又U =min{X , Y }=1 不可能上式中的P (V =0, U =1)=0,又 P (V =1, U =0)=P (X =1, Y =0)+P (X =0, Y =1)=0.2, 故 P (W =1)=P (V =0, U =1)+P (V =1, U =0)=0.2,P(W=2)=P(V+U=2)=P(V=2, U=0)+P(V=1,U=1) =P(X=2 Y=0)+P(X=0,Y=2)+P(X=1,Y=1)=0.03+0.01+0.02=0.06,P(W=3)=P(V+U=3)=P(V=3, U=0)+P(V=2,U=1) = P(X=3,Y=0)+P(X=0,Y=3)+P(X=2,Y=1)+P(X=1,Y=2)=0.05+0.01+0.04+0.03=0.13, P(W=4)=P(V=4, U=0)+P(V=3,U=1)+P(V=2,U=2) =P(X=4,Y=0)+ P(X=3,Y=1)+P(X=1,Y=3)+P(X=2,Y=2 =0.19,P(W=5)=P(V+U=5)=P(V=5, U=0)+P(V=5,U=1)+P(V=3,U=2=P(X=5 Y=0)+P(X=5,Y=1)+P(X=3,Y=2)+P(X=2,Y=3) =0.24,P(W=6)=P(V+U=6)=P(V=5, U=1)+P(V=4,U=2) +P(V=3,U=3)=P(X=5,Y=1)+P(X=4,Y=2)+P(X=3,Y=3)=0.19,P(W=7)=P(V+U=7)=P(V=5, U=2)+P(V=4,U=3) =P(V=5,U=2)+P(X=4,Y=3)=0.6+0.6=0.12, P(W=8)=P(V+U=8)=P(V=5, U=3)+P(X=5,Y=3)=0.05.。

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
两种方法如下: ①考虑整个样本空间。随机试验:掷两颗骰子,每颗骰子可能出现的点数都是 6 个,
即样本空间 S={ 62 个基本事件}。事件 AB={两颗骰子点数之间和为 7,且有一颗为 1 点},
两颗骰子点数之和为 7 的可能结果为 6 个,即
A={(1,6),(2,5),(3,4),(6,1),(5,2),(4,3)}
解 利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C130 ,即样本空间
{ } S= C130 = 120个基本事件 。
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5
{ } 个号码中取出的,有 C52 种取法,故 A= C52 = 10个基本事件 ,所求概率为
其中由 P( AB) = P(BC) = 0, 而 ABC ⊂ AB 得 P( ABC) = 0 。
------------------------------------------------------------------------------6.在房间里有 10 个人,分别佩戴从 1 号到 10 号的纪念章,任选 3 人记录其纪念章的号码。 求 (1)最小号码为 5 的概率; (2)最大号码为 5 的概率。
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0

A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100

最新概率论与数理统计第三章习题及答案

最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计浙大四版习题答案第三章

概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。

解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。

概率论与数理统计第三章自测题与答案

概率论与数理统计第三章自测题与答案

第三章 多维随机变量及其分布 自测题(90分钟)一、单项选择题(每题3分,共15分)1.设),1,0(~,21N X X 则21X X Y += ( )(A ))2,0(~N Y (B ))1,0(~N Y (C ))2,0(~N Y (D )Y 不一定服从正态分布 2.设Y X ,相互独立,都服从区间[0,1]上的均匀分布,则服从区间或区域上的均匀分布的是( )(A )()Y X , (B )Y X + (C )2X (D )Y X -3.设随机变量X 和Y , 已知,73}0{}0{,71}0,0{=≤=≤=≤≤Y P X P Y X P =≤}0),{min(Y X P 则( ) (A )73 (B )72 (C )75 (D )49164.设Y X ,相互独立,且都服从标准正态分布,则( )(A )41}0{=≥+Y X P (B )41}0{=≥-Y X P (C )41}0),{max(=≥Y X P (D )41}0),{min(=≥Y X P5.设两个随机变量Y X ,相互独立,且5.0}1{}1{}1{}1{=====-==-=Y P X P Y P X P ,则下列各式中正确的是( )(A )1}{==Y X P (B )5.0}{==Y X P (C )25.0}0{==+Y X P (D )25.0}0{==XY P 二、填空题(每空3分,共24分)1.设()Y X ,的联合分布律如下,且事件{X=0}与{X+Y=1}相互独立,则a= , b= .2.设Y X ,相互独立,表中列出()Y X ,的联合分布律和关于X 和Y 的边缘分布律的部分数值,3.设Y X ,相互独立,且均服从区间[0,3]上的均匀分布,则=≤}1),{max(Y X P 。

