飞灰含碳量高原因及调整

合集下载

锅炉飞灰含碳量成因及降低措施

锅炉飞灰含碳量成因及降低措施

锅炉飞灰含碳量成因及降低措施飞灰含碳量表示锅炉燃烧的效率,含碳量越高则锅炉燃烧效率低,生产成本就会越高,直接说明了煤粉质量不好,同时也会带来生产安全问题,容易造成爆炸等事故。

因此锅炉飞灰含碳量是否达标严重影响着企业效益与生产安全。

本文就锅炉飞灰含碳量形成的原因进行探究分析,找出问题的根本,并提出了降低含碳量的有效措施,以此解决锅炉煤粉燃烧时的效率问题和安全问题,使企业更好更长久的走下去。

标签:锅炉设备;飞灰含碳量;成因问题;降低措施引言对于很多电厂来说,锅炉燃烧是很重要的能源设施,煤粉能否合理的利用也就成了大家比较关注和重视的话题。

飞灰含碳量直接反映燃烧效率,其含碳量的高低又受到煤粉自身质量和锅炉运行情况等多种因素的影响,同时也与企业效益直接挂钩,所以下文直接着眼于飞灰含碳量高的原因,从根源上提出优化措施和方案。

1、造成飞灰含量高的成因1.1 煤粉的质量。

因受市场与成本的影响,目前大多数电厂所用的燃煤均为挥发分低、灰分较大并且煤质易发生改变。

像挥发分低,则导致煤粉所需着火温度较之升高,原有的温度不能满足当下着火条件,不易燃烧,因此会导致煤粉的燃烧效率降低,飞灰中的含碳量明显提高。

而灰分较大则一经燃烧就产生灰烬,生成的灰烬附着在未燃烧煤粉表面一定程度上影响了煤粉的燃烧,阻挡了火势,造成煤粉燃烧不充分,同样也会造成飞灰含碳量升高。

最后煤质变化多,在与炉火燃烧时本质发生变化,原有的燃烧效率不复存在,改变的越频繁则越易出现燃烧不足,飞灰含碳量也会越高。

1.2 煤粉颗粒大小。

越细的煤粉燃烧时与空气接触的面积也就越大,越容易点着,当炉内煤粉都着火时则炉膛也就达到了所谓的着火点,着火点提前则相应的燃烧时间也就增长,煤粉燃烧的更加充分,飞灰含碳量就会减少。

有科学研究表明煤粉燃烧殆尽的时间与煤粉颗粒直径的大小有一定线性关系,所以应尽量使煤粉的颗粒更加细小,常见的措施有增加磨煤机旋转分离器转速或是减小在入口的一次风压。

