实数的基础训练

合集下载

高中数学基础训练测试及参考答案1-10

高中数学基础训练测试及参考答案1-10

高中数学基础训练测试题(1)集合的概念,集合间的基本关系一、填空题(共12题,每题5分)1、集合中元素的特征: , , .2、集合的表示法: , , .3、已知集合A ={1,2,3,4},那么A 的真子集的个数是 .4、设集合I={1,2,3},A ⊆I,若把集合M ∪A=I 的集合M 叫做集合A 的配集. 则A={1,2}的配集有 个 .5、设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 . (1).P Q (2).Q P (3).P =Q (4).P ∩Q =Q6、满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有 个.7、 若集合a B A a a a B a a A 则且},1{},43|,2|,12{},1,1,{22-=+--=-+= = .8、 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有_____个.9、集合{|10}A x ax =-=,{}2|320B x x x =-+=,且AB B =,则实数a =______、10、已知集合{}{}A x x x RB x x a a R =≤∈=-≤∈||||||43,,,,若A B ⊇,则a 的取值范围是_______ .11、 若2{|30}A x x x a =++=,求集合A 中所有元素之和 .12、任意两正整数m 、n 之间定义某种运算⊕,m ⊕n=⎝⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a,b)|a ⊕b=36,a 、b ∈N +}中元素的个数是___________.高三数学基础训练测试题(1)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、、已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7},求B A a ⋃的值及集合.高中数学基础训练测试题(2)集合的基本运算一、填空题(共12题,每题5分)1、已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =.2、 如果{}|9U x x =是小于的正整数{}1234A =,,,,{}3456B =,,,, 那么U UA B =痧 .3、若22{228}{log 1}xA xB x x -=∈<=∈>Z R ≤,,则()AB R ð的元素个数为.4、已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = .5、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = .6、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于.7、已知集合M ={直线的倾斜角},集合N ={两条异面直线所成的角},集合P={直线与平面所成的角},则(M ∩N)∪P= .8、设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___、9、设集合{|M x y =,集合N ={}2|,y y x x M =∈,则MN =___10、设集合{}{}22|21,|25M y y x x N x y x x ==++==-+,则N M ⋂等于.11、设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是 .12、设a 是实数, {}22|,210,M x x R x ax a =∈-+-≤{}22|,11,N x x R a x a =∈-≤≤+若M 是N 的真子集,则a 的取值范围是 、高三数学基础训练测试题(2)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0(1)有两个实根;(2)有两个实根,且一个比0大,一个比0小;(3)有两个实根,且都比1大;高中数学基础训练测试题(3)命题及其关系一、填空题(共12题,每题5分)1、设集合""""},3{},2{P M x P x M x x x P x x M ∈∈∈<=>=是或那么的.2、 πα≠“”3是α≠1“cos ”2的 .3、“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的.4、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: .①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 5、设p :25x x >≤-或;q :502x x+<-,则非q 是p 的 .6、设集合U={(x,y)|x ∈R,y ∈R},A ={(x,y)|x+y >m},B= {(x,y)|22x y n +≤},那么点(1,2)∈()U C A B ⋂的充要条件是 .7、下列四个命题:①在空间,存在无数个点到三角形各边的距离相等; ②在空间,存在无数个点到长方形各边的距离相等; ③在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点; ④在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点、 其中真命题的序号是 、(写出所有真命题的序号) 8、设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .9、对于[0,1]x ∈的一切值,20a b +>是使0ax b +>恒成立的.10、设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x+c 1>0和a 2x 2+b 2x+c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的_______条件. 11、 、设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个.12、给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 .其中正确命题的序号是_____ .高三数学基础训练测试题(3)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知集合()3,12y A x y x ⎧-⎫==⎨⎬-⎩⎭,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =∅.