年产11万吨聚丙烯合成工艺设计解析
年产10万吨聚丙烯的工艺设计
年产10万吨聚丙烯的工艺设计摘要聚丙烯之所以是各种聚丙烯烃材料中发展最快的一种,关键在于其催化剂技术的飞速发展。
本设计中就详细介绍了聚丙烯随催化剂的发展而发展的情况。
聚丙烯是丙烯单体聚合而形成的高分子聚合物,是一种通用合成树脂。
它作为一种高分子塑料,在现代化工生产中占有重要的地位,是五大工程塑料之一。
本设计是以中原石化的S-PP工艺为设计基础,设定年产量为两万吨,然后进行物料衡算、热量衡算、设备选型等过程,最终完成的一份比较完整的设计说明书。
另外聚丙烯来源丰富,价格便宜,易于加工成型,产品综合性能优良,因此被广泛地应用于化工、化纤、轻工、家电、建筑、包装、农业、国防、交通运输、民用塑料制品等各个领域,在聚烯烃树脂中,是仅次于聚氯乙烯、聚乙烯之后的第三大通用塑料。
目录前言 (1)第1章工艺流程确定 (13)§1.1催化剂的配置和计量 (13)§1.2丙烯预精制和丙烯保安精制及氢气压缩 (15)§1.3 预聚合与液相本体聚合 (17)§1.4 聚合物闪蒸和脱气 (18)§1.5 聚合物的汽蒸和干燥 (19)§1.6 生产原材料的规格 (20)第2章物料衡算 (26)§2.1计算基础 (26)§2.1.1设计条件 (26)§2.1.2丙烯进料量 (27)§2.1.3催化剂用量 (27)§2.1.4氢气用量 (28)§2.2原材料消耗定额 (28)§2.3主要设备物料衡算 (29)§2.3.1 CO汽提塔T701物料衡算 (29)§2.3.2预聚合反应器R200物料衡算 (30)§2.3.3聚合反应器R201物料衡算 (31)§2.3.4闪蒸罐D301物料衡算 (32)§2.3.5汽蒸罐D501物料衡算 (34)§2.3.6干燥器D502物料衡算 (35)§2.3.7挤压造粒单元物料衡算 (36)§2.3.8总物料平衡表 (37)第3章热量衡算 (37)§3.1主要设备热量衡算 (37)§3.1.1预聚合反应器R200热量衡算 (37)§3.1.2聚合反应器R201热量衡算 (41)§3.1.3闪蒸罐D301热量衡算 (43)§3.1.4汽蒸罐D501热量衡算 (46)§3.1.5干燥器D502热量衡算 (49)§3.1.6总热量平衡表 (52)第4章设备选型 (52)§4.1主要设备选型 (52)§4.1.1预聚合反应器R200 (52)§4.1.2聚合反应器R201 (53)§4.1.3汽蒸罐D501 (54)§4.1.4干燥器D502 (60)第5章聚丙烯装置的安全生产 (63)§5.1静电的危害与防范 (63)§5.1.1静电的危害 (63)§5.1.2静电的防范措施 (64)§5.2其他安全措施 (64)第6章“三废”处理与环境保护 (65)§6.1废水 (66)§6.2废气 (66)§6.3废渣 (66)参考文献 (66)致谢 (68)前言聚丙烯(Polypropylene,常缩写为PP)是丙烯(Proplylene,缩写为PR)单体聚合而形成的高分子聚合物,是一种通用合成树脂(或通用合成塑料)。
聚丙烯主要的气相法生产工艺简介
聚丙烯主要的气相法生产工艺简介第四代聚丙烯生产工艺主要包括上图所示的二个大类,在这里着重介绍一下气相法工艺。
气相法聚丙烯工艺的研究和开发始于20世纪60年代,1967年BASF公司在Ludwigshafen建成一套采用立式搅拌床反应器的气相聚丙烯工艺中试装置。
1969年BASF和Shell的合资ROW公司在德国Wesseling采用立式搅拌床反应器建成世界上第一套万吨/年气相聚丙烯工业装置,命名为Novolen工艺。
20世纪70年代,美国Amoco公司开发出采用接近活塞流的卧式搅拌床气相反应器的气相法PP生产工艺。
80年代初期,UCC公司将其成熟的气相流化床Unipol聚乙烯工艺用于聚丙烯生产中,推出了Unipol气相聚丙烯工艺。
日本的Sumitomo公司也于同期开发出采用气相流化床的气相法工艺。
目前,世界上气相法PP生产工艺主要有BP公司的Innovene工艺、Chisso工艺、联碳公司的Unipol工艺、BASF公司的Novolen工艺以及住友化学公司的Sumitomo工艺等。
Innovene工艺Innovene工艺又名BP-Amoco工艺。
工艺的主要特点是采用独特的接近活塞流的卧式搅拌床反应器。
用这种独特的反应器,因颗粒停留时间分布范围很窄,可以生产刚性和抗冲击性非常好的共聚物产品。
这种接近平推流的反应器可以避免催化剂短路。
当有乙烯存在时,可以生成大颗粒共聚物,而不是在均聚物颗粒内生成细粉,这些细粉将降低共聚物的低温冲击强度,并形成不必要的胶状体。
因此该工艺很窄的反应停留时间分布可以实现用多个全混反应釜均聚反应器才能生产的高抗冲共聚物的要求。
另外,由于这种独特的反应器设计,该工艺的产品过渡时间很短,理论上产品的过度时间要比连续搅拌反应器或流化床反应器短2/3,因而产品切换容易,过渡产品很少。
Innovene工艺采用丙烯闪蒸的方式撤热。
液体丙烯以一种能保持反应器床层干燥的方式从各个进料点喷入反应器内,液体丙烯汽化后,其单体的分压小于它的露点压力,并足以撤走反应热。
年产10万吨丙烯酸工艺设计资料
1引言1.1 概述丙烯酸是一种重要的有机化工原料,主要用于生产丙烯酸酯类,还可用于生产高吸水性树脂、助洗涤剂和水处理剂等,广泛应用于涂料、化纤、纺织、皮革、塑料、粘合剂、石油开采等各个领域[1]。
20世纪20年代末,化学家Otto Rohm从2-氯乙醇制羟基丙腈转而生产丙烯酸,完成了对丙烯酸工业化生产工艺的研究[2]。
1939年,德国化学家Reppe发明了以乙炔、一氧化碳和水为原料,用羰基镍为催化剂合成出丙烯酸。
1969年,美国联碳公司从英国BP公司引进丙烯直接氧化经丙烯醛生产丙烯酸技术,并建立工业化生产装置。
经过多年不断改进,尤其是对丙烯氧化催化剂的改进,该法已成为制造丙烯酸的主导生产方法[3]。
1.2 丙烯酸生产工艺技术丙烯酸在20世纪30年代实现工业化生产,其生产方法经历了氰乙醇法、雷普(Reppe)法、烯酮法、丙烯腈水解法和丙烯氧化法[4,5]。
1.2.1 氰乙醇法氰乙醇法是最早工业化生产丙烯酸及其酯的方法。
德国和美国分别在1927年和1931年用此方法建成了工业化装置。
由于反应过程会生成各种聚合物,因此丙烯酸收率较低,仅为60~70%,且氰化物剧毒,严重污染环境,故采用此法的生产装置早在50年代就已关闭。
1.2.2 Reppe法20世纪30年代,德国的Walter Reppe博士发现利用自己发明的Reppe反应可以直接从乙炔生产丙烯酸和丙烯酸酯类。
在60年代以前,用Reppe法或改良Reppe 法生产丙烯酸及其酯的工艺曾占统治地位,随着石油化工技术的开发和环境保护要求的加强,到1976年改良Reppe法的装置已全部停产。
1.2.3 烯酮法以乙酸或丙酮为原料,磷酸三乙酯为催化剂,在700℃时裂解生成乙烯酮,然后与无水甲醛在AlCl3或BF3催化剂存在下,在25℃进行气相反应生成β-丙内酯,再与热的磷酸接触异构化生成丙烯酸。
乙烯酮法产品纯度高,收率也高,副产物和第 1 页共35页。
聚丙烯主要的气相法生产工艺简介
聚丙烯主要的气相法生产工艺简介第四代聚丙烯生产工艺主要包括上图所示的二个大类,在这里着重介绍一下气相法工艺。
气相法聚丙烯工艺的研究和开发始于20世纪60年代,1967年BASF公司在Ludwigshafen建成一套采用立式搅拌床反响器的气相聚丙烯工艺中试装置。