循环流化床锅炉飞灰含碳量高的原因以及措施

循环流化床锅炉飞灰含碳量高的原因以及措施

循环流化床锅炉飞灰含碳量高的原因以及措施咱们都知道,锅炉是现代社会不可或缺的“大力士”,无论是工厂里的蒸汽机还是家里的暖气,都离不开它。

但是,这台“大力士”有时候也会闹点小脾气,比如飞灰含碳量高。

那么,为什么循环流化床锅炉会这么干呢?别急,让我来给你娓娓道来。

咱们得说说这“大力士”的心脏——燃烧室。

想象一下,如果心脏里充满了血液,那它就能有力地跳动。

但要是心脏里全是灰烬和煤渣,那它还怎么跳呢?这就是飞灰含碳量高的第一个原因。

就像心脏里长了草,怎么能保持活力呢?再来说说这“大力士”的胃——炉膛。

想象一下,胃里有太多食物,消化起来可就费劲了。

同样的道理,如果炉膛里塞满了灰烬和煤渣,那燃料怎么能充分燃烧呢?这就导致了飞灰含碳量的增加。

就像胃里全是石头,怎么可能吃得下东西呢?接下来,咱们得聊聊这“大力士”的脚——分离器。

想象一下,如果脚上穿着一双破拖鞋,走路都不稳当。

而分离器如果处理不当,那飞灰中的碳颗粒就会像脱线的玩具一样四处乱飞。

这就是为什么飞灰含碳量高的第二个原因。

就像脚上穿着一双不合适的鞋,怎么能走得稳当呢?那么,面对这些问题,咱们该如何解决呢?别急,让我来给你支几招。

咱们可以加强燃烧室的维护,定期清理燃烧室,确保燃烧室内没有过多的灰烬和煤渣。

这样,“大力士”的心脏就能保持健康,跳动有力。

咱们可以在炉膛中安装一个高效的旋风分离器,将飞灰中的碳颗粒及时分离出去。

这样,“大力士”的胃就不会太难受,燃料也能更好地燃烧。

咱们还可以加强对分离器的监控和维护,确保它能够正常运行。

这样,飞灰中的碳颗粒就不会到处乱飞,“大力士”就能更稳定地工作。

当然啦,除了这些措施,咱们还需要注意日常的保养和清洁工作。

比如定期检查锅炉的运行状态,及时清理积灰;注意燃料的质量和稳定性,避免使用劣质燃料;等等。

只有这样才能确保“大力士”始终保持最佳状态,为我们提供源源不断的动力。

循环流化床锅炉飞灰含碳量高的问题虽然令人头疼,但只要我们用心去解决,相信“大力士”一定能发挥出更强的力量。

飞灰含碳量过高的原因分析及降低方法

飞灰含碳量过高的原因分析及降低方法
滤白 陵。 是 别 啦 - 用基 隋 况下台 [ 值, V r 是 舒 涤件下出 飞灰的含碳量是目前锅炉燃烧中比饺重要, 比饺有实际意义的指标之 现的挥发粉, 公式中应用基隋况下灰粉数值的 1 0 0 倍 得 出的就是煤粉 的 它能够直观的反映出电站锅炉的燃烧效率以及煤粉质量, 和发电的经 低位发 十 热量。 根据 E 述公式, 计算出的隳移 } 坌 8 j J 蔓, 经过验算和修正之后得 济陛直接挂钩。经过几年的发展, 成熟的检测手段使得飞灰含碳量已经成 出的数值, 就是最经济的 粉细度。 根据不同制粉系统设备状况, 运行 ^ 员 为关系煤粉灰价格的重要指标。除此之外, 飞灰中残留的碳还会对锅炉尾 可适当加偏置, 以改变不同制粉系统的出力。磨煤机的出力保证要与一次 部受热面造成—定的磨损, 使得设备受到损伤, 降低了使用年限。 飞灰含碳 风压适当配合, 当冈压高时, 能适 当提高磨 机 的出力, —煅删 ] 的磨 机 量的增加还会降低电除尘器的效率 , 成为环境污染的源头, 由此可见降低 出力在 5 5 T / h以上时, 石子煤排量明显增大 , 煤粉细度变粗且容易引起堵 飞灰含碳量的重要性。比§ 口 江苏大唐国际 吕四港发电有限责任公司 , 购进 磨等情况, 故磨煤机运行不要长时间保持在该煤量以上。 ( 磨煤机 + —次风 了 一 — 期4 × 6 6 0 M W超超临 界燃煤发电机组, 主要配置产自 黑龙江哈尔滨 机) 最小, 合理调度制粉系统的停止和运行。 磨煤机的运行应 的三大动力锅炉厂有限责任公司, 超超临界参数变压运行直流锅炉等相关 化 裕 度的选择。 如煤质变化较大, 可以保留较大的裕度。 与此同 技术则是有来自三菱重工的株式会社主要负责提供。从型号上看, 锅炉采 时通过调整瞧 分离器的转速可以有效地调整煤粉的细度。 用G 一 2 0 0 0 / 2 6 . 1 5 一 Y M 3 。型式为 兀 型布置, 锅炉为四墙切圆燃烧方式 , 设 2 3二 级 配风对于飞尘含碳 量的影响 。锅炉二 次风的配风原 则主要考 计煤种神府东胜煤。自 投产使用至今, 飞灰含量—直得不到改善, 偏高的数 虑煤粉的燃尽和氮氧化合物的排放, 试验证明倒塔式配风, 不仅能够满足 值廊 影响我们进步的一大阻力, 并给经济抛瓷椰 的重创。因此飞 在 聪 婕甜 莲 效子 的 效果, 同时各 糟剿挝 白 勺 辅助冈供 ^ 灰含碳量问题已经成为了发展工业锅炉事业必须重视和解决自 媚- 节。 及时满足 煤粉燃尽的要求。 