锅炉飞灰含碳量偏高的原因及处理
锅炉飞灰含碳量成因及降低措施
锅炉飞灰含碳量成因及降低措施飞灰含碳量表示锅炉燃烧的效率,含碳量越高则锅炉燃烧效率低,生产成本就会越高,直接说明了煤粉质量不好,同时也会带来生产安全问题,容易造成爆炸等事故。
因此锅炉飞灰含碳量是否达标严重影响着企业效益与生产安全。
本文就锅炉飞灰含碳量形成的原因进行探究分析,找出问题的根本,并提出了降低含碳量的有效措施,以此解决锅炉煤粉燃烧时的效率问题和安全问题,使企业更好更长久的走下去。
标签:锅炉设备;飞灰含碳量;成因问题;降低措施引言对于很多电厂来说,锅炉燃烧是很重要的能源设施,煤粉能否合理的利用也就成了大家比较关注和重视的话题。
飞灰含碳量直接反映燃烧效率,其含碳量的高低又受到煤粉自身质量和锅炉运行情况等多种因素的影响,同时也与企业效益直接挂钩,所以下文直接着眼于飞灰含碳量高的原因,从根源上提出优化措施和方案。
1、造成飞灰含量高的成因1.1 煤粉的质量。
因受市场与成本的影响,目前大多数电厂所用的燃煤均为挥发分低、灰分较大并且煤质易发生改变。
像挥发分低,则导致煤粉所需着火温度较之升高,原有的温度不能满足当下着火条件,不易燃烧,因此会导致煤粉的燃烧效率降低,飞灰中的含碳量明显提高。
而灰分较大则一经燃烧就产生灰烬,生成的灰烬附着在未燃烧煤粉表面一定程度上影响了煤粉的燃烧,阻挡了火势,造成煤粉燃烧不充分,同样也会造成飞灰含碳量升高。
最后煤质变化多,在与炉火燃烧时本质发生变化,原有的燃烧效率不复存在,改变的越频繁则越易出现燃烧不足,飞灰含碳量也会越高。
1.2 煤粉颗粒大小。
越细的煤粉燃烧时与空气接触的面积也就越大,越容易点着,当炉内煤粉都着火时则炉膛也就达到了所谓的着火点,着火点提前则相应的燃烧时间也就增长,煤粉燃烧的更加充分,飞灰含碳量就会减少。
有科学研究表明煤粉燃烧殆尽的时间与煤粉颗粒直径的大小有一定线性关系,所以应尽量使煤粉的颗粒更加细小,常见的措施有增加磨煤机旋转分离器转速或是减小在入口的一次风压。
飞灰含碳量高的原因分析与对策
飞灰含碳量高的原因分析与对策飞灰含碳量高的原因分析与对策降低飞灰含碳量,不但对控制锅炉煤粉气流的燃烧非常必要,而且可大大提高锅炉机组的经济性,从而降低锅炉烟尘排放量,减少环境污染。
一:飞灰含碳量偏高的原因分析当煤粉气流在炉膛内的燃烧和燃尽过程不充分时,势必造成机械未完全燃烧热损失增大,表现为飞灰含碳量升高。
影响飞灰含碳量变化的因素主要有:煤粉细度、煤种特性、燃烧器的结构特性、热风温度、炉内空气动力场和锅炉负荷等。
(1)煤粉细度的影响煤粉细度对其煤粉的燃烧和燃尽性能有较大影响。
煤粉细度越大,即煤粉颗粒粒径越大,其燃尽性能较小粒径颗粒越差,势必造成煤粉燃尽时间延长,不完全燃烧损失增大,飞灰含碳量升高,从而降低锅炉效率。
细煤粉虽然容易着火和燃烧,但煤粉颗粒过细将会增加制粉系统的耗电量和加大磨煤机的磨损量。
因此,在锅炉设备运行中,应综合考虑不完全燃烧损失和制粉能耗的要求,使之达到最小,即寻找煤粉经济细度或最佳细度,以保证较高的锅炉效率和较低的飞灰含碳量。
煤粉经济细度与燃料性质和煤粉颗粒的均匀程度有关。
对于高挥发分的煤,因其容易燃烧可允许磨得粗些;对于低挥发分和可磨性指数较低的煤,因较难燃烧而应尽量磨得细些。
如果煤粉颗粒比较均匀,造成不完全燃烧损失的大颗粒则相对较少,可允许煤粉粗些,这与磨煤机和分离器的形式以及运行工况有关。
降低煤粉细度是控制飞灰含碳量升高的有效措施。
电厂的运行实践也表明:煤粉颗粒比较均匀时,飞灰含碳量也有所下降。
(2) 煤种特性的影响目前,国内大多数电厂存在锅炉燃烧实际煤种与设计煤种不符的情况,这是因为电厂用煤来源比较复杂,大矿煤与小窑煤混用的情况非常普遍,造成煤质成分如挥发分、水分、灰分和发热量等主要指标不稳定,从而对煤粉的完全燃烧产生很大的影响,导致飞灰含碳量发生显著变化。
煤粉燃烧过程是在挥发成份燃烧完之后才开始焦炭的燃烧。
因此,燃料性质中挥发分的含量对煤粉燃烧的影响最为重要。
对于高挥发分燃煤,挥发分燃烧释放出大量热量,形成炉内高温氛围,有利于焦炭的迅速着火和燃尽,机械未完全燃烧损失减小,飞灰含碳量较低;相反,对于低挥发分燃煤,则容易引起飞灰含碳量的升高。
循环流化床锅炉飞灰含碳量高的原因以及措施
循环流化床锅炉飞灰含碳量高的原因以及措施咱们都知道,锅炉是现代社会不可或缺的“大力士”,无论是工厂里的蒸汽机还是家里的暖气,都离不开它。
但是,这台“大力士”有时候也会闹点小脾气,比如飞灰含碳量高。
那么,为什么循环流化床锅炉会这么干呢?别急,让我来给你娓娓道来。
咱们得说说这“大力士”的心脏——燃烧室。
想象一下,如果心脏里充满了血液,那它就能有力地跳动。
但要是心脏里全是灰烬和煤渣,那它还怎么跳呢?这就是飞灰含碳量高的第一个原因。
