2017年北京市西城区中考数学一模试卷及答案

合集下载

2017年北京中考数学一模28题“几何综合题”

2017年北京中考数学一模28题“几何综合题”

2017年北京中考数学一模28题“几何综合题”西城28.在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:()BF BC BD +=21; (2)点E 在AB 边上,连接CE . 若()BF BC BD +=21,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路图1 图2朝阳28.在△ABC 中,∠ACB =90°,AC <BC ,点D 在AC 的延长线上,点E 在BC 边上,且BE =AD , (1) 如图1,连接AE ,DE ,当∠AEB =110°时,求∠DAE 的度数;(2) 在图2中,点D 是AC 延长线上的一个动点,点E 在BC 边上(不与点C 重合),且BE =AD ,连接AE ,DE ,将线段AE 绕点E 顺时针旋转90°得到线段EF ,连接BF ,DE . ①依题意补全图形; ②求证:BF =DE .FEBDAC D A CB图1图2东城28. 在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;……请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)图1 图2 图3ABDC图1图2房山28. 在△ABC 中,AB=BC ,∠B=90°,点D 为直线BC 上一个动点(不与B 、C 重合),连结AD ,将线段AD 绕点D 按顺时针方向旋转90°,使点A 旋转到点E ,连结EC . (1)如果点D 在线段BC 上运动,如图1: ①依题意补全图1; ②求证:∠BAD=∠EDC③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°.小明与同学讨论后,形成了证明这个结论的几种想法:想法一:在AB 上取一点F ,使得BF=BD ,要证∠DCE =135°,只需证△ADF ≌△DEC . 想法二:以点D 为圆心,DC 为半径画弧交AC 于点F. 要证∠DCE=135°,只需证△AFD ≌△ECD .想法三:过点E 作BC 所在直线的垂线段EF ,要证∠DCE=135°,只需证EF=CF . ……请你参考上面的想法,证明∠DCE=135°.(2)如果点D 在线段CB 的延长线上运动,利用图2画图分析,∠DCE 的度数还是确定的值吗?如果是,直接写出∠DCE 的度数;如果不是,说明你的理由.顺义28.在正方形ABCD 和正方形DEFG 中,顶点B 、D 、F 在同一直线上,H 是BF 的中点.(1)如图1,若AB =1,DG =2,求BH 的长; (2)如图2,连接AH ,GH .图2图1BB小宇观察图2,提出猜想:AH =GH ,AH ⊥GH .小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH 交EF 于点M ,连接AG ,GM ,要证明结论成立只需证△GAM 是等腰直角三角形; 想法2:连接AC ,GE 分别交BF 于点M ,N ,要证明结论成立只需证△AMH ≌△HNG . ……请你参考上面的想法,帮助小宇证明AH =GH ,AH ⊥GH .(一种方法即可)平谷28.在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE 绕点D顺时针旋转120°,与直线AC交于点F.(1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED 与∠AFD互补,由等角对等边,可证DE=DF;想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC 的高,利用全等三角形,可证DE=DF…….请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.图1 备用图门头沟28. 已知△ABC ,AB AC =, BAC α∠=,在BA 的延长线上任取一点D ,过点D 作BC 的平行线交CA 的延长线于点E .(1)当60BAC ∠=︒时,如图28-1,依题意补全图形,直接写出EC ,BC ,ED 的数量关系; (2)当90BAC ∠=︒时,如图28-2,判断EC ,BC ,ED 之间的数量关系,并加以证明; (3)当BAC α∠=时(0180α︒︒<<),请写出EC ,BC ,ED 之间的数量关系并写出解题思路.海淀28.在ABCD 中,点B 关于AD 的对称点为B ',连接AB ',CB ',CB '交AD 于F 点.(1)如图1,90ABC ∠=︒,求证:F 为CB '的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B 绕点A 旋转的过程中,点F 始终为CB '的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B '作B G '∥CD 交AD 于G 点,只需证三角形全等;想法2:连接BB '交AD 于H 点,只需证H 为BB '的中点; 想法3:连接BB ',BF ,只需证90B BC '∠=︒. ……请你参考上面的想法,证明F 为CB '的中点.(一种方法即可) (3)如图3,当135ABC ∠=︒时,AB ',CD 的延长线相交于点E ,求CE AF的值.图1图2图3B 28-1 B 28-2丰台28.在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与 点B ,C ,D 重合),且AE ⊥EF .(1)如图1,当BE = 2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP . 想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE , 需证△EHP 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM , 要证AE =PE ,需证四边形MCPE 为平行四边形. 请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可)FABCDEF ABCDE图1 图2石景山28.在正方形ABCD 中,点E 是对角线AC 上的动点(与点A ,C 不重合),连接BE . (1)将射线BE 绕点B 顺时针旋转45°,交直线AC 于点F .①依题意补全图1;②小研通过观察、实验,发现线段AE ,FC ,EF 存在以下数量关系: AE 与FC 的平方和等于EF 的平方.小研把这个猜想与同学们进行交流,通 过讨论,形成证明该猜想的几种想法:想法1: 将线段BF 绕点B 逆时针旋转90°,得到线段BM , 要证AE , FC , EF 的关系,只需证AE ,AM ,EM 的关系.想法2:将ABE △沿BE 翻折,得到NBE △,要证AE ,FC ,EF 的关系,只需证EN ,FN ,EF 的关系.……请你参考上面的想法,用等式表示线段AE ,FC ,EF 的数量关系并证明; (一种方法即可)(2)如图2,若将直线..BE 绕点B 顺时针旋转135°,交直线..AC 于点F .小研完成作 图后,发现直线AC 上存在三条线段(不添加辅助线)满足:其中两条线段的平 方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.CCB CB 通州28.在等边三角形ABC 中,E 为直线AB 上一点,连接EC .ED 与直线BC 交于点D ,ED =EC . (1)如图1,AB =1,点E 是AB 的中点,求BD 的长;(2)点E 是AB 边上任意一点(不与AB 边的中点和端点重合),依题意,将图2补全,判断AE 与BD 间的数量关系并证明;(3)点E 不在线段AB 上,请在图3中画出符合条件的一个图形.图1 图2 图3怀柔28.(1)如图1,在△ACB 和△ADB 中,∠C=∠D =90°,过A ,B ,C 三点可以作一个圆,此时AB 为圆的直径,AB 的中点O 为圆心.因为∠D =90°,利用圆的定义可知点D 也在此圆上,若连接DC ,当∠CAB=31°时,利用圆的知识可知∠CDB= 度.(2)如图2,在△ACB 中,∠ACB=90°,AC=BC=3,CE ⊥AB 于E ,点F 是CE 中点,连接AF 并延长交BC于点D.CG ⊥AD 于点G ,连接EG. ①求证:BD=2DC;②借助(1)中求角的方法,写出求EG 长的思路.(可以不写出计算的结果)图2 G FE DC B A 图1OB A西城28.证明:在△ABC 中,AB =BC ,BD ⊥AC 于点D . ∴∠ABD =∠CBD ,AD =BD .(1) ①∵∠ABC =90°, ∴∠ACB =45°. ∵CE 平分∠ACB ∴∠ECB =∠ACE =22.5°.∴∠BEF =∠CFD =∠BFE =67.5°. ∴BE =BF .∴△BEF 是等腰三角形. ······························································· 2分②延长AB 至M ,使得BM =AB ,连接CM. ∴BD ∥CM ,BD =21CM ∴∠BCM =∠DBC =∠ABD =∠BMC =45°, ∠BFE =∠MCE . ∴BC =BM.由①可得,∠BEF =∠BFE ,BE =BF .∴∠BFE =∠MCE =∠BEF . ∴EM =MC ∴()BF BC BD +=21 ···········································分(2)∠ACE =41∠ABCa.与(1)②同理可证BD ∥PC ,BD =21PC ,BP =BC ; b.由()12BD BC BE =+可知△PEC 和△BEF 分别是等腰三角形; c.由∠BEF +∠BFE +∠EBF =180°,∠FCD +∠DFC =90°,可知∠ACE =41∠ABC············································································································ 7分东城28.解:,60. ..AD DE ADE ADE ABC EAB DAC AB AC AE AD EAB DAC CD BE =∠=︒∴∴∠=∠==∴∴=,△为等边三角形.△为等边三角形,,,△≌△EE(1)30°; …………1分 (2)思路1:如图,连接AE .…………5分思路2:过点D 作DF ∥AB ,交AC 于F .…………5分思路3:延长CB 至G ,使BG =CD.…………5分(3)k (BE +BD )=AC . …………7分=60.,=60..===60,.,..ABC AC BC BAC DF AB DFC CDF AF BD ADE ACB ABC DAF EDB AD DE ADF DEB DF BE CD ∴=∠︒∴∠︒∴∴=∠∠∠︒∴∠=∠=∴∴==△为等边三角形,,∥△为等边三角形.又△≌△=60.,.===60,.,.,==60..ABC AC BC BAC CD BG DG AC ADE ACB ABC DAF EDB AD DE ADC DEG CD EG BG C G BGE BE BG CD ∴=∠︒=∴=∠∠∠︒∴∠=∠=∴∴==∠∠︒∴∴==△为等边三角形,,又△≌△△为等边三角形.EABDC朝阳28.(1)解:∵ÐAEB =110°,ÐACB =90°,∴ÐDAE =20°.(2)①补全图形,如图所示.②证明:由题意可知∠AEF =90°,EF =AE .∵∠ACB =90°,∴∠AEC +∠BEF =∠AEC +∠DAE =90°. ∴∠BEF =∠DAE . ∵BE =AD , ∴△EBF ≌△ADE .∴DE =BF .房山28.(1)补全图形 ------1分 (2)证明:∵∠B =90º∴∠BAD+∠BDA =90º∵∠ADE =90º,点D 在线段BC 上 ∴∠BAD+∠EDC =90º∴∠BAD=∠EDC ------2分 证法1:在AB 上取点F ,使得BF=BD ,连结DF ------3分 ∵BF =BD ,∠B =90º ∴∠BFD =45º∴∠AFD =135º∵BA=BC∴AF=CD ------4分 在△ADF 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=DE AD CDE BAD CDAF ∴△ADF ≌△DEC ------5分 ∴∠DCE =∠AFD =135º ------6分证法2:以D 为圆心,DC 为半径作弧交AC 于点F ,连结DF ------3分 ∴DC=DF ∠DFC =∠DCF ∵AB=BC ∠B =90º∴∠ACB =45º ∠DFC =45º∴∠FDC =90º ∠AFD =135º ∵∠ADE =∠FDC =90º∴∠ADF =∠EDC ------4分 又∵AD =DE DF =DC∴△ADF ≌△CDE ------5分 ∴∠AFD =∠DCE =135º ------6分EFA B D C证法3:过点E 作EF ⊥BC 交BC 延长线于点F ------3分 ∴∠EFD =90º∵∠B =90º, ∴∠EFD =∠B∵∠BAD =∠CDE ,AD=DE∴△ABD ≌△DEF ------4分 ∴AB=DF BD=EF∵AB=BC∴BC=DF ,BC -DC =DF -DC 即BD =CF ------5分 ∴EF =CF ∵∠EFC =90º∴∠ECF =45º,∠DCE =135º ------6分 (2)∠DCE =45º ------7分顺义28.(1)解:∵ 正方形中ABCD 和正方形DEFG ,∴ △ABD ,△GDF 为等腰直角三角形.∵ AB =1,DG =2,∴ 由勾股定理求得BD=2,DF=22.…………………………… 2分 ∵ B 、D 、F 共线, ∴ BF =23. ∵ H 是BF 的中点, ∴ BH =21BF =223. …………………………………………………… 3分 5(2)证法一:延长AH 交EF 于点M ,连接AG ,GM ,∵正方形中ABCD 和正方形DEFG 且B 、D 、F 共线,∴AB ∥EF .∴∠ABH=∠MFH .又∵BH=FH ,∠AHB =∠MHF ,∴△ABH ≌△MFH .…………… 4分 ∴AH=MH ,AB=MF . ∵AB=AD , ∴AD=MF .∵DG=FG ,∠ADG=∠MFG =90°, ∴△ADG ≌△MFG .