在多有的二级配风中, O F A 风在锅炉正常燃烧 2飞灰含碳量过高的原因分析 时宜尽量开扣 亟 行 ,主要原因是采用 MA C T 燃烧系统的主燃烧区内包含 影响飞灰可燃物含量的因素越来越多,—方面受到原材料质量的影 了数量可观的 烬O F A风, 当其处于开启状态时, 相关区域的燃烧强度 匕 响, 包括飞灰可燃物含量的高低 , 煤粉的细度, 可燃物燃烧的充分程度等。 升, 使得飞灰的含碳量下降 , 另外一方面 , 虽然这种风主要作用在主燃麂器 另一方面。 锅炉燃煤特陛和设备能力起着确定f 生 作用, 包括炉膛内温度水 的领域内, 但实质是作用在燃烧器的上部, 因此也就在其内部形成一种分 平, 燃烧动力场, 锅炉总用风量 , 风煤 比, 一次用风的量 , —次风速, 二次风 级燃烧的模式, 使得每当风门开启, 氮氧化物排放量得到控制 , 浓度下降, 速, 一二 次风量比在内的诸多因素 , 都需要 恪进行控制, 才能保证设备对 与此同时, O F A风位于主燃烧区域造成氮氧化物排放浓度下降不明显的局 于飞灰含碳量起到有效的控制作用。 在进 入 生产阶段之前, 要进行试验, 确 面。顶层 A A风开大虽然能够降低氮氧化物的排放, 但是 A A风的会导致 定符合实际情况的配合比, 计算出最佳的运行工作状况, 将获得的飞灰损 主燃烧区的缺氧状态,导致鹅 。A A风在经过垂直和水平分级 失降到最小。 后, 其距离主燃烧区域果园, 从而导致未燃尽的可燃物在后期没有得到充 2 l 运行氧量对飞灰可燃物含量的影响。氧量对于燃烧来讲具有非同 分的燃烧, 所以A A风不宜开太大。因此, 满负荷运行时, 宜用 塔式配风, 寻常的意义, 对于锅炉燃烧而言 『 口 此, 运行氧量的大小对锅炉 性能影 O F A风挡 板宜全开 , A A风适 中即可 。 响很大。能否找到使得热损失和氮氧化物排放量相均衡的氧量 , 是解决飞 3降低飞灰含碳量的方法 灰可燃物含量自 勺 = 途 径。 在实际 f f 程 中, 首先要考虑燃烧自 g 效率, 同 降低飞灰含碳量是—个复杂的过程, 需要从多方面人手。首先要适当 时, 还应该考虑炉膛内壁面的还原 性, 这样可以有效的控制高温带来的腐 的降低火焰的 , 增加下层或者中下层给粉机出力, 在此基础 E 保持转 蚀效果。另外, 辅助机械的电能消耗问题也是整个锅炉运行机组运行氧量 速的稳定 陛, 在提高主 虢 区焰 撺 娥 的基础上, 位 } 火焰中心伤 稳定。 所要注意的问题。 在 烧 的过程中, 要保持合适的风量可通过 蘩 氧量值 这样有利于j ^ 燃哓区域的檗盼彳 导 至 『 圾 时的点燃和充分的燃烧 , 延长煤粉 按照绩效中的氧量曲线进行调整, 对于不同煤种在飞灰含碳量不增加的睛 在炉内的停留时问。 其次要合理的控静 I 和协凋一、 二次风。配比合理的一、 况下可考虑低氧燃烧, 实现降f 氐 排烟损失的目的。但要根据锅炉所烧煤种 二次风有利于调整空气的动力场 , 提高火焰的充满度, 提高燃烧中心的温 的结渣特眭, 以减轻结渣的程度, 对于易结渣煤种, 可以适当保持氧量高一 度。 一次风风度、 过f 氐 , 会使, 导铸 : J ( 提前导致 去稳定性。 根据过 些, 避免出现还原陛气 氛。 当煤种为易结焦或高硫煤种时, 适当加大相应磨 量空气的系数来调整合理的各层二次风门, 保证燃烬阶段的供养量。 再次, 煤初二次风配风, 防止 烧器周围结渣或高温腐蚀。 就是要调整锅炉的出口氧量, 试探汪明, 出口氧量百分数在增加到 4 2 ~ 4 8 2 2: 潮细度对于飞 含量的影响。 煤凝 锅炉中燃烧 2. 1 "  ̄ - 3 时, 能够有 效的降低飞灰的含碳量。 另外, 及时根据煤的品种来调整煤 的过程中, 有两项数据食, 镦粒径大小 , 也就是煤粉 的细度直径大小威' 反 比 粉细度 , 减少三次风对燃烧的影响, 的, 一 硕 是热销换强度, 另—项就是氧气想粉尘颗粒表面的扩散强度。 这也 能够 珏 飞灰含碳量的有效手段。 _ 但分子扩散交换以及对流交 结束语 换强度却在 E 升的原因所在。 着火混合 、 燃烬等多项实践证明, 重量 . 定的 运行氧量的大小是影响飞灰含碳量高低的主要因素, 飞灰含碳量随氧 情况下 , 煤粉的单位表面积得至 艮 大程度的增加 , 能够使得 份 燃烬的时 量的升高而降低, 所以综合厂用电率考虑, 运行调整过程中要根据煤种j 间和颗粒的初始直径的关系发生巨大变化。 经过具体数据的分析。 煤粉燃 择合适的氧量。合理配风和提高 粉细度是影响飞灰含碳量的重要因素。 烬的时间与颗粒初始直径的平方成正比, 也就是 T 等于 K的 1 ~ 2 次方 , 这 锅炉飞灰的含碳量是反应锅炉燃烧的重要指标 ,只有有效的控制好这个 其中K通常是试验得出的常 含碳量过高 的原 因分析及降低 方法

锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法

锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法

锅炉飞灰含碳量、炉渣可燃物问题原因与解决方法一、飞灰含碳量(%):(一)、可能存在问题的原因:1、燃煤挥发分低,锅炉燃烧效率与燃烧稳定性下降。

2、燃煤灰分高,着火温度高、着火推迟,炉膛温度降低,燃烬程度变差。

3、燃煤水分高,水汽化吸收热量,炉膛温度降低,着火困难,燃烧推迟。

4、煤粉粗,着火及燃烧反应速度慢。

(煤粉炉)。

5、燃烧器辅助风门开度与指令有偏差。

(煤粉炉)。

6、锅炉氧量低,过剩空气系数小,燃烧不完全。

7、一次、二次风速及一、二次风量配比不当。

8、燃烧器喷嘴烧损变形,造成一次风速度发生变化。

(煤粉炉)。

(二)、解决问题的方法:1、运行措施:①、根据煤质和炉内燃烧工况,及时调整磨煤机通风量,保持合适的风煤比。

②、合理调整一、二次风配比,保持最佳锅炉氧量,使煤粉充分燃烧。

③、提高入炉煤混配均匀性,保证锅炉燃烧稳定。

④、保持制粉系统运行稳定,尽量减少启、停次数。

2、日常维护及试验:①、进行燃烧优化调整试验,确定不同煤质下经济煤粉细度。

②、每班检查燃烧器辅助风门开度情况,发现问题及时处理。

(煤粉炉)。

③、定期测试煤粉细度,发现异常及时调整处理。

(煤粉炉)。

④、定期取样化验分析飞灰可燃物,发现异常及时分析,对磨煤机弹簧加载力、间隙和折向门开度进行调整。

⑤、煤质变化较大时应严密关注煤的燃烧特性,并进行相应的燃烧调整。

⑥、不定期对磨煤机相关部件磨损情况检查处理,如对磨辊套及磨碗衬板进行调换等。

3、C/D修、停机消缺(煤粉炉):①、对预热器进行清灰,提升预热器的换热效率,提高热风温度。

②、燃烧器位置、摆角、磨损、烧损、结焦检查处理,更换或修补损坏的喷嘴、喷管及钝体。

③、校正辅助风和燃料风门挡板开度位置。

4、A/B修及技术改造(煤粉炉):①、浓缩器及钝体采用陶瓷片、碳化硅等防磨措施,调整确定燃烧器摆角位置。

②、检查处理风门严密性和管道漏风。

③、加装飞灰含碳量在线测量装置。

④、根据空气动力场试验结果做好有关调整工作。

飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施

飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施

飞灰含碳量高和除尘灰颜色发红的主要原因分析及采取的措施一、240T/H循环流化床锅炉飞灰含碳量高的主要原因分析及采取的措施。

1、主要原因分析目前,我公司环流化床锅炉飞灰可燃物含量达12~13%,与投运初期≤10%相比,存在着飞灰可燃物偏高的问题,飞灰含碳量的偏高使循环流化床锅炉的机械不完全燃烧热损失增加,严重影响了锅炉的燃烧效率,引起飞灰含碳量高因素很多,从以下几个方面阐述。

& C# z# q, s& M7 I% _ `( z⑴煤种对飞灰含碳量的影响不同组分煤的H/C比、燃烧活性、灰份含量有很大差异。

其孔隙率、真比重、晶格化程度等也不同,而且在燃烧过程中这些性质还会发生变化,这对于煤的燃烧特性有很大影响。

人们一般从微观上将煤分为镜质组、丝质组和稳定组。

,其孔隙率、真比重、晶格化程度等也不同不同组分煤的H/C比、燃烧活性、灰份含量有很大差异。

与其它组分相比较,丝质组燃烧过程并不剧烈,同时有机质内部几乎没有形成孔隙,颗粒内部的有机质无法与外部氧气发生反应。

对飞灰可燃物进行分析,发现丝质组形成飞灰残碳的可能性更大。

无烟煤中的丝质组组分要比其它煤种低得多。

因而燃用无烟煤的循环流化床锅炉飞灰含碳量普遍比燃用其它煤种锅炉高。

热电厂240T/H循环流化床锅炉现在烧的烟煤并不是纯烟煤,掺了更多的无烟煤末,丝质组组分要比以前烧的纯烟煤要低,颗粒内部的无机质无法与外界氧气发生反应,从而导致飞灰含碳量比以前要高。

⑵颗粒尺寸分布与床温对飞灰含碳量的影响碳粒的燃烬时间与颗粒尺寸和床温有很大关系。

在一定的温度下,碳颗粒的燃烬时间随粒径的增大而延长。

循环流化床锅炉对燃料粒径要求小于等于13mm,而我们燃料的破碎系统达不到设计要求,燃料颗粒粒径分布不均,两极分化严重,粗颗粒和细颗粒较多,呈两头多,中间少的粒径分布特点。

实际的入炉煤粒径范围要大得多,不同粒径的燃料很难达到同时燃烬。

在相同的粒径下,温度越高,碳颗粒所需的燃烬时间越短。

飞灰含碳量过高的原因分析及降低方法(论文)

飞灰含碳量过高的原因分析及降低方法(论文)

飞灰含碳量过高的原因分析及降低方法李国勇(华润电力(涟源)有限公司湖南娄底417000)引言从锅炉效率考虑,机械不完全燃烧热损失和排烟损失是其中两个主要的热损失。

排烟损失的降低是受到限制的,降低过多会造成尾部受热面的低温腐蚀。

所以降低机械不完全燃烧损失是节能降耗的突破口,而降低飞灰含碳是其中重要的方面。

锅炉飞灰含碳量每下降1%,锅炉效率上升0.519%,供电煤耗约降低1.019g/kWh 。

1概述飞灰的含碳量是当今锅炉燃烧指标之一,它能够直接反映出电站锅炉燃烧的效率,并且和发电的经济效率息息相关。

经过多年的发展,成熟的检测方法已经将飞灰含碳量作为判断煤粉灰价格的主要标准之一。

另外,飞灰中含有的碳对锅炉尾部的受热面积会造成一定的磨损,从而使得相关设备产生不同程度的损害,缩短了其使用寿命。

飞灰含碳量的增加在一定程度上还会影响到电除尘器的工作效率,成为污染环境的因素之一。

总而言之,飞灰含碳量高的负面影响有以下几点:①会使锅炉效率有明显的下降,直接影响机组运行经济性;②会造成飞灰变粗,增大尾部受热面的磨损,缩短其使用寿命;③炉内飞灰的熔点降低,易引发受热面结焦;然后,会使电除尘效率降低,造成环境污染;④造成锅炉气温、壁温越限频发,运行调整难度增大,甚至会导致尾部受热面再燃烧,引发机组安全事故。