就像心脏里长了草,怎么能保持活力呢?再来说说这“大力士”的胃——炉膛。
想象一下,胃里有太多食物,消化起来可就费劲了。
同样的道理,如果炉膛里塞满了灰烬和煤渣,那燃料怎么能充分燃烧呢?这就导致了飞灰含碳量的增加。
就像胃里全是石头,怎么可能吃得下东西呢?接下来,咱们得聊聊这“大力士”的脚——分离器。
想象一下,如果脚上穿着一双破拖鞋,走路都不稳当。
而分离器如果处理不当,那飞灰中的碳颗粒就会像脱线的玩具一样四处乱飞。
这就是为什么飞灰含碳量高的第二个原因。
就像脚上穿着一双不合适的鞋,怎么能走得稳当呢?那么,面对这些问题,咱们该如何解决呢?别急,让我来给你支几招。
咱们可以加强燃烧室的维护,定期清理燃烧室,确保燃烧室内没有过多的灰烬和煤渣。
这样,“大力士”的心脏就能保持健康,跳动有力。
咱们可以在炉膛中安装一个高效的旋风分离器,将飞灰中的碳颗粒及时分离出去。
这样,“大力士”的胃就不会太难受,燃料也能更好地燃烧。
咱们还可以加强对分离器的监控和维护,确保它能够正常运行。
这样,飞灰中的碳颗粒就不会到处乱飞,“大力士”就能更稳定地工作。
当然啦,除了这些措施,咱们还需要注意日常的保养和清洁工作。
比如定期检查锅炉的运行状态,及时清理积灰;注意燃料的质量和稳定性,避免使用劣质燃料;等等。
只有这样才能确保“大力士”始终保持最佳状态,为我们提供源源不断的动力。
循环流化床锅炉飞灰含碳量高的问题虽然令人头疼,但只要我们用心去解决,相信“大力士”一定能发挥出更强的力量。
锅炉飞灰含碳量升高的分析和调整
锅炉飞灰含碳量升高的分析和调整随着社会的发展,人们生活水平不断提高,对各个行业的要求也就越来越高,电力作为现代社会发展的重要支柱之一,同时也对人们的生活起着至关重要的作用,其发展的问题受到广大群众的普遍关注。
火力发电是中国电力行业中的主要发电方式之一,燃煤锅炉作为其重要设备,它的经济安全等问题自然就成为发电厂最重视的问题,对发电厂来说,保证锅炉机组各项设备指标稳定安全,同时提高锅炉工作效率是保证电厂持续发展的关键。
本文就山西运城发电厂内600MW机组为例,简单论述锅炉飞灰含碳量升高的分析和调整的问题,希望可以对国内电力行业的发展尽到绵薄之力。
标签:锅炉600MW 飞灰含碳量调整引言火力发电是我国主要的发电方式,电站锅炉作为火力电站的三大主机设备之一,伴随着我国火电行业的发展而发展。
近年来,环保节能成为中国电力工业结构调整的重要方向,火电行业在“上大压小”的政策导向下积极推进产业结构优化升级,关闭大批能效低、污染重的小火电机组,在很大程度上加快了国内火电设备的更新换代。
中国的电站锅炉产业,它既不是“朝阳产业”,也不是“夕阳产业”,而是与人类共存的永恒产业。
伴随我国国民经济的蓬勃发展,近年来工业锅炉制造业取得了长足的进步。
其突出成效是:行业标准日益规范,技术水平逐步提高,产品品种不断增加,经济规模显著扩大。
下面就造成锅炉飞灰含碳量升高的原因以及解决措施两个问题分别进行论述。
一、造成锅炉飞灰含碳量高的原因1.入炉煤种原因1.1 上层制粉系统若是燃煤品质较差,会造成燃烧不充分的问题,这种情况下,很容易出现未完全燃烧的煤渣落入捞渣机内部,从而导致锅炉灰渣的含碳量升高。
1.2 下层制粉系统若是燃煤的品质较差,则会出现收到基低位发热量低、干燥无灰基挥发分低的情况,从而造成燃煤燃烧不完全的现象。
1.3 挥发分如果出现干燥无灰基挥发分小于设计煤种挥发分或者是挥发分小于等于百分之二十六的情况时,就会直接影响其燃烧的稳定性。
飞灰含碳量过高的原因分析及降低方法
飞灰含碳量偏高的控制办法
锅炉飞灰含碳量是反映锅炉运行效率和锅炉机组性能的关键指标,由于在实际生产过程中会受到煤质、设备运行参数以及其他方面等多种因素的影响,导致出现锅炉飞灰含碳量偏高的情况,从而影响生产效率,降低了设备的使用寿命,对环境也造成了更大破坏。
因此必须要想方设法研究锅炉飞灰含碳量偏高的原因,找出制约因素,并采取有效的措施加以解决,从而更好地提升电厂运行效率和生产质量。
锅炉飞灰含碳量偏高对锅炉生产运行的影响飞灰含碳量是燃煤锅炉机组燃烧情况的重要反映和控制指标,如果工艺控制不当,造成飞灰含碳量偏高,一方面能够造成锅炉机组机械不完全燃烧损失增多。
机械不完全燃烧损失是指锅炉中还有飞灰灰渣没有燃尽的物质,从而造成热量的损耗,进而对锅炉的热效率产生影响,导致煤耗相应增大。
另一方面飞灰含碳量偏高,将导致飞灰的质量下降,从而影响干灰的综合处理和应用,对环境造成污染。
因此必须要高度重视飞灰含碳量这一影响指标。
造成飞灰含碳量偏高主要有以下几方面原因:根本原因是燃料不完全燃烧(1)由于各种因素造成炉膛火焰中心偏上,使煤粉在炉内燃烧不完全造成飞灰含碳量增大。
(2)风粉配合不均或燃烧调整不合理,造成燃料燃烧不充分飞灰含碳量增大。
