一元一次方程经典练习题

合集下载

七年级解一元一次方程经典50道练习题(带答案)

 七年级解一元一次方程经典50道练习题(带答案)

自我测试60分钟看看准确率牛刀小试相信自己一定行1、712=+x ;2、825=-x ;3、7233+=+x x ;4、735-=+x x ;解:(移项)(合并)(化系数为1)5、914211-=-x x ;6、2749+=-x x ;7、162=+x ;8、9310=-x ;解:(移项)(合并)(化系数为1)9、x x -=-324;10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x 解:(移项)(合并)(化系数为 113、1623+=x x 14、253231+=-x x ;15、152+=--x x ;16、23312+=--xx 解:(移项)(合并)(化系数为1).17、475.0=)++(x x ;18、2-41)=-(x ;19、511)=-(x ;20、212)=---(x ;解:(去括号)(移项)(合并)(化系数为1)21、)12(5111+=+x x ;22、32034)=-(-x x .23、5058=)-+(x ;24、293)=-(x ;解:(去括号)(移项)(合并)(化系数为1)25、3-243)=+(x ;26、2-122)=-(x ;27、443212+)=-(x x ;28、323236)=+(-x ;解:(去括号)(移项)(合并)(化系数为1)29、x x 2570152002+)=-(;30、12123)=+(x .31、452x x =+;32、3423+=-x x ;解:(去分母)(去括号)(移项)(合并)(化系数为1)33、)-()=+(3271131x x ;34、)-()=+(131141x x ;35、142312-+=-x x ;解:(去分母)(去括号)(移项)(合并)(化系数为 136、)+(-)=-(2512121x x . 37、)+()=+(20411471x x ;38、)-(-)=+(731211551x x . 解:(去分母)(去括号)(移项)(合并)(化系数为 139、432141=-x ;40、83457=-x ;41、815612+=-x x ;42、629721-=-x x ;解:(去分母)(去括号)(移项)(合并)(化系数为 143、1232151)=-(-x x ;44、1615312=--+x x ;45、x x 2414271-)=+(;解:(去分母)(去括号)(移项)(合并)(化系数为 146、259300300102200103)=-()-+(x x . 47、307221159138)=-()--()--(x x x ;解:(去分母)(去括号)(移项)(合并)(化系数为 148、51413121-=+x x ;49、13.021.02.015.0=-+--x x ;50、3.01-x -5.02+x =12.解:(化整)(去分母)(去括号)(移项)(合并)(化系数为 1【参考答案】1、【答案】(1)3=x ;(2)2=x ;(3)4=x ;(4)6=x ;(5)37=x ;(6)12=-x ;(7)4=x ;(8)32=-x .1.1、【答案】(9)25=-x ;(10)56=x ;(11)5=-x ;(12)31=-x ;(13)1=x ;(14)32=x ;(15)35=-x ;(16)1=x .2、【答案】(17)1=x ;(18)1=-x ;(19)56=x ;(20)3=-x ;(21)4=x ;(22)9=x .2.1、【答案】(23)7=-x ;(24)23=-x ;(25)11=-x ;(26)4=-x ;(27)21=x ;(28)910=x ;(29)6=x ;(30)23=x .3、【答案】(31)8=x ;(32)51=x ;(33)16=-x ;(34)7=x ;(35)52=-x ;(36)3=x ;(37)28=-x ;(38)165=-x .3.1、【答案】(39)5=x ;(40)1413=x ;(41)1=-x ;(42)320=-x ;(43)1225=x ;(44)3=-x ;(45)87=x ;(46)216=x .4、【答案】(47)3=x ;(48)1532=-x ;(49)1364=x ;(50)229=x .。

一元一次方程典型练习题及答案

一元一次方程典型练习题及答案

一元一次方程的定义一、选择题(共5小题)1、下列方程中,是一元一次方程的是()A、x2﹣4x=3B、x=0C、x+2y=1D、x﹣1=二、填空题(共9小题)2、在下列方程中:①x+2y=3,②,③,④,是一元一次方程的有_________(只填序号).3、若方程3x2m﹣1+1=6是关于x的一元一次方程,则m的值是_________.4、已知等式5x m+2+3=0是关于x的一元一次方程,则m=_________.5、已知方程(m﹣2)x|m|﹣1+3=m﹣5是关于x的一元一次方程,则m=_________.6、关于x的方程(a+2)x|a|﹣1﹣2=1是一元一次方程,则a=_________.一元一次方程的定义答案与评分标准一、选择题(共5小题)1、下列方程中,是一元一次方程的是(B)A、x2﹣4x=3B、x=0C、x+2y=1D、x﹣1=二、填空题(共9小题)2、在下列方程中:①x+2y=3,②,③,④,是一元一次方程的有③④(只填序号).判断一元一次方程的定义要分为两步:一:判断是否是整式方程;二:对整式方程化简,判断化简后是否只含有一个未知数(元),并且未知数的指数是1(次).3、若方程3x2m﹣1+1=6是关于x的一元一次方程,则m的值是1..4、已知等式5x m+2+3=0是关于x的一元一次方程,则m=﹣1.5、已知方程(m﹣2)x|m|﹣1+3=m﹣5是关于x的一元一次方程,则m=﹣2.解:由一元一次方程的特点得,解得:m=﹣2.故填:﹣2.6、关于x的方程(a+2)x|a|﹣1﹣2=1是一元一次方程,则a=2.考点:一元一次方程的定义。