2造成飞灰含碳量过高的原因分析2.1一次风的影响一次风压过低,影响磨组干燥出力,甚至造成一次风管堵塞,着火点过于靠前,还可能烧坏喷燃气。

一次风压过高,造成一次风速过高,降低煤粉气流的加热程度,使着火点推迟,大颗粒的煤可能不能完全燃烧,造成飞灰含碳量增大,如图1所示。

相关系数判断如下:计算相关系数r :L xx =3.08;L yy =-0.4。

r=L xy L xx √×L yy √=-0.43.08√×0.94√=-0.235r =0.349根据N-2和显著水平(a=0.05)由表查出相关系数r a =0.349。

锅炉飞灰含碳量偏高的原因分析和对策

锅炉飞灰含碳量偏高的原因分析和对策

锅炉飞灰含碳量偏高的原因分析和对策刘文(广州中电荔新电力实业有限公司,广东增城511340)应用科技脯要j电站锅炉运行中飞灰舍碳量偏高,严重影响锅炉效率。

分析飞友含碳量偏高的原因,提出改造燃烧器,加装敛.体和浓淡分离器。

改造后,锅炉燃烧状况得到明显改善,飞灰合碟量显著降低,提高了锅炉的效率。

鹾搀枣词飞灰含碳量;燃烧器;钝体;浓淡分离器飞灰含碳量升高对锅炉的经济性有很大影响。

首先,它是造成锅炉机械不完全燃烧损失增加的主要因素,而机械不完全燃烧损失是锅炉热损失中仅次于排烟损失的第二大损失。

对于现代火力发电机组,锅炉热效率每降1%,将使整套机组的热效率刚氏0:3—04%,标准煤耗增加3—49/kW ho其次,飞灰含碳量上升,飞灰品质下降,将影响干灰的综合利用,增加污染物排放量。

因此,电厂应尽量降低飞灰含碳量,减少损失,增加电厂效益。

近年来,由于煤炭市场等多方面原因的影响,电厂的实际燃煤发生了较大变化,燃用大量的较低挥发份煤,造成锅炉不完全燃烧,损失增大,灰飞含碳量偏高,效率降低等问题,影响了锅炉运行的经济性。

通过对锅炉进行改造,燃用较低挥发份的贵港煤时,燃烧显著改善,飞灰含碳量大幅度下降,解决了锅炉飞灰含碳量偏高的问题。

1锅炉设备概况1.1锅炉设计参数某电厂锅炉为额定蒸发量220t/h高压自然循环锅炉,呈兀型露天布置,炉膛断面尺寸为7570m m×7570m m,燃烧器为正四角切向布置的直流燃烧器,每组燃烧器喷口按3—2—1—2—1—2的顺序排列,三次风喷口下倾约5℃,为典型的烟煤型燃烧器。

炉内四角形成的假想切圆直径@800m m,配有两套中间仓储式钢球磨制粉系统,热风送粉。

12锅炉燃煤情况由表1可知,贵港煤挥发份明显比设计煤种低,但发热量高,根据热力计算,这可能导致排姻温度升高约1a℃阳比设计煤种),引起飞灰含碳量上升,从而刚氐了锅炉效率。

表1煤质参数C ar H”0ar N舯S盯A ar M口V ar Q ar煤样%%%%%%%%kJ/kg 设计煤45.662.793.891.14O.9836.3l9.2331.3817107贵港煤60.963.531.220.95O.8326.226.2924.2222654 2飞灰含碳置偏高的原因分析经过对锅炉的实际工况及运行情况等方面进行分析,并采用锅炉燃烧调整试验、常规分析法、着火指数炉法和热天平法等来分析煤样的燃烧特性,总结出该电厂飞灰含碳量过高的原因:1)贵港煤相比诵寸煤种,有着火难、燃尽性差的特点,这将导致飞灰含碳量上晰噶炉效率的刚氏o2)四角切圆燃烧锅炉由其结构布置特点,必然存在两个角的一次风浓相在火焰的向火面,淡相在火焰的背火面,另外2个角的情况恰恰相反,在炉内形成背火墙,不利于煤粉与空气的良好混合。

飞灰含碳量高的原因分析与对策

飞灰含碳量高的原因分析与对策

飞灰含碳量高的原因分析与对策飞灰含碳量高的原因分析与对策降低飞灰含碳量,不但对控制锅炉煤粉气流的燃烧非常必要,而且可大大提高锅炉机组的经济性,从而降低锅炉烟尘排放量,减少环境污染。