(3)制粉系统的运行情况,从多次煤粉取样情况来看,煤粉的合格率也不理想。
主要是磨煤机本身性能与设计性能有较大的差距,另外粗粉分离挡板、磨煤机风量以及煤的可磨性会直接影响煤粉细度,使飞灰含碳量增大。
(4)空预器漏风率偏大,炉膛氧量不足。
空预器的漏风率高达30%~40%,大大高于设计值20%,锅炉由于漏风缺氧燃烧,使飞灰含碳量严重偏高。
(5)吹灰器不能正常投运、二次风量及配风不合理,以及二次风温等锅炉燃烧的外围条件影响到锅炉的燃烧好坏,进而影响到飞灰含碳量。
(6)煤质差:由于掺烧燃煤变化频繁,如灰分大、挥发份低的煤粉,水份较大的原煤,或是含碳量较高的无烟煤,由于不符合设计煤种,都会造成燃料燃烧不充分,飞灰含碳量增大。
锅炉飞灰含碳量偏高原因及解决方案浅析
锅炉飞灰含碳量偏高原因及解决方案浅析作者:赵占裕等来源:《山东工业技术》2015年第13期摘要:飞灰含碳量为影响锅炉效率的重要因素之一。
本文针对我厂锅炉飞灰含碳量偏高的实际情况,分别从入炉煤的着火、燃烧以及燃烬实际过程的多方面进行分析,查找影响飞灰含碳量高的因素主要有:煤粉细度、一次风速、配风方式、磨煤机运行方式、负荷及煤种变化等,并针对以上影响因素,提出合理应对方案。
关键词:锅炉;飞灰含碳量;原因分析;燃烧过程0 引言考虑锅炉效率,机械不完全燃烧损失以及排烟损失是当中两个主要的热损失,所以需要重点研究这两项损失。
但是排烟损失的降低是有限制的,所以降低机械不完全燃烧损失是节能降耗的突破口,而在此项损失中,飞灰含碳量占有主要位置。
因此,深入研究影响飞灰含碳量变化的因素,具有重要的实际应用价值。
1 锅炉飞灰含碳量高的原因分析1.1 煤粉燃烧过程煤粉的燃烧过程大致可以按照以下几个步骤进行:即加热干燥、挥发分析出着火、燃烧、燃烬,而着火和燃烬在该过程中起着重要的作用。
确保快速而平稳的着火,使得燃烧和燃尽得以快速实现,是保证完全燃烧的前提。
在煤粉的着火过程中,煤粉被包围在一次风中,可得到充足的氧气,因气流温度过低的煤粉,需快速升温,进而达到煤粉着火所需温度,并随燃烧过程的持续进行而不断升温 [1]。
1.2 影响飞灰含碳量的主要因素1.2.1 煤种影响一般而言,飞灰含碳量随煤种干燥基挥发分含量增加而减少,但挥发分高、含灰量低的烟煤也会导致飞灰含碳量高的情况,具体会因为剧烈的一次破碎和二次破碎导致了细的焦炭颗粒被大量的产生。
在实际工况中,燃烧形成的很多的飞灰颗粒的含碳量与劣质的煤有很大的关系。
我们把干燥无灰基挥发分同发热量飞灰含碳量升高量进行比例处理[2],就可以获得一个数值。
本数值可以作为衡量煤质的标准。
通过这个数值的分析就能够考究出飞灰含碳量和煤质之间的关系[2]。
1.2.2 煤粉细度煤粉细度在飞灰含碳量的影响因素中占据重要位置。
300MW锅炉掺烧高硫煤后飞灰含碳量大的原因分析及对策
300MW锅炉掺烧高硫煤后飞灰含碳量大的原因分析及对策[摘要]飞灰含碳量是反映锅炉燃烧效率的重要指标,是锅炉燃烧调整水平的最高体现。
飞灰含碳量大不仅增加燃料消耗量,影响电厂效益,而且飞灰中的碳增加对锅炉尾部受热面的磨损,降低其使用寿命,对锅炉的安全运行造成很大的威胁。
本文针对掺烧高硫煤后飞灰含碳量大进行了分析,采取了一些调整措施以及相关试验工作,积累了些经验。
[Abstract]the carbon content of fly ash is an important index to reflect the combustion efficiency of the boiler,is the highest expression level of boiler combustion adjustment. The carbon content of fly ash not only increase fuel consumption,influence power plant efficiency,and carbon in fly ash is increased on the boiler tail heating surface wear,reduce its service life,pose a great threat to the safe operation of the boiler. Aiming at the mixed burning high sulfur coal fly ash carbon content are analyzed,some measures of adjustment and test work,accumulated some experience.[关键词]锅炉飞灰含碳量原因分析对策[Keyword]analysis of the carbon content of fly ash of boiler一、锅炉飞灰含碳量高的原因分析1、煤种影响。