1969年BASF和Shell的合资ROW公司在德国Wesseling采用立式搅拌床反响器建成世界上第一套万吨/年气相聚丙烯工业装置,命名为Novolen工艺。
20世纪70年代,美国Amoco公司开发出采用接近活塞流的卧式搅拌床气相反响器的气相法PP生产工艺。
80年代初期,UCC公司将其成熟的气相流化床Unipol聚乙烯工艺用于聚丙烯生产中,推出了Unipol气相聚丙烯工艺。
日本的Sumitomo公司也于同期开发出采用气相流化床的气相法工艺。
目前,世界上气相法PP生产工艺主要有BP公司的Innovene工艺、Chisso工艺、联碳公司的Unipol工艺、BASF公司的Novolen工艺以及住友化学公司的Sumitomo工艺等。
Innovene工艺Innovene工艺又名BP-Amoco工艺。
工艺的主要特点是采用独特的接近活塞流的卧式搅拌床反响器。
用这种独特的反响器,因颗粒停留时间分布范围很窄,可以生产刚性和抗冲击性非常好的共聚物产品。
这种接近平推流的反响器可以防止催化剂短路。
当有乙烯存在时,可以生成大颗粒共聚物,而不是在均聚物颗粒内生成细粉,这些细粉将降低共聚物的低温冲击强度,并形成不必要的胶状体。
因此该工艺很窄的反响停留时间分布可以实现用多个全混反响釜均聚反响器才能生产的高抗冲共聚物的要求。
另外,由于这种独特的反响器设计,该工艺的产品过渡时间很短,理论上产品的过度时间要比连续搅拌反响器或流化床反响器短2/3,因而产品切换容易,过渡产品很少。
Innovene工艺采用丙烯闪蒸的方式撤热。
液体丙烯以一种能保持反响器床层枯燥的方式从各个进料点喷入反响器内,液体丙烯汽化后,其单体的分压小于它的露点压力,并足以撤走反响热。
10万吨聚丙烯装置概况
10万吨聚丙烯装置概况1.1 装置简介宁夏石化公司10万吨/年聚丙烯装置采用意大利Basell公司的Spheripol-Ⅱ代聚丙烯工艺技术,设计生产能力为10万吨/年聚丙烯,年操作时间8000小时,可生产均聚物37个牌号。
该项目的技术由中国寰球工程公司提供,操作弹性60%-110%。
1.1.1 工艺特点本装置采用国产化双环管工艺技术,向B ASELL 购买专利许可。
它与单环管工艺技术相比较,有了较大的改进与提高。
该工艺采用第四代催化剂体系,通过应用双环管结构的聚合反应器,可生产一些新牌号的产品。
提高预聚合和聚合反应器的设计压力等级,使新牌号的产品性能更好,老牌号的产品性能得以改进,也更利于对聚合物形态、等规度和分子量的控制。
(1)催化剂ZN-GF2A:适用于生产均聚、无规共聚产品ZN-M1:适用于生产均聚物、无规共聚物和三元共聚物特殊催化剂:适用于高刚性均聚产品国产N型、CS-1 型、CS-2 型催化剂(2)双环管工艺特点-使用第四代催化剂体系,可生产双峰聚丙烯和高刚性、高结晶性、高净度的产品。
-提高预聚合和聚合反应的压力等级,可以使环管反应器中的氢气含量增高,扩大了MFR 的范围,提高了产品强度,改善产品性能。
-以双环管反应器构型为基础,可以生产宽分子量分布的“双峰”产品。
也可以生产窄分子量分布的产品,利用环管反应器和液相本体聚合,可使传热控制得更好,反应更均匀。
如果将来使用茂金属催化剂,也不需要对现有装置做重大改造。
-停留时间减少,更好地利用了反应体积。
-改进了聚合物的高压和低压脱气、汽蒸、干燥系统和事故排放单元;提高了效率和操作灵活性。
-环管反应器结构简单,材质可用低温碳钢。
带夹套的反应器直腿部分可作为反应器框架的支柱,降低了投资。
采用冷却夹套撤出反应热,单位体积的传热面积大,环管反应器的总体传热系数高达1600w/m2•℃。
环管反应器内的聚合物浆液用轴流泵高速循环,流体流速达7m/s,使聚合物浆液混合均匀,催化剂体系分布均匀,聚合反应条件容易控制而且可以控制得很精确,产品质量均一,不容易产生热点,不容易粘壁,轴流泵的能耗较低。
毕业设计:年产10万吨聚丙烯聚合工段工艺设计
毕业设计:年产10万吨聚丙烯聚合工段工艺设计1. 引言聚丙烯是一种广泛应用于塑料制品、纺织品、药品、包装材料等领域的重要聚合物。
随着市场需求的增加,对聚丙烯的产量也有着不断增长的要求。
本文旨在设计一种年产10万吨聚丙烯的聚合工段工艺,以满足市场对聚丙烯的需求。
2. 聚丙烯聚合工段工艺概述聚丙烯的聚合工艺一般分为以下几个工段:催化剂制备、聚合反应、分离纯化和产品制造。
在年产10万吨的规模下,这些工段需要设计成高效、稳定和可持续的工艺流程。
2.1 催化剂制备催化剂是聚合反应的核心组成部分,直接影响聚丙烯产物的质量和产量。
催化剂应采用高效、稳定和可再生的催化剂,例如Ziegler-Natta催化剂。
本文设计的工艺中,催化剂制备工段将包括催化剂激活、载体处理、催化剂添加等步骤。
2.2 聚合反应聚合反应是将丙烯单体转化为聚丙烯的关键步骤。
聚合反应可采用不同的反应方式,如气相聚合、溶液聚合或乳液聚合。
在设计年产10万吨的聚合工段工艺时,应选择适合规模化生产的聚合反应方式。
本文中,将采用气相聚合的工艺流程,并详细设计反应器的结构和工艺参数。
2.3 分离纯化在聚合反应后,产生的混合物中可能含有未反应的单体、溶剂、催化剂和杂质等。
分离纯化工段将对产物进行纯化处理,以获得高纯度的聚丙烯产品。
分离纯化的工艺流程包括溶剂回收、蒸馏、结晶等步骤。
本文设计的工艺将采用先蒸馏再结晶的方式,以实现高效的分离纯化效果。
2.4 产品制造经过分离纯化后,得到的聚丙烯产品可以通过注塑、挤出、吹塑等方式进行塑料制品的生产。
产品制造工段将根据市场需求和产品质量要求,设计相应的生产线和工艺参数。
本文将重点考虑注塑和挤出两种生产方式,并给出相应的工艺设计和参数。
3. 工艺参数和设备选择设计年产10万吨聚丙烯聚合工段的工艺时,需要根据规模、产品质量要求和经济效益等因素,确定相应的工艺参数和设备选择。
3.1 工艺参数对于聚合反应工段,工艺参数需要考虑反应温度、反应压力、催化剂用量等因素。
年产10万吨聚丙烯聚合工段工艺设计 --开题报告
材料科学与工程学院毕业设计开题报告学生姓名班级/ 学号专业化学建材设计题目年产10万吨聚丙烯聚合工段工艺设计指导教师职称2008年3 月6日1 文献综述1.1 聚丙烯的概述聚丙烯(Polypropylene,简称PP)是丙烯单体聚合而形成的高分子聚合物,是一种通用合成树脂(或通用合成塑料)。
聚丙烯无臭无毒。
由于结构规整而高度结晶化,故熔点高达167℃左右。
聚丙烯制品耐热性好,制品可用蒸汽消毒是其突出优点。
结晶度高达95%以上,分子量在8~15万之间,密度0.909g/cm3时,是最轻的通用塑料。
耐腐蚀,抗张强度30MPa,强度、刚性和透明性都比聚乙烯好,其制品的耐弯曲疲劳性优异,能经受几十万次弯折而不损坏,加工性能好,加工成型时收缩率低。
缺点是耐低温冲击性差,较易老化,但可分别通过改性和添加抗氧剂予以克服。
因为聚丙烯是弱极性高聚物,所以热黏合性和印刷也较差。
聚丙烯可通过填充、增强、共混、共聚、交联来改性。
如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、韵母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲性;添加弹性体和橡胶等可提高抗冲击性能、透明性等。
1.2 聚丙烯的结构聚丙烯的的结构式是,是由丙烯单体经自由基聚合而成的聚合物。
根据支链原子的位置,聚丙烯可以分为无规立构,等规立构,间规立构。
目前应用的主要为等规聚丙烯,用量占90%以上。