一:飞灰含碳量偏高的原因分析当煤粉气流在炉膛内的燃烧和燃尽过程不充分时,势必造成机械未完全燃烧热损失增大,表现为飞灰含碳量升高。

影响飞灰含碳量变化的因素主要有:煤粉细度、煤种特性、燃烧器的结构特性、热风温度、炉内空气动力场和锅炉负荷等。

(1)煤粉细度的影响煤粉细度对其煤粉的燃烧和燃尽性能有较大影响。

煤粉细度越大,即煤粉颗粒粒径越大,其燃尽性能较小粒径颗粒越差,势必造成煤粉燃尽时间延长,不完全燃烧损失增大,飞灰含碳量升高,从而降低锅炉效率。

细煤粉虽然容易着火和燃烧,但煤粉颗粒过细将会增加制粉系统的耗电量和加大磨煤机的磨损量。

因此,在锅炉设备运行中,应综合考虑不完全燃烧损失和制粉能耗的要求,使之达到最小,即寻找煤粉经济细度或最佳细度,以保证较高的锅炉效率和较低的飞灰含碳量。

煤粉经济细度与燃料性质和煤粉颗粒的均匀程度有关。

对于高挥发分的煤,因其容易燃烧可允许磨得粗些;对于低挥发分和可磨性指数较低的煤,因较难燃烧而应尽量磨得细些。

如果煤粉颗粒比较均匀,造成不完全燃烧损失的大颗粒则相对较少,可允许煤粉粗些,这与磨煤机和分离器的形式以及运行工况有关。

降低煤粉细度是控制飞灰含碳量升高的有效措施。

电厂的运行实践也表明:煤粉颗粒比较均匀时,飞灰含碳量也有所下降。

(2) 煤种特性的影响目前,国内大多数电厂存在锅炉燃烧实际煤种与设计煤种不符的情况,这是因为电厂用煤来源比较复杂,大矿煤与小窑煤混用的情况非常普遍,造成煤质成分如挥发分、水分、灰分和发热量等主要指标不稳定,从而对煤粉的完全燃烧产生很大的影响,导致飞灰含碳量发生显著变化。

煤粉燃烧过程是在挥发成份燃烧完之后才开始焦炭的燃烧。

因此,燃料性质中挥发分的含量对煤粉燃烧的影响最为重要。

对于高挥发分燃煤,挥发分燃烧释放出大量热量,形成炉内高温氛围,有利于焦炭的迅速着火和燃尽,机械未完全燃烧损失减小,飞灰含碳量较低;相反,对于低挥发分燃煤,则容易引起飞灰含碳量的升高。

HT-NR3轴向旋流煤粉燃烧器飞灰含碳量高的原因分析

HT-NR3轴向旋流煤粉燃烧器飞灰含碳量高的原因分析

HT-NR3轴向旋流煤粉燃烧器飞灰含碳量高的原因分析作者:张峰来源:《中小企业管理与科技·上旬》2010年第02期摘要:通过对某发电公司600MW超临界机组进行制粉系统调整和燃烧调整试验,找到了该公司HT-NR3轴向旋流煤粉燃烧器、ZGM113G 型中速辊式磨煤机使用过程中,飞灰含碳量高的主要原因,通过改变燃尽风和层二次配风的风量配比、提高制粉系统的运行性能、燃烧器集中投运,飞灰含碳量在高负荷时得到大幅降低,从最初的9.05%降到3%以下;对其他同类型磨煤机和燃烧器经济运行有很大的指导意义。

关键词: 600MW 燃烧器磨煤机含碳量运行1 设备简介该公司600MW超临界机组锅炉为东方锅炉(集团)股份有限公司(DBC)与日本巴布科克-日立公司(BHK)及东方-日立锅炉有限公司(BHDB)合作设计、联合制造的超临界变压本生直流锅炉,锅炉型号为:DG-1900/25.4-Ⅱ1。

一次再热,单炉膛Π型,尾部双烟道结构,采用挡板调节再热汽温,固态排渣,全钢构架,全悬吊结构,平衡通风,露天布置。

水冷壁采用全焊接膜式水冷壁,下部水冷壁及冷灰斗布置为螺旋管圈,其出口经水冷壁中间联箱混合后进入垂直水冷壁管屏。

燃烧器采用按BHK 技术设计的性能优异的低NOx 轴向旋流煤粉燃烧器(HT-NR3)技术。

燃烧方式采用前后墙对冲燃烧,前后墙各布置3层,每层各有4只燃烧器,总共24只。

在最上层煤粉燃烧器上方,前后墙各布置一层燃尽风喷口,每层布置6只,共12只燃尽风口。

燃烧系统设计采用分级燃烧和浓淡燃烧等技术,可有效降低NOX排放量和降低锅炉最低稳燃负荷。

设计煤种为鹤壁贫煤,校核煤种鹤壁贫煤。

制粉系统采用冷一次风正压直吹式系统,由两台一次风机(动叶可调轴流式)提供介质流动动力,磨煤机采用北京电力设备总厂的ZGM113G 型中速辊式磨煤机,动态旋转分离器;另配有两台密封风机为系统提供密封风。

风烟系统配有两台动叶调节轴流式送风机、两台静叶调节轴流式吸风机。

降低飞灰含碳量措施

降低飞灰含碳量措施

北锅“circofluid”型CFB锅炉降低飞灰可燃物措施一、简述北锅BG—75/-M1型CFB锅炉为中温分离、半塔式炉膛结构,燃烧室(密相区+稀相区)净高度约16m,炉膛内烟气流速为~4.5m/s,细灰粒被烟气夹带一次通过炉膛燃烧时间约4s。

采用低倍率循环燃烧,旋风分离效率达80%左右,床温安全易控,锅炉负荷调节方便、迅速是国内75t/h循环流化床锅炉优势最大的炉型。

二、飞灰含碳量高的原因分析1、该厂燃用煤种(无烟煤+烟煤)发热量5000大卡/公斤,挥发分10~15%,属低挥发分难燃煤,对于中温分离的CFB锅炉不太适合。

燃烧过程中,飞灰粒径小于40μm(分离器当量直径)的细灰,被烟气一次带走,燃烧时间只有4秒,这样,对于结构较密实的无烟煤,挥发分不易析出,挥发分析出时间较长,且在400℃以上才能析出,周围的氧气也不易进入内部,着火点也高,这些都是不利于燃烬的因素。