…………… 5分 ∴∠AGD=∠MGF ,AG=MG . 又∵∠DGM +∠MGF=90°, ∴∠AGD +∠DGM=90°.∴△AGM 为等腰直角三角形.…………………………………… 6分 ∵AH=MH ,∴AH =GH ,AH ⊥GH .…………………………………………… 7分证法二:连接AC ,GE 分别交BF 于点M ,N ,∵正方形中ABCD 和正方形DEFG 且B 、D 、F 共线,∴AC ⊥BF ,GE ⊥BF ,DM =21BD ,DN=21DF . ∴∠AMD =∠GNH =90°,MN =21BF .………………………… 4分∵H 是BF 的中点, ∴BH =21BF . ∴BH=MN .∴BH -MH=MN -MH . ∴BM=HN .∵AM=BM=DM , ∴AM=HN=DM .∴MD+DH=NH+DH . ∴MH=DN . ∵DN = GN , ∴MH = GN .∴△AMH ≌△HNG . ……………………………………………… 5分 ∴AH=GH ,∠AHM=∠HGN . …………………………………… 6分 ∵∠HGN +∠GHN=90°, ∴∠AHM +∠GHN=90°. ∴∠AHG=90°.∴AH ⊥GH . ………………………………………………………… 7分平谷28.解:(1)如图1, (1)(2)想法1证明:如图2,过D 作DG ∥AB ,交AC 于G , (2)图2 GF DCABE 图3P F DCAB E图4N M F DCABE 图1F DCABE∵点D是BC边的中点,∴DG=12 AB.∴△CDG是等边三角形.∴∠EDB+∠EDG=120°.∵∠FDG+∠EDG=120°,∴∠EDB =∠FDG. (3)∵BD=DG,∠B=∠FGD=60°,∴△BDE≌△GDF. (4)∴DE=DF. (5)想法2证明:如图3,连接AD,∵点D是BC边的中点,∴AD是△ABC的对称轴.作点E关于线段AD的对称点P,点P在边AC上, (2)∴△ADE≌△ADP.∴DE=DP,∠AED=∠APD.∵∠BAC+∠EDF=180°,∴∠AED+∠AFD=180°.∵∠APD+∠DPF=180°,∴∠AFD=∠DPF. (3)∴DP=DF. (4)∴DE=DF. (5)想法3证明:如图4,连接AD,过D作DM⊥AB于M,DN⊥AB于N, (2)∵点D是BC边的中点,∴AD平分∠BAC.∵DM⊥AB于M,DN⊥AB于N,∴DM=DN. (3)∵∠A=60°,∴∠MDE+∠EDN=120°.∵∠FDN+∠EDN=120°,∴∠MDE=∠FDN.∴Rt△MDE≌Rt△NDF. (4)∴DE=DF. (5)(3)当点F在AC边上时,12BE CF AB+=; (6)当点F在AC延长线上时,12BE CF AB-=. (7)门头沟28.(1)补全图形正确 . …………………1分数量关系:EC=BC + ED. …………2分(2)数量关系:BC ED+=.过D作DF∥AC交BC延长线于F点F∵DF ∥AC ,ED ∥BC ,∴四边形ADCF 为平行四边形. ∴ED=CF , EC=DF . ∵AB =AC , ∴∠ABC =∠ACB . ∵ED ∥BC ,∴∠DEC =∠ECB , ∠EDB =∠DBC . ∴∠CED =∠BDE . ∴AE =AD .∴EC =BD . …………………3分 ∴BD =DF . ∵DF ∥AC ,∴∠BDF =∠BAC =90°.∴△BDF 为等腰直角三角形.…………………4分 在Rt △BDF 中 ∵BF 2=BD 2+DF 2,∴(BC +ED)2=2EC 2.BC ED += . …………………5分(3)数量关系:2sin2BC ED EC α+=⋅.……6分①由(2)可知四边形ACFD 为平行四边形,△BDF 为等腰三角形 过D 点作DN ⊥BC 于N 点可得BN =12BF ,∠BDN =12α②在Rt △BDN 中 Sin ∠BDN =BN BD =sin 2α. 可得2sin 2BC ED EC α+=⋅.……………………………7分海淀28.(1)证明:∵四边形ABCD 为平行四边形,∠ABC =90°, ∴□ABCD 为矩形,AB=CD .∴. ∠D =∠BAD = 90°.∵ B ,B '关于AD 对称,∴ ∠B 'AD =∠BAD =90°,AB =A B '.----------------- 1分 ∴ ∠B 'AD =∠D . ∵ ∠AF B '=∠CFD ,∴ △AF B '≌ △CFD (AAS ). ∴ F B '=FC .∴ F 是C B '的中点. ---------------------------------------------------------------------------- 2分 (2)证明:方法1:过点B '作B G '∥CD 交AD 于点G . ∵ B ,B '关于AD 对称, ∴ ∠1=∠2,AB =A B '. ∵ B 'G ∥CD , AB ∥CD , ∴ B 'G ∥AB . ∴ ∠2=∠3. ∴ ∠1=∠3. ∴ B 'A =B 'G . ∵ AB =CD ,AB =A B ',∴ B 'G =CD . ------------------------------------------------------------------------------------- 3分 ∵ B 'G ∥CD ,∴ ∠4=∠D .----------------------------------------------------------------------------------------- 4分 ∵ ∠B 'FG =∠CFD ,∴ △B 'FG ≌ △CFD (AAS ). ∴ F B '=FC .∴ F 是C B '的中点. ---------------------------------------------------------------------------- 5分方法2:连接BB '交直线AD 于H 点, ∵ B ,B '关于AD 对称,∴ AD 是线段B 'B 的垂直平分线.∴ B 'H =HB .----------------------------- 3分 ∵ AD ∥BC ,∴''1B F B HFC HB ==.-------------------- 4分 ∴ F B '=FC .∴ F 是C B '的中点. --------------------------------------------------------------------------- 5分 方法3:连接BB ',BF ,∵ B ,B '关于AD 对称, ∴ AD 是线段B 'B 的垂直平分线. ∴ B 'F =FB .----------------------------- 3分 ∴ ∠1=∠2. ∵ AD ∥BC , ∴ B 'B ⊥BC . ∴ ∠B 'BC =90°.∴ ∠1+∠3=90°,∠2+∠4=90°. ∴ ∠3=∠4.∴ FB =FC .------------------------------------------------------------------------------------------- 4分 ∴ B 'F =FB =FC .∴ F 是C B '的中点. --------------------------------------------------------------------------- 5分 (3)解:取B 'E 的中点G ,连结GF . ∵ 由(2)得,F 为C B '的中点,∴ FG ∥CE ,12FG CE =.…① ∵ ∠ABC =135°,□ABCD 中,AD ∥BC ,∴ ∠BAD =180°-∠ABC =45°. ∴ 由对称性,∠EAD =∠BAD =45°. ∵ FG ∥CE ,AB ∥CD , ∴ FG ∥AB .∴ ∠GF A =∠F AB =45°. ----------------------------------------------------------------------------- 6分 ∴ ∠FGA =90°,GA =GF . ∴sin FG EAD AF =∠⋅=.…② ∴由①,②可得CEAF------------------------------------------------------------------ 7分丰台28. 解:(1)∵正方形ABCD 的边长为5, BE =2, ∴EC =3.∵四边形ABCD 是正方形, ∴∠B =∠C= 90°, ∴∠1+∠3=90°,∵AE ⊥EF ,∴∠2+∠3=90°, ∴∠1=∠2. ∴△ABE ∽△ECF ,∴FC CE BE AB =,即FC325= ∴FC =56. ………………………………………………………………………2分(2)①依题意补全图形. ……………………………………………………………3分②法1:证明:在AB 上截取AG =EC ,连接EG . ∵AB = BC ,∴GB =EB .∵∠B =90°,∴∠BGE =45°,∴∠AGE =135°. ∵∠DCB =90°,CP 是正方形ABCD 外角平分线, ∴∠ECP =135°. ∴∠AGE =∠ECP .BCE DA F P G 12 F A DC BE132又∵∠1=∠2,∴△AGE ≌△ECP .∴AE =PE . ………………………………………………………………7分法2:证明:作点A 关于BC 的对称点H ,连接BH ,CH ,EH . ∴AB =BH=BC ,∠1=∠4,∠ABE =∠HBE =90°. ∴∠BHC =∠BCH =45°,∠4+∠5=45°.∵∠1=∠2,∴∠2+∠5=45°. ∵∠ECP =135°,∴∠HCP =180°,点H ,C ,P 在同一条直线上.∵∠6=∠2+∠P =45°,∴∠5 =∠P .∴AE =PE . ………………………………………………………………7分法3:证明:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM . ∴MB =EB ,∴∠MEB =45°,∠MEC =135°. 由法1∠ECP =135°,∴∠MEC =∠ECP . ∴ME ∥PC .又∵AB =BC ,∠ABC =∠MBC =90°. ∴△ABE ≌△CBF .∴∠1=∠BCM ,MC =AE .∴MC ∥EP .∴四边形MCPE 为平行四边形. ∴MC =PE .∴AE =PE . ………………………………………………………………7分石景山28.(1)①依题意补全图形,如图1.…………………… 1分②线段AE ,FC ,EF 的数量关系为:222AE FC EF +=. ……… 2分B CE DA F PM112BCEDA F P H4 5 6 M证法一: 过点B 作MBBF 于点B 且BM BF ,连接ME ,MA ,如图2.∵四边形ABCD 是正方形, ∴901245ABC AB BC °,°,.∵345°,∴345MBE °.又∵BEBE , ∴MBE FBE △≌△. ………………………………… 3分 ∴EM EF .∵490ABF °,590ABF °,∴45. 又∵,BMBF ABCB ,∴AMB CFB △≌△. ………………………………… 4分 ∴AM CF ,6245°.∴6190MAE°.在Rt MAE △中,222AE MA EM +=.∴222AE FC EF +=. ………………………………… 5分 证法二: 作2=1,且BN BA ,连接EN ,FN ,如图3.又∵BEBE ,∴BNE BAE △≌△.分 ∴,NEAE 6=5.∵四边形ABCD 是正方形, ∴905845ABC AB BC °,°,.∴BN BC .∵32452EBF°-,4190451451ABCEBF °°°,∴34.又∵BFBF ,∴BNF BCF △≌△. ………………………………… 4分 ∴FNFC ,7845°.∴67454590ENF °°°.MHABC D EFG∴在Rt ENF △中,222NE FN EF +=.∴222AE FC EF +=. ………………………………… 5分 (2)用等式表示这三条线段的数量关系:222AF EC EF +=. …………… 7分通州 28.解:(1)……………………..(1分)21=BD …………..(2分) (2)AE =BD ……..(3分)证明思路1:利用等边三角形的性质, 证明△BDE 与EC 所在的三角形全等; 证明思路2:利用等腰三角形的轴对称性, 作出△BDE 的轴对称图形;证明思路3:将△BDE 绕BE 边的中点旋转180°,构造平行四边形; ……………………..(6分) ……(3)图形正确 ……………………..(7分)怀柔28. 解:(1)31°. ……………………………2分(2)①过点E 作EH ∥AD 交CB 于H 点. ……………………3分 ∵CE ⊥AB 于点E ,AC=BC , ∴点E 是AB 中点.∴BH=DH. ∵点F 是CE 中点,∴HD=DC.∴BD=2CD. ……………………………4分 ②∵CE ⊥AB 于点E ,∴∠CEA=90°.∵CG ⊥AD 于点G ,∴∠CGA=90°.∴AC 为圆的直径. ∵∠ACB=90°,AC=BC ,∴∠CAE =45°.∵CE ⊥AB 于点E ,∴∠ACE =45°.∴∠AGE=45°. ……………………………5分 方法1:解斜三角形法在Rt △DCA 中,因为∠C =90°, CG ⊥AD 于点G ,DC=1. 所以可以求出CG 的长. ……………………………6分 又因为∠CGE==135°,CE=2. 解△ECG 可求出EG 的长.(此题解△AEG 也可行)…………………7分 方法2:证明等腰直角三角形法.CG F E D C B A K A B C D E FG 延长CG 交EH 于M 点.因为EH ∥AD 交CB 于H 点,点F 是CE 中点,所以点G 为MC 的中点.因为==.∴CG=10.∴MG=10.……………………6分 因为∠EGA=∠ACE=45°,所以∠CGE==135°.所以∠MGE=∠GEM=45°,所以GE 可解.∵.,∴.………………………7分 方法3:相似法 ∵AC=BC=3,∴AB=∴AE=2. ∵CD=1,∴BD=2,AD =. ∵∠AGE=∠B= 45°, ∠DAB=∠EAD.∴△AGE △ABD. …………………6分 ∴AE GE AD DB =.2EG =.∴.………………………7分 方法4:旋转法:过E 作EK ⊥GE 交AD 于点K ,可证△AKE ≅△CGE (ASA ). …………………6分 ∴.∵CD=1,AD =,∴∴KG=5.∴EG=5.……………………………7分。