等规立构的聚丙烯支链原子分布在主链的同一侧。
见图一聚丙烯分类图片一间规立构的聚丙烯支链原子间隔对称分布在主链两侧。
见图二聚丙烯分类图二无规立构的聚丙烯的支链原子无规则分布于主链的两侧。
见图三聚丙烯分类图三1.3 聚丙烯的性质1.3.1物理性质可塑性好。
PP是一种典型的热塑性塑料,它受热时易熔化,冷却时固化成型,且这一过程可以多次重复进行。
由于这一特性,使聚丙烯加工成型十分方便,可以很容易用挤出、注塑、吹塑等方法直接加工成型。
年产万吨聚丙烯生产工艺设计
年产万吨聚丙烯生产工艺设计
简介
本文档旨在设计一种年产万吨聚丙烯的生产工艺。
通过合理的工艺设计,提高生产效率和产品质量,满足市场需求。
工艺流程
1. 原料准备:准备聚丙烯生产所需的原料,包括聚丙烯颗粒、催化剂、稳定剂等。
2. 加料混合:将聚丙烯颗粒、催化剂和稳定剂按照一定比例加入混合机中进行充分混合。
3. 熔融与成型:将混合后的原料通过加热装置进行熔融,然后通过成型机构将熔融物成型为聚丙烯制品。
4. 冷却固化:将成型后的聚丙烯制品进行冷却固化,使其达到所需的物理性能。
5. 切割和包装:对固化后的聚丙烯制品进行切割和包装,方便运输和销售。
优化策略
为了提高生产效率和产品质量,可以采取以下优化策略:
1. 优化原料的选择:选择高质量的聚丙烯颗粒和催化剂,以提高产品的性能和稳定性。
2. 优化设备设计:设计高效的加热装置和成型机构,以缩短生产周期和提高生产能力。
3. 优化工艺参数:通过调整熔融温度、冷却时间等工艺参数,达到更好的熔融和固化效果。
4. 强化质量控制:建立严格的质量控制体系,对原料和成品进行全面检测,确保产品符合标准。
注意事项
1. 在设计和优化工艺时,务必遵循相关的法律法规,确保生产过程环境友好、安全。
2. 请根据实际情况进行工艺设计和优化,确保方案的可行性和经济性。
3. 本文档所述内容仅供参考,具体实施时应结合实际情况进行调整和改进。
以上是对年产万吨聚丙烯生产工艺设计的简要介绍,希望能对您有所帮助。
年产10万吨聚丙烯聚合工段工艺设计—本科毕业设计论文[管理资料]
设计总说明聚丙烯是丙烯单体聚合而形成的高分子聚合物。
它作为一种高分子塑料,在现代工业生产中占有重要的地位,是五大通用合成树脂(聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯和ABS树脂)之一。
聚丙烯性能优异,用途广泛,近年来国内的产量增长也很快,是生产发展速度最快的塑料品种之一。
本文主要概述了国内聚丙烯工业的研究发展,包括聚丙烯市场的供求情况,聚丙烯的分类及其生产工艺的简单介绍,从中选定Spheripol工艺作为年产10万吨聚丙烯生产工艺设计项目的参考。
介绍了Spheripol工艺的工艺流程,然后,用收集的工艺参数科学地进行工艺物料衡算、能量衡算、主要生产设备选型。
此外,制定了生产安全和环境保护的规条,绘制了生产工艺流程图。
通过本设计,可以对环管法聚丙烯合成车间工艺及聚合工段设计有一个初步的认识和了解,了解到环管法聚丙烯合成的基本流程。
关键词:聚丙烯;Spheripol工艺;设计;衡算;选型目录1 综述 (6) (6)聚丙烯基本性能 (7) (8)国内聚丙烯产业存在的主要问题 (12)国内聚丙烯产业未来发展方向 (13)2 工程设计条件 (14) (14)设计任务 (15)3 生产工艺的选择 (15) (15) (16) (16) (17) (18) (20)工艺原理 (22)Spheripol工艺流程草图 (23) (24)聚合区工艺 (24)造粒区 (28)循环水场 (29)催化剂的选定 (29)4 物料衡算 (30)设计条件 (31)全套装置工艺参数 (31)丙烯进料量 (31)催化剂用量 (32)氢气用量 (32) (32)小环管的物料衡算 (33)大环管反应器的物料衡算 (35)闪蒸罐的物料衡算 (36)5 热量衡算 (38)计算依据 (39)小环管的热量衡算 (40)大环管反应器的热量衡算 (42)6 设备选型 (45) (45)小环管的选型 (46)小环管的工艺参数 (46)主要作用 (46)大环管反应器的选型 (47) (47)特点 (47)选型及结构 (48) (49) (51) (52)7 工厂选址和总平面布置 (55) (55) (56) (58)厂房布局 (58)8 生产安全与环境保护 (59)生产安全 (59) (60)环境保护 (61) (62) (62) (63)总结 (65)致谢 (66)参考文献 (67)1 综述聚丙烯俗称PP料,是由丙烯在催化剂的作用下聚合而成的一种热塑性塑料。
聚丙烯生产工艺设计
聚丙烯生产工艺设计聚丙烯是一种非常重要的合成树脂,在工业上有着广泛的应用。
下面是一个关于聚丙烯生产工艺设计的简要介绍。
聚丙烯的生产主要包括以下几个步骤:原料准备、聚合反应、固化和后处理。
1. 原料准备:为了生产聚丙烯,需要准备丙烯单体、催化剂和溶剂。
丙烯单体是主要的原料,催化剂用于促进聚合反应的进行,溶剂用于控制反应的温度和稠度。
2. 聚合反应:聚合反应是将丙烯单体转化为聚丙烯的过程。
这一步通常使用连续流动反应器进行。
首先,丙烯单体和溶剂被混合并进入反应器中。
然后,催化剂被加入混合物中,触发聚合反应。
在反应过程中,温度和压力被控制在适当的范围内,以确保聚合反应能够快速且高效的进行。
聚合反应通常需要一定的时间来完成。
3. 固化:在聚合反应结束后,产生的聚丙烯溶液需要被固化成固体。
固化的方法通常是通过去除溶剂的方式进行。
这可以通过加热和蒸发溶剂的方法来实现。
在固化过程中,还可以添加一些助剂,如抗氧化剂和防腐剂,以提高聚丙烯的性能。
4. 后处理:在固化之后,得到的固体聚丙烯需要进行一系列后处理步骤,以达到所需的要求。
这些后处理步骤可以包括研磨、干燥、造粒等。
这些步骤的目的是进一步改善聚丙烯的性能和质量。
最后,聚丙烯产品可以被包装和存储,以便于销售和使用。
以上是关于聚丙烯生产工艺设计的简要介绍。
当然,在实际生产过程中,还需要考虑工艺参数的选择、设备的选型以及操作条件的优化等方面的问题。
这些问题需要根据具体情况来进行详细的研究和分析。
但总体来说,上述步骤可以提供一个基本的框架,用于设计聚丙烯的生产工艺。
聚丙烯生产工艺流程设计与质量控制
聚丙烯生产工艺流程设计与质量控制一、引言聚丙烯(Polypropylene,PP)作为一种广泛应用于塑料制品和纺织品中的重要材料,其生产工艺流程设计和质量控制显得尤为重要。
本文将从原料选取、生产工艺设计、质量控制等方面探讨聚丙烯生产过程中的关键问题,以期提高生产效率和产品质量。
二、原料选取聚丙烯生产过程中的原料主要包括丙烯单体、催化剂和辅助添加剂。
在原料选取时,需要考虑原料的纯度、稳定性和可获得性。
丙烯单体应选择高纯度的产品,以确保聚合反应的质量稳定性。
催化剂的选择应综合考虑其活性、选择性和毒性,以避免副产物的生成和对环境的污染。
辅助添加剂如稳定剂、着色剂等应符合相关质量标准,并在生产过程中严格控制其添加量。
三、生产工艺设计1. 聚合反应聚合反应是聚丙烯生产的关键步骤,其工艺设计主要包括反应条件的确定、反应器的选择和控制方法的优化。
反应条件包括温度、压力和反应时间等,应根据原料的特性和聚合反应的需求进行合理的设定。
反应器的选择应考虑的因素包括反应规模、传热效率和搅拌性能等,在确保聚合反应的充分进行的同时,尽量减少副反应的发生。
控制方法的优化包括温度控制、催化剂添加控制等,通过实时监测和自动控制手段,提高产品的一致性和质量稳定性。