高中数学基础训练测试题(4)逻辑联接词一、填空题(共12题,每题5分) 1、下列语句①“一个自然数不是合数是就是质数”②“求证若x ∈R ,方程x 2+x +1=0无实根” ③“垂直于同一直线的两条直线平行吗?” ④“难道等边三角形各角不都相等吗?” ⑤“x +y 是有理数,则x 、y 也都是有理数” 其中有________个是命题,________个真命题2、命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是________.3、下列四个命题p :有两个内角互补的四边形是梯形或是圆内接四边形或是平行四边形q :π不是有理数;r :等边三角形是中心对称图形;s :12是3与4的公倍数 其中简单命题只有________.4、如果命题“p 或q ”是真命题,那么下列叙述正确的为________.(1).命题p 与命题q 都是真命题 (2).命题p 与命题q 的真值是相同的,即同真同假 (3).命题p 与命题q 中只有一个是真命题 (4).命题p 与命题q 中至少有一个是真命题5、下列说法正确的有________个.①a ≥0是指a >0且a =0;②x 2≠1是指x ≠1且x ≠-1 ③x 2≤0是指x=0;④x ·y ≠0是指x ,y 不都是0⑤>是指=或<a b a b a b / 6、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,那么s 是________. 7、命题“对任意的3210x x x ∈-+R ,≤”的否定是8、分别用“p 或q ”、“p 且q ”、“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式.(2)命题“非空集A ∪B 中的元素是A 中的元素或B 中的元素”是________的形式. (3)命题“C I A 中的元素是I 中的元素但不是A 中的元素”是________的形式.(4)x y =1x y =1x =1y =0x =0y =1221122命题“方程组++的整数解是,”是⎧⎨⎩⎧⎨⎩⎧⎨⎩_______的形式. 9、P: 菱形的对角线互相垂直,q :菱形的对角线互相平分,p 或q 形式的复合命题是________10、有四个命题:(1)空集是任何集合的真子集;(2)若x∈R,则|x|≥x(3)单元素集不是空集;(4)自然数集就是正整数集其中真命题是________(填命题的序号)11、指出命题的结构及构成它的简单命题:24 4x x +-有意义时,2x≠±12、已知命题p、q,写出“p或q”、“p且q”、“非p”并判断真假.(1)p:2是偶数q:2是质数________;(2)p:0的倒数还是0 q:0的相反数还是0________高三数学基础训练测试题(4)题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、分别指出下列复合命题的形式及构成它的简单命题,并判断此复合命题的真假.(1)A A B/⊆∪(2)方程x2+2x+3=0没有实根(3)3≥3高中数学基础训练测试题(5)综合运用一、填空题(共12题,每题5分)1、 设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 .2、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,b的取值范围是 .3、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .4、1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有_______个5、定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是 .6、满足条件M ∪{1}={1,2,3}的集合M 的个数是 .7、若不等式的值等于则实数的解集为a x a x x ],5,4[4|8|2-≤+-8、设集合}0|{≥+=m x x M ,}082|{2>--=x x x N ,若U =R ,且∅=)(N M U,则实数m 的取值范围是 .9、设[]x 表示不超过x 的最大整数(例[5、5]=5,[-5、5]=-6),则不等式2[]5[]6x x -+≤0的解集为10、 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . 若Q P ⊆,正数a 的取值范围是11、 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _ 12、{25},{121},A x x B x p x p =-<<=+<<-若A B A ⋃=,则实数p 的取值范围是 .高三数学基础训练测试题(5)题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、设命题:p 函数()2lg y ax x a =-+的定义域为R .命题:q 函数()2lg 1y x ax =-+的值域为R .如果命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数a 的范围.高中数学基础训练测试题(6)函数及其表示方法一、 填空题(共12题,每题5分)1、若f (x -1)=2x +5,则f (x 2) = .2、已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 .3、已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .4、已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .5、设函数x xxf =+-)11(,则)(x f 的表达式为 .6、已知x x x f 2)12(2-=+,则)3(f = .7、已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 .8、设f (x )是一次函数,且f [f (x )]=4x +3,则f (x )= .9、集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.10、若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .11、从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满、 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 .12、若f (x )满足f (x )+2f (x1)=x ,则f (x )= .高三数学基础训练测试题(6)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设x表示P点的行程,y表示PA的长,求y关于x的函数解析式、高中数学基础训练测试题(7)函数的解析式和定义域一、 填空题(共12题,每题5分)1、下列各组函数中,表示同一函数的是 .