初三奥数题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国初中数学竞赛试卷
一、选择题(本题共6小题,每小题7分,满分42分。每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。请将正确答案的代号填在题后的括号里)
1、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则c b a 10019992++的值是( )
A 、1999
B 、2000
C 、2001
D 、不能确定
2、若1≠ab ,且有09201152=++a a 及05200192=++b b ,则b
a 的值是( )
A 、59
B 、95
C 、52001-
D 、9
2001
- 3、已知在ABC ∆中,︒=∠90ACB ,︒=∠15ABC ,1=BC ,则AC 的长为( )
A 、32+
B 、32-
C 、30⋅
D 、23- 4、如图,在ABC ∆中,D 是边AC 上的一点,下面四种情况中,ABD ∆∽ACB ∆不
一定成立的情况是( )
A 、BD A
B B
C A
D ⋅=⋅ B 、AC AD AB •=2 C 、ACB ABD ∠=∠ D 、BD AC BC AB •=•
5、①在实数范围内,一元二次方程02
=++c bx ax 的根为a
ac
b b x 242-±-=;②在
ABC ∆中,
若222AB BC AC +,则ABC ∆是锐角三角形;③在ABC ∆和111C B A ∆中,a ,b ,c 分别为ABC ∆的三边,111c b a ,,分别为111C B A ∆的三边,若111c c b b a a ,,,则ABC ∆的面积S 大于111C B A ∆的面积1S 。以上三个命题中,假命题的个数是( )
A 、0
B 、1
C 、2
D 、3 6、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;
②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是( )
A 、522.8元
B 、510.4元
C 、560.4元
D 、472.8
二、填空题(每小题7分,共28分)
1、已知点P 在直角坐标系中的坐标为(0,1),O 为坐标原点,︒=∠15QPO ,且
P 到Q 的距离为2,则Q 的坐标为 。
2、已知半径分别为1和2的两个圆外切于点P ,则点P 到两圆外公切线的距离为 。
3、已知y x ,是正整数,并且1202322=+=++xy x y x xy y ,,则
=+22y x .
4、一个正整数,若分别加上100和168,则可得到两个完全平方数,这个正整数为 .
三、解答题(共70分)
1、在直角坐标系中有三点A (0,1),B (1,3),C (2,6);已知直线b ax y +=上横坐标为0、1、2的点分别为D 、E 、F 。试求b a ,的值使得222CF BE AD ++达到最大值。(20分)
2、(1)证明:若x 取任意整数时,二次函数c bx ax y ++=2总取整数值,那么
c b a a ,,-2都是整数;
(2)写出上述命题的逆命题,并判断真假,且证明你的结论。(25分)
3、如图,D ,E 是ABC ∆边BC 上的两点,F 是BC 延长线上的一点,CAF DAE ∠=∠. (1)判断ABD ∆的外接圆与AEC ∆的外接圆的位置关系,并证明你的结论; (2)若ABD ∆的外接圆的半径的2倍,6=BC ,4=AB ,求BE 的长。
四、解答题:
1、如图,EFGH 是正方形ABCD 的内接四边形,两条对角线EG 和FH 所夹的锐角为θ,且∠BEG 与∠CFH 都是锐角。已知k EG =, =FH ,四边形EFGH 的面积为S 。
(1)求证:kl
S
2sin =
θ; (2)试用S k ,, 来表示正方形的面积。
A
B C D E F A B
C
D
E
F
G
H
θ
O
2、求所有的正整数a ,b ,c ,使得关于x 的方程0232=+-b ax x ,0232=+-c bx x ,0232=+-a cx x 的所有的根都是正整数。
3、在锐角ABC ∆中,BC AD ⊥,D 为垂足,AC DE ⊥,E 为垂足,AB DF ⊥,F 为垂足。O 为ABC ∆的外心。
求证:(1)AEF ∆∽ABC ∆;(2)EF AO ⊥
4、如图,在四边形ABCD 中,AC 与BD 交于点O ,直线l 平行于BD ,且与AB 、DC 、BC 、AD 及AC 的延长线分别相交于点M 、N 、R 、S 和P 。
求证:PS PR PN PM ⋅=⋅
A
l
B
D M
N
P
O C
R S