2. 后处理工艺聚丙烯聚合反应后,需要进行后处理工艺来提高聚合物的纯度和分子量分布的均匀性。
常用的后处理工艺包括溶剂抽提、结晶、干燥等。
溶剂抽提可以去除杂质和副产物,提高聚合物的纯度;结晶可以改善聚合物的结晶性能和力学性能;干燥可以去除聚合物中的水分,减少制品的缩水率。
在后处理工艺中,需要控制工艺参数,如溶剂的选择、结晶温度和干燥时间等,以确保产品质量的稳定和一致性。
四、质量控制聚丙烯生产中的质量控制涉及原料质量的检验、反应过程的监控和产品性能的测试。
对原料的检验包括丙烯单体的纯度、催化剂的活性和辅助添加剂的含量等方面,通过实验室测试和相关标准的执行来确保原料的质量。
反应过程中的监控主要包括温度、压力和反应物的消耗量等参数的实时检测,通过自动控制系统提供及时的反馈并及时调整反应条件。
年产10万吨丙烯分离工段工艺设计
本科毕业论文(设计)年产10万吨丙烯分离工段工艺设计姓名:指导教师:院系:化学化工学院专业:化学工程与工艺提交日期:2012年5月5日目录中文摘要 (1)外文摘要 (2)引言 (3)1.绪论 (3)1.1概述 (3)1.1.1简介 (3)1.1.2丙烯的性质 (3)1.1.3丙烯的用途 (3)1.2丙烯生产工艺选择及分离流程确定 (3)1.2.1生产工艺选择 (3)1.2.2分离流程确定 (4)1.3设计任务书 (5)2.工艺流程 (5)2.1工艺流程图 (5)2.2工艺流程简述 (6)3.物料衡算 (6)3.1设计依据 (6)3.2裂解气及各组分产量 (6)3.3各裂解产物的相对分子量 (7)3.4脱丙烷塔物料衡算 (7)3.5脱甲烷塔物料衡算 (10)3.6脱乙烷塔物料衡算 (12)3.7乙烯精馏塔物料衡算 (15)3.8丙烯精馏塔物料衡算 (16)4.热量衡算 (18)4.1乙烯精馏装置热量衡算 (18)4.2丙烯精馏装置热量衡算 (23)4.3脱甲烷精馏装置热量衡算 (26)4.4脱乙烷精馏装置热量衡算 (30)4.5脱丙烷精馏装置热量衡算 (33)5.设备选型 (37)5.1丙烯精馏塔 (37)5.1.1丙烯精馏塔操作压力及温度的确定 (37)5.1.2丙烯精馏塔密度、表面张力的计算 (39)5.1.3塔板数的确定 (42)5.1.4精馏塔主要尺寸计算 (44)5.1.5塔板流体力学验算 (50)5.1.6主要设备设计与选型 (53)5.1.7塔高的计算 (55)5.1.8浮阀塔设计一览表 (56)5.2换热器 (57)5.2.1试算和初选换热器规格 (57)5.2.2核算总传热系数 (58)6.生产安全及三废处理 (62)6.1生产安全 (62)6.2废气处理 (62)6.3废渣处理 (62)6.4废水处理 (62)结束语 (63)参考文献 (64)致谢 (65)附录 (66)年产10万吨丙烯分离工段工艺设计刘洋指导老师:崔秀云(黄山学院化学化工学院,黄山,安徽245041)摘要:本设计为年产10万吨丙烯分离工段工艺设计。
聚丙烯的生产工艺及行业发展趋势
1.4 Novolen聚丙烯工艺Novolen 聚丙烯工艺可以生产全范围的聚丙烯产品,采用PTK 催化剂,以液相丙烯为载体,通过特殊设计的设备加入到反应器中。
可生产融指(MFR)在0.2~100g/10min 之间的聚丙烯树脂,等规度高达90%~99%,且产品拉伸模量较高,Novolen 工艺两个反应器即可串联操作生产抗冲共聚物,也可并联操作生产均聚物和无规物[3]。
1.5 Unipol聚丙烯工艺Unipol 工艺采用气相流化床技术,其特点是流程简单,装置布置紧凑,所需设备不多,项目投资也相对较少。
另外,Unipol 工艺还可进行超冷凝态气相流化床工艺操作,反应器在体积不增加的情况下可大大提高生产能力,实验证明如果将反应器内液相的比例提高到45%,则反应器生产能力能提高到200%,两台串联反应器生产的抗冲共聚产品分子量分布很宽,抗冲共聚物乙烯含量最高可达21%,橡胶相含量为35%[4]。
2 国内聚丙烯生产现状2.1 聚丙烯产能2019年是中国聚丙烯产能投放大年,总产能达到2549万吨,较去年增长9%,聚丙烯投产装置达到113套,华北地区12套,占总产能8.4%;东北地区14套,占总产能11.26%;华东地区21套,占总产能22.73%;华南地区20套,占总产能18.20%;华中地区9套,占总产能4.55%;西南地区2套,占总产能2.35%;西北地区35套,占总产能33.46%。
由此可看出,我国聚丙烯生产装置西北地区较多,华东以及华南地区次之。
西北地区煤炭蕴藏丰富,导致煤制聚丙烯装置多建于此地区,2019年煤制聚丙烯总量达654万吨,占比26.16%。
由于东部沿海地区丙烷采购较为方便,丙烷脱氢(PDH)制聚丙烯装置多集中在华东地区,2019年以丙烷脱氢(PDH)为来源的聚丙烯产能占9%左右,发展速度较快。
石油制聚丙烯装置占总产能60%以上,主要分布在中石油、中石化等国有企业所在地,以及部分地方企业。
年产万吨聚丙烯合成工艺设计
一、工艺原理
聚丙烯合成工艺分为气相法和熔相法两种。
本次设计采用的是气相法,它的工艺原理主要是将甲烷与乙炔按一定比例在20-25MPa、650-750℃的
条件下在反应器内反应,产物主要为聚丙烯(PP)。
气相反应有利于形成
更高分子量的分子,具有较高的装置投资效率和更高的催化杂质释放特性。
二、反应材料与反应剂
聚丙烯合成反应采用的材料主要有:甲烷(CH4)、乙炔(C2H4),
反应剂可选择的催化剂有:活性炭(AC)、硫酸钆(GAS)等,活性炭是
最常用的反应剂。
三、反应器
本次设计采用的反应器主要有气液混合器、反应器本体,气液混合器
可选择的有螺旋管式混合器、旋转式混合器、流失式混合器等,本次采用
的是螺旋管式混合器,反应器本体主要为不锈钢管,采用热交换的方式加热;反应器采用正常压力反应,压力范围15-20MPa,温度范围620-750℃,反应时间2小时,反应完成后,料温降至室温。
四、分离蒸馏设备。
年产10万吨聚丙烯的工艺初步设计缩写稿
年产10万吨聚丙烯的工艺初步设计摘要:本设计使用气相法生产聚丙烯,从初步设计的角度对年产10万吨聚丙烯化工厂进行了全面设计,综合考虑了聚丙烯的市场前景,人力资源,物料资源,生产工艺等对工厂就进行了初步的规划。
主要完成了工段工艺计算,设备选型,并绘制了全厂平面布置图,聚丙烯工艺流程示意图,合成工段带控制点工艺流程图,合成工段物料流程图,合成车间的立面图和平面图。
设计结果达到了设计课题的要求,完成了聚丙烯的生产工厂的初步设计,进行了可行性论证,完成了物料,热量,设备的相关计算。