①xxy y ==,1 ②1,112-=+⨯-=x y x x y③33,x y x y == ④2)(|,|x y x y ==2、函数y =的定义域为 .3、函数1()1f x n x=的定义域为 .4、函数1)y a =<<的定义域是 .5、已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 .6、下列函数:①y =2x +5;②y = xx 2+1 ;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 .7、若f[g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 .8、已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= .9、若函数f(x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f(x )-f (-x )的定义域是 .10、若f (2x +3)的定义域是[-4,5),则函数f (2x -3)的定义域是 .11、函数xx x x x x f +-++-=02)1(65)(的定义域为 .12、 若函数 y =lg(x 2+ax +1)的定义域为R ,实数a 的取值范围为 .高三数学基础训练测试题(7)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知f(x)是定义在R上的函数,且f(1)=1,对任意x∈R都有下列两式成立:(1)f(x+5)≥f(x)+5;(2)f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求g(6)的值.高中数学基础训练测试题(8)函数的值域与最值一、 填空题:(共12题,每题5分)1、函数y = - x 2 + x , x ∈ [1 ,3 ]的值域为 . 2、函数y =2312+-x x 的值域是 .3、函数y=2-x x 42+-的最大值是 .4、函数y x =的值域是 .5、函数y =的最小值是 .6、已知函数2323(0),2y x x x =-+≤≤则函数的最大值与最小值的积是 .7、若函数y=x 2-3x -4的定义域为[0,m],值域为[-425,-4],则m 的取值范围是 .8、已知函数 y =lg(x 2+ax +1)的值域为R ,则a 的取值范围是 .9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 是 .10、函数y = 3122+---x x x x 的值域为 .11、已知x ∈[0,1],则函数y =的值域是 .12、已知函数y =的最大值为M ,最小值为m ,则mM的值为 .高三数学基础训练测试题(8)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数f(x) =xax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x只有惟一实数解,试求函数y=f(x)的解析式及f[f(-3)]的值.高中数学基础训练测试题(9)函数的单调性与奇偶性一、 填空题:(共12题,每题5分)1、函数b x k y ++=)12(在实数集上是增函数,则k 的范围是 .2、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 .3、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 .4、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .5、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .6、函数||2x x y +-=,单调递减区间为 .7、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则)2(f 、)2(f 、)3(f 的大小关系为 .8、构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0 所构造的函数为 .9、已知]3,1[,)2()(2-∈-=x x x f ,则函数)1(+x f 的单调递减区间为 .10、下面说法正确的选项为 .①函数的单调区间可以是函数的定义域②函数的多个单调增区间的并集也是其单调增区间 ③具有奇偶性的函数的定义域一定关于原点对称 ④关于原点对称的图象一定是奇函数的图象11、下列函数具有奇偶性的是 . ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y .12、已知8)(32009--+=xbax x x f ,10)2(=-f ,则(2)f = .高三数学基础训练测试题(9)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数、高中数学基础训练测试题(10)函数的图像一、 填空题:(共12题,每题5分)1、函数34x y =的图象是 .① ② ③ ④ 2、下列函数图象正确的是 .① ② ③ ④3、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 . ①(,())a f a - ②))(,(a f a - ③))(,(a f a - ④))(,(a f a ---4、将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,则C 2的解析式为 .5、当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 .6、函数x xx y +=的图象是 .7、已知()x f 是偶函数,且图象与x 轴有4个交点,则方程()0=x f 的所有实根的和是 . 8、下列四个命题,其中正确的命题个数是 .(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线. 9、当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .10、已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集为 . 11、下列命题中正确的是 .①当0=α时函数αx y =的图象是一条直线 ②幂函数的图象都经过(0,0)和(1,1)点③若幂函数αx y =是奇函数,则αx y =是定义域上的增函数④幂函数的图象不可能出现在第四象限12、定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在[0,+∞)上图像与)(x f 的图像重合、设a>b>0,给出下列不等式:①)()()()(b g a g a f b f -->-- ②)()()()(b g a g a f b f --<--③)()()()(a g b g b f a f -->-- ④)()()()(a g b g b f a f --<--其中成立的是 .高三数学基础训练测试题(10)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、 如图,已知底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF=x,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象、C1、 集合的概念,集合间的基本关系1.