4.设随机变量X 和Y 相互独立都服从b (2,p ),且95}1{=≥X P ,则}1{=+Y X P = 。

5.已知()Y X ,的概率密度为⎩⎨⎧<<=-其他,00,),(yx e y x f y ,则=≤+}1{Y X P ,}21{≤Y X P = 。

概率论与数理统计(经管类)第三章课后习题答案

概率论与数理统计(经管类)第三章课后习题答案
P Z 40 P X 20, Y 20 20 6
P Z 30 P X 10, Y 20 20 3
P Z 20 P X 20, Y 0 20
P Z 10 P X 10, Y 0 P X 20, Y
P Z 0 P X 10, Y 则 Z=X‐Y 的分布律为
2 10 20
Z=X‐Y ‐40 ‐30 ‐20 ‐10 0
4. 设随机变量 X,Y 相互独立,且服从[0,1]上的均匀分布,求 X+Y 的概率密度. 解: 因 X,Y 都服从[0,1]上的均匀分布,且相互独立 故fX x fY y 1, f x, y fX x fY y
设 Z=X+Y
当0 z 1时
Z ZX
FZ
f x, y dydx
Z ZX
1dydx
Z
z xdx
;
P X 1, Y 0 P X 1 P Y 0
;
P X 1, Y 1 P X 1 P Y 1
;
(X,Y)的分布律与边缘分布律为
Y
X
0
1

16
4
20
0
25 25 25
4
1
1
1
25 25
5

20 25
1 5
(2) 不放回抽样的情况:
P X 0, Y 0 P X 0 P Y 0
;
P X 0, Y 1 P X 0 P Y 1
0, 其他.
0, 其他.
关于 Y 的边缘密度为
fY y
1
√2 24xydx , 0 y
0, 其他.
1 , 6x, 0 √3 =
y
1,
√3
0, 其他.
注意积分限为 Y 的值域,后面却 要写 X 的值域哦~