关键词:聚丙烯,设备计算,工厂设计,工艺流程图The chemical plant design for an annualt of 100,000 tons of polypropylene This design uses gas production of polypropylene,from the perspective of the preliminary design with an annual output of 100,000 tons of polypropylene a comprehensive chemical plant design,considered the polypropylene market prospects,human resources,materian resources,production technology such an the factory on a preliminary planning.Section completed a major technology,equipment selection,and the mapping of the entire plant layout plans,polypropylene process diagram,with control points of section process map,Section synthetic materials folw chart,and the elevation of the workshop the floor plan.The result of the design subject to the requirements,the completion ofa polypropylene production plant in the preliminary design for the feasibility study,completed the materials,energy,equipment and other relevant termsKEY WORDS:Polypropylene,equipment,plant design,process flow map1.1聚丙烯加工以及用途①加工:聚丙烯的成型加工性好,成型的方法很多,如注塑,吹塑,真空热成型,涂覆,旋转成型,熔接,机加工,电镀和发泡等,并可在金属表面喷涂。
年产万吨聚丙烯生产工艺设计
年产万吨聚丙烯生产工艺设计概述本文档旨在说明年产万吨聚丙烯生产工艺的设计方案。
在设计过程中,我们将考虑产品质量、生产效率以及环境保护等因素。
原料准备聚丙烯生产的主要原料为丙烯。
在生产过程中,我们需要确保原料的供应稳定,并对原料进行必要的预处理,以确保其质量符合要求。
聚合反应聚丙烯的生产主要通过聚合反应进行。
我们将采用热反应聚合的方法,具体步骤如下:1. 向反应釜中加入适量的催化剂和稳定剂。
2. 升温至适宜的反应温度,将丙烯逐渐加入反应釜中。
3. 控制反应时间和反应温度,使聚合反应进行到适当程度。
4. 进行后处理,如熔体造粒或颗粒干燥。
产品收集和处理在聚合反应完成后,我们将采用合适的方法收集产品,并进行必要的处理。
这包括:1. 对聚丙烯颗粒进行冷却,以便更好地控制产品质量。
2. 进行筛选和分级,以获取符合规格要求的产品。
3. 对副产品和废料进行处理和回收,以减少对环境的影响。
能源利用在生产过程中,我们将尽量提高能源利用效率,以减少能源消耗和生产成本。
具体做法包括:1. 优化反应釜的设计,减少能量损失。
2. 使用高效的换热设备,实现废热回收。
3. 采用能源管理系统,对能源使用情况进行监控和调节。
环境保护措施聚丙烯生产过程中会产生一定的环境污染物。
为减少对环境的影响,我们将采取以下措施:1. 安装废气处理设备,对产生的废气进行净化处理。
2. 设置废水处理系统,对废水进行处理和回收。
3. 合理处理废弃物,减少对土壤和水源的污染。
总结本文档详细介绍了年产万吨聚丙烯生产工艺的设计方案。
通过合理的原料准备、聚合反应、产品收集和处理,以及能源利用和环境保护措施,我们可以生产出高质量的聚丙烯产品,同时最大限度地减少对环境的影响。
年产10万吨丙烯精制塔的工艺设计2范文
年产10万吨丙烯精制塔的工艺设计一、说明书(1) 丙烯生产概况简述。
(略)(2) 设计方案的确定与论证。
(略)(3) 本设计的工艺流程图(看附件),及流程说明(略)。
(4)工艺设计计算结果汇总,附属设备一览表,工艺管线接管尺寸汇总表,设计结果评价。
(略)(5)工艺计算。
(6)设备计算及选型。
(略)(7)参考文献。
二、丙烯精制塔的工艺计算(1)物料衡算1. 关键组分按多组分精馏确定关键组分;挥发度高的丙烯作为轻关键组分在塔顶分出;挥发度低的丙烷作为重关键组分在塔底分出。
原始数据见表一表一原始数据操作压力 p=1.74MPa (表压)。
年生产能力t 丙烯2. 计算每小时塔顶产量,每年的操作时间按8000h 计算。
由题目给定/8000=12500kg /h3.计算塔釜组成设计比丙烷重的全部在塔底,比丙烷轻的全部在塔顶。
以100kg /h 进料为基准,进行物料衡算见表二。
表二 物料衡算F=D+W%2.15100125.0004.025.7125.0=⎪⎪⎩⎪⎪⎨⎧+=+-WD W D W 或 ⎩⎨⎧+=+=D W W D 100125.0996.075.92解得: W=8.116k g /h D=100-8.1161=91.8839 k g /h丙烷 x 83H WC =34.82125.0004.025.7004.005.7=+--WD D﹪丁烷x 104H WC =46.2125.0004.025.72.0=+-WD ﹪式中 F −原料液流量,k g /h;D —塔顶产品(馏出液)流量,k g /hW —塔底产品(釜残液)流量,k g /h x W—釜液中各组分的质量分数。
4. 将质量分数换算成摩尔分数按下式计算: x A =CC B B M x M x M x M x W W A WAAWA ++式中 x A ——液相中A 组分的摩尔质量;A M 、MB 、MC ——A 、B 、C 组分的摩尔质量,kg/mol; x WA x WB x WC ——液相中A 、B 、C 组分的质量分数。
年产10万吨丙烯酸工艺的设计说明
年产10万吨丙烯酸工艺的设计说明1引言1.1 概述丙烯酸是一种重要的有机化工原料,主要用于生产丙烯酸酯类,还可用于生产高吸水性树脂、助洗涤剂和水处理剂等,广泛应用于涂料、化纤、纺织、皮革、塑料、粘合剂、石油开采等各个领域[1]。
20世纪20年代末,化学家Otto Rohm从2-氯乙醇制羟基丙腈转而生产丙烯酸,完成了对丙烯酸工业化生产工艺的研究[2]。
1939年,德国化学家Reppe发明了以乙炔、一氧化碳和水为原料,用羰基镍为催化剂合成出丙烯酸。
1969年,美国联碳公司从英国BP公司引进丙烯直接氧化经丙烯醛生产丙烯酸技术,并建立工业化生产装置。
经过多年不断改进,尤其是对丙烯氧化催化剂的改进,该法已成为制造丙烯酸的主导生产方法[3]。
1.2 丙烯酸生产工艺技术丙烯酸在20世纪30年代实现工业化生产,其生产方法经历了氰乙醇法、雷普(Reppe)法、烯酮法、丙烯腈水解法和丙烯氧化法[4,5]。
1.2.1 氰乙醇法氰乙醇法是最早工业化生产丙烯酸及其酯的方法。
德国和美国分别在1927年和1931年用此方法建成了工业化装置。
由于反应过程会生成各种聚合物,因此丙烯酸收率较低,仅为60~70%,且氰化物剧毒,严重污染环境,故采用此法的生产装置早在50年代就已关闭。
1.2.2 Reppe法20世纪30年代,德国的Walter Reppe博士发现利用自己发明的Reppe反应可以直接从乙炔生产丙烯酸和丙烯酸酯类。
在60年代以前,用Reppe法或改良Reppe 法生产丙烯酸及其酯的工艺曾占统治地位,随着石油化工技术的开发和环境保护要求的加强,到1976年改良Reppe法的装置已全部停产。
1.2.3 烯酮法以乙酸或丙酮为原料,磷酸三乙酯为催化剂,在700℃时裂解生成乙烯酮,然后与无水甲醛在AlCl3或BF3催化剂存在下,在25℃进行气相反应生成β-丙酯,再与热的磷酸接触异构化生成丙烯酸。
乙烯酮法产品纯度高,收率也高,副产物和未反应的物料能循环使用,适用于连续生产,但原料乙酸或丙酮价格高且β-丙酯为致癌物质。