北京市各区2017年中考数学一模试题汇编尺规作图无答案

北京市各区2017年中考数学一模试题汇编尺规作图无答案

尺规作图【17西城一模】16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图的依据是.【17房山一模】16.在数学课上,老师提出如下问题:小云的作法如下:小云作图的依据是.【17平谷一模】16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB 的角平分线:作法:如图,(1)在射线OA 上任取一点C ,过点C 作CD ∥OB ;(2)以点C 为圆心,CO 的长为半径作弧,交CD 于点E ; (3)作射线OE .所以射线OE 就是∠AOB 的角平分线.请回答:小米的作图依据是_________________________.【17通州一模】16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.【17丰台一模】16.在数学课上,老师提出如下问题:小姗的作法如下:老师说:“小姗的作法正确”.请回答:得到△ABC 是等腰三角形的依据是:____________________________.O E DC BAa bMNAB CD 如图,(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN 交线段BC 于点D ; (3)在MN 上截取线段DA =b ,连接AB ,AC .所以,△ABC 就是所求作的等腰三角形.已知:线段a ,b . 求作:等腰△ABC ,使AB =AC ,BC =a ,BC 边上的高为b .CAK F NMCBA P16-1 FK【17门头沟一模】16.在数学课上,老师布置了一项作图任务,如下:已知:如图16-1,在△ABC 中,AC AB =,请在图中的△ABC 内(含边),画出使 45APB ∠=︒的一个点P (保留作图痕迹),小红经过思考后,利用如下的步骤找到了点P : (1)以AB 为直径,做⊙M ,如图16-2; (2)过点M 作AB 的垂线,交⊙M 于点N ;(3)以点N 为圆心,NA 为半径作⊙N ,分别交CA 、CB 边于F 、K ,在劣弧上任取 一点P 即为所求点,如图16-3.说出此种做法的依据__________.【17东城一模】16.下面是“以已知线段为直径作圆”的尺规作图过程.MC B A 16-2 16-3已知:线段AB.求作:以AB 为直径的⊙O .BA作法:如图,(1) 分别以A ,B 为圆心,大于21AB 的长为半径 作弧,两弧相交于点C ,D ;(2)作直线CD 交AB 于点O ;(3)以O 为圆心,OA 长为半径作圆. 则⊙O 即为所求作的.请回答:该作图的依据是 .【17海淀一模】16.下面是“作三角形一边中线”的尺规作图过程.已知:△ABC .求作:BC 边上的中线AD .作法:如图,(1)分别以点B ,C 为圆心,AC ,AB 长为半径作弧,两弧相交于P点;(2)作直线AP ,AP 与BC 交于D 点. 所以线段AD 就是所求作的中线.请回答:该作图的依据是_____________________________________________________.【17顺义一模】 16.阅读下面材料:在数学课上,老师提出如下问题:小凯的作法如下:PAB D CPA B B CA老师说:“小凯的作法正确.”请回答:在小凯的作法中,判定四边形AECF 是菱形的依据是______________________. 【17朝阳一模】 16.阅读下面材料:在数学课上,老师提出如下问题:小红的作法如下:老师说:“小红的作法正确.”请回答:小红的作图依据是_________________________.尺规作图:作一条线段的垂直平分线.已知:线段AB .求作:线段AB 的垂直平分线.如图,①分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于点C ;②再分别以点A 和点B 为圆心,大于12AB 的长为半径(不同于①中的半径)作弧,两弧相交于点D ,使点D 与点C 在直线 AB 的同侧; ③作直线CD .所以直线CD 就是所求作的垂直平分线.【17怀柔一模】16.数学活动课上,老师让同学们围绕一道尺规作图题展开讨论,尽可能想出不同的作法:老师说:“小强的作法正确.” 请回答:小强这样作图的依据是: .【17石景山一模】9.用尺规作图法作已知角AOB ∠的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,交OB 于点D ,交OA 于点E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠的内部相交于点C ; ③作射线OC .则射线OC 为AOB ∠的平分线.由上述作法可得OCD △≌OCE △的依据是 A .SAS C .AAS B .ASA D .SSS【17大兴一模】 16.阅读下面材料:在数学课上,老师提出如下问题: 已知:△ABC ,尺规作图:求作∠APC =∠ABC. 甲、乙两位同学的主要作法如下:老师说:“两位同学的作法都是正确的.”请你选择一位同学的作法,并说明这位同学作图的依据. 我选择的是 的作法,这样作图的依据是.。

2017年北京中考一模数学第28题(几何综合题) (13区汇总)

2017年北京中考一模数学第28题(几何综合题) (13区汇总)