确定性 , 互异性 , 无序性 .2. 列举法 , 描述法 , 韦恩图 . 3. 15. 4. 4 5. (3) 6. 6 个7.0提示:2a-1 =-1,a=0;此类问题要注意验证集合中元素的互异性.8、7提示:满足{1,2}{1,2,3,4,5}M ⊂⊆-集合M 有32=8个.去除M={1,2},满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有7个. 9、 10,1,2a =提示:A B B =A B ⊆=,{}2|320B x x x =-+== {}1,2,x=1时,a=1;x=2时,a=12、而a=0时,A=φ,满足A B B =. 10、1a ≤提示:{}{}|||4|44A x x x R B x x =≤∈=-≤≤,=, a<0时,{}||3|B x x a a R =-≤∈,= φ,满足A B ⊇a ≥0时,{}||3|B x x a a R =-≤∈,={}|33x x a x a -≤≤+,A B ⊇ 4334aa -≤-⎧⎨+≥⎩ 1a ≤;11、 32-提示:注意到0∆=时集合中只有一个元素,此时集合A 中所有元素之和为-3;0∆≠时,集合A 中所有元素之和为32-.12、41提示: a 、b 同奇偶时,有35个;a 、b 异奇偶时,有(1,36)、(3,12)、(4,9)、(9,4)、(12,3)、(36,1)6个,共计41个.填41.13、解:∵ A ∩B={3,7} ∴ 7∈A ∴ 7242=++a a ,即 15=-=a a 或当 5-=a 时,B={0,7,7,3} (舍去)当 1=a 时,B={0,7,1,3} ∴ B={0,7,1,3}2.集合的基本运算1、 {}1,2 ;2、{}7,8 ;3、2;4.{}1- ; 5、{x |2<x <3}; 6、{},0x x R x ∈≠; 7、 0,2π⎡⎤⎢⎥⎣⎦提示: M ={直线的倾斜角}=[]0,π, N ={两条异面直线所成的角}=0,2π⎛⎤⎥⎝⎦, P ={直线与平面所成的角}=0,2π⎡⎤⎢⎥⎣⎦,则(M ∩N)∪P=0,2π⎡⎤⎢⎥⎣⎦8、提示:利用韦恩图和()()()U U U C A C B C A B =⋃易求{2,3}A =,{2,4}B =9、 [4,)+∞ 提示:[){| 2.M x y ===+∞,N ={}[)2|,4,y y x x M =∈=+∞,则MN = [4,)+∞10、 [)+∞,0提示:{}[){}22|210,,|25M y y x x N x y x x R ==++=+∞==-+= 所以N M ⋂=[)+∞,0;11、 m ≥2提示: {|0}M x x m =+≥,2{|280}(2,4)N x x x =--<=-,U M =(,m -∞-),所以-m ≤-2, 、m ≥2;12、 1,a >或2a ≤-提示:2221011x ax a a x a -+-≤⇔-≤≤+,M N ⊆时2211,11a a a a -≥-+≤+但对边缘值1,-2进行检验知1不合;13、 解:(1)方程有两个实根时,得2[2(m-1)]4(2m+6)0∆=-⨯≥解得m -1m 5≤≥或(2)令2f()=+2(m-1)+2m+6x x x 由题意得(0)0f <,解得3m <-(3)令2f()=+2(m-1)+2m+6x x x 由题意得 2(1)12(1)2602(1)112[2(m-1)]4(2m+6)0f m m m m =+-++>--=->∆=-⨯≥ 解得5-14m <≤-3、命题及其关系1、必要不充分条件2、必要不充分条件3、充分不必要条件4、①②④5、必要不充分条件6、35m n ≥≥且7、 提示: ②在空间,不存在点到长方形各边的距离相等; ③在空间,存在到长方体各顶点距离相等的点,但不存在到它的各个面距离相等的点;真命题的序号是①④8、 a 1[0,]2∈提示:┐p 是┐q 的必要而不充分的条件,所以q 是p 的必要而不充分的条件, 所以p q ⊆,P:|43|1x -≤ 所以112x ≤≤,q:0)1()12(2≤+++-a a x a x 所以a ≤x ≤a+1,1211a a ⎧≤⎪⎪⎨+≥⎪⎪⎩a 1[0,]2∈; 9必要不充分条件提示:对于[0,1]x ∈的一切值0axb +>恒成立 00a b b +>⎧⎨>⎩所以20a b +>;10、 既不必要不充分条件提示:2x 2+x+1>0和2x 2+x+1>0的解集为R, M=N,111222a b c a b c ==不成立;若212121c c b b a a ==,- x 2+2x-1>0和x 2-2x+1>0,此时 M ≠N11、 8、个.12、 提示:②ab>0时b a b a +=+成立.③若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 且0≠y 则0≠xy ”; 正确命题的序号是①④.13、 解:联立关于,x y 的方程组:()3121150y x a x y -⎧=⎪-⎨⎪+++=⎩.消去y 得到关于x 的方程:()214a x += (*) 由题意,关于x 的方程(*)无解或者解为2x =. 若(*)无解,则20a +=,解得2a =-.若(*)的解为2x =,则()2214a +=,解得5a =. 综上所述,2a =-或者5a =.4、逻辑联接词1.三个是命题,一个真命题;2.使用了逻辑联结词“或”;3.r ;4.(4)5.3个.6.真命题.7.提示:3210x x ∃∈-+>R ,.8.提示:(1)p 且q (2)p 或q (3)非p (4)p 或q ;9.提示:(1)菱形的对角线互相垂直或互相平分. 10.②③提示: 11.P 且q;p:244x x +-有意义时,2x ≠;244x x +-有意义时,2x ≠-; 12、提示:1.(1)p 或q :2是偶数或质数,真命题 p 且q :2是偶数且是质数,真命题 非p :2不是偶数,假命题.(2)p 或q :0的倒数还是0或0的相反数还是0,真命题. p 且q :0的倒数还是0且0的相反数还是0,假命题. 非p :0的倒数不是0,真命题.13.解:3(1)p p A A B .非形式的复合命题::∪,此复合命题为假.⊆(2)非P 形式的复合命题:p :方程x 2+2x +3=0有实数根.此复合命题为真.(3)p 或q 形式的复合命题:p :3>3为假,q :3=3为真.此复合命题为真5、综合运用1、 12 ; 2. b<2 ; 3、 92;4、54 ;5、3x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; 6、 2 ;7、 16提示:等价于(4)(5)0x x --≤;8、 2;m ≥提示:M N R ⋂= ;9、提示:2[]5[]6x x -+≤0 ∴ 2[]3x ≤≤ ∴ 24x ≤<∴不等式2[]5[]6x x -+≤0的解集为{}24x x ≤<10、 a>2 提示:a>-1时,解集为P =(-1,a )因为Q P ⊆,a>2; a<-1时,解集为P =(a ,-1)因为Q P ⊆,舍; a=-1时,解集为P = φ因为Q P ⊆,舍∴a>211、 a ≤-2提示:A ={x ||x |≤2,x ∈R }=[-2,2],B ={x |x ≥a },且A B ,∴ a ≤-212.3≤p 提示: A B A ⋃= ∴ B A ⊆ ∴3≤p13、解:若p 真,则()22140a a >⎧⎪⎨--<⎪⎩,解得12a >. 