浙江大学《概率论与数理统计》配套题库【课后习题】第1章~第3章 【圣才出品】

浙江大学《概率论与数理统计》配套题库【课后习题】第1章~第3章 【圣才出品】

第二部分课后习题第1章概率论的基本概念1.写出下列随机试验的样本空间S:(1)记录一个班一次数学考试的平均分数(设以百分制记分);(2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果;(4)在单位圆内任意取一点,记录它的坐标.解:(1)以n表示该班的学生数,总成绩的可能取值为0,1,2,3,…,100n,试验的样本空间为(2)设在生产第10件正品前共生产了k件不合格品,样本空间为或写成(3)采用0表示检查到一件次品,以1表示检查到一件正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为(4)取一直角坐标系,则有,若取极坐标系,则有2.设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B与C不发生;(2)A与B都发生,而C不发生;(3)A,B,C中至少有一个发生;(4)A,B,C都发生;(5)A,B,C都不发生;(6)A,B,C中不多于一个发生;(7)A,B,C中不多于两个发生;(8)A,B,C中至少有两个发生.解:以下分别用表示(1),(2),…,(8)中所给出的事件.一个事件不发生即为它的对立事件发生,例如事件A不发生即为发生.(1)A发生,B与C不发生,表示A,,同时发生,故或写成;(2)A与B都发生而C不发生,表示A,B,同时发生,故或写成;(3)①方法1由和事件的含义知,事件即表示A,B,C中至少有一个发生,故;②方法2事件“A,B,C至少有一个发生”是事件“A,B,C都不发生”的对立事件,因此,;③方法3事件“A,B,C中至少有一个发生”表示三个事件中恰有一个发生或恰有两个发生或三个事件都发生,因此,又可写成(4);(5);(6)“A,B,C中不多于一个发生”表示A,B,C都不发生或A,B,C中恰有一个发生,因此,;又“A,B,C中不多于一个发生”表示“A,B,C中至少有两个不发生”,亦即,,中至少有一个发生,因此又有;又“A,B,C中不多于一个发生”是事件G=“A,B,C中至少有两个发生”的对立事件.而事件G可写成,因此又可将写成(7)“A,B,C中不多于两个发生”表示A,B,C都不发生或A,B,C中恰有一个发生或A,B,C中恰有两个发生.因此又“A,B,C中不多于两个发生”表示A,B,C中至少有一个不发生,亦即中至少有一个发生,即有;又“A,B,C中不多于两个发生”是事件“A,B,C三个都发生”的对立事件,因此又有;(8),也可写成.3.(1)设A,B,C是三个事件,且P(A)=P(B)=P(C)=,P(AB)=P(BC)=0,P(AC)=,求A,B,C至少有一个发生的概率.(2)已知P(A)=,P(B)=,P(C)=,P(AB)=,P(AC)=,P(BC)=,P(ABC)=,求,,,,,的概率.(3)已知P(A)=,(i)若A,B互不相容,求;(ii)若P(AB)=,求.解:(1)由,已知,故,得,所求概率为.(2)记,由加法公式(3)(i);(ii).4.设A、B是两个事件(1)已知,验证A=B;(2)验证事件A和事件B恰有一个发生的概率为P(A)+P(B)-2P(AB).解:(1)假设,故有,则,即AS=SB,故有A=B.(2)A,B恰好有一个发生的事件为,其概率为5.10片药片中有5片是安慰剂(1)从中任意抽取5片,求其中至少有2片是安慰剂的概率;(2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率.解:(1)p=1-P(取到的5片药片均不是安慰剂)-P(取到的5片药片中只有1片是安慰剂),即p(2).6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小号码为5的概率;(2)求最大号码为5的概率.解:在房间里任选3人,记录其佩戴的纪念章的号码,10人中任选3人共有=种选法,此即为样本点的总数.以A记事件“最小的号码为5”,以B记事件“最大的号码为5”.(1)因选到的最小号码为5,则其中一个号码为5且其余两个号码都大于5,它们可从6~10这5个数中选取,故,从而;(2)同理,,故.7.某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶、红漆3桶,在搬运中所有标签脱落,交货人随意将这些油漆发给顾客.问一个订货为4桶白漆、3桶黑漆和2桶红漆的顾客,能按所订颜色如数得到订货的概率是多少?解:以S表示:在17桶油漆中任取9桶给顾客.以A表示事件“顾客取到4桶白漆、。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。

《概率论与数理统计》浙江大学第四版课后习题答案

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计浙大第四版-第三章2

概率论与数理统计浙大第四版-第三章2

3 y (4 y ) 3 2 x y dx , 0 y 4, 16 y 32 0 , 其它.
fY ( y ) 0 ,故 因为仅当 y 在 (0,4) 内取值时, 2x y x 2, , f ( x , y) f X |Y ( x | y) 4 y f Y ( y) 其它. 0 ,
3x 2 , 0 x 1, 其它. 0,
3x 1 f ( x , y ) 2 , 0 y x 1, 3x f Y | X ( y | x) x f X ( x) 0, 其它.
于是
1 1 1 1 8 8 P{Y | X } f Y | X ( y | x )dy 4 dy 0 8 4 4 2
j ,若
易知上述条件概率具有分布律的性质
1) P{ X xi Y y j } 0
2)
P{ X x
i 1

i
Y y j}
i 1

pi j p j

p j p j
1
同样,设 ( X , Y是二维离散型随机变量,对于固定 ) 的
P{ X xi } 0 ,则称 pi j P{Y y j X xi } j 1, 2 , pi 为在 X xi 的条件下 X 的条件分布律。
G
0
2
x2
0
16 A x y dy 3
3 A 16

f X ( x)
f ( x , y ) dy
5 3 x2 3x x y dy , 0 x 2, 16 0 32 0 , 其它.
fY ( y )

概率论与数理统计浙大四版习题答案第三章资料

概率论与数理统计浙大四版习题答案第三章资料

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧=ο若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=ο若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。

解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。

概率论与数理统计课后习题答案(高等教育出版社)(浙江大学)(盛骤、谢式千、潘承毅)