2、炉膛结构未按无烟煤设计,主要反映在浓相区出口的炉膛截面未能扩大,不能降低烟气流速来增加细灰在炉内停留时间。

3、燃用无烟煤相对于褐煤、烟煤需要更大的一次风量,来提高密相区出口的过剩空气系数。

该炉如大幅增加一次风量,对密相区燃烧虽有利,但增大一次风量又会使烟气流速提高,缩短细灰在炉内停留时间不利于飞回的燃烬,这是一对矛盾的问题,对于一台成型的锅炉是很难解决的。

4、该厂锅炉运行中一、二、三次风量的配比、烟气含氧量、床温、床位、入炉煤粒度及自动投入率未能十分尽美,需优化调整。

三、降低飞灰含碳量的措施1、运行调整措施⏹一次风量的调整:一次风量是保证床料流化与燃烧,可控制在36000~41000m3/h,一次风量过小会使密相区燃烧份额减小,造成炉渣可燃物升高。

一次风量过大会使飞灰夹带量增大,烟气流速增大,造成飞灰可燃物升高。

两方面兼顾考虑可维持在38000~40000 m3/h。

⏹二、三次风量的调整:二、三次风量调整原则是保证密相区出口及稀相区燃烧所需充足氧量,同时还要维持稀相区有较高的温度。

电厂锅炉飞灰含碳量偏高

电厂锅炉飞灰含碳量偏高
煤粉在炉内燃烧的三个阶段
着火
燃烧
燃尽
着火 燃烧 燃尽
加热一次风和煤粉 二次风混入,煤粉和氧气剧烈反应 碳粒燃烧阶段
配风方式对飞灰含碳的影响
二次风
煤粉
着火
燃烧
燃尽
烟气
一次风温
一次风速
1、一次风温高,煤粉气流达到着火点所需的热量减少,着火提前; 2、一次风速低,易造成风管堵塞,有可能烧坏燃烧器; 3、二次风混入较早,延迟着火时间;较晚则缺氧燃烧;
选取最佳的过量空气系数
D
加强尾部烟道吹灰
加强空气预热器吹灰,防 止因积灰造成的传热效率 下降,从而提高一、二次 风温度
调整一次风速,防止速度过 快着火点推迟
谢谢大家
燃煤品质对飞灰含碳的影响
煤挥发分
挥发分越低
着火温度
升高
增加 下降
着火所需时间
燃烧稳定性
火焰中心上移 排烟热损失增加 飞灰含碳量增大
氧量
煤粉细度

加快燃烧速度
增长燃烧时间
降低飞灰含碳主要措施
A
合理配风
强化空气和煤粉良好扰动和 混合
B
控制合适的煤粉细度
C
提供充足氧气
飞灰含碳偏高原因分析
研究飞灰含碳的重要性
反映锅炉燃烧效率和粉煤灰质量重要指标 对锅炉尾部受热面有冲刷磨损作用 易发生结焦和尾部烟道再燃烧
影响飞灰含碳量的主要因素
烟气氧量
煤粉细度
配风方式
燃煤品质
燃烧时间
烟气氧量对飞灰含碳的影响
煤粉快速燃烧
烟气对流加热
高温火焰辐射
烟气氧量对飞灰含碳的影响
由于缺氧,发生不完全反应,造成不完全燃烧,因此,必须保证一定 的过量空气系数

飞灰含碳量的影响因素

飞灰含碳量的影响因素

飞灰含碳量的影响因素概括起来主要有三方面:燃料特性、锅炉结构及其附属设备、锅炉的运行燃料特性主要包括煤的热值、挥发分含量及煤的粒度。

一燃料特性1. 当煤质变化时,床温床压将出现大幅波动,虽然可以通过调整配风进行调整,但燃烧工况的恶化必然导致飞灰含碳量的增加。

对于挥发分含量较高、结构比较松散的烟煤、褐煤和油页岩等燃料,燃烧速率较高,飞灰含碳量较小。

对于挥发分含量低,结构密实的无烟煤、石煤等相同条件下飞灰含碳量要高出很多煤种对飞灰含碳量的影响很大,对于挥发分含量较高、结构比较松软的烟煤,褐煤和油叶岩等燃料,当煤进人流化床受到热解时,首先析出挥发分,煤粒变成多孔的松散结构,周围的氧向粒子内部扩散和燃烧产物向外扩散的阻力小,可以提高燃烧速率,降低飞灰含碳量。

对于挥发分含量少,结构密实的无烟煤、石煤等,当煤粒表面燃烧后形成一层坚硬的灰壳,阻碍燃烧产物向外扩散和氧气向内扩散,燃煤燃层困难,灰壳所包覆的碳核中。

一般而言,飞灰含碳量随煤种干燥基挥发分含量增加而减少,但也要注意到挥发分高、含灰量低的烟煤的煤由于剧烈的一次破碎和二次破碎产生大量的细焦碳颗粒,从而增加飞灰含碳量。