若q 真,则()240a --≥,解得2a ≤-或者2a ≥. 因为命题“p 或q ”为真命题,命题“p 且q ”为假命题, 所以命题p 和q 有且仅有一个为真.所以实数a 范围为:2a ≤-或122a <<.6、函数及其表示方法1.2x 2+7 ; 2.x c b a c y --=; 3.π+1 ; 4. - 4 ; 5.xx+-11 ; 6.-1;7.提示:327223,(72)32f p q =⨯∴=+ 8.提示:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a , ∴ f (x )=2x +1或f (x )= -2x -3. 9. 4 ; 10.c b a c b a *+=+)()*(; 11.*,)2019(20N x y x ∈⨯= ; 12.提示:在f (x )+2f (x 1)=x ①中,用x1代换x 得 f (x 1)+2 ;f (x )= x 1 ②,联立①、②解得 )0(32)(2≠-=x xx x f . 13.显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时, PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.7、函数的解析式和定义域一.填空题:1.③ 2.{}|1x x ≥ 3.[4,0)(0,1]-⋃ 4. (2,3] 5.)2,2(-;6.4 7.f (x )=3x 8.15 9.[a ,-a ] 10. {x |-1≤x <8} 11.),3[]2,1()1,0(+∞ 提示:由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3.故函数的定义域是),3[]2,1()1,0(+∞ .12.()2,2-提示: 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2.13:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★)结合条件(1)得 f (x +5)=f (x )+5.于是,由(★),可得 f (x +1) = f (x )+1. 故 g (6)=f (6)+1-6= [f (1)+5 ]-5=1.8、函数的值域与最值一.填空题:1. {y|164y -≤≤} ;2.(-∞, 23)∪(23,+ ∞) ; 3.2 ;4.(,1]-∞ ;5. ;6.6 ; 7.[23 ,3] ; 8.利用△≥0⇒ a ≥2或a ≤-2. 9.215± 10..1115|⎭⎬⎫⎩⎨⎧<≤-y y 提示:将函数整理为:0)13)(1(4)1(,1,013)1()1(22≥+---=∆≠=++---y y y y y x y x y 由可见,得.1115|,1115⎭⎬⎫⎩⎨⎧<≤-∴≤≤-y y y 函数的值域为 11.[3,12-]提示:注意到函数y =在[0,1]上是单调递增的,故函数的值域是 [3,12-] ;12.2提示:22+(x+3)=4,14sin ,x+34cos ,[0,]2x πθθθ∴-==∈(1-x )令于是2sin 2cos sin()4y πθθθ==+=+2,2m M ∴===、13、 f (x ) =x 只有惟一实数解,即xax+b= x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1.9、函数的单调性与奇偶性一.填空题:1.21->k 2.2b ≤- 3.]2,7[-- 4.2)()(x s x s -- 5.1---=x y 6.]0,21[-和),21[+∞ 7.)2()2()3(f f f << 8.R x x y ∈=,2 提示:本题答案不唯一.9.]1,2[-提示:函数12)1(]2)1[()1(222+-=-=-+=+x x x x x f ,]2,2[-∈x ,故函数的单调递减区间为]1,2[-、10.①③ 11.①④提示:①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数、 ②定义域为}21{不关于原点对称.该函数不具有奇偶性、 ③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性、 ④定义域为R ,关于原点对称, 当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;当0=x 时,0)0(=f ;故该函数为奇函数、 故填①④12.-26提示: 已知)(x f 中xb ax x -+32005为奇函数,即)(x g =xb ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=-,108)2(8)2()2(=--=--=-g g f ,得18)2(-=g ,268)2()2(-=-=g f 、二.解答题: 221)1()1()]([)(24222++=++=+==x x x x f x f f x g 、)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x)()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2242λλ-+-+-x x)]2()[)((22212121λ-++-+=x x x x x x由题设当121-<<x x 时,0))((2121>-+x x x x ,λλλ-=-++>-++4211)2(2221x x ,则4,04≤≥-λλ 当0121<<<-x x 时,0))((2121>-+x x x x ,λλλ-=-++<-++4211)2(2221x x ,则4,04≥≥-λλ 故4=λ、10、函数的图像1.① 2.② 3. ① ③ 4.121x y +=+ 5.① 6.④7.0提示:()x f 是偶函数,图象与x 轴有4个交点关于一y 轴对称,其横坐标互为相反数,故()0=x f 的所有实根的和是0、 8.1 ,提示:(2)是对的. 9.(2,-2);提示:f (x )=a x 过定点(0,1),故f (x )=a x -2-3过定点(2,—2). 10.(-∞,-1]∪[2,+ ∞)提示:由于函数f(x)是R 上的增函数,且过点A(0,-1)、B((3,1), |f(x+1)| <1的解集为(—1,2),故其补集为(-∞,-1]∪[2,+ ∞) 11.④提示:0y x =不过点(0,1);当α<0时,αx y =不过(0,0);1y x -=在定义域上不是增函数,只有④是对的. 12.①③提示:采用特殊值法.根据题意,可设x x g x x f ==)(,)( ,又设1,2==b a ,易验证①与③成立. 13.(1)()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y(2)图形如右。