2017年北京中考一模数学第28题(几何综合题) (13区汇总)1.(2017北京东城中考一模_28)(7分)在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;……请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)图1 图2 图32.(2017北京西城中考一模_28)(7分)在△ABC 中,AB =BC ,BD ⊥AC 于点D . (1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1D FEDCB AAB3.(2017北京海淀中考一模_28)(7分)在ABCD 中,点B 关于AD 的对称点为B ',连接AB ',CB ',CB '交AD 于F 点.(1)如图1,90ABC ∠=︒,求证:F 为CB '的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B 绕点A 旋转的过程中,点F 始终为CB '的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B '作B G '∥CD 交AD 于G 点,只需证三角形全等;想法2:连接BB '交AD 于H 点,只需证H 为BB '的中点; 想法3:连接BB ',BF ,只需证90B BC '∠=︒. ……请你参考上面的想法,证明F 为CB '的中点.(一种方法即可) (3)如图3,当135ABC ∠=︒时,AB ',CD 的延长线相交于点E ,求CE AF的值.图1图2图34.(2017北京朝阳中考一模_28)(7分)在△ABC中,∠ACB=90°,AC<BC,点D 在AC的延长线上,点E在BC边上,且BE=AD.(1)如图1,连接AE,DE,当∠AEB=110°时,求∠DAE的度数;(2)在图2中,将线段AE绕点E顺时针旋转90°得到线段EF,连接BF,DE.①依题意补全图形;②求证:BF=DE.5.(2017北京大兴中考一模_28)(7分)已知,在Rt△ABC中,∠B=90°,AB=3,BC=3,在BC边上取两点E,F(点E在点F左侧),以EF为边作等边三角形DEF,使顶点D与E 在边AC异侧,DE,DF分别交AC于点G,H,连结AD.(1)如图1,求证:DE⊥AC;(2)如图2,若∠DAC=30°,△DEF的边EF在线段BC上移动.写出DH与BE的数量关系并证明;(3)若30°<∠DAC<60°,△DEF的周长为m,则m的取值范围是.ADC图1图26.(2017北京房山中考一模_28)(7分)在△ABC 中,AB=BC ,∠B=90°,点D 为直线BC 上一个动点(不与B 、C 重合),连结AD ,将线段AD 绕点D 按顺时针方向旋转90°,使点A 旋转到点E ,连结EC .(1)如果点D 在线段BC 上运动,如图1: ①依题意补全图1; ②求证:∠BAD=∠EDC③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°.小明与同学讨论后,形成了证明这个结论的几种想法:想法一:在AB 上取一点F ,使得BF=BD ,要证∠DCE =135°,只需证△ADF ≌△DEC .想法二:以点D 为圆心,DC 为半径画弧交AC 于点F . 要证∠DCE=135°,只需证△AFD ≌△ECD .想法三:过点E 作BC 所在直线的垂线段EF ,要证∠DCE=135°,只需证EF=CF .……请你参考上面的想法,证明∠DCE=135°.(2)如果点D 在线段CB 的延长线上运动,利用图2画图分析,∠DCE 的度数还是确定的值吗?如果是,直接写出∠DCE 的度数;如果不是,说明你的理由.7.(2017北京丰台中考一模_28)(7分)在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与点B ,C ,D 重合),且AE ⊥EF . (1)如图1,当BE =2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP . 想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE , 需证△EHP 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM , 要证AE =PE ,需证四边形MCPE 为平行四边形. 请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可)图1 图28.(2017北京门头沟中考一模_28)(7分)已知△ABC ,AB AC =, BAC α∠=,在BA 的延长线上任取一点D ,过点D 作BC 的平行线交CA 的延长线于点E .(1)当60BAC ∠=︒时,如图1,依题意补全图形,直接写出EC ,BC ,ED 的数量关系; (2)当90BAC ∠=︒时,如图2,判断EC ,BC ,ED 之间的数量关系,并加以证明; (3)当BAC α∠=时(0180α︒︒<<),请写出EC ,BC ,ED 之间的数量关系并写出解题思路.FA BCD F A BCDBB129.(2017北京平谷中考一模_28)(7分)在△ABC 中,AB =AC ,∠A =60°,点D 是BC 边的中点,作射线DE ,与边AB 交于点E ,射线DE 绕点D 顺时针旋转120°,与直线AC 交于点F . (1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E 运动的过程中,始终有DE=DF .小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D 是BC 边的中点,通过构造一边的平行线,利用全等三角形,可证DE =DF ; 想法2:利用等边三角形的对称性,作点E 关于线段AD 的对称点P ,由∠BAC 与∠EDF 互补,可得∠AED 与∠AFD 互补,由等角对等边,可证DE =DF ;想法3:由等腰三角形三线合一,可得AD 是∠BAC 的角平分线,由角平分线定理,构造点D 到AB ,AC 的高,利用全等三角形,可证DE =DF …….请你参考上面的想法,帮助小华证明DE =DF (选一种方法即可); (3)在点E 运动的过程中,直接写出BE ,CF ,AB 之间的数量关系.10.(2017北京石景山中考一模_28)(7分)在正方形ABCD 中,点E 是对角线AC 上的动点(与点A ,C 不重合),连接BE .(1)将射线BE 绕点B 顺时针旋转45°,交直线AC 于点F .①依题意补全图1;②小研通过观察、实验,发现线段AE ,FC ,EF 存在以下数量关系:AE 与FC 的平方和等于EF 的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1: 将线段BF 绕点B 逆时针旋转90°,得到线段BM ,要证AE ,FC ,EF 的关系,只需证AE ,AM ,EM 的关系.想法2:将ABE △沿BE 翻折,得到NBE △,要证AE ,FC ,EF 的关系,图1备用图只需证EN ,FN ,EF 的关系.……请你参考上面的想法,用等式表示线段AE ,FC ,EF 的数量关系并证明; (一种方法即可)(2)如图2,若将直线..BE 绕点B 顺时针旋转135°,交直线..AC 于点F .小研完成作 图后,发现直线AC 上存在三条线段(不添加辅助线)满足:其中两条线段的平 方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.11.(2017北京顺义中考一模_28)(7分)在正方形ABCD 和正方形DEFG 中,顶点B 、D 、F在同一直线上,H 是BF 的中点.(1)如图1,若AB =1,DG =2,求BH 的长; (2)如图2,连接AH ,GH .小宇观察图2,提出猜想:AH =GH ,AH ⊥GH .小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH 交EF 于点M ,连接AG ,GM ,要证明结论成立只需证△GAM 是等腰直角图2图1BBCB B 三角形;想法2:连接AC ,GE 分别交BF 于点M ,N ,要证明结论成立只需证△AMH ≌△HNG . ……请你参考上面的想法,帮助小宇证明AH =GH ,AH ⊥GH .(一种方法即可)12.(2017北京通州中考一模_28)(7分)在等边三角形ABC 中,E 为直线AB 上一点,连接EC .ED 与直线BC 交于点D ,ED =EC .(1)如图1,AB =1,点E 是AB 的中点,求BD 的长;(2)点E 是AB 边上任意一点(不与AB 边的中点和端点重合),依题意,将图2补全,判断AE 与BD 间的数量关系并证明;(3)点E 不在线段AB 上,请在图3中画出符合条件的一个图形.图1 图2 图313.(2017北京燕山中考一模_28)(7分)在正方形 ABCD 中,点 P 在射线 AB 上,连结 PC ,PD ,M ,N 分别为 AB ,PC 中点, 连结 MN 交 PD 于点 Q .(1)如图 1,当点 P 与点 B 重合时,求∠QMB 的度数; (2)当点 P 在线段 AB 的延长线上时. ①依题意补全图2②小聪通过观察、实验、提出猜想:在点P 运动过程中,始终有QP=QM. 小聪把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1延长BA 到点 E ,使AE=PB .要证QP=QM ,只需证△PDA ≌△ECB. 想法2:取PD 中点E ,连结NE,EA. 要证QP=QM 只需证四边形NEAM 是平行四边形.想 法3:过N 作 NE ∥CB 交PB 于点 E ,要证QP=QM ,只要证明△NEM ∽△DAP. ……请你参考上面的想法,帮助小聪证明QP=QM. (一种方法即可)图1 图2MQ DCBAN。

北京市各区2017年中考一模数学试卷分类汇编新概念专题

北京市各区2017年中考一模数学试卷分类汇编新概念专题

【2017东城一模】29.设平面内一点到等边三角形中心的距离为d ,等边三角形的内切圆半径为r ,外接圆半径为R ,关于一个点与等边三角形,给出如下概念:知足r ≤d ≤R 的点叫做等边三角形的中心关联点。

在平面直角坐标系xOy 中, 等边△ABC.(1),在D ,E ,F 中,是等边△ABC 的中心关联点的是 ; (2)如图1①过点A 作直线交x 轴正半轴于点M ,使∠AMO =30°。