飞灰含碳量高原因及调整
飞灰含碳量高原因及调整1. 煤质特性参数的影响(1) 燃煤挥发分的影响.当挥发分增大时,煤粉着火温度降低,着火迅速,燃烧完全,使飞灰含碳量低;反之挥发分降低, 造成飞灰含碳量高升高.(2)燃煤水分的影响.燃煤水分增大时,着火热会随之增大,煤粉着火推迟,火焰中心上栘,使得炉膛整体温度水平下降,煤粉的燃尽程度降低, 造成飞灰含碳量高.(3)燃煤灰分的影响.当燃煤灰分增加时,由于加热灰分的热量增加和灰分会影响碳和氧的接触,造成火焰温度随之下降,煤粉的燃尽程度降低, 造成飞灰含碳量高.(4)煤粉细度的影响.煤粉细度直接影响飞灰可燃物的变化,煤粉越细,越均匀,则与空气接触的单位质量的煤粉面积与体积增大,燃烧就越充分,能充分燃尽,可以使飞灰含碳量降低.2. 运行方面的影响(1)过量空气系数.当炉膛过量空气系数减少时,煤粉颗粒接触到的氧减少,碳的氧化速度减慢,煤粉燃尽程度降低,煤粉发生不完全燃烧,造成飞灰含碳量高.(2)机组负荷的影响.当锅炉负荷增加时,由于气流扰动加强,风煤混合更加均匀,燃烧更充分,但当锅炉在75%~80%额定负荷以上时,增加负荷会使炉膛的容积热负荷增加,缩短煤粉在炉内停留时间,使燃烧不充分.(3)风煤配比的影响.一次风过高时将使煤粉着火推迟,影响锅炉燃烧的稳定性且使经济性降低;一次风量过低,不仅易造成制粉系统出力不足,氧量不足,还使煤粉挥发分燃烧不充分,导致飞灰含碳量高,此外,还有造成粉管堵的危险.(4)磨出口各一次煤粉管压力,速度及煤粉浓度不均匀性的影响.若同一台磨出口一次煤粉管静压、速度及煤粉浓度不同,将造成炉内火焰充满程度不好,火焰中心不集中,火焰可能会发生偏斜、贴壁等情况,造成炉内温度场分布不均匀,理论燃烧温度降低,炉内火焰充满度不好,局部燃烧不完全,使飞灰含碳量增加。
若一次风速过高将导致煤粉着火推迟,火焰中心上移,燃烧不充分,使飞灰含碳量增加。
同样二次风分配不匀也将造成燃烧的不流通分,使飞灰含碳量增加。
锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法
锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法一、飞灰含碳量(%):(一)、可能存在问题的原因:1、燃煤挥发分低,锅炉燃烧效率与燃烧稳定性下降。
2、燃煤灰分高,着火温度高、着火推迟,炉膛温度降低,燃烬程度变差。
3、燃煤水分高,水汽化吸收热量,炉膛温度降低,着火困难,燃烧推迟。
4、煤粉粗,着火及燃烧反应速度慢。
(煤粉炉)。
5、燃烧器辅助风门开度与指令有偏差。
(煤粉炉)。
6、锅炉氧量低,过剩空气系数小,燃烧不完全。
7、一次、二次风速及一、二次风量配比不当。
8、燃烧器喷嘴烧损变形,造成一次风速度发生变化。
(煤粉炉)。
(二)、解决问题的方法:1、运行措施:①、根据煤质和炉内燃烧工况,及时调整磨煤机通风量,保持合适的风煤比。
②、合理调整一、二次风配比,保持最佳锅炉氧量,使煤粉充分燃烧。
③、提高入炉煤混配均匀性,保证锅炉燃烧稳定。
④、保持制粉系统运行稳定,尽量减少启、停次数。
2、日常维护及试验:①、进行燃烧优化调整试验,确定不同煤质下经济煤粉细度。
②、每班检查燃烧器辅助风门开度情况,发现问题及时处理。
(煤粉炉)。
③、定期测试煤粉细度,发现异常及时调整处理。
(煤粉炉)。
④、定期取样化验分析飞灰可燃物,发现异常及时分析,对磨煤机弹簧加载力、间隙和折向门开度进行调整。
⑤、煤质变化较大时应严密关注煤的燃烧特性,并进行相应的燃烧调整。
⑥、不定期对磨煤机相关部件磨损情况检查处理,如对磨辊套及磨碗衬板进行调换等。
3、C/D修、停机消缺(煤粉炉):①、对预热器进行清灰,提升预热器的换热效率,提高热风温度。
②、燃烧器位置、摆角、磨损、烧损、结焦检查处理,更换或修补损坏的喷嘴、喷管及钝体。
③、校正辅助风和燃料风门挡板开度位置。
4、A/B修及技术改造(煤粉炉):①、浓缩器及钝体采用陶瓷片、碳化硅等防磨措施,调整确定燃烧器摆角位置。
②、检查处理风门严密性和管道漏风。
③、加装飞灰含碳量在线测量装置。
④、根据空气动力场试验结果做好有关调整工作。
飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施
飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施一、240T/H循环流化床锅炉飞灰含碳量高的主要原因分析及采取的措施。
1、主要原因分析目前,我公司环流化床锅炉飞灰可燃物含量达12~13%,与投运初期≤10%相比,存在着飞灰可燃物偏高的问题,飞灰含碳量的偏高使循环流化床锅炉的机械不完全燃烧热损失增加,严重影响了锅炉的燃烧效率,引起飞灰含碳量高因素很多,从以下几个方面阐述。