聚丙烯环管法设计解析
高分子合成工艺学课程设计题目:年产10万吨聚丙烯(环管法)运行方案的设计学院名称:化学化工学院指导教师:班级:高材 091 学号:学生姓名:2012年5月20日目录设计内容及要求 (2)1、聚丙烯合成工艺 (3)1.1绪论 (3)1.2多釜串联气液组合生产聚丙烯的仿真实验 (6)1.3环管法气液组合聚合工艺的介绍 (7)1.4多釜串联与环管法两种工艺的评价 (8)2、环管法生产聚丙烯运行方案的设计 (9)2.1密度控制范围 (9)2.2原料进料量 (11)2.3实验装置图 (12)2.4聚丙烯生产开车方案 (13)2.5装置正常操作 (15)2.6装置正常停工过程 (15)3、参考文献 (15)设计内容及要求:一、设计目的让学生所学的聚丙烯合成工艺理论与聚丙烯的生产实际相联系,使学生得到动手操作能力、故障处理能力、工艺协调及工艺管理能力的综合训练。
二、设计任务1、设计项目:聚丙烯生产运行方案的设计;2、设计工艺:环管法液相本体聚合工艺;3、设计产能:年产10万吨;4、设计范围:生产工艺的正常开车,正常运行,正常停车。
三、设计工艺条件进料比R200:R201=1:10预聚釜R200:T=18℃,P=3.5MPa环管高H=9m,体积V=0.46m3,物料流速=4m/s,停留时间=4min。
聚合釜R201:T=70℃,P=3.2MPa环管高H=30m,体积V=45m3,物料流速=78m/s,停留时间=1.5h,终点用密度控制射线检测,转化率55%-65%。
四、设计内容1、聚丙烯的合成工艺1.1概述;1.2多釜串联气液组合生产聚丙烯的仿真实验;1.3环管法气液组合聚合工艺的介绍;1.4多釜串联与环管法两种工艺的评价。
2、环管法生产聚丙烯运行方案的设计2.1设计重点密度控制范围;2.2设计原料的进料量;2.3设计聚丙烯生产开车、停车方案;2.4设计聚丙烯生产运行方案。
五、设计要求1、给出聚合工艺的历史、现状及发展史;2、给出多釜串联与环管法聚合工艺的差异及优缺点;3、给出环管法聚合工艺流程及终点控制、原料流量等工艺参数;4、给出完整的开机方案、运行方案及停机方案。
年产10w吨丙烯生产工艺设计+++
年产10w吨丙烯生产工艺设计姓名所在系部化学工程专业班级有机化工指导老师2015 年3月前言本设计的内容为10万吨/年乙苯脱氢制苯乙烯装置,包括工艺设计,设备设计及平面布置图。
本设计的依据是采用低活性、高选择性催化剂,参照鲁姆斯(Lummus)公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。
苯乙烯单体生产工艺技术:深度减压,绝热乙苯脱氢工艺乙苯脱氢反应在绝热式固定床反应器中进行,其特点是:转化率高,可达55%,选择性好,可达90%。
特殊的脱氢反应器系统:在低压(深度真空下)下操作以达到最高的乙苯单程转化率和最高的苯乙烯选择性。
该系统是由蒸汽过热器、过热蒸汽输送管线和反应产物换热器组成,设计为热联合机械联合装置。
整个脱氢系统的压力降小,以维持压缩机入口尽可能高压,同时维持脱氢反应器尽可能低压,从而提高苯乙烯的选择性,同时不损失压缩能和投资费用。
所需要的催化剂用量和反应器体积较小,且催化剂不宜磨损,能在高温高压下操作,内部结构简单,选价便宜。
在苯乙烯蒸馏中采用一种专用的不含硫的苯乙烯阻聚剂。
它经济有效且能使苯乙烯焦油作为燃料清洁地燃烧。
工业设计的优化和设备的良好设计可使操作无故障,从而可减少生产波动.本设计装置主要由脱氢反应和精馏两个工序系统所组成。
原料来自乙苯生产装置或原料采购部门,循环水、冷冻水、电和蒸汽来由公用工程系统提供,生产出的苯乙烯产品到成品库。
此设计过程中,为了计算方便,忽略了一些计算过程,故有一定的误差,另由于计算时间比较仓促,有些问题不能够直接解决。
设计中有不少错误之处,请指导老师予以批评指正,多提出宝贵意见。
苯乙烯设计任务书一、设计题目:年产10万吨苯乙烯的生产工艺设计二、设计原始条件:1、原料组成(质量%)组别乙苯甲苯苯∑1、2、3 99% 0.8% 0.2% 100%4、5、6 98% 1.2% 0.8% 100% 2、操作条件:年工作日:300天,每天24小时,乙苯总转化率为55%乙苯损失量为纯乙苯投料量为4.66%配料比:原料烃/水蒸汽=1/2.6(质量比)温度T:第一反应器进口温度630℃,出口温度580℃第二反应器进口温度630℃,出口温度600℃压力P:床层平均操作压力1.5 * 105 Pa(绝)3、选择性:C8H10→C8H8+H2(1)C8H10→C6H6+C2H4(2)C8H10+H2→C7H8+CH4(3)1、2、3 (1)90% (2)3% (3)7%4、5、6 (1)92% (2)3% (3)5%4、催化剂条件:(1)采用11#氧化铁催化剂,d=3mm,h=13mm(2)允许通入乙苯空速为:(0.5~0.9)Nm3乙苯/(m3Cat.h)(3)=1050kg/m3=1500kg/m35、参考数据:(1)反应器直径D=2 m(2)取热损失为反应热为4%(3)k=exp(11.281-2545/RT)(4)K=exp(15.344-14656.5734/T)(5)Cat的有效系数η1=0.7 η2=0.667(6)填料情况:取瓷环为25×25的拉西环,所填高度为250mm,锥形高度为250mm,锥角取900(7)压力:第一反应器进口压力为1.8 * 105Pa,出口压力为1.2 * 105Pa,平均压力为1.5 * 105 Pa,压降ΔP=0.6 * 105 Pa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号毕业设计(论文)年产11万吨聚丙烯合成工艺设计教学系:化学与制药系指导教师:专业班级:化工学生姓名:二零一四年五月毕业设计(论文)任务书毕业设计(论文)开题报告郑重声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。
本人完全意识到本声明的法律后果由本人承担。
本人签名:日期:目录摘要..................................................................................................................................................... - 10 - ABSTRACT........................................................................................................................................... - 11 - 前言..................................................................................................................................................... - 12 - 1 绪论..................................................................................................................................................... - 