专题:待定系数法。

分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可列出关于a的等式,继而可求出a的值.解答:解:∵(a+2)x|a|﹣1﹣2=1是一元一次方程,根据一元一次方程的定义得|a|﹣1=1,解得a=±2,又∵a+2≠0,∴a=2.故填:2.方程的解的练习题1、若x=1是方程ax+3x=2的解,则a 的值是( )A 、﹣1B 、5C 、1D 、﹣52、若方程ax=5+3x 的解为x=5,则a 的值是( )A 、B 、4C 、16D 、80二、填空题(共5小题)3、若x=2是方程9﹣2x=ax ﹣3的解,则a= _________ .4、x=是方程|k|(x+2)=3x 的解,那么k= _________ .方程的解的练习题及答案1、若x=1是方程ax+3x=2的解,则a 的值是( A )A 、﹣1B 、5C 、1D 、﹣52、若方程ax=5+3x 的解为x=5,则a 的值是( B )A 、B 、4C 、16D 、80二、填空题(共5小题)3、若x=2是方程9﹣2x=ax ﹣3的解,则a= 4 .解答:解:根据题意得:9﹣4=2a ﹣3解得:a=4.故填4.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母a 的方程进行求解.4、x=是方程|k|(x+2)=3x 的解,那么k= ±.考点:方程的解;绝对值。