& C# z# q, s& M7 I% _ `( z⑴煤种对飞灰含碳量的影响不同组分煤的H/C比、燃烧活性、灰份含量有很大差异。
其孔隙率、真比重、晶格化程度等也不同,而且在燃烧过程中这些性质还会发生变化,这对于煤的燃烧特性有很大影响。
人们一般从微观上将煤分为镜质组、丝质组和稳定组。
,其孔隙率、真比重、晶格化程度等也不同不同组分煤的H/C比、燃烧活性、灰份含量有很大差异。
与其它组分相比较,丝质组燃烧过程并不剧烈,同时有机质内部几乎没有形成孔隙,颗粒内部的有机质无法与外部氧气发生反应。
对飞灰可燃物进行分析,发现丝质组形成飞灰残碳的可能性更大。
无烟煤中的丝质组组分要比其它煤种低得多。
因而燃用无烟煤的循环流化床锅炉飞灰含碳量普遍比燃用其它煤种锅炉高。
热电厂240T/H循环流化床锅炉现在烧的烟煤并不是纯烟煤,掺了更多的无烟煤末,丝质组组分要比以前烧的纯烟煤要低,颗粒内部的无机质无法与外界氧气发生反应,从而导致飞灰含碳量比以前要高。
⑵颗粒尺寸分布与床温对飞灰含碳量的影响碳粒的燃烬时间与颗粒尺寸和床温有很大关系。
在一定的温度下,碳颗粒的燃烬时间随粒径的增大而延长。
循环流化床锅炉对燃料粒径要求小于等于13mm,而我们燃料的破碎系统达不到设计要求,燃料颗粒粒径分布不均,两极分化严重,粗颗粒和细颗粒较多,呈两头多,中间少的粒径分布特点。
实际的入炉煤粒径范围要大得多,不同粒径的燃料很难达到同时燃烬。
在相同的粒径下,温度越高,碳颗粒所需的燃烬时间越短。
灰含碳量偏高的原因分析与解决措施
景德镇发电厂#5炉飞灰含碳量偏高的原因分析与解决措施摘要:随着人们对能源需求量的日益扩大以及对环境质量要求的不断提高,循环流化床锅炉具有高效、低污染、煤种适应性广等优点,在我国得到大力发展,但目前国内流化床锅炉,尤其是大容量的流化床锅炉,普遍存在着飞灰可燃物高,锅炉燃烧效率达不到设计值的问题。
对于循环流化床锅炉,在投运初期,飞灰可燃物相对同容量的煤粉炉偏高,从而影响电厂的经济性。
本文通过对景德镇发电厂#5炉(475t/h)循环流化床锅炉飞灰可燃物含量偏高的原因进行分析,并在运行中采用加强对床压、床温、给煤粒度、氧量等参数的监控,在降低锅炉飞灰可燃物方面取得了显著的效果,获得了良好的经济效益。
关键词: 循环流化床锅炉飞灰可燃物床压床温给煤粒度氧量分析调整一、锅炉设备概况景德镇发电厂#5炉是由上海锅炉厂设计制造的SG—475/13.7—M567型超高压中间再热,单汽包自然循环,循环流化床锅炉。
锅炉主要由汽包、悬吊式全膜式水冷壁炉膛(炉膛的高度×宽度×深度为34180mm×13373.1mm×7683.4mm),绝热式旋风分离器,U型返料回路以及后烟井对流受热面组成。
锅炉采用两次配风,一次风从炉膛底部布风板、风帽进入炉膛,二次风从燃烧室锥体部分进入炉膛。
锅炉共设有四个给煤口,均匀地布置在炉前。
炉膛底部设有钢板式一次风室,悬挂在炉膛水冷壁下集箱上。
本锅炉采用床上启动点火方式,床上共布置4支大功率的点火油枪(左、右侧墙各2支)。
同时在炉膛燃烧室左右两侧各布置一台水冷滚筒式冷渣器。
1.锅炉主要设计参数1.1锅炉技术参数1.2设计及校核煤种参数二、锅炉飞灰可燃物偏高的原因分析景德镇发电厂1台475 t/h循环流化床锅炉投产后发现飞灰可燃物偏高,一般在7%—9%之间,最高达到11%。
经过进一步的锅炉运行调试,分析原因主要有如下几个方面:1.煤种与飞灰含碳量的关系循环流化床锅炉煤种适应性广,但对于已设计好的CFB锅炉,只有燃烧的特定的煤种,才能达到较高的燃烧效率,由于煤的结构特性、挥发份含量、水份、灰分、发热量的影响,CFB锅炉的燃烧效率有很大差别。
飞灰含碳量过高的原因分析及降低方法(论文)
飞灰含碳量过高的原因分析及降低方法李国勇(华润电力(涟源)有限公司湖南娄底417000)引言从锅炉效率考虑,机械不完全燃烧热损失和排烟损失是其中两个主要的热损失。
排烟损失的降低是受到限制的,降低过多会造成尾部受热面的低温腐蚀。
所以降低机械不完全燃烧损失是节能降耗的突破口,而降低飞灰含碳是其中重要的方面。
锅炉飞灰含碳量每下降1%,锅炉效率上升0.519%,供电煤耗约降低1.019g/kWh 。
1概述飞灰的含碳量是当今锅炉燃烧指标之一,它能够直接反映出电站锅炉燃烧的效率,并且和发电的经济效率息息相关。
经过多年的发展,成熟的检测方法已经将飞灰含碳量作为判断煤粉灰价格的主要标准之一。
另外,飞灰中含有的碳对锅炉尾部的受热面积会造成一定的磨损,从而使得相关设备产生不同程度的损害,缩短了其使用寿命。
飞灰含碳量的增加在一定程度上还会影响到电除尘器的工作效率,成为污染环境的因素之一。