而对于含灰量高、含碳量低的煤颗粒增加,其燃烧所产生的飞灰颗粒的含碳量降低。

经研究如果以干燥无灰基挥发分除以发热量所得的数值作为一个煤质指标,会发现飞灰含碳量和煤质之间明显的相关关系。

2.煤的粒径煤的颗粒粒径影响流化质量和稀、浓相区的颗粒浓度。

在一定的运行风速和给料量下,床料的粒度决定了颗粒在床内的行为。

当煤的颗粒粒径增大后,稀相区颗粒浓度减小,而浓相区颗粒浓度增加。

研究表明,颗粒浓度越高,颗粒的扰动也越大,相互间的碰撞的机会也越多,传热系数就大。

由此可知,当燃煤粒径增大后,燃烧室上部燃烧份额偏少,燃烧温度偏低,燃烧效果变差和受热面发挥不了应有的吸热作用,会造成过热蒸汽温度偏低,蒸汽参数得不到保证。

煤的颗粒粒径增加对蒸发量的影响主要表现在其循环颗粒量的减少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞灰含碳量高原因及调整
1. 煤质特性参数的影响
(1) 燃煤挥发分的影响.当挥发分增大时,煤粉着火温度降低,着火迅速,
燃烧完全,使飞灰含碳量低;反之挥发分降低, 造成飞灰含碳量高升高.
(2)燃煤水分的影响.燃煤水分增大时,着火热会随之增大,煤粉着火推
迟,火焰中心上栘,使得炉膛整体温度水平下降,煤粉的燃尽程度降低, 造成飞灰含碳量高.
(3)燃煤灰分的影响.当燃煤灰分增加时,由于加热灰分的热量增加和
灰分会影响碳和氧的接触,造成火焰温度随之下降,煤粉的燃尽程度降低, 造成飞灰含碳量高.
(4)煤粉细度的影响.煤粉细度直接影响飞灰可燃物的变化,煤粉越细,
越均匀,则与空气接触的单位质量的煤粉面积与体积增大,燃烧就越充分,能充分燃尽,可以使飞灰含碳量降低.
2. 运行方面的影响
(1)过量空气系数.当炉膛过量空气系数减少时,煤粉颗粒接触到的氧
减少,碳的氧化速度减慢,煤粉燃尽程度降低,煤粉发生不完全燃烧,造成飞灰含碳量高.
(2)机组负荷的影响.当锅炉负荷增加时,由于气流扰动加强,风煤混合
更加均匀,燃烧更充分,但当锅炉在75%~80%额定负荷以上时,增加负荷会使炉膛的容积热负荷增加,缩短煤粉在炉内停留时间,使燃烧不充分.
(3)风煤配比的影响.一次风过高时将使煤粉着火推迟,影响锅炉燃烧
的稳定性且使经济性降低;一次风量过低,不仅易造成制粉系统出力不足,氧量不足,还使煤粉挥发分燃烧不充分,导致飞灰含碳量高,此外,还有造成粉管堵的危险.
(4)磨出口各一次煤粉管压力,速度及煤粉浓度不均匀性的影响.若同
一台磨出口一次煤粉管静压、速度及煤粉浓度不同,将造成炉内火焰充满程度不好,火焰中心不集中,火焰可能会发生偏斜、贴壁等情况,造成炉内温度场分布不均匀,理论燃烧温度降低,炉内火焰充满度不好,局部燃烧不完全,使飞灰含碳量增加。

若一次风速过高将导致煤粉着火推迟,火焰中心上移,燃烧不充分,使飞灰含碳量增加。

同样二次风分配不匀也将造成燃烧的不流通分,使飞灰含碳量增加。

如何降低飞灰含碳量:通过提高磨出口风粉混合物的温度,适当降低一次风压,通过采用对冲燃烧的方式,合理调节各层磨的出力,保持合理的磨的运行方式及二次风配风比例,适当增加分离器转速,提高煤粉细度。

对于我厂建议:
(1)可适当提高下层磨的一次风速,相应的就提高了一次风的携带能力。

(2)调整风量,提高二次风压,增加氧量。

改变二次风配比,采取上小,下大配风方式,增加下层二次风刚性,增加下层二
次风的托粉能力。

(3)降低下层给煤机转速:在能够保持燃烧工况相对稳定的前提下,减少下层给煤机给煤量,降低下层一次风煤粉浓度,以
进一步相对提高下层二次风的托粉能力。

(4)改变煤粉细度,适当提高分离器转速。

(5)由于我厂采用的是动态分离器导致磨煤机出口一次风管带煤粉能力不同,造成炉膛内一部分煤粉很多,一部分煤粉很
少,煤粉多的不能燃烧完全,造成飞灰含碳量高。

建议:采
用动态分离器中速磨的电厂与不采用动态分离器中速磨的
电厂比较一下飞灰含碳量,是不是采用动态分离器中速磨的
电厂的飞灰含碳量普遍高?
(6)影响飞灰含碳量原因有二次风。

目前各角的二次风采用高位布置,由于沿途气流气压下降,到最低层时气压已经很低。

即使底层二次风门全开,也难以保证风速,无法托住底层煤
粉,因此在有条件的情况下,将各角二次风箱向下延伸到底
层二层风处,采用由下向上的逐步分流,以保证二次风速。

(7)下层A燃烧器没有浓淡分离器!建议:煤质好的时候,先测飞灰含碳量,停A磨后,再测飞灰含碳量,观察是不是A磨的原
因.。

相关文档
最新文档