13 - 1.1聚丙烯概述 .. (13)1.2聚丙烯的性质 (13)1.2.1物理性能................................................................................................................................. - 13 -1.2.2 力学性能................................................................................................................................ - 13 -1.2.3 热性能.................................................................................................................................... - 14 -1.2.4 化学稳定性............................................................................................................................ - 14 -1.2.5 电性能.................................................................................................................................... - 14 -1.2.6 耐候性.................................................................................................................................... - 14 - 1.3聚丙烯工艺发展过程 . (14)1.4几种主要聚丙烯工艺 (15)1.4.1 Spheripol工艺 ........................................................................................................................ - 15 -1.4.2 Hypol工艺.............................................................................................................................. - 16 -1.4.3 Novolen工艺 .......................................................................................................................... - 16 -1.4.4 Unipol气相工艺..................................................................................................................... - 17 -1.4.5 Amoco/Chisso工艺 ................................................................................................................ - 17 - 1.5新型催化剂体系的优势 (18)1.5.1 PP生产工艺的优化和改善.................................................................................................... - 18 -1.5.2 PP产品性能的改进和提高.................................................................................................... - 18 -1.5.3 高刚性、高结晶度的产品.................................................................................................... - 18 -1.5.4 薄膜产品性能的改善............................................................................................................ - 19 -1.5.5 纺粘纤维和熔喷纤维............................................................................................................ - 19 -1.5.6 无规共聚物............................................................................................................................ - 19 -1.5.7 抗冲击共聚产品.................................................................................................................... - 19 -1.7展望 (20)2 工艺流程设计..................................................................................................................................... - 21 - 2.1工艺原理 (21)2.2催化剂的选定 (22)2.3生产工艺的选定 (22)2.4工艺流程草图 (24)2.5工艺流程概述 (24)2.5.1 聚合区工艺............................................................................................................................ - 24 -2.5.2 造粒区.................................................................................................................................... - 26 -2.5.3 