2020届高考数学基础训练(一)

2020届高考数学基础训练(一)

2020届高考数学基础训练(一)一、选择题(本大题共8小题,共40.0分)1.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A. 1B.C.D. 22.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A. B. C. D.3.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B. 4C. 5D. 64.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A. B.C. D.5.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A. B. C. 6 D. 86.设a∈R,则“a>1”是“a2>1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A. B. C. D.8.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A. B. C. D.二、填空题(本大题共3小题,共15.0分)9.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=______.10.在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为______.11.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为______.三、解答题(本大题共4小题,共48.0分)12.在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cos A+cos C的最大值.13.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.15.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.答案和解析1.【答案】B【解析】【分析】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选B.2.【答案】D【解析】【分析】解不等式求出集合A,B,结合交集的定义,可得答案.本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.【解答】解:∵集合A={x|x2-4x+3<0}=(1,3),B={x|2x-3>0}=(,+∞),∴A∩B=(,3),故选D.3.【答案】B【解析】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=10,n=2 不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3 不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=20,n=4 满足条件s>16,退出循环,输出n的值为4.故选:B.模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.4.【答案】D【解析】【分析】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题,求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x-)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x-)+],即有y=2sin(2x-).故选D.5.【答案】D【解析】解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.6.【答案】A【解析】解:由a2>1得a>1或a<-1,即“a>1”是“a2>1”的充分不必要条件,故选:A.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.7.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.8.【答案】A 【解析】【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选A.9.【答案】【解析】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.10.【答案】【解析】【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键是弄清概率类型,同时考查了计算能力,属于基础题.【解析】解:圆(x-5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x-5)2+y2=9相交,则<3,解得-<k <.∴在区间[-1,1]上随机取一个数k,使直线y=kx与圆(x-5)2+y2=9相交的概率为=.故答案为.11.【答案】64【解析】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n-1)=8n •==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.求出数列的等比与首项,化简a1a2…a n,然后求解最值.本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.12.【答案】解:(Ⅰ)∵在△ABC中,a2+c2=b2+ac.∴a2+c2-b2=ac,∴cos B===,∴B=;(Ⅱ)由(I)得:C=-A,∴cos A+cos C=cos A+cos(-A)=cos A-cos A+sin A=cos A+sin A=sin(A+),∵A∈(0,),∴A+∈(,π),故当A+=时,sin(A+)取最大值1,即cos A+cos C的最大值为1.【解析】本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象和性质,难度中档.(Ⅰ)根据已知和余弦定理,可得cosB=,进而得到答案;(Ⅱ)由(I)得:C=-A,结合正弦型函数的图象和性质,可得cosA+cosC的最大值.13.【答案】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【解析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.14.【答案】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005;(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3;(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【解析】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求;(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.15.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【解析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.。