假设线段AM 上存在等边△ABC 的中心关联点P (m ,n ),求m 的取值范围; ②将直线AM 向下平移取得直线y =kx +b ,当b 知足什么条件时,直线y =kx +b 上 总存在...等边△ABC 的中心关联点;(直接写出答案,不必进程) (3)如图2,点Q 为直线y =-1上一动点,圆Q 的半径为. 当点Q 从点(-4,-1)动身,以每秒1个单位的速度向右移动,运动时刻为t 秒,是不是存在某一时刻,使得圆Q 上所有点都是等边△ABC 的中心关联点若是存在,请直接写出所有符合题意的t 的值;若是不存在,请说明理由.12图1 图2【2017西城一模】29.在平面直角坐标系xOy中,假设点P和点P1关于y轴对称,点P1和点P2关于直线l 对称,那么称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(-1 , 0).①假设点B是点A关于y轴,直线l1: x=2的二次对称点,那么点B的坐标为;②假设点C(-5 , 0)是点A关于y轴,直线l2: x = a的二次对称点,那么a的值为;③假设点D(2 , 1)是点A关于y轴,直线l3的二次对称点,那么直线l3的表达式为;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4: x = b 的二次对称点,且点M '在射线(3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,假设⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:的二次对称点,且点N '在y 轴上,求t 的取值范围.【2017海淀一模】29.在平面直角坐标系xOy 中,假设P ,Q 为某个菱形相邻的...两个极点,且该菱形的两条对角线别离与x 轴,y 轴平行,那么称该菱形为点P ,Q 的“相关菱形”.图1为点P,(3y x x =≥1y =+图1图2Q的“相关菱形”的一个示用意.图1已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=3,那么R(1 ,0),S(5,4),T(6,4)中能够成为点A,B的“相关菱形”极点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)BC的坐标为(2,4).若B上存在点M,在线段AC上存在点N,使点M,N的“相关菱形”为正方形,请直接写出b的取值范围.【2017朝阳一模】29.在平面直角坐标系xOy 中,点A 的坐标为(0,m ),且m ≠0,点B 的坐标为(n ,0),将线段AB 绕点B 旋转90°,别离取得线段BP 1,BP 2,称点P 1,P 2为点A 关于点B 的“伴随点”,图1为点A 关于点B 的“伴随点”的示用意.(1)已知点A (0,4),①当点B 的坐标别离为(1,0),(-2,0)时,点A 关于点B 的“伴随点”的坐标别离为 ;②点(x ,y )是点A 关于点B 的“伴随点”,直接写出y 与x 之间的关系式; (2)如图2,点C 的坐标为(-3,0),以C为半径作圆,假设在⊙C 上存在点A 关于点B 的“伴随点”,直接写出点A 的纵坐标m 的取值范围.图1【2017丰台一模】29.在平面直角坐标系xOy 中,关于任意三点A ,B ,C ,给出如下概念:若是矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,那么称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C的最优覆盖矩形.(1)已知A (-2,3),B (5,0),C (t ,-2).备用图图2①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为_____________; ②假设点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式; (2)已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.【2017石景山一模】29.在平面直角坐标系xOy 中,对“隔离直线”给出如下概念:点(,)P x m 是图形1G 上的任意一点,点(,)Q x n 是图形2G 上的任意一点,假设存在直线:(0)l y kx b k =+≠知足m kx b +≤且n kx b +≥是图形1G 与2G 的“隔离直线”. 如图1,直线:4l y x =--是函数6(0)y x x=<的图象-4与正方形OABC 的一条“隔离直线”.(1)在直线12y x =-,231y x =+,33y x =-+中, 是图1函数6(0)y x x=<的图象与正方形OABC的“隔离直线”的为 ;请你再写出一条符合题意的不同的“隔离直线” 的表达式: ;(2)如图2,第一象限的等腰直角三角形EDF 的两腰别离与坐标轴平行,直角顶点D的坐标是,⊙O 的半径为2.是不是存在EDF △与⊙O 的“隔离直线”假设存在,求出此“隔离直线”的表达式;假设不存在,请说明理由;(3)正方形1111A B C D 的一边在y 轴上,其它三边都在y 轴的右边,点(1,)M t 是此正方形的中心.假设存在直线2y x b =+是函数22304y x x x =--(≤≤)的图象与正方形1111A B C D 的“隔离直线”,请直接写出t 的取值范围.【2017房山一模】29.在平面直角坐标系xOy 中,关于点P (x ,y ),若是点Q (x ,'y )的纵坐标知足图1xy备用图y=2x 2O()()⎩⎨⎧<-≥-=时当时当y x xy y x y x y ',那么称点Q 为点P 的“关联点”. (1)请直接写出点(3,5)的“关联点”的坐标 ;(2)若是点P 在函数2-=x y 的图象上,其“关联点”Q 与点P 重合,求点P 的坐标; (3)若是点M (m ,n )的“关联点”N 在函数y=2x 2的图象上,当0 ≤m ≤2 时,求线段MN 的最大值.【2017平谷一模】29.在平面直角坐标系中,点Q 为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时咱们把∠Q 的最小角叫做该图形的视角.如图1,矩形ABCD ,作射线OA ,OB ,那么称∠AOB 为矩形ABCD 的视角.(1)如图1,矩形ABCD ,A (﹣3,1),B (3,1),C (3,3),D (﹣3,3),直接写出视角∠AOB 的度数;图1图2 备用图(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;(3)如图2,⊙P的半径为1,点P(1,3),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,假设Q(a,0),求a的取值范围.【2017通州一模】29.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,那么称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①若是Q的坐标为(6,m),那么m的值为____________;②若是Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.【2017门头沟一模】29.咱们给出如下概念:两个图形G1和G2,在G1上的任意一点P引出两条垂直的射线与G2相交于点M、N,若是PM=PN,咱们就称M、N为点P的垂等点,PM、PN为点P 的垂等线段,点P为垂等射点.(1)如图29-1,在平面直角坐标系xOy中,点P(1,0)为x轴上的垂等射点,过A(0,3)作x轴的平行线l,那么直线l上的B(-2,3), C(-1,3),D(3,3),E(4,3)为点P的垂等点的是________________________;(2)若是一次函数图象过M(0,3),点M为垂等射点P(1,0)的一个垂等点且另一个垂等点N也在此一次函数图象上,在图29-2中画出示用意并写出一次函数表达式;(3)如图29-3,以点O为圆心,1为半径作⊙O,垂等射点P在⊙O上,垂等点在通过(3,0),(0,3)的直线上,若是关于点P的垂等线段始终存在,求垂等线段PM长的取值范围(画出图形直接写出答案即可).【2017顺义一模】29.在平面直角坐标系xOy 中,关于双曲线(0)m y m x =>和双曲线(0)ny n x=>,若是2m n =,那么称双曲线(0)m y m x =>和双曲线(0)ny n x=>为“倍半双曲线”,双曲线(0)m y m x =>是双曲线(0)n y n x =>的“倍双曲线”,双曲线(0)n y n x =>是双曲线(0)my m x=>的“半双曲线”.(1)请你写出双曲线3y x =的“倍双曲线”是 ;双曲线8y x=的“半双曲线”是 ;(2)如图1,在平面直角坐标系xOy 中,已知点A 是双曲线4y x=在第一象限内任意一点,过点A 与y 轴平行的直线交双曲线4y x=的“半双曲线”于点B ,求△AOB 的面积;(3)如图2,已知点M 是双曲线2(0)ky k x=>在第一象限内任意一点,过点M 与y 轴平行的直线交双曲线2ky x=的“半双曲线”于点N ,过点M 与x 轴平行的直线交双曲线2ky x=的“半双曲线”于点P ,假设△MNP 的面积记为MNP S ∆,且12MNP S ∆≤≤,求k 的取值范围.【2017怀柔一模】29. 在平面直角坐标系xOy中,点P的坐标为(x,y),若过点p的直线与x轴夹角为60°时,那么称该直线为点P的“相关直线”,(1)已知点A的坐标为(0,2),求点A的“相关直线”的表达式;(2)假设点B的坐标为(0,3),点B的“相关直线”与直线y=32交于点C,求点C的坐标;(3)⊙O的半径为3,假设⊙O上存在一点N,点N的“相关直线”与双曲线y=x 33(x>0)相交于点M,请直接写出点M的横坐标的取值范围.【2017燕山一模】29. 在平面直角坐标系中,咱们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(2,2 ),…,都是梦之点,显然梦之点有无数个. (1)假设点 P (2,b )是反比例函数xny = (n 为常数,n ≠ 0) 的图象上的梦之点,求那个反比例函数解析式; (2) ⊙ O 的半径是2 ,①求出⊙ O 上的所有梦之点的坐标;②已知点 M (m ,3),点 Q 是(1)中反比例函数xny =图象上异于点 P 的梦之点,过点Q 的直线 l 与 y 轴交于点 A ,tan ∠OAQ = 1.假设在⊙ O 上存在一点 N ,使得直线 MN ∥ l 或 MN ⊥ l ,求出 m 的取值范围.。

2017北京中考数学一模27汇总

2017北京中考数学一模27汇总

l2017中考一模27汇编27(西城).在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m + 1)x + m -5的图象与x 轴有两个公共点.(1)求m 的取值范围;(2)若m 取满足条件的最小的整数, ①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.27(房山). 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线32-=x y 交于点C. (1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一公共点,求n 的取值范围.27(顺义).如图,已知抛物线28(0)y ax bx a =++≠与x 轴交于A (-2,0),B 两点,与y 轴交于C 点,tan ∠ABC =2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A 、B 作x 轴的垂线,交直线CD 于点E 、F ,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF (含线段端点)只有1个公共点.求m 的取值范围.27(平谷).直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C .(1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.27(通州).在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.27(海淀).平面直角坐标系xOy 中,抛物线2222y mx m x =-+交y 轴于A 点,交直线x =4于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示); (2)若AB ∥x 轴,求抛物线的表达式;(3)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点P (P x ,P y ),2P y ≤,求m 的取值范围.27(东城).二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0,n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值;(3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.27(丰台).在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C , 如果直线AB 与y 轴交点的纵坐标为-1,且抛物线顶点D 到点C 的距离大于2,求m 的取值范围.27(门头沟). 在平面直角坐标系xOy 中,抛物线()()13y a x x =+-与x 轴交于A ,B 两点,点A 在点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域”有______个整数点;(整数点就是横纵坐标均为整数的点) (2)求抛物线()()13y a x x =+-的顶点P 的坐标(用含a 的代数式表示); (3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围.27(石景山).在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线2443(0)y ax ax a a =-+-≠交于B ,C 两点.①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的取值范围.。

2017年北京中考数学一模22题一次函数专题

2017年北京中考数学一模22题一次函数专题

2017年北京中考数学一模 “一次函数和反比例函数”专题西城22.在平面直角坐标系xOy 中,直线1y x =-与y 轴交于点A ,与双曲线ky x=交于点B (m ,2) . (1)求点B 的坐标及k 的值;(2)将直线AB 平移,使它与x 轴交于点C ,与y 轴交与点D 。

若△ABC 的面积为6,求直线CD 的表达式.东城21.如图,在平面直角坐标系xOy 中,直线()0y kx b k =+≠与双曲线6y x=相交于点A (m ,3),B (-6,n ),与x 轴交于点C .(1)求直线()0y kx b k =+≠的解析式;(2)若点P 在x 轴上,且32ACP BOC S S =△△,求点P 的坐 标(直接写出结果).yx-5-4512341234-1-2-3-4-5-1-3-25OyxE C B AO朝阳22。

在平面直角坐标系xOy 中,直线12y x b =+与双曲线4y x=的一个交点为(,2)A m , 与y 轴分别交于点B . (1)求m 和b 的值;(2)若点C 在y 轴上,且△ABC 的面积是2,请直接写出点C 的坐标.房山23。

如图,在平面直角坐标系xOy 中,一次函数)0(≠+=k b kx y 的图象与反比例函数xy 12=的图象交于A 、B 两点,点A 在第一象限,点B 的坐标为(-6,n ),直线AB 与x 轴交于点C , E 为x 轴正半轴上一点,且tan ∠AOE =34。

(1)求点A 的坐标;(2)求一次函数的表达式; (3)求△AOB 的面积.顺义21.如图,在平面直角坐标系xOy 中,已知直线1:(0)l y mx m =≠与直线2:(0)l y ax b a =+≠相交于点A (1,2),直线2l 与x 轴交于点B (3,0).(1)分别求直线1l 和2l 的表达式;(2)过动点P (0,n )且平行于x 轴的直线与1l ,2l 的交点分别为C ,D ,当点C 位于点D 左方时,写出n 的取值范围.y x–1–2–31234–1–2–31234O平谷21.在平面直角坐标xOy 中,直线()10y kx k =+≠()0my m x=≠的一个交点为A (﹣2,3),与x 轴交于点B . (1) 求m 的值和点B 的坐标;(2)点P 在y 轴上,点P 到直线()10y kx k =+≠点P 的坐标.门头沟21. 如图,在平面直角坐标系xOy 中的第一象限内,动点B (x , y ).(1)求此函数表达式;(2)如果1y >,写出x 的取值范围; (3)直线AB 与坐标轴交于点P ,如果PB AB =,直接写出点P 的坐标。

2017年北京市西城区初三一模试卷及答案数学

2017年北京市西城区初三一模试卷及答案数学

北京市西城区2017年九年级统一测试数学试卷 2017.4一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯(C )596.0810⨯(D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB = 55°,则∠D 的度数为 (A)25°(B )35° (C )45° (D )55°第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B)长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C)正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A)()234x -= (B )()2314x -=(C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1。

5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是 (A )80%20x - (B )()80%20x - (C )20%20x - (D )()20%20x - 9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁) 13 14 15 16 频数(单位:名)515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是 (A)平均数、中位数(B )平均数、方差(C)众数、中位数 (D )众数、方差10.汽车的“燃油效率"是指汽车每消耗1升汽油行驶的里程数.“燃油效率"越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率"越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少(C)以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油(D)以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.分解因式:ax2-2ax+a=________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000投中次数m58 96 174 302 484 601投中频率mn0.580 0.640 0.580 0.604 0.605 0.601这名球员投篮一次,投中的概率约是.4.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为____________.第14题图第15题15.在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A’OB',其中点A’与点A对应,点B'与点B对应.若点A(-3,0),B(-1,2),则点A’的坐标为_______________,点B'的坐标为________________。

北京市各区2017年中考数学一模试题汇编 四边形(无答案)