概率论与数理统计课后习题答案(高等教育出版社)(浙江大学)(盛骤、谢式千、潘承毅)

第一章 概率论的基本概念[四] 设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P .求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C ) = P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8508143=+-.[九] 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对”∵ 从10只中任取4只,取法有⎪⎭⎫ ⎝⎛410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。

取法有4245⨯⎪⎭⎫ ⎝⎛21132181)(1)(2182)(410445=-=-==⋅=∴A P A P C C A P[十四] )(,21)|(,31)|(,41)(B A P B A P A B P A P ⋃===求。

解:由61)()(314121)()|()()()()|(=⇒⨯=−−−−→−=B P B P B P A B P A P B P AB P B A P 有定义由已知条件 由乘法公式,得121)|()()(==A B P A P AB P 由加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B A P [十七] 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

(1)二只都是正品(记为事件A )法一:用组合做 在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。

62.04528)(21028===C C A P法二:用排列做 在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。

《概率论与数理统计》习题及答案 第三章

《概率论与数理统计》习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有k r kb a C C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A AA ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,20 1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

概率论与数理统计(浙江大学出版社)各章练习题

概率论与数理统计(浙江大学出版社)各章练习题

概率论与数理统计(浙江大学出版社)各章练习题第一、二章一、填空题1.设事件A ,B 相互独立且互不相容,则min (P (A ),P (B ))=___________。

2.设随机变量X 在区间[1,3]上服从均匀分布,则P (1.5<x< bdsfid="65" p=""></x<>3.从0,1,2,3,4五个数中任意取三个数,则这三个数中不含0的概率为___________。

4.袋中有50个球,其中20个黄球、30个白球,今有2人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率为_____________.5.一批产品,由甲厂生产的占45% ,其次品率为5%,由乙厂生产的占 55%,其次品率为10%,从这批产品中随机取一件,恰好取到次品的概率为___________。

6.设随机变量X~N (2,4),则P{07. 设3.0)(,7.0)(=-=B A P A P ,则P(____AB )=______。

8.设X 的分布律为N k Na k X P ,,2,1,}{ ===,则=a9.已知,6.0)(,5.0)(==B A P A P 若B A 、互不相容,则=)(B P ;若B A 、相互独立,则=)(B P10.已知====)|(,5.0)(,4.0)(,7.0)(B A P B A P B P A P 则11.设生男生女是等可能的,某一个家庭有两个小孩,已知其中一个是女孩,则另一个也是女孩的概率为12. 设随机变量3.0}42{,2~2=<<="">=+++K Kx x 有实根的概率为16.设}{}{),3,1(~2c X P c X P N X ≤=>-,则=c二、选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误的是() A.P (A )=1-P (B ) B.P (AB )=P (A )P (B )C. P (AB )=0 D.P (A ∪B )=1 2.对一批次品率为p(0<p<=""></pA .pB .1-pC .(1-p)pD .(2-p)p3.设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是()互不相容与、B A A 相容与、B A B)()()(B P A P AB P C =、 )()(A P B A P D =-、4.设A ,B 为两个互不相容的随机事件,P (A )=0.3, P (B )=0.6,则P (A |B )=()A. 0.18B.0C. 0.5D.15.某人独立射击三次,其命中率为0.8,则三次中至多击中一次的概率为() A.0.002 B.0.008 C.0.08 D.0.1046.设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从() A.两点分布 B.二项分布 C.泊松分布 D.均匀分布7.设事件B A 与的概率均大于零,且B A 与为对立事件,则有()相互独立与、B A A 互不相容与、B A B相互独立与、B A C 相互独立与、B A D8.设B A ,为任意两个事件,则下列结论肯定正确的是()A. A B B A =-)(B.A B B A =- )(C.A B B A ?- )(D.A B B A ?-)( 9.设10张奖券中含有3张中奖的奖券,每人购买1张,则在前3个购买者中恰有一人中奖的概率为( )A.3.07.02310??C B. 0.3 C. 7/40 D. 21/4010. 随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率{}σμ<-X P 满足( ) (A)单调增大(B )单调减少(C )保持不变(D )增减不定 11. 设)1,1(~N X ,密度函数为)(x f ,则有( )(A)}0{}0{>=≤X P X P (B ))()(x f x f -= (C )}1{}1{>=≤X P X P (D ))(1)(x F x F --=12. 9.设x x f sin )(=,要使)(x f 为某个随机变量X 的概率密度,则X 的可能取值区间为( ) (A)]23,[ππ (B)]2,23[ππ (C) ],0[π (D)]21,0[π13. 下列函数中可以作随机变量的是( )(A )()()241010x x x p x ?-≤其他,(B )()()221110x x x p x ?-≤其他,(C )(),xp x e x -=-∞<<+∞ (D )(),xp x ex -=-∞<<+∞。