一元一次方程题100道及过程

一元一次方程题100道及过程

一元一次方程题100道及过程1、某数的 3 倍比它的一半大 2,求这个数。

解:设这个数为 x,根据题意可得 3x 05x = 2,25x = 2,x = 08 。

2、一个数加上 5 的和的 3 倍等于 18,求这个数。

解:设这个数为 x,可列方程 3(x + 5) = 18,3x + 15 = 18,3x= 3,x = 1 。

3、某数的 4 倍减去 10 等于它的 2 倍加上 8,求这个数。

解:设这个数为 x,4x 10 = 2x + 8,4x 2x = 8 + 10,2x = 18,x = 9 。

4、一个数的 5 倍减去 3 与 5 的积,差是 7,求这个数。

解:设这个数为 x,5x 3×5 = 7,5x 15 = 7,5x = 22,x = 44 。

5、某数的 6 倍加上 8 等于它的 8 倍减去 6,求这个数。

解:设这个数为 x,6x + 8 = 8x 6,8 + 6 = 8x 6x,14 = 2x,x= 7 。

6、一个数减去 10 乘以 8 的积,差是 20,求这个数。

解:设这个数为 x,x 10×8 = 20,x 80 = 20,x = 100 。

7、某数的 7 倍除以 2 再减去 3 等于 10,求这个数。

解:设这个数为 x,7x÷2 3 = 10,7x÷2 = 13,7x = 26,x =26÷7 = 26/7 。

8、一个数加上 20 乘以 3 的积,和是 100,求这个数。

解:设这个数为 x,x + 20×3 = 100,x + 60 = 100,x = 40 。

9、某数的 8 倍减去 15 等于它的 5 倍加上 9,求这个数。

解:设这个数为 x,8x 15 = 5x + 9,8x 5x = 9 + 15,3x = 24,x = 8 。

10、一个数乘以 5 再加上 10 等于它的 3 倍乘以 8,求这个数。

解:设这个数为 x,5x + 10 = 3x×8,5x + 10 = 24x,10 = 19x,x = 10/19 。

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

2、小华从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。

4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。

解一元一次方程100道专项练习

解一元一次方程100道专项练习

解一元一次方程专项练习100题1..2.=﹣2;3.﹣2=.4.5..6.x﹣=2﹣.7.8..9.10.11. ﹣6x=﹣x+1;12. y﹣(y﹣1)=(y﹣1);13. [(x﹣)﹣8]=x+1;14..15.﹣=1.16.17.2﹣=﹣.18.﹣1=﹣.19..20..21.22..23.;24. .25..26.27..28. 2﹣=x﹣;29. ﹣1=.30..31.(x﹣1)=2﹣(x+2).32..33.34.35. ;36. .37..38.39. 40.41.42. x﹣43. ;44. .45.(x﹣1)﹣(3x+2)=﹣(x﹣1).46.;47.;48. .49.+1=;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)51.52.53. 54.55.56.57. ;58. .59. 2x﹣(x﹣3)=[x﹣(3x+1)].60.61.62.x+=1﹣63..64.65. ﹣=.66.=67.68.69.70.=;71. 3(x+2)﹣2(x﹣)=5﹣4x.72. 2x﹣73.74.[(﹣1)﹣2]﹣x=2.75.﹣1=.76.,77..78.79.80. ;81. .82.83. 84.85. ﹣=.86.=1﹣.87.88..89..90..91.92. ;93..94..95.;96. .97..98. ;99. [(x﹣1)﹣3]=2x﹣5;100..解一元一次方程100题难题解析1.去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得: 6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣32.去分母得,3(x﹣1)=4(2x﹣1)﹣24,去括号得,3x﹣3=8x﹣4﹣24,移项、合并同类项得,5x=25,系数化为1得,x=5;3. 原方程变形为:﹣2=,去分母得,4(2x﹣1)﹣24=3(10x﹣10),去括号得,8x﹣4﹣24=30x﹣30,移项、合并同类项得,22x=2,系数化为1得,x=4.去分母得,7(1.7﹣2x)=3x﹣2.1去括号,11.9﹣14x=3x﹣2.1移项合并同类项得,﹣17x=﹣14系数化为1得,x=.5.原方程变形成5(3x+1)﹣20=3x﹣2﹣2(2x+3) 15x﹣15=﹣x﹣816x=7∴6.去分母得:6x﹣3(x﹣1)=12﹣2(x+2)去括号得:6x﹣3x+3=12﹣2x﹣4移项得:6x﹣3x+2x=12﹣4﹣3合并得:5x=5系数化为1得:x=1.7.去分母得:5(4﹣x)=3(x﹣3)﹣15,化简可得: 2x=11,系数化1得: x=8.原式可变形为:3(3y﹣1)﹣12=2(5y﹣7)去括号得: 9y﹣3﹣12=10y﹣14移项得: 9y﹣10y=﹣14+12+3合并得:﹣y=1系数化1得: y=﹣19.原方程分母化整得:去分母,得 5(x+4)﹣2(x﹣3)=1.6,去括号,得 5x+20﹣2x+6=1.6,移项、合并同类项,得 15x=﹣122,系数化1,得 x=10.去分母得:4(x+1)=5(x+1)﹣6,去括号得: 4x+4=5x+5﹣6,移项、合并得:﹣x=﹣5,系数化为1得: x=5.11. 移项,合并得x=,化系数为1,得x=;12. 去分母,得6y﹣3(y﹣1)=4(y﹣1),去括号,得 6y﹣3y+3=4y﹣4,移项,合并得 y=7;13. 去括号,得(x﹣)﹣6=x+1,x﹣﹣6=x+1,移项,合并得x=;14. 原方程变形为﹣1=,去分母,得2(2﹣10x)﹣6=3(1+10x),去括号,得 4﹣20x﹣6=3+30x,移项,合并得﹣50x=5,化系数为1,得 x=﹣.15.去分母得:3(x﹣7)+4(5x﹣6)=12,去括号得: 3x﹣21+20x﹣24=12,移项得: 3x+6x=12+21+24,合并同类项得: 9x=57,化系数为1得: x=16.去分母:6(x﹣3)+4(6﹣x)=12+3(1+2x),去括号:6x﹣18+24﹣4x=12+3+6x,移项:6x﹣4x﹣6x=12+3+18﹣24,化简:﹣4x=9,化系数为1:x=﹣.17.