北京市各区2017年中考数学一模试题汇编 四边形(无答案)

30°NM DCBA四边形【17西城一模】23.如图,在□ABCD 中,对角线BD 平分∠ABC ,过 点A 作AE ∥BD ,交CD 的延长线于点E ,过点E 作EF ⊥BC ,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC=2,求EF 的长.【17房山一模】21.已知:在△ABC 中,AD 是BC 边上的中线,点E 是AD 的中点;过点A 作AF ∥BC 交BE 的延长线于F ,连接CF .(1)求证:四边形ADCF 是平行四边形; (2) 填空:①如果AB =AC ,四边形ADCF 是形;②如果∠BAC =90°,四边形ADCF 是形;【17房山一模】24.如图,M 、N 分别是正方形ABCD 的边BC 、CD 上的点.已知:∠MAN =30°,AM=AN ,△AMN 的面积为1. (1)求∠BAM 的度数; (2)求正方形ABCD 的边长.【17平谷一模】19.如图,在矩形ABCD 中,点E 是BC 上一点,且DE =DA ,AF ⊥DE 于F ,求证:AF=CD .【17通州一模】19.如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE .ADCFEFEDCBA求证:DE =AC .【17通州一模】23.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD外一点,且∠FCA =90°,∠CBF =∠DCB . (1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.【17丰台一模】19.如图,四边形ABCD 中,AB ∥DC ,∠B= 90º,F 为DC 上一点,且AB =FC ,E 为AD 上一点,EC 交AF 于点G ,EA = EG .求证:ED = EC .【17丰台一模】23.如图,在四边形ABCD 中,∠ABC =90°,DE ⊥AC 于点E ,且AE =CE ,DE =5,EB =12. (1)求AD 的长;(2)若∠CAB =30°,求四边形ABCD 的周长.【17石景山一模】19.如图,在四边形ABCD 中,AB ∥DC ,E 是CB 的中点,AE 的延长线与DC 的延长线相交于点F . 求证:AB FC =.【17石景山一模】23.如图,在□ABCD 中,过点A 作AE ⊥BC 于点E ,AF ⊥DC 于点F ,AE AF =.(1)求证:四边形ABCD 是菱形;FG F ED CBAACD EF ECBAD(2)若60EAF ∠=°,2CF =,求AF 的长.【17海淀一模】 23.如图,在ABCD 中,AE ⊥BC 于点E 点,延长BC 至F 点使CF=BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形; (2)若AB =6,DE =8,BF =10,求AE 的长.【17门头沟一模】23.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N . (1)请判断△CMN 的形状,并说明理由;(2)如果3MC ND =,4CD =,求线段MN 的长.【17东城一模】23.如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F .(1)求证:BF =CD ;(2)连接BE ,若BE ⊥AF ,∠BFA =60°,BE=求平行四边形ABCD的周长.【17顺义一模】19.如图,□ABCD 中,BE ⊥CD 于E ,CE =DE .求证:∠A=∠ABD .【17顺义一模】B EC FA DABCD E23.已知:如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,AB=AC=AD ,∠DAC =∠ABC .(1)求证:BD 平分∠ABC ;(2)若∠DAC =45 ,OA =1,求OC 的长. 【17朝阳一模】8. 如图,广场中心的菱形花坛ABCD 的周长是40米,∠A =60°,则A ,C 两点之间的距离为A.5米B.C.10米D.【17朝阳一模】20.如图,四边形ABCD 中,AB ∥DC ,AE ,DF 分别是∠BAD ,∠ADC 的平分线,AE ,DF 交于点O . 求证:AE ⊥DF .【17朝阳一模】23.如图,在△ABC 中,AB =AC ,AD 是BC 边的中线,过点A 作BC的平行线,过点B 作AD 的平行线,两线交于点E . (1)求证:四边形ADBE 是矩形;(2)连接DE ,交AB 于点O ,若BC =8,AO =25, 求cos ∠AED 的值.【17怀柔一模】22.如图,已知菱形ABCD 的对角线AC,BD 相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:四边形BECD 是平行四边形;(2)若∠E=60°,AC=求菱形ABCD 的面积.【17大兴一模】20. 如图,□ABCD 中,E 是AB 的中点,连结CE 并延长交DA 的延长ODCBA线于点F.求证:AF=AD.【17大兴一模】23.如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若BD=4,AC=3,求cos∠CDE的值.。

2017年北京市西城区中考一模数学试卷(word版含答案)

2017年北京市西城区中考一模数学试卷(word版含答案)

2017年北京市西城区中考一模数学试卷(word版含答案)2017年北京市西城区中考一模数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的.1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为(A)3960810⨯(B)4960.810⨯(C)596.0810⨯(D)69.60810⨯2.在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A)0a b+=(B)0a b-=(C 3.如图,AB∥CD,DA⊥CE于点A.若∠EAB=55°,则∠D的度数为(A)25°(B)35°(C)45°(D)55°A BE4.右图是某几何体的三视图,该几何体是(A)三棱柱(B)长方体(C)圆锥(D)圆柱5.若正多边形的一个外角是40°,则这个正多边形是(A)正七边形(B)正八边形(C)正九边形(D)正十边形6.用配方法解一元二次方程2650x x--=,此方程可化为(A)()234x-=(B)()2314x-=(C)()294x-=(D)()2914x-=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2 m,旗杆底部与平面镜的水平距离为16 m.若小明的眼睛与地面距离为1.5 m,则旗杆的高度为(单位:m)(A)163(B)9 (C)12 (D)6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是(A )80%20x - (B )()80%20x -(C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表: 年龄(单位:岁)13 14 15 16频数(单位:名) 5 15 x 10-x 对于不同的x ,下列关于年龄的统计量不会发生改变的是(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数 (D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B)以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少(C)以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油(D)以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.分解因式:ax2 2ax+a=________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000 投中次数m 58 96 174 302 484 601投中频率m n0.580 0.640 0.580 0.604 0.605 0.601 这名球员投篮一次,投中的概率约是 .14.如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为_________________.15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A'OB',其中点A'与点A 对应,点B'与点B 对应.若点A (-3,0),B (-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.DB OAxy –4–3–2–11234–4–3–2–11234O B A已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P . 作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ;(2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ;(3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .l图1Plm图2DC B P O A三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: (10O 1232sin60322-⎛⎫-- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE .求证:∠BCE =∠A +∠ACB .D21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 1西瓜质量.(单位:kg)3.54.85.44.94.25.4.94.85.84.8编号11 12131415161718192西瓜质量.(单位:kg)5.4.85.24.95.15.4.86.5.75.表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 1西瓜质量.(单位:kg)4.44.94.84.15.25.15.4.54.74.9编号11 12131415161718192西瓜质量.(单位:kg)5.45.54.5.34.85.65.25.75.5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量4.98 0.27 乙种种植技术种15 4.97 0.21出的西瓜质量(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点交于点B(m,2).A,与双曲线=k yx(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF ⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.ADB24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE ⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=3,求AC的5长.26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x (单位:min)0 1 2 3 4 5 8116182212432…水箱中水的温度y (单位:℃)2355658644322m86442…m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:x y10080604020246810121416182022242628303234O(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m +1)x + m -5的图象与x 轴有两个公共点.(1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.28.在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形;②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1FEC A A29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点.(1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ;②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为 ;③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4:x =b 的二次对称点,且点M '在射线3(0)y x x =≥上,b 的取值范围是 ; (3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:31y x =+的二次对称点,且点N '在y 轴上,求t 的取值范围.x x y y 图1图2–5–4–3–2–112345–3–2–11234–5–4–3–2–112345–3–2–11234O O A。

北京市西城区2017届九年级数学4月统一测试一模试题

北京市西城区2017届九年级数学4月统一测试一模试题

北京市西城区2017届九年级数4月统一测试(一模)学试题一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB =55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°CABE第3题图 第4题图4.右图是某几何体的三视图,该几何体是 (A )三棱柱(B )长方体(C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -= (B )()2314x -= (C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是(A )80%20x - (B )()80%20x - (C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表: 年龄(单位:岁) 13 14 1516 频数(单位:名)515x10-x(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分) 11.分解因式:ax 2-2ax +a =________.12.若函数的图像经过点A (1,2),点B (2,1),写出一个符合条件的函数表达式_________. 13.下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是 .14.如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为_________________.第15题15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A'OB',其中点A'与点A 对应,点B'与点B 对应.若点A (-3,0),B (-1,2),则点A'的坐标为_______________,点B'的坐标为________________. 16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程. 请回答:该作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: (10O 123260322sin -⎛⎫-- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE . 求证:∠BCE =∠A +∠ACB .D21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 910西瓜质量.(单位:kg) 3.5 4.85.44.94.25.4.94.85.84.8编号11 12 13 14 15 16 17 18 19 20西瓜质量.(单位:kg) 5.0 4.85.24.95.15.4.86.5.75.表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10西瓜质量.(单位:kg) 4.4 4.94.84.15.25.15.4.54.74.9编号11 12 13 14 15 16 17 18 19 20西瓜质量.(单位:kg) 5.4 5.54.5.34.85.65.25.75.5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.98 0.27 乙种种植技术种出的西瓜质量15 4.97 0.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点A,与双曲线=kyx交于点B(m,2). (1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.ADB24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为 %;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=35,求AC的长.HFD A O BC26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x0 1 2 3 4 5 8 10 16 18 20 21 24 32 …(单位:min)水箱中水的温度y20 35 50 65 80 64 40 32 20 m80 64 40 20 …(单位:℃)m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源min.27.在平面直角坐标系xOy中,二次函数y=mx2 -(2m + 1)x + m-5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y的取值范围是-6 ≤ y ≤ 4-n,求n的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 + k,当x < 2时,y随x的增大而减小,求k的取值范围.28.在△ABC中,AB=BC,BD⊥AC于点D.(1)如图1,当∠ABC=90°时,若CE平分∠ACB,交AB于点E,交BD于点F.①求证:△BEF是等腰三角形;②求证:BD=12(BC + BF);(2)点E在AB边上,连接CE.若BD=12(BC + BE),在图2中补全图形,判断∠ACE与∠ABC之间的数量关系,写出你的结论,并写出求解∠ACE与∠ABC关系的思路.图2图1D FECB AACB29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为 ;③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线(y x x=≥(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:1y=+的二次对称点,且点N'在y轴上,求t的取值范围.图1图2。