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

目录第一章随机变量及其概率. (2)第二章随机变量及其分布. (13)第三章随机变量的数字特征. (30)第四章正态分布. (39)第五章样本及抽样分布. (49)第六章参数估计. (55)第七章假设检验. (68)第一章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。

解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S{H ,TH ,TTH ,TTTH , };(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求P(A B), P(AB), P(AB), P[( A B)(AB)]。

解:P(A B) P(A) P(B) P(AB) 0.625,P(AB) P[(S A)B] P(B) P(AB) 0.375,P(AB) 1 P(AB) 0.875,P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.53,在100, 101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100, 101,…,999这900个3位数中不包含数字1的3位数 的个数为8 9 9 648,所以所求得概率为4, 在仅由数字0,1, 2, 3, 4, 5组成且每个数字至多出现一次的全 体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该 数大于330的概率。

解:仅由数字0, 1, 2, 3, 4, 5组成且每个数字之多出现一次的全 体三位数的个数有 5 5 4 100个。

浙江大学概率论与数理统计第三章习题

浙江大学概率论与数理统计第三章习题

11. 以X记某医院一天出生的婴儿的个数,Y记其中男婴的个数,设X和 Y的联合分布律为 m=0,1,2,…,n ; e 14 (7.14)m (6.86)n m P{ X n,Y m} n=0,1,2,… . m!( n m )! (1)求边缘分布律;(2)求条件分布律;(3)特别,写出当X=20时,Y的条 件分布律. n n e 14 (7.14) m (6.86) n m 解 (1) P{X=n} P{ X n,Y m }
2 4
x 2,2 y 4 x 2, y 4
y 4,0 x 2
6. 将一枚硬币掷3次,以X表示前2次中出现H的次数,以Y表示3次 中出现H的次数.求X,Y的联合分布律以及(X,Y)的边缘分布律. 解 先将试验的样本空间和X,Y的取值情况列表如下: 由表中可知,X 样本点e HHH HHT HTH THH HTT THT TTH TTT 所有可能取的 X 2 2 1 1 1 1 0 0 值为0,1,2, Y 3 2 2 2 1 1 1 0 Y所有可能取 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 p 的值为0,1,2,3. X,Y的联合分布律如右表所示. (X,Y)关于X的边缘分布律可用X= i时 Y取所有可能取的值的概率相加而得; (X,Y)关于Y的边缘分布律可用Y= j时 X取所有可能取的值的概率相加而得. 也可以单独列表如下:
D
cx ydxdy
2
1 1 2 dx cx ydxdy 1 x2

o
2
1
21 x y / 4, x y 1 故 c=21/4. f ( x , y ) 其它 0, (2) 21 2 1 21 2 6 x ydy ( x x ), 1 x 1 x2 f X ( x ) f ( x, y )dy 4 8