去分母得:12﹣2(2x﹣4)=﹣(x﹣7),去括号得: 12﹣4x+8=﹣x+7,移项得:﹣4x+x=7﹣20,合并得:﹣3x=﹣13,系数化为1得: x=.18.去分母得:3(2x+1)﹣12=4(2x﹣1)﹣(10x+1),去括号得: 6x+3﹣12=8x﹣4﹣10x﹣1,移项合并同类项得: 8x=4,系数化为得: x=19.去分母得:2(5x﹣7)+12=3(3x﹣1)去括号得: 10x﹣14+12=9x﹣3移项得: 10x﹣9x=﹣3+14﹣12系数化为1得: x=﹣120.去分母得:3(3x+4)﹣2(6x﹣1)=6去括号得: 9x+12﹣12x+2=6移项、合并同类项得:﹣3x=﹣8系数化为1得: x=21.去分母得:6(x+4)﹣30x+150=10(x+3)﹣15(x﹣2)去括号得: 6x+24﹣30x+150=10x+30﹣15x+30移项、合并得:﹣19x=﹣114化系数为1得: x=6.22.去分母得:4(2x﹣1)﹣3(3x﹣1)=24,去括号得: 8x﹣4﹣9x+3=24,移项合并得:﹣x=25,化系数为1得: x=﹣2523. 原方程可以变形为:5x﹣10﹣2(x+1)=3,5x﹣10﹣2x﹣2=3,3x=15,x=5;24. 原方程可以变形为[x﹣(x﹣x+)﹣]=x+,(x﹣x+x﹣﹣)=x+,(x﹣)=x+,,,x=﹣25.﹣=﹣12(2x﹣1)﹣(5﹣x)=3(x+3)﹣62x=10x=526.去括号得:x﹣﹣8=x,移项、合并同类项得:﹣x=8,系数化为1得: x=﹣8.27.,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得: 2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得: x=528. 12﹣(x+5)=6x﹣2(x﹣1) 12﹣x﹣5=6x﹣2x+2﹣x﹣6x+2x=2﹣12+5﹣5x=﹣5x=1;29.4(10﹣20x)﹣12=3(7﹣10x)40﹣80x﹣12=21﹣30x﹣80x+30x=21﹣40+12﹣50x=﹣7.30.去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x﹣9=2x﹣1,合并得: 4x=8,化系数为1得: x=2.31.去分母得:5(x﹣1)=20﹣2(x+2),去括号得: 5x﹣5=20﹣2x﹣4,移项合并得: 7x=21,系数化为1得: x=3.32.原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得: 40x=﹣15,系数化为1得: x=33.原方程变形为:50(0.1x﹣0.2)﹣2(x+1)=3,5x﹣10﹣2x﹣2=3,3x=15,x=5.34.去分母得:2(2x﹣1)=6﹣3x,去括号得: 4x﹣2=6﹣3x,移项得: 4x+3x=8,系数化为1得: x=35. 方程两边同乘15,得3(x﹣3)﹣5(x﹣4)=15,整理,得 3x﹣9﹣5x+20=15,解得﹣2x=4,x=﹣2.36. 方程两边同乘1,得50(0.1x﹣0.2)﹣2(x+1)=3,整理,得 5x﹣10﹣2x﹣2=3,解得: 3x=15,∴x=537.去分母得:3y﹣18=﹣5+2(1﹣y),去括号得:3y﹣18=﹣5+2﹣2y,移项合并得: 5y=15,系数化为1得: y=3.38..解:去括号得:12﹣2y﹣2﹣3y=2,移项得:﹣2y﹣3y=2﹣12+2,合并同类项得:﹣5y=﹣8,系数化为1得:.39. 解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=2x﹣2x﹣3,移项得:﹣3x﹣2x+2x=﹣3﹣6+18(或﹣3x=﹣3﹣6+18),合并同类项得:﹣3x=9,系数化为1得:x=﹣340.去分母得:3x(x﹣1)﹣2(x+1)(x+6)﹣(x+1)(x﹣1)=6 去括号得:3x2﹣3x﹣2x2﹣14x﹣12﹣x2+1=6合并得:﹣17x=17化系数为1得:x=﹣141. 原式通分得:,整理得:,将其变形得:﹣x+3=6,∴x=﹣3.42. 原式变形为:x+3=,将其通分并整理得:10x﹣25+3x﹣6=15x+45,即﹣2x=76,∴x=﹣3843. 解:去分母得,3(x﹣7)﹣4(5x+8)=12,去括号得,3x﹣21﹣20x﹣32=12,移项合并同类项得,﹣17x=65,系数化为1得,x=;44. 解:去括号得,2x﹣x+x﹣=x﹣,去分母得,24x﹣6x+3x﹣3=8x﹣8,移项合并同类项得,13x=﹣5,系数化为1得,x=﹣45.去分母得:15(x﹣1)﹣8(3x+2)=2﹣30(x﹣1),∴21x=63,∴x=346.去括号,得a﹣﹣2﹣a=2,去分母,得a﹣4﹣6﹣3a=6,移项,合并得﹣2a=16,化系数为1,得a=﹣8;47. 去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项、合并得﹣3x=27,化系数为1,得x=﹣9;48. 把分母化为整数,得﹣=2,去分母,得5(10x+40)﹣2(10x﹣30)=20,去括号,得50x+200﹣20x+60=20,移项、合并得30x=﹣240,化系数为1,得x=﹣849. +1=解:去分母,得3x+6=2(2﹣x);去括号,得3x+6=4﹣2x移项,得3x+2x=4﹣6合并同类项,得5x=﹣2系数化成1,得x=﹣;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)解:将原方程等价为:0.75(x﹣1)﹣0.25(x﹣4)=0.25(x+6)去括号,得0.75x﹣0.75﹣0.25x+1=0.25x+1.5移项,得0.75x﹣0.25x﹣0.25x=1.5﹣1+0.75合并同类项,得0.25x=1.25系数化成1,得x=551. 去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项、合并得:﹣3x=27,系数化为1得:x=﹣9.52. 去括号得:2x﹣4﹣x+2=4,移项、合并得:x=6.53. 去分母得:12x﹣(2x+1)=12﹣3(3x﹣2),去括号得:12x﹣2x﹣1=12﹣9x+6,移项、合并得:19x=19,系数化为1得:x=154. 去括号得:x﹣1﹣3﹣x=2,移项,合并同类项得:﹣x=6,系数化为1得:x=﹣8.55 去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项,合并得:25x=23,系数化为1得:x=.56. 去分母得:3x﹣7﹣2(5x+8)=4,去括号得:3x﹣7﹣10x﹣16=4,移项、合并得:﹣7x=27,系数化为1得:x=﹣.57. 