总而言之,飞灰含碳量高的负面影响有以下几点:①会使锅炉效率有明显的下降,直接影响机组运行经济性;②会造成飞灰变粗,增大尾部受热面的磨损,缩短其使用寿命;③炉内飞灰的熔点降低,易引发受热面结焦;然后,会使电除尘效率降低,造成环境污染;④造成锅炉气温、壁温越限频发,运行调整难度增大,甚至会导致尾部受热面再燃烧,引发机组安全事故。
2造成飞灰含碳量过高的原因分析2.1一次风的影响一次风压过低,影响磨组干燥出力,甚至造成一次风管堵塞,着火点过于靠前,还可能烧坏喷燃气。
一次风压过高,造成一次风速过高,降低煤粉气流的加热程度,使着火点推迟,大颗粒的煤可能不能完全燃烧,造成飞灰含碳量增大,如图1所示。
相关系数判断如下:计算相关系数r :L xx =3.08;L yy =-0.4。
r=L xy L xx √×L yy √=-0.43.08√×0.94√=-0.235r =0.349根据N-2和显著水平(a=0.05)由表查出相关系数r a =0.349。
飞灰含碳量的影响因素
飞灰含碳量的影响因素飞灰含碳量的影响因素概括起来主要有三方面:燃料特性、锅炉结构及其附属设备、锅炉的运行燃料特性主要包括煤的热值、挥发分含量及煤的粒度。
一燃料特性1. 当煤质变化时,床温床压将出现大幅波动,虽然可以通过调整配风进行调整,但燃烧工况的恶化必然导致飞灰含碳量的增加。
对于挥发分含量较高、结构比较松散的烟煤、褐煤和油页岩等燃料,燃烧速率较高,飞灰含碳量较小。
对于挥发分含量低,结构密实的无烟煤、石煤等相同条件下飞灰含碳量要高出很多煤种对飞灰含碳量的影响很大,对于挥发分含量较高、结构比较松软的烟煤,褐煤和油叶岩等燃料,当煤进人流化床受到热解时,首先析出挥发分,煤粒变成多孔的松散结构,周围的氧向粒子内部扩散和燃烧产物向外扩散的阻力小,可以提高燃烧速率,降低飞灰含碳量。
对于挥发分含量少,结构密实的无烟煤、石煤等,当煤粒表面燃烧后形成一层坚硬的灰壳,阻碍燃烧产物向外扩散和氧气向内扩散,燃煤燃层困难,灰壳所包覆的碳核中。
一般而言,飞灰含碳量随煤种干燥基挥发分含量增加而减少,但也要注意到挥发分高、含灰量低的烟煤的煤由于剧烈的一次破碎和二次破碎产生大量的细焦碳颗粒,从而增加飞灰含碳量。
而对于含灰量高、含碳量低的煤颗粒增加,其燃烧所产生的飞灰颗粒的含碳量降低。
经研究如果以干燥无灰基挥发分除以发热量所得的数值作为一个煤质指标,会发现飞灰含碳量和煤质之间明显的相关关系。
2.煤的粒径煤的颗粒粒径影响流化质量和稀、浓相区的颗粒浓度。
在一定的运行风速和给料量下,床料的粒度决定了颗粒在床内的行为。
当煤的颗粒粒径增大后,稀相区颗粒浓度减小,而浓相区颗粒浓度增加。
研究表明,颗粒浓度越高,颗粒的扰动也越大,相互间的碰撞的机会也越多,传热系数就大。
由此可知,当燃煤粒径增大后,燃烧室上部燃烧份额偏少,燃烧温度偏低,燃烧效果变差和受热面发挥不了应有的吸热作用,会造成过热蒸汽温度偏低,蒸汽参数得不到保证。
煤的颗粒粒径增加对蒸发量的影响主要表现在其循环颗粒量的减少。
锅炉飞灰含碳量偏高的原因分析和对策
锅炉飞灰含碳量偏高的原因分析和对策刘文(广州中电荔新电力实业有限公司,广东增城511340)应用科技脯要j电站锅炉运行中飞灰舍碳量偏高,严重影响锅炉效率。
分析飞友含碳量偏高的原因,提出改造燃烧器,加装敛.体和浓淡分离器。
改造后,锅炉燃烧状况得到明显改善,飞灰合碟量显著降低,提高了锅炉的效率。
鹾搀枣词飞灰含碳量;燃烧器;钝体;浓淡分离器飞灰含碳量升高对锅炉的经济性有很大影响。
首先,它是造成锅炉机械不完全燃烧损失增加的主要因素,而机械不完全燃烧损失是锅炉热损失中仅次于排烟损失的第二大损失。
对于现代火力发电机组,锅炉热效率每降1%,将使整套机组的热效率刚氏0:3—04%,标准煤耗增加3—49/kW ho其次,飞灰含碳量上升,飞灰品质下降,将影响干灰的综合利用,增加污染物排放量。
因此,电厂应尽量降低飞灰含碳量,减少损失,增加电厂效益。
近年来,由于煤炭市场等多方面原因的影响,电厂的实际燃煤发生了较大变化,燃用大量的较低挥发份煤,造成锅炉不完全燃烧,损失增大,灰飞含碳量偏高,效率降低等问题,影响了锅炉运行的经济性。
通过对锅炉进行改造,燃用较低挥发份的贵港煤时,燃烧显著改善,飞灰含碳量大幅度下降,解决了锅炉飞灰含碳量偏高的问题。
1锅炉设备概况1.1锅炉设计参数某电厂锅炉为额定蒸发量220t/h高压自然循环锅炉,呈兀型露天布置,炉膛断面尺寸为7570m m×7570m m,燃烧器为正四角切向布置的直流燃烧器,每组燃烧器喷口按3—2—1—2—1—2的顺序排列,三次风喷口下倾约5℃,为典型的烟煤型燃烧器。
炉内四角形成的假想切圆直径@800m m,配有两套中间仓储式钢球磨制粉系统,热风送粉。
12锅炉燃煤情况由表1可知,贵港煤挥发份明显比设计煤种低,但发热量高,根据热力计算,这可能导致排姻温度升高约1a℃阳比设计煤种),引起飞灰含碳量上升,从而刚氐了锅炉效率。