包装区.................................................................................................................................... - 26 -2.5.4 循环水场................................................................................................................................ - 27 -3 物料衡算............................................................................................................................................. - 27 - 3.1设计名称 (27)3.2设计条件 (27)3.2.1 全套装置工艺参数................................................................................................................ - 27 -3.2.2 丙烯进料量(按小时计算).............................................................................................. - 28 - 3.3催化剂用量 .. (28)3.5氢气用量 (29)3.6R201大环管反应器的物料衡算 (29)3.7D301闪蒸罐的物料衡算 (30)3.8F301布袋过滤器的物料衡算 (31)3.9T301循环丙烯洗涤塔的物料衡算 (32)3.10D501汽蒸罐的物料衡算 (33)3.11T501水洗塔的物料衡算 (34)3.12D502干燥塔的物料衡算 (34)3.13造粒 (35)4 热量衡算............................................................................................................................................. - 35 - 4.1计算依据 (35)4.3R201大环管反应器的热量衡算 (37)4.4D301闪蒸罐的热量衡算 (38)4.5D501气蒸罐的热量衡算 (38)4.6D502干燥罐的热量衡算 (39)5 设备选型............................................................................................................................................. - 39 - 5.1R200小环管的选型 . (40)5.1.1 R200小环管的工艺参数 ....................................................................................................... - 40 -5.1.2 主要作用................................................................................................................................ - 40 -5.1.3 选型........................................................................................................................................ - 40 - 5.2R201大环管反应器的选型 . (40)5.2.1 R201大环管反应器的工艺参数 ........................................................................................... - 40 -5.2.2 特点........................................................................................................................................ - 40 -5.2.3 选型及结构............................................................................................................................ - 41 -5.3设备一览表 (41)6 聚丙烯装置的安全生产..................................................................................................................... - 42 - 6.1静电的危害与防范 (42)6.1.1静电危害................................................................................................................................. - 42 -6.1.2 静电的防范措施.................................................................................................................... - 42 -6.2其他安全措施 (43)7 “三废”处理与环境保护 ...................................................................................................................... - 43 - 7.1废水 (43)7.2废气 (43)7.3废渣 (44)参考文献........................................................................................................................................... - 44 - 致谢....................................................................................................................................................... - 45 -摘要本设计的内容是关于年产11万吨聚丙烯的生产工艺设计,设计内容包括工艺流程设计、物料衡算、能量衡算,设备选型,安全生产,“三废”处理和环境保护。