去分母得:3(3x+5)=2(2x﹣1),去括号得:9x+15=4x﹣2,移项合并得:5x=﹣17,系数化为1得:;58. 去分母得:(5x+2)﹣2(x﹣3)=2,去括号得:5x﹣2x=﹣6+2﹣2,移项合并得:3x=﹣6,系数化为1得:x=﹣259.去小括号得:2x﹣x+2=[x﹣x﹣],去中括号得:2x﹣x+2=x﹣x﹣,去分母得:12x﹣4x+12=2x﹣3x﹣1,移项、合并得:9x=﹣13,系数化为1得:x=﹣60. ,去分母得3(x﹣15)=﹣15﹣5(x+7),∴3x﹣45=﹣15﹣5x﹣35,∴x=;61. ,方程变形为,去分母得20x﹣20x+30=﹣2x+6,∴x=﹣1262.去分母得:15x+5(x+2)=15﹣3(x﹣6)去括号得:15x+5x+10=15﹣3x+18移项得:15x+5x+3x=15+18﹣10合并得:23x=23系数化为1得:x=163.原方程可化为:﹣=,去分母得:4x+8﹣2(3x+4)=2(x﹣1),去括号得:4x+8﹣6x﹣8=2x﹣2,移项合并同类项得:﹣4x=﹣2,系数化为1得:x=64.原方程可化为:,去分母得:3(7x﹣1)=4(1﹣2x)﹣6(5x+1)去括号得:21x﹣3=4﹣8x﹣30x﹣6移项合并同类项得:59x=1系数化为1得:x=65.去分母得:4(3x﹣2)﹣6=7x﹣4.去括号得:12x﹣8﹣6=7x﹣4.移项、合并同类项得:5x=10.系数化为1得:x=2.66.原方程可以化为:=+1去分母得: 2(2x﹣1)=3(x+2)+6去括号得: 4x﹣2=3x+6+6即 x=1467 去分母得:4(2x﹣1)﹣3(2x﹣3)=12,整理得:2x﹣7=0,解得:x=3.5.68. 去括号,,∴,∴x+1=2,解得:x=169.去分母得:6(4x+9)﹣15(x﹣5)=30+20x 去括号得:24x+54﹣15x+75=30+20x移项,合并同类项得:﹣11x=﹣99化系数为1得:x=970. 去分母得:7(5﹣7x)=8(5x﹣2),去括号得:35﹣49x=40x﹣16,移项合并同类项得,﹣89x=﹣51,系数化为得:x=;71. 去括号得:3x+6﹣2x+3=5﹣4x,移项合并同类项得:5x=﹣4,系数化为得:x=﹣.72..去分母得:12x﹣2(5x﹣2)=24﹣3(3x+1),去括号得:12x﹣10x+4=24﹣9x﹣3,移项、合并得:11x=17,系数化为1得:x=.73.去分母得:6x﹣2(1﹣x)=(x+2)﹣6,去括号得:6x﹣2+2x=x+2﹣6,移项得:6x+2x﹣x=2﹣6+2,合并同类项得:7x=﹣2,系数化为得:x=74.去中括号得:(﹣1)﹣3﹣x=2,去括号、移项、合并得:﹣x=6,系数化为1得:x=﹣875. 去分母得:(2x+5)﹣24=3(3x﹣2),去括号得:8x+20﹣24=9x﹣6,移项得:8x﹣9x=﹣6﹣20+24,合并同类项得:﹣x=﹣2,系数化为1得:x=2.76.去括号得:x+++=1去分母得: x+1+6+56=64移项得: x=177.去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项、合并得:﹣13x=﹣130,系数化为1得:x=1078.去分母得:8﹣(7+3x)=2(3x﹣10)﹣8x 去括号得: 8﹣7﹣3x=6x﹣20﹣8x移项合并得:﹣x=﹣21系数化为1得: x=2179.去括号,得3(x﹣)+1=5x,3x﹣+1=5x,6x﹣3+2=10x,移项、合并同类项得:﹣4x=1,系数化为1得: x=80.4(2x﹣1)﹣12=3(5x﹣3)8x﹣4﹣12=15x﹣9﹣7x=7x=﹣1;81.5(3x﹣1)=2(4x+2)﹣1015x﹣5=8x+4﹣107x=﹣1x=﹣.82.去括号得,2(﹣1)﹣4﹣2x=3,x﹣2﹣4﹣2x=3,移项合并同类项得,﹣x=9,系数化为得, x=﹣983. 去括号得:x﹣2﹣3x+1=1﹣x,解得:x=﹣2.84. 原方程可化为:=﹣,去分母得:3(7x﹣1)=4(1﹣0.2x)﹣6(5x+1),去括号得:21x﹣1=4﹣0.8x﹣30x﹣6,移项、合并同类项得:51.8x=﹣1,系数化为1得:x=85.原方程化为:﹣=,整理得: 12x=6,解得: x=86.原式变形为:+=1,把小数化为分数、整理得:,去分母得:4(4﹣x)=12﹣(2x﹣6),去括号得16﹣4x=12﹣2x+6,移项、合并得:﹣2x=2,系数化为1得:x=﹣187.去大括号,得:,去中括号得:,去小括号得:=0,移项得:y=3,系数化1得:y=688..原方程化为:(1分)去分母得:3(5x+9)+5(x﹣5)=5(1+2x)化简得:10x=3解得:.89.去分母得:5(3x+2)﹣15=3(7x﹣3)+2(x﹣2)去括号得:15x+10﹣15=21x﹣9+2x﹣4移项合并得:﹣8x=﹣8系数化为1得:x=190.去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项、合并得:x=1391. 解:,,6x﹣3x+3=8x﹣8,6x﹣3x﹣8x=﹣8﹣3,﹣5x=﹣1,.92. 解:3(2x﹣1)=4(x﹣5)+12,6x﹣3=4x﹣20+12,6x﹣4x=﹣20+12+3,2x=﹣5,93.去分母得:4×3x﹣5(1.4﹣x)=2去括号得:12x﹣7+5x=0.2移项、合并得:17x=9系数化为1,得x=94.去分母得:2(3x﹣2)+10=5(x+3),去括号得:6x﹣4+10=5x+15,移项、合并同类项得:6x﹣5x=15﹣6,化系数为1得:x=995. 去分母,得3(x﹣3)﹣4(5x﹣4)=18,去括号,得3x﹣9﹣20x+16=18,移项、合并同类项,得﹣17x=11,系数化为1,得x=﹣;96. 去分母,得3(x+1)﹣12=2(2x﹣1),去括号,得3x+3﹣12=4x﹣2,移项、合并同类项,得﹣x=7,系数化为1,得x=﹣797.原方程可化为:(8x﹣3)﹣(25x﹣4)=12﹣10x,去括号得:8x﹣3﹣25x+4=12﹣10x,移项、合并同类项得:﹣7x=11,系数化为1得:x=98. 去分母得:4(2x+4)﹣6(4x﹣3)=3,去括号得:8x+16﹣24x+18=3,移项,合并同类项得:﹣16x=﹣31,系数化为1得:x=;99. 去中括号得:(x﹣1)﹣2=2x﹣5,去小括号得:x﹣1﹣2=2x﹣5,移项、合并同类项得:x=2100..把中分子,分母都乘以5得:5x﹣20,把中的分子、分母都乘以20得:20x﹣60.即原方程可化为:5x﹣20﹣2.5=20x﹣60.移项得:5x﹣20x=﹣60+20+2.5,合并同类项得:﹣15x=﹣37.5,化系数为1得:x=2.5。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