最新北京市西城区初三一模试卷及答案数学

最新北京市西城区初三一模试卷及答案数学

北京市西城区2017年九年级统一测试数学试卷 2017.4一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是0ab1(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB = 55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°DCABE第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B )长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -= (B )()2314x -= (C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是 (A )80%20x - (B )()80%20x - (C )20%20x -(D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁) 13 14 15 16 频数(单位:名)515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是 (A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.分解因式:ax2-2ax+a=________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000投中次数m58 96 174 302 484 601投中频率mn0.580 0.640 0.580 0.604 0.605 0.601这名球员投篮一次,投中的概率约是.4.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为____________.第14题图第15题15.在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(-3,0),B(-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P .作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ;(2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ; (3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: ()10O123260+322sin -⎛⎫---- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE . 求证:∠BCE =∠A +∠ACB .EDABC21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 3.5 4.8 5.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.0 4.8 5.2 4.9 5.1 5.0 4.8 6.0 5.7 5.0表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 4.4 4.9 4.8 4.1 5.2 5.1 5.0 4.5 4.7 4.9编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.98 0.27乙种种植技术种出的西瓜质量15 4.97 0.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22. 在平面直角坐标系x O y ,直线y =x -1与y 轴交于点A ,与双曲线=ky x交于点B (m ,2). (1)求点B 的坐标及k 的值;(2)将直线AB 平移,使它与x 轴交于点C ,与y 轴交于点D ,若△ABC 的面积为6,求直线CD 的表达式.23.如图,在□ABCD 中,对角线BD 平分∠ABC ,过点A 作AE //BD ,交CD 的延长线于点E ,过点E 作EF ⊥BC ,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC =2,求EF 的长.DFEBAC24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B 作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB =∠EBC;(2)连接BF,CF,若CF =6,sin∠FCB =35,求AC的长.HFDEA O BC26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y 是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x0 1 2 3 4 5 8 10 16 18 20 21 24 32 …(单位:min)水箱中水的温度y20 35 50 65 80 64 40 32 20 m80 64 40 20 …(单位:℃)m的值为;(2)①当0 ≤x ≤ 4时,写出一个符合表中数据的函数解析式;当4<x ≤ 16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:xy 10080604020246810121416182022242628303234O(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m + 1)x + m -5的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数, ①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.28.在△ABC 中,AB = BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC = 90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1D FEDCB AACB29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2: x = a 的二次对称点,则a 的值为 ; ③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ; (2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4: x = b 的二次对称点,且点M '在射线3(0)3y x x =≥上,b 的取值范围是 ; (3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:31y x =+的二次对称点,且点N '在y 轴上,求t 的取值范围.xxy y 图1图2–5–4–3–2–112345–3–2–11234–5–4–3–2–112345–3–2–11234OOA。

2017年北京中考数学试卷及答案[1]

2017年北京中考数学试卷及答案[1]

2017 年北京中考数学试卷及答案(word 版可编辑修改)2017 年北京中考数学试卷及答案(word 版可编辑修改)编辑整理:尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017 年北京中考数学试卷及 答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的 建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为 2017 年北京中考数学试卷及答案(word 版可编辑修改)的全部内容。

数学试卷 第1页(共 8 页)2017 年北京中考数学试卷及答案(word 版可编辑修改)2017 年北京市高级中等学校招生考试数学试卷学校:姓名:准考证号:1.本试卷共 8 页,共三道大题,29 道小题,满分 120 分.考试时间 120 分钟。

考 2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。

生 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.须 4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作知 答.5.考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共 30 分,每小题 3 分) 第 1-10 题均有四个选项,符合题意的选项只.有.一个.1。

如图所示,点 P 到直线 l 的距离是A。

线段 PA 的长度B。

A 线段 PB 的长度C。

线段 PC 的长度D。

线段 PD 的长度2.若代数式 x 有意义,则实数 x 的取值范围是 x4A。

x =0B. x =4C。

x 0D.x43.右图是某几何体的展开图,该几何体是A.三棱柱B。

圆锥C.四棱柱D.圆柱4。

实数 a,b,c,d 在数轴上的点的位置如图所示,则正确的结论是数学试卷 第2页(共 8 页)A. a 42017 年北京中考数学试卷及答案(word 版可编辑修改)B。

2017北京西城中考数学一模试卷含答案解析

2017北京西城中考数学一模试卷含答案解析


x−5
答案: x ≠ 5
12.
半径为
4 cm,圆心角为
∘ 60
的扇形的面积为
答案: 8
π
3
. 2
cm
13. 分解因式:12m2 − 3 =

答案: 3 (2m + 1) (2m − 1)
14. 如图,△ABC 中,AB = AC ,点 , D E 在 BC 边上,当 加一个适当的条件即可).
时,△ABD ≅ △AC E.(添
A.
B.
C.
D. 答案: A
7. 如图,线段 AB 是 ⊙O 的直径,弦 C D ⊥ AB,如果 ,那么 ∠BOC = 70∘ ∠BAD 等于 (
)
A.20∘ 答案: C
B.30∘
C.35∘
D.70∘
8. 在平面直角坐标系 xOy 中,第一象限内的点 P 在反比例函数图象上,如果点 P 的纵坐标是 3, OP = 5,那么该函数的表达式为 ( )
单位长度至 A1 ,第 2 次点 A1 向右移动 6 个单位长度至 A2 ,第 3 次从点 A2 向左移动 9 个单
位长度至 A3 ,⋯,按照这种移动方式进行下去,点 A4 表示的数是
,如果点 An 与原点
的距离不小于 20,那么 n 的最小值是

答案: ; 7 13
解析: A 表示的数为:1;
A1 表示的数为:1 − 3 × 1 = ; −2
A. 12 y= x
答案: A
B. 12 y=− x
C. 15 y= x
D. 15 y=− x
解析:
过点 P 作 P Q ⊥ y轴 于点 Q,则 OQ = 3.
−−−−−−−−−−