概率论与数理统计及其应用课后答案浙江大学盛骤版

概率论与数理统计及其应用课后答案浙江大学盛骤版

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P{X=0,Y=1}=P(A1A2) =P(A1)P(A2)
5 36 5 36 1 36
10 9 45 (2)不放回抽样 P{X=0,Y=0}=P(A1A2) =P(A1)P(A2|A1)
P{X=0,Y=1}=P(A1A2) =P(A1)P(A2|A1) 10 2 10
第三章习题
1. 在一个箱子中装有12只开关,其中2只是次品,在其中取两次,每次 任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机 变量X,Y如下: 0, 若第一次取出的是正品, 0, 若第二次取出的是正品, X Y 1, 若第一次取出的是次品; 1, 若第二次取出的是次品. 试分别就(1),(2)两种情况,写出X和Y的联合分布律.
k (6 x y ),0 x 2,2 y 4 3. 设随机变量(X,Y)的概率密度为 f ( x, y ) 0, 其它
(1)y<2,-<x<,或x<0,-<y<时,F(x,y)=0 . 2 (x,y) 2 x y1 (2)0x<2,2y<4时, F ( x, y ) 0 dx2 (6 x y )dy x x 2 2 8 2 1 x y 1 0 (6 y xy 2 x 10)dx ( 2 x 2 x 2 y 12 xy xy 2 20 x ) 8 2 16 (x,y) (4) y y (3) 2 y1 (x,y) 4 (3) x2,2y<4时, F ( x , y ) 0 dx 2 (6 x y )dy 4 8 2 2 2 1 2 y 1 0 (6 y xy 2 x 10)dx (10 y y 2 16) x x 2 2 8 2 8 4 x1 总之 (4)0x<2,y4时,F ( x, y ) 2 dy0 6 x y )dx 8 2 1 4 x 1 0, y 2, x 或x 0, y 2 [( 6 y ) x ]dy (6 x x 2 ) ( 2 x 2 x 2 y 12 xy xy 2 20 x ) / 16,0 x 2,2 y 4 8 2 8
(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1,5}; (4)求P{X+Y4}. 2 4 解 (1)由归一性 1 f ( x, y )dxdy k 0 dx2 (6 x y )dy y (4) (5) y2 4 2 2 2 8k k 0 (6 y xy ) 2 dx k 0 (6 2 x )dx k(6 x x 2 ) 0 4 2 (2) (3) 故 k=1/8. 2 1 3 1 31 (2) P{X<1,Y<3} f ( x , y )dxdy 0 dx 2 (6 x y )dy (1) 8 2 x 2 2 1 1 y 3 1 17 1 7 x 1 3 y 0 (6 y xy ) 2 dx 0 ( 2 x )dx ( x ) 0 8 2 8 2 8 2 2 8 4 1.5 1.5 41 (3)P{X<1,5} f ( x , y )dxdy 0 dx 2 (6 x y )dy 2 D x+y=4 8 G 1 1 1 .5 2 1.5 27 4 4 y x 2 0 (6 2 x )dx (6 x x ) 0 dy ( 6 x y ) / 8 dx 8 8 32 2 0 2 4 x 1 1 (6 x y )dy (4)P{X+Y4}= f ( x , y )dxdy (6 x y )dxdy 0 dx 2 8 G: x y 4 D8 3 1 x 2 1 2 y 2 4 x 1 2 x2 2 2 0 (6 y xy ) 2 dx 0 (6 4 x )dx (6 x 2 x ) 0 8 6 3 8 2 8 2
0 1 25/36 5/36 5/6 5/36 1/36 1/6 1/6 1
X和Y的边缘分布如下所示 (2) Y X 0 1 P{Y=j}
0 1 45/66 10/66 5/6 10/66 1/66 1/6 1/6 1
P{X=i} 5/6
P{X=i} 5/6
16(1)问第1题中的随机变量X和Y是否相互独立?(需说明理由) 解 (1)P{X=i,Y=j}=P{X=i}P{Y=j}对(X,Y)所有可能取值 (i,j)( i ,j =0,1)都成立,故放回抽样X和Y相互独立. (2) P{X=1,Y=0}=10/66 P{X=1}P{Y=0}=(1/6)(5/6)=5/36 故不放回抽样X和Y不相互独立.
12 11 66
12 11 66 2 10 10 P{X=1,Y=0}=P(A1A2) =P(A1)P(A2|A1) 12 11 66 2 1 1 P{X=1,Y=1}=P(A1A2) =P(A1)P(A2|A1) 12 11 66
X和Y的联合分布律列表如下 (1) Y X 0 1 P{Y=j}
解 设事件Ak表示“第k次取出的是正 品” (1),k=1,2. 放回抽样 10 10 25 P{X=0,Y=0}=P(A1A2) =P(A1)P(A2) 12 12 36
10 2 12 12 2 10 P{X=1,Y=0}=P(A1A2) =P(A1)P(A2) 12 12 2 2 P{X=1,Y=1}=P(A1A2) =P(A1)P(A2) 12 12
相关文档
最新文档