表1煤质参数C ar H”0ar N舯S盯A ar M口V ar Q ar煤样%%%%%%%%kJ/kg 设计煤45.662.793.891.14O.9836.3l9.2331.3817107贵港煤60.963.531.220.95O.8326.226.2924.2222654 2飞灰含碳置偏高的原因分析经过对锅炉的实际工况及运行情况等方面进行分析,并采用锅炉燃烧调整试验、常规分析法、着火指数炉法和热天平法等来分析煤样的燃烧特性,总结出该电厂飞灰含碳量过高的原因:1)贵港煤相比诵寸煤种,有着火难、燃尽性差的特点,这将导致飞灰含碳量上晰噶炉效率的刚氏o2)四角切圆燃烧锅炉由其结构布置特点,必然存在两个角的一次风浓相在火焰的向火面,淡相在火焰的背火面,另外2个角的情况恰恰相反,在炉内形成背火墙,不利于煤粉与空气的良好混合。
锅炉飞灰含碳量大的原因分析及对策
目前浓淡燃烧技术已十分成熟,该型燃烧器已全面推广,大部分电厂均采用浓淡型燃烧器。
一、燃烧调整试验:
1. 利用配风装置按设计风速(一次风速30m/s)调平一次风。
2. 提高下排一次风速(一次风速35m/s)。
3. 调整风量,提高二次总风压,增加氧量。改变二次风配比,采取上小,下大配风方式,增加下二次风刚性,增加下二次风的托粉能力。
4. 采取两头保持燃烧工况相对稳定的前提下,减少下排给粉机给粉量,下排给粉机转速控制在500—550rpm,降低下一次风煤粉浓度,以进一步相对提高下二次风的托粉能力。
6. 在各个工况下,测量炉膛温度,取灰样、煤样,化验其大、小灰百分数,及煤粉细度,记录各运行参数。
二、分析:
通过燃烧调整可以降低飞灰含碳量,但其手段是有限的。提高一次风速及降低下排给粉机转速均受到机组负荷的限制,负荷降低采用这种措施将影响燃烧的稳定性。在低负荷时受总风压的限制提高一层二次风的幅度是有限的,并且提高一层二次风影响燃烧的稳定性。降低煤粉细度将导致制粉单耗的增加,影响厂用电率。而提高二次风压将导致风机单耗增加,同时增加了预热器漏风。目前我厂#5、#6炉在高负荷时引风量不足,漏风率的增加将进一步加剧高负荷时缺风的问题。
清华大学设计的多重富集燃烧器是其为解决富集型燃烧器飞灰大问题而设计的燃烧器。其原理根本上仍是浓淡型燃烧器,出口射流为水平射流。目前应用在田家庵电厂。由于该燃烧器装在中排,与我厂安装位置不一样,虽然飞灰含碳量不高,也不具有可比性。在其他电厂还没有得到推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉飞灰含碳量偏高的原因及处理
火力发电关键词: 锅炉飞灰含碳量粉煤灰
1、前言
吕四港电厂#1、2、3、4炉是哈尔滨锅炉厂有限责任公司生产制造,由三菱重工业株式会社提供技术支持的超超临界参数变压运行直流锅炉。
锅炉是单炉膛、结构,炉膛尺寸(宽,深,高)19.268/19.230/19.453。
设计煤种神府东胜煤,燃烧器采用摆动式上下浓淡分离直流燃烧器,分六层布置,四墙切圆燃烧。
制粉系统采用中速磨正压直吹式。
2、飞灰含碳量主要影响因素
根据燃烧理论和实际运行经验得出,引起飞灰含碳量偏高的主要因素有以下几个方面:燃烧时炉内氧量不足;煤粉细度不合适;配风方式不合理;燃煤品质;燃烧时间。
这几个因素相互影响互相制约。
为了找出一个合适的工况来指导运行,我们对这几个因素一一加以分析。
2.1烟气氧量
煤粉随着热一次风进入炉膛后,一方面由于卷吸高温烟气的对流加热作用以及高温火焰和炉壁的辐射作用,使煤粉很快着火燃烧,初始时由于氧气充足,燃烧速度由化学反应控制,到燃烧后期,由于氧气不充足,燃烧速度由氧气的混合速度控制。
在缺氧状态下,碳粒发生不完全氧化反应和还原反应,造成碳粒不完全燃烧,加大了不完全燃烧热损失。
因此,保证一定的过量空气系数是必需的。
根据经验,此系数应在1.15~1.3之间,折算成烟气氧量是2.6~5。
吕四港电厂#1、2、3、4炉设计烟气氧量为3~5,但由于实际燃用煤种和设计煤种有差别,因此为了保证安全,氧量一般被取下限。
为了摸清具体情况,不同工况下我们作了变氧量试验,试验结果如下:
不同负荷不同氧量下的飞灰指标
通过试验,我们找出了每台炉的最佳氧量。
并在实际运行中按照负荷曲线进行调整。
2.2煤粉细度
在锅炉煤粉燃烧中,对流热交换强度和氧气向粉粒表面的扩散强工与颗粒直径大小成反比,所以尽管细煤粉颗粒使紊流交换强度降低,可是,分子扩散交换及对流交换强度增强,煤粉单位重量的表面积大大增加,有利于煤粉的着火、混合与燃烬。
有试验表明,煤粉燃烬时间
与颗粒初始直径的1~2次方成正比。
即T=K×δ1~2其中K为常数值。
但是,随着煤粉细度的提高,制粉单耗也是呈指数级上升,而且煤粉细度的提高还会引起炉膛出口温度升高。