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。

下文为大家准备了中考数学一模测试卷的内容。

A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。

北京市西城区九年级一模试卷

北京市西城区九年级一模试卷

2017年北京市西城一模考试 数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为(A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB =55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B )长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -=(B )()2314x -=(C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是 (A )80%20x - (B )()80%20x -(C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:对于不同的(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升 二、填空题(本题共18分,每小题3分) 11.分解因式:ax 2-2ax +a =________.12.若函数的图像经过点A (1,2),点B (2,1),写出一个符合条件的函数表达式_________. 13.下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是.14.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为_________________.15.在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(-3,0),B(-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:(1O1226022sin-⎛⎫--⎪⎝⎭18.解不等式组:52<3+47 22x xxx-⎧⎪⎨+≥⎪⎩19.已知x=2y,求代数式222112x xy yy x x y⎛⎫-+-÷⎪⎝⎭的值.20.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点A,与双曲线=kyx交于点B(m,2).(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC =2,求EF 的长.B24.汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为 万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=35,求AC的长.D26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x 的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源min.27.在平面直角坐标系xOy中,二次函数y=mx2 -(2m + 1)x + m-5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y的取值范围是-6 ≤ y ≤ 4-n,求n的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 + k,当x < 2时,y随x的增大而减小,求k的取值范围.28.在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1D FEDCB AAB29.在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(-1 , 0).①若点B是点A关于y轴,直线l1: x=2的二次对称点,则点B的坐标为;②若点C(-5 , 0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为;③若点D(2 , 1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线(y x x =≥(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:1y=+的二次对称点,且点N'在y轴上,求t的取值范围.图1图2不用注册,免费下载!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年北京市西城区中考数学一模试卷考生须知1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间为120分钟 .2.试题所有答案必须书写在答题卡上,在试卷上作答无效.3.考试结束后,将答题卡交回,试卷按学校要求保存好.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为()A.9608×103B.960.8×104C.96.08×105D.9.608×1062.(3分)在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是()A.a+b=0 B.a﹣b=0 C.|a|<|b| D.ab>03.(3分)如图,AB∥CD,DA⊥CE于点A.若∠EAB=55°,则∠D的度数为()A.25°B.35°C.45°D.55°4.(3分)如图是某几何体的三视图,该几何体是()A.三棱柱B.长方体C.圆锥D.圆柱5.(3分)若正多边形的一个外角是40°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形6.(3分)用配方法解一元二次方程x2﹣6x﹣5=0,此方程可化为()A.(x﹣3)2=4 B.(x﹣3)2=14 C.(x﹣9)2=4 D.(x﹣9)2=147.(3分)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为16m.若小明的眼睛与地面距离为1.5m,则旗杆的高度为(单位:m)()A.B.9 C.12 D.8.(3分)某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20 B.80%(x﹣20)C.20%x﹣20 D.20%(x﹣20)9.(3分)某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁)13 14 15 16频数(单位:名) 5 15 x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差10.(3分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是()A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.(3分)分解因式:ax2﹣2ax+a=.12.(3分)若函数的图象经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式.13.(3分)下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000投中次数m58 96 174 302 484 601投中频率0.580 0.640 0.580 0.604 0.605 0.601 这名球员投篮一次,投中的概率约是.(3分)如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为.14.15.(3分)在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(﹣3,0),B(﹣1,2),则点A'的坐标为,点B'的坐标为.四、标题16.(3分)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l和直线l外一点P.求作:直线l的平行直线,使它经过点P.作法:如图2.(1)过点P作直线m与直线l交于点O;(2)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|.18.(5分)解不等式组:.19.(5分)已知x=2y,求代数式(﹣)÷的值.20.(5分)如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.21.(5分)某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 3.5 4.8 5.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.0 4.8 5.2 4.9 5.1 5.0 4.8 6.0 5.7 5.0表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 4.4 4.9 4.8 4.1 5.2 5.1 5.0 4.5 4.7 4.9编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.98 0.27乙种种植技术种出的西瓜质量15 4.97 0.21 (2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.(5分)在平面直角坐标系xOy,直线y=x﹣1与y轴交于点A,与双曲线y=交于点B(m,2).(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.(5分)如图,在▱ABCD中,对角线BD平分∠ABC,过点A作AE∥BD,交CD的延长线于点E,过点E 作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.24.(5分)汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.如图是根据中国产业信息网上的有关数据整理的统计图.2007﹣2015年全国汽车保有量及增速统计图,根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是.25.(5分)如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=,求AC的长.26.(5分)阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,…,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y 是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x(单位:min)0 1 2 3 4 5 8 10 16 18 20 21 24 32 …水箱中水的温度y(单位:℃)20 35 50 65 80 64 40 32 20 m80 64 40 20 …m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源min.27.(7分)在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的解析式;②当n≤x≤1时,函数值y的取值范围是﹣6≤y≤4﹣n,求n的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x﹣h)2+k,当x<2时,y随x的增大而减小,求k的取值范围.28.(7分)在△ABC中,AB=BC,BD⊥AC于点D.(1)如图1,当∠ABC=90°时,若CE平分∠ACB,交AB于点E,交BD于点F.①求证:△BEF是等腰三角形;②求证:BD=(BC+BF);(2)点E在AB边上,连接CE.若BD=(BC+BE),在图2中补全图形,判断∠ACE与∠ABC之间的数量关系,写出你的结论,并写出求解∠ACE与∠ABC关系的思路.29.(8分)在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(﹣1,0).①若点B是点A关于y轴,直线l1:x=2的二次对称点,则点B的坐标为;②若点C(﹣5,0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为;③若点D(2,1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线y=x(x≥0)上,b的取值范围是;(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:y=x+1的二次对称点,且点N'在y轴上,求t的取值范围.2017年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为()A.9608×103B.960.8×104C.96.08×105D.9.608×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:9 608 000=9.608×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是()A.a+b=0 B.a﹣b=0 C.|a|<|b| D.ab>0【分析】根据数轴上点的位置关系,可得a,b的关系,根据有理数的运算,可得答案.【解答】解:由数轴上点的位置,得a<0<b,|a|=|b|,A、a+b=0,故A符合题意;B、a﹣b<0,故B不符合题意;C、|a|=|b|,故C不符合题意;D、ab<0,故D不符合题意;故选:A.【点评】本题考查了实数与数轴,利用数轴上点的位置关系得a,b的关系是解题关键.3.(3分)如图,AB∥CD,DA⊥CE于点A.若∠EAB=55°,则∠D的度数为()A.25°B.35°C.45°D.55°【分析】先根据垂直的定义,得出∠BAD=35°,再根据平行线的性质,即可得出∠D的度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=55°,∴∠BAD=35°,又∵AB∥CD,∴∠D=∠BAD=35°,故选:B.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.4.(3分)如图是某几何体的三视图,该几何体是()A.三棱柱B.长方体C.圆锥D.圆柱【分析】根据主视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,再根据俯视图的形状,可判断柱体是长方体.【解答】解:根据所给出的三视图得出该几何体是长方体;故选:B.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥体,如果有两个矩形,该几何体一定柱体,其底面由第三个视图的形状决定.5.(3分)若正多边形的一个外角是40°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得360°÷n=40,解得n=9.故选:C.【点评】本题考查了正多边形外角和的知识,解题时注意:正多边形的每个外角相等,且其和为360°.6.(3分)用配方法解一元二次方程x2﹣6x﹣5=0,此方程可化为()A.(x﹣3)2=4 B.(x﹣3)2=14 C.(x﹣9)2=4 D.(x﹣9)2=14【分析】常数项移到方程的右边后,两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵x2﹣6x=5,∴x2﹣6x+9=5+9,即(x﹣3)2=14,故选:B.【点评】本题主要考查配方法解一元二次方程的能力,熟练掌握完全平方公式和配方法的基本步骤是解题的关键.7.(3分)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为16m.若小明的眼睛与地面距离为1.5m,则旗杆的高度为(单位:m)()A.B.9 C.12 D.【分析】根据题意容易得到△CDE∽△AEB,再根据相似三角形的性质解答即可.【解答】解:∵根据入射角与反射角相等可知,∠CED=∠AEB,故Rt△CDE∽Rt△AEB,∴=,即=,解得AB=12m.故选:C.【点评】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.(3分)某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20 B.80%(x﹣20)C.20%x﹣20 D.20%(x﹣20)【分析】根据题意可以用相应的代数式表示购买该商品实际付款的金额.【解答】解:由题意可得,若某商品的原价为x元(x>100),则购买该商品实际付款的金额是:80%x﹣20(元),故选:A.【点评】本题考查列代数式,解答本题的关键明确题意,列出相应的代数式.9.(3分)某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁)13 14 15 16频数(单位:名) 5 15 x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数;故选:C.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.10.(3分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是()A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升【分析】根据耗油效率的定义结合折线统计图解答即可.【解答】解:A、以相同速度行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;B、以低于80km/h的速度行驶时,行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;C、以高于80km/h的速度行驶时,行驶相同路程,乙车燃油效率大于丙车燃油效率,乙车比丙车省油,此选项错误;D、由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1L,行驶100km时耗油10L,此选项正确;故选:D.【点评】本题主要考查折线统计图,理解燃油效率的定义并从折线统计图中得出解题所需数据是解题的关键.二、填空题(本题共18分,每小题3分)11.(3分)分解因式:ax2﹣2ax+a=a(x﹣1)2.【分析】先提公因式a,再利用完全平方公式继续分解因式.【解答】解:ax2﹣2ax+a,=a(x2﹣2x+1),=a(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)若函数的图象经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式y=.【分析】由两坐标可看出两点横纵坐标之积相等,可判断函数可以为反比例函数,k值可由任意一点横纵坐标之积求得.【解答】解:由于某函数图象经过点A(1,2)和点B(2,1),且两点横纵坐标之积相等,则此函数可以为反比例函数,k=1×2=2,满足条件的反比例函数可以为y=;故答案为y=.【点评】本题考查了反比例函数图象上点的坐标特征,只需把所给点的横纵坐标相乘,结果即是比例系数.13.(3分)下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000投中次数m58 96 174 302 484 601投中频率0.580 0.640 0.580 0.604 0.605 0.601 这名球员投篮一次,投中的概率约是0.6 .【分析】根据频率估计概率的方法结合表格可得答案.【解答】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.6附近,这名球员投篮一次,投中的概率约是0.6,故答案为:0.6.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.14.(3分)如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为70°.【分析】先根据圆周角定理求出∠BAD的度数,再由圆内接四边形的性质即可得出结论.【解答】解:∵∠CBD=80°,∴∠CAD=∠CBD=80°.∵∠BAC=30°,∴∠BAD=30°+80°=110°.∵四边形ABCD是⊙O内接四边形,∴∠BCD=180°﹣∠BAD=180°﹣110°=70°.故答案为:70°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.15.(3分)在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(﹣3,0),B(﹣1,2),则点A'的坐标为(0,3),点B'的坐标为(2,1).【分析】根据点A(﹣3,0),由旋转的性质得到点A'的坐标;根据点B(﹣1,2),OB绕原点O顺时针旋转90°得到OB′可看作是Rt△OCB绕原点O顺时针旋转90°得到Rt△OC′B′,再写出B′点的坐标.【解答】解:如图所示:则点A'的坐标为(0,3),点B'的坐标为(2,1).故答案为:(0,3),(2,1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.四、标题16.(3分)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l和直线l外一点P.求作:直线l的平行直线,使它经过点P.作法:如图2.(1)过点P作直线m与直线l交于点O;(2)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.请回答:该作图的依据是三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等,两直线平行.【分析】利用作法得OA=OB=PD=PC,CD=AB,原式可判断△OAB≌△PCD,则∠AOB=∠CPD,然后根据平行线的判定方法可判断PD∥l.【解答】解:如图2,由作法得OA=OB=PD=PC,CD=AB,则△OAB≌△PCD,所以∠AOB=∠CPD,所以PD∥l.故答案为三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等,两直线平行.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|.【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|的值是多少即可.【解答】解:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|=2﹣1﹣2×+2﹣=1﹣+2﹣=3﹣2【点评】此题主要考查了实数的运算,零指数幂、负整数指数幂以及特殊角的三角函数值,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(5分)解不等式组:.【分析】分别求出每个不等式的解集,再求其解集的公共部分即可.【解答】解:由①得x<3;由②得x≥;所以,原不等式的解集为≤x<3.【点评】本题考查了不等式组的解法,求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(5分)已知x=2y,求代数式(﹣)÷的值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2y代入计算即可求出值.【解答】解:原式=•=,当x=2y时,原式==2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(5分)如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.【分析】根据线段垂直平分线的想知道的CE=BE,根据等腰三角形的性质得到∠ECB=∠EBC,根据三角形的外角的性质即可得到结论.【解答】证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.【点评】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形的外角的性质,熟练掌握线段垂直平分线的性质是解题的关键.21.(5分)某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 3.5 4.8 5.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.0 4.8 5.2 4.9 5.1 5.0 4.8 6.0 5.7 5.0表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 4.4 4.9 4.8 4.1 5.2 5.1 5.0 4.5 4.7 4.9编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量15 4.98 0.27乙种种植技术种出的西瓜质量15 4.97 0.21 (2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.【分析】(1)根据统计表解答;(2)根据方差的性质进行解答.【解答】解:(1)甲种种植技术种出的西瓜优等品西瓜个数是15,故答案为:15;(2)该科研小组应选择乙种种植技术,∵甲、乙优等品西瓜个数相同,虽然甲种种植技术种出的西瓜平均数略高,但乙种种植技术种出的西瓜的质量比较稳定,∴应选择乙种种植技术.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(5分)在平面直角坐标系xOy,直线y=x﹣1与y轴交于点A,与双曲线y=交于点B(m,2).(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.【分析】(1)先B(m,2)代入y=x﹣1求出m的值,然后将B的坐标代入双曲线的解析式中即可求出k的值.(2)设直线CD的解析式为:y=x﹣1+b,直线AB与x轴交于点E,然后求出点A、C、E的坐标,最后根据△ABC的面积即可求出b的值.【解答】解:(1)将B(m,2)代入y=x﹣1∴2=m﹣1∴m=3,将B(3,2)代入y=,∴k=6(2)设直线CD的解析式为:y=x﹣1+b,直线AB与x轴交于点E,令x=0和y=0分别代入y=x﹣1,∴y=﹣1∴A(0,﹣1),E(1,0)∴y=0代入y=x﹣1+b,∴x=1﹣b∴C(1﹣b,0)当C在E的左侧时,此时CE=1﹣(1﹣b)=b∴S△ABC=b(2+1)=6,∴b=4当C在E的右侧时,此时CE=1﹣b﹣1=﹣b∴S△ABC=×(﹣b)(2+1)=6,∴b=﹣4,∴当b=4时,直线的CD的解析式为:y=x+3,当b=﹣4时,直线的CD的解析式为:y=x﹣5,∴直线的CD的表达式为:y=x+3或y=x﹣5【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是根据待定系数法求出B的坐标以及k的值,本题属于中等题型.23.(5分)如图,在▱ABCD中,对角线BD平分∠ABC,过点A作AE∥BD,交CD的延长线于点E,过点E 作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.【分析】(1)证明∠ADB=∠ABD,得出AB=AD,即可得出结论;(2)由菱形的性质得出AB=CD=BC=2,证明四边形ABDE是平行四边形,∠ECF=∠ABC=45°,得出AB=DE=2,CE=CD+DE=4,在Rt△CEF中,由等腰直角三角形的性质和勾股定理即可求出EF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AB∥CD,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,。

相关文档
最新文档