一元一次方程经典练习题及解答

一元一次方程经典练习题及解答

应用题练习题1、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?设调完后甲车队有X辆车,乙车队有2x+1辆车。

x+2x+1=50+41x=3050-30=20(辆)答:应从甲车队调出车辆数20辆。

2、某人计划骑车以12千米/时的速度由A地到B地,这样便可以在规定时间内到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定时间早到4分钟,求A、B两地相距多少米?解:设规定时间为a。

12a=15(a-20-4)12a=15a-360-3a=-360a=120分钟120分=2小时12*2=24(千米)答:A、B两地相距24米。

3、甲、乙两站相距240千米,一列货车从甲站开出,每小时行40千米,客车从乙站开出,每小时行80千米,两车同时开出,相向而行,经过多长时间相遇?解:设x小时后相遇。

40x+80x=240120x=240x=2答:经过2小时相遇。

4、鸡与兔共有100只,鸡的脚比兔的脚多80只。

问鸡与兔各多少只?解:设鸡有x只,那么兔有(100-x)只2x-4(100-x)=802x-400+4x=806x=480x=80100-80=20(只)答:鸡与兔副分别是80和20只。

5、丰台二中进行小测(数学),一共10道题。

每做对一道得8分,错一道扣5分。

一位同学得了41分。

问那位同学对几道,错几道?解:设该同学答对了x道,则错了(10-x)道8x-5(10-x)=41,8x-50+5x=41,13x=91,x=7,10-7=3(道),答:该同学答对7道,答错3道.6、向阳市场某天出售鸡蛋按个数计价,一商贩以每个0.25元购进一批鸡蛋,但中途不慎碰坏了12个,剩下的鸡蛋以每个0.30元售出,结果获利12元。

问该商贩当初买进多少个鸡蛋?解:设买了X个鸡蛋。

0.3(X-12)-0.25X=120.3x-3.6-0.25x=120.05x=15.6X=312答:当初买进312个鸡蛋。

七年级一元一次方程计算题

七年级一元一次方程计算题

七年级一元一次方程计算题一、简单的一元一次方程求解(1 - 10题)1. x + 5 = 12- 解析:方程两边同时减去5,得到x+5 - 5=12 - 5,即x = 7。