因此如何在两者之间找到最小值是试验的目的。
通过对各煤种试验以及在1号炉上的实践,可以得出最经济煤粉细度经验公式如下:R90 =5+0.6(100-Ayz)÷100×Vr;Ayz=100×Ay÷Qdwr。
R90为筛孔宽度90微米的筛子筛选的煤粉。
Ay——应用基下的灰分。
Vr——可燃基下的挥发分。
Qdwr——煤粉的低位发热量。
按上式算出的煤粉细度再作修正后即为最经济煤粉细度。
吕四港电厂#1、2、3、4炉设计煤种神府东胜煤,由于其挥发分为36.44%,故煤粉细度采用了较大值为14~18%。
实际煤种比设计煤种差,通过计算,提高旋转分离器转速,调整煤粉细度为10~14%。
调整前后试验结果比较如下:
煤粉细度6% 12% 18%
飞灰Cfh 1.7% 3.5% 10%
2.3配风方式
吕四港电厂#1、2、3、4号炉都采用四墙切圆燃烧技术,每只角风口布置相同,具体如下:
锅炉飞灰含碳量偏高的原因及处理(2)北极星电力网技术频道作者:沈全宏2012-5-17 13:42:21 (阅26次)
所属频道: 火力发电关键词: 锅炉飞灰含碳量粉煤灰
在实际运行中,如果没有油枪运行,油枪层即随二次风逻辑开关挡板。
燃烧器层随燃料风逻辑开关挡板。
煤粉在炉内燃烧过程大致分为着火、燃烧、燃烬三个阶段,在着火阶段即是加热一次风和煤粉;燃烧阶段即是二次风混入,煤粉和氧气剧烈反应阶段;燃烬阶段即是碳粒燃烧阶段,配风即是二次风如何混合的方式,二次风混入早了,即增加了着火所需热量,延迟了着火时间,混入迟了,造成缺氧燃烧,减少了燃烬时间,同时二次风的混入时间问题还会对NOx的大小产生直接影响。
吕四港电厂刚投运时,由于忽视了辅助风挡板的作用,结果挡板开度处于混乱状态,炉内燃烧切圆无法形成。
飞灰含碳量大得惊人,最高达到11%。
后来在公司领导的重视下规定了挡板的调整范围。
在此基础上,我们运行中进行了各种配风试验,试验包括挡板全开、正宝塔、束腰、倒宝塔等方式。
从试验结果中得到了各种煤质的最佳配风方式。
飞灰含碳量也下降到5%以下,下降幅度达到55%。
正宝塔配风就是将下几层二次风挡板开度大于上几层二次风挡板开度。
倒宝塔配风反而行之。
束腰配风就是将上、下二次风挡板开度大于中间的二次风挡板开度。
2.4燃煤品质
锅炉燃烧的好坏,很大程度上取决于燃煤品质,我们这里只讨论几个重要指标,从中可以看出对燃烧的影响,即
燃料着火特性判别指数和燃料燃烬判别指数。
燃料着火特性判别指数可以用应用基挥发分来判别:
Vy=Vr×(100-Ay-Wy)÷100
Vy——应用基挥发分。
Vr——可燃基挥发分。
Ay——应用基灰分
Wy——应用基水分。
通过上式可以反映出灰份、水分对着火稳定性的影响,具体值如下:
Ay ≤4.9 4.9~14 14~19 19`23 >23
分类极难稳定区难稳定区中等稳定区易稳定区褐煤区
燃料燃烬判别指数用下式来判别:
FZ=(Vf+Wf)2×Cf×100
Vf——分析基下的挥发分。
Wf——分析基一的水分。
Cf——分析基下的含碳量。
具体值如下:
FZ ≤0.5 >0.5~1.0 >1.0~1.5 >1.5~2.0 >2.0
分类极难燃煤难燃煤中等难燃煤易燃煤极易燃煤
根据上式,我们可以在煤进厂后对煤进行大概估计,并针对各个煤种进行相应的燃烧调整。
吕四港电厂加强了煤质监督之后,燃烧情况大有好转。
2.5燃烧时间
煤粉进入炉膛到离开断膛的时间段称为在炉内停留时间,这个时间同样分为着火时间、燃烧和燃烬时间,这个时间越长,煤粉燃烬度越高,但是一台锅炉设计完成之后,其尺寸也被确定,不可能再作多大改变。
但是燃烧时间与煤质也有相当大的关系,我们可以利用这一关系进行燃烧调整。
它们具体关系如下:
T=V/M
V=3600×273×Qd×m×ε×P
M=273×Q÷V×VY×T
V——炉膛容积m3
M——烟气量m3 /s
P——炉内绝对压力Pa
Qd——燃料低位发热量KJ/Kg
M——煤粉和火焰之间相对速度的系数。
向上流动时取0.96,向下流动时取1.04
ε——火焰在炉内的充满度,一般取0.7~1.0
VY——烟气容积N m3/Kg
T——炉内温度K
Q/V——炉膛容积热负荷KJ/m3h
3、结束语
通过对影响飞灰含碳量的因素分析及采取相应措施,1号炉飞灰碳量由试验前的5~8%下降为1.7~3%,下降幅度为55%。
由于飞灰含碳量的降低,供电煤耗也下降了3~5克左右。
由于飞灰含碳量的降低,粉煤灰综合利用前途也光明起来,当含碳量低于5%时,可以收取一级灰。
由此看来,降低飞灰含碳量具有巨大的经济利益,而这些还不包括锅炉热效率的提高带来的效益。
参考文献:
1.《燃烧理论基础》出版社: 哈尔滨工程大学出版社作者: 万俊华出版年: 2007年11月页数:308 页。