2. 2x-3 = 7- 解析:首先方程两边同时加上3,得到2x - 3+3=7 + 3,即2x=10。

然后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。

3. 3(x + 1)=18- 解析:先使用分配律将括号展开,得到3x+3 = 18。

方程两边同时减去3,3x+3 - 3=18 - 3,即3x = 15。

最后方程两边同时除以3,3x÷3=15÷3,解得x = 5。

4. (x)/(2)+1 = 3- 解析:方程两边同时减去1,得到(x)/(2)+1 - 1=3 - 1,即(x)/(2)=2。

然后方程两边同时乘以2,(x)/(2)×2 = 2×2,解得x = 4。

5. 4x-2x+3 = 7- 解析:先合并同类项,4x-2x = 2x,方程变为2x+3 = 7。

方程两边同时减去3,2x+3 - 3=7 - 3,即2x = 4。

最后方程两边同时除以2,2x÷2 = 4÷2,解得x = 2。

6. 5(x - 2)=3x- 解析:先展开括号,得到5x-10 = 3x。

方程两边同时减去3x,5x-3x - 10=3x - 3x,即2x-10 = 0。

方程两边同时加上10,2x-10 + 10=0 + 10,即2x = 10。

最后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。

7. (2x + 1)/(3)=3- 解析:方程两边同时乘以3,得到2x + 1=9。

方程两边同时减去1,2x+1 - 1=9 - 1,即2x = 8。

最后方程两边同时除以2,2x÷2 = 8÷2,解得x = 4。

8. 3x+5 = 2x - 1- 解析:方程两边同时减去2x,3x - 2x+5 = 2x - 2x-1,即x+5=-1。

一元一次方程经典40题

一元一次方程经典40题

一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。

A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。

只有C选项符合一元一次方程的定义,所以答案是C。

2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。

3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。

4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。

5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。

6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。

(完整版)一元一次方程简单练习题

(完整版)一元一次方程简单练习题

一元一次方程练习题(一)1、2x-3=-22、1-(2x+3)= -311、7x+x+12=0 12、2x+4x+4=013、8x+3x+1=0 14、5x+3x+2=015、45x+3x+96 =0 16、4543+=-x x17、5x+3x=8 18、3x+1=2x19、x-7=6x+2 20、5x+1=9一元一次方程练习题(二)1、9x+8=262、55x+54=-13、23+58x=814、29x-66=215、0.4(x-1)+1.5=0.7x+0.56、30x-10(10-x)=1007、4(x+2)=5(x-2) 8、120-4(x+5)=259、15x+29-65x=54 10、()()12123--=+-x x x17、25211xx =-- 18、9x-6-18-x=2x19.2(x-2)+2=-4 20.(x-1)+(x-2)=-3一元一次方程练习题(三)1.今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。

2. 如果21m x -+8=0是一元一次方程,则m= 。

3. 若3x -的倒数等于12,则x-1= 。

4. 如果方程340x +=与方程3418x k +=是同解方程,则k= 。

5. 若52x +与29x -+是相反数,则x-2的值为 。

6. 一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.7. 有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 升水。

8. 小李在解方程5a-x=13(x 为未知数)时,误将-x 看+x ,解得方程的解x=-2,则原方程的解为___________________________.9.单项式-2xa-1与12x—a+1为同类项则a= .10. 有一棵树,刚移栽时,树高为2m ,假设以后平均每年长0.3m ,几年后树高为5m ?11. 环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m?12.国庆期间,“重客隆”綦江店搞促销活动,小军买了一件衣服,按8折销售的售价为88元,问这件衣服的原价是多少元?13.甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?14.x取什么数时,3x-2的是x-4的相反数?15.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?16.甲、乙两车分别从相距360千米的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?。

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题(含答案)-CAL-FENGHAI.-(YICAI)-Company One1一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x )=04、5x (2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x ) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x )-3(x+1) 14、1- 12 x=215、3- 13 x=2(x+1) 16、2(x- 34)=8-x17、12 (2x+1)+1=2(2-x ) 18、x- 13(x-5)= 2319、-x= -3(x-4) 20、7x ·(5 - 4· 12)= 5+x21、0.1+x 2 =2 22、 x-10.2 =3(x-1)23、x-10.3 + x+20.3 =2 24 、12 + 13x = 23 +125、 2x-10.5 = 2- 3x+20.3 26、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、 25(300+x )- 35(200+x )=400·110二、一元一次方程应用题1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

2、小华从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B 地,求A、B两地间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次问题
课时一简单一元一次方程
我们学过这样填括号的题,如()+ 8 = 15 。

括号里的数怎样求解呢?
这个我们可以利用加减法的关系来求解.我们知道,一个加数+ 另一个加数= 和,那么求其中一个加数,就可以用和减去另一个加数.因为15 - 8 = 7 ,所以括号里填7.
括号里的未知数还可以用x 来表示,那么上面那个式子就可以变成
x + 8 = 15
x = 15 - 8 ,
x = 7
这就是运用一元一次方程来解决问题,显得十分简便,本讲内容主要介绍它的意义和作用.
1. 概念
(1)方程:含有未知数的等式,叫做方程;
(2)方程的解:使方程左右两边相等的未知数的值,叫做方程的解;
(3)解方程:求方程的解得过程叫做解方程.
2. 解方程的依据
解方程主要依据加法与减法、乘法与除法的互逆关系:
一个加数= 和- 另一个加数
被减数= 差+ 减数减数= 被减数- 差
一个因数=积÷另一个因数
被除数=商×除数
除数=被除数÷商
3. 解方程的一般步骤
(1) 根据四则运算中各部分之间的相互关系,求出X
(2) 把X的值代入原方程检验
例 1 在2x+1、3+5=6+2、x—1c5、3x=15 中,________________________ 是方
程,这个方程的解是_____________________ .
分析方程必须符合两个条件:一是“等式”,二是“含有未知数” ∙2x∙1 虽含有
未知数,但不是等式;3 ^6 2虽是等式,但没有未知数;X -仁:5虽有未知数,但不
是等式;3x∕5既是等式,又含有未知数,所以它是方程.当X =5 时,左右两边的值都是
15,所以X =5是方程3x=15的解.
说明方程是等式,等式不一定是方程•
例2解方程2χ∙5=17
解把2x看成一个加数,根据“ 一个加数=和-另一个加数”得
2x =17 -5,
化简得:2x=12,
把X看成一个因数,根据“ 一个因数=积÷另一个因数”得
Xf 2,
化简得:X = 6
2x 5 =17
解: 2x =17 -5
2x =12
X =12 “2
X = 6
检验:把X = 6代入原方程得
左边=2 × 6 + 5 = 17 ,
左边=右边
所以,X =6是原方程的解•
说明:(1)以后解方程,除要求写出检验过程的以外,都要用口算进行检验•
(2) 因为方程是含有未知数的等式,所以每一个方程都有一个等号和两个相等的式子。

在解方程的过程中不能连等,一般每一行中只写一个方程,而且方程中的等号要写的上下对齐.
例 3 解方程 1 2 4 —(2x • 1) = 7
例4 38与一个数的4倍的和是70,求这个数.
解设这个数为X.
38 4x =70
4x =70 -38
4x =32
X =32 " 4
X =8
检验:左边=38 + 4 × 8 = 70
左边=右边
所以,X =8是方程的解. ------------------ 设出未知数为X ------------------ . 写出方程
__________________ . 求出X等于多少
例5 某数加上7再乘以4,减去8,得56.这个数先减去8,再乘以4, 然后加上7,得多少?
分析这个问题由两部分组成,根据前半部分条件求出这个数,再计算后半部
的结果。

解设这个未知数为X ,则
4(x 7) -8 =56 --------------------------------- -把“ 4(x 7) ”看成被减数
4(x 7) =56 8
4(x 7) = 64------------------- 把“(X • 7) ”看成一个因数
(x 7) = 64 十4
x 7 = 16
X =16 -7
X = 9
检验X =9是原方程得解,再将X = 9减去8,再乘以4,然后加上7得
(9 - 8 )× 4 + 7 = 11
答:得数是11.
③ 999 - X = 9
随堂练习2
(1) X 的6倍与31的和是49,求X
(2)比一个数的2倍少3的数是11,求这个数•(用方程解)
① _______ + 5 = 17
③ 1000 ×________ = 0
(2) 解下列方程:
① X 2.5 =3
② 30 - ___________ = 12
④ ____________ ÷ 4 = 8
②X _0•仁1
课时二练习
一、填空题
(1) 2×□+ 4 = 24 ; 30 - 4 × □ = 2
(2) ________________ 加上5的和再乘以4等于36
(3) 如果X+8 =13 ,那么3x+8 = _________________ 。

(4) 方程12 —3(x —1) =9的解是X = _________________ 。

二、选择题
(1) 方程3—2x=7x—6的解是( )
A. x=0
B. x=1
C. x=2
D. x=3
(2) 在等式4×O - 6 + 7 = 17 中,O代表一
个数,它是( )
A.4
B.3
C.5
D.7
(3) 等式3×(□ + 10 ) + □ = 38中,□所代表的数是( )
A.2
B.4
C.3
D.1
(4) 甲、乙两数,他们的和为30,甲数是乙数的2倍,甲、乙分别是( )
A.10 、20
B.20 、10
C.15 、30
D.30 、15
三、列方程,求出方程的解
(1)从56里减去X的差的4倍等于12
(2)某数与7的差的7倍等于35
(3) 与a加上和它本身相邻的两个整数的和是150,求这三个数各是多少?
(4) 比一个数的2倍少3的数是11,求这个数
(5) X的8倍加上10等于X的10倍减去8,求X
四、解下列方程
(1)5× 2+( x-5)× 3=100(2) 6x 10 =11x
课时三列方程解应用题
例 1 10 箱苹果比 6 箱梨重54 千克,每箱梨重16 千克,问每箱苹果重多少千克?
例 2 两城相距600 千米,客货两车同时从两地相向而行,行70 千米,货车每小时行80 千米,几小时两车相遇?
例3 已知篮球、足球、排球的价格平均每个为36元,格比一个排球多10 元,一个足球的价格一个比排球多足球
多少元?
练习
客车每小时
一个篮球的价8 元,问一个
1、果园里有梨树和桃树,桃树的棵树是梨树的 5 倍,比梨树多480棵。

问梨树和桃树各有多少棵?
2、全班植100棵树,其中有5 个同学每人分到2棵,其余每人分到
3 棵,问全班共有多少个同学?
3、有70 块糖,如果第一个小朋友所分得的是第二个小朋友的2倍,第二个小朋友所分得的是第三个小朋友的2倍,最后还剩下7 块糖没有分。

问每个小朋友各分得几块糖?
4、有四个数,从中每次取出三个数相加,得到的四个和分别是22、24、27、20、求这四个数各是多少?
课时四列方程解应用题练习
12
1、一只油桶内有47 千克汽油,把这些汽油分别装进15 个同样大小的油壶内,都装满后还余 2 千克。

问每个油壶装了多少千克汽油?
2、降落伞以每秒10 米的速度从1800 米高空下落,与此同时有一热汽球从地面升起,2分钟后伞球在空中相遇,热汽球每秒上升多少米?
3 学校买来乒乓球和蓝球一共135 个,买来的乒乓球是蓝球的8 倍,两种球各多少个?
4、有一个上下两层的书架,一共放了240 书,上层放的书是下层的
2 倍,两层书架各放书多少本?
5、新华书店发售甲种书90 包,乙种书68包,甲种书比乙种书多1100 本,每包有多少本?
6、一篮苹果比一篮梨子重30 千克,苹果的千克数是梨子的2.5 倍,求苹果和梨子各多少千克?
14
7、甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18 吨,乙厂每天用12 吨,多少天后两厂剩下的钢材相等?
8、修一条水渠计划需70 人挖土,50 人运土,而实际上挖土人数是运土人数的 3 倍,问从运土的人中调多少人去挖土?。

相关文档
最新文档