中考数学课后强化训练:第1课《实数的有关概念》ppt-课件

中考数学课后强化训练:第1课《实数的有关概念》ppt-课件

移动 5 次后该点对应的数为-5+12=7,到原点的距离为 7; …… ∴移动(2n-1)次后该点到原点的距离为 3n-2,移动 2n 次后该点到原点 的距离为 3n-1. ①当 3n-2≥41 时,n≥433. ∵n 是正整数,∴n 的最小值为 15,此时移动了 29 次. ②当 3n-1≥41 时,n≥14. ∵n 是正整数,∴n 的最小值为 14,此时移动了 28 次. 综上所述,至少移动 28 次后该点到原点的距离不小于 41.
(第 7 题图) B. 点 A 与点 C D. 点 B 与点 C
8.有理数 a,b 在数轴上的位置如图所示,有:①a-b>0;②a+b>0; ③1a>1b;④b-a>0.其中正确的个数是( B )
(第 8 题图)
A. 1 个
B. 2 个
C. 3 个
D. 4 个
9.把下列各数填入相应的括号里:
0, 8, 4,3.1415926,sin 60°,-2, 3, 3-1,272,0.1010010001…
(第 14 题图) 解:墨迹盖住的整数共有(238-23)+[(-52)-(-188)]=215+136= 351(个),相反数有-(52)-(-188)=136(对).
15.若|x|=3,|y|=2,且 x>y,求 x+y 的值.
解:由题意,得 x=3,y=2 或-2,∴x+y=5 或 1.
16.如图,点 A 的初始位置位于数轴上的原点,现对点 A 做如下移动: 第 1 次从原点向右移动 1 个单位长度至点 B,第 2 次从点 B 向左移动 3 个单 位长度至点 C,第 3 次从点 C 向右移动 6 个单位长度至点 D,第 4 次从点 D 向左移动 9 个单位长度至点 E……依此类推,这样至少移动___2_8____次后该 点到原点的距离不小于 41.

实数3

实数3

【典型例题】【例1】 求值:(1)32的五次方根 (2)-32的五次方根 (3)16的四次方根(4)64的六次方根 (4)0.000064的六次方根 (6)32243-的五次方根 【分析】 运用乘方运算求方根的值是常用的方法,对于正数的偶次方根有两个,它们互为相反数要充分理解,求n 次方根的值必须考虑指数的奇、偶性,增强分类的意识,学会正确的语言表述是很重要的,给书写也带来简便.【解答】 (1)5232=∴32的五次方根5322==(2)()5232-=-∴-32的五次方根5322=-=-(3)()4216±=∴16的四次方根6642=±=±(4)()6264±= ∴64的六次方根6642=±=±(5)()60.20.000064±=∴0.000064的六次方根60.0000640.2=±=± (6)52323243⎛⎫-=- ⎪⎝⎭ ∴32243-的五次方根53222433=-=-【例2】 选择题:1.下列语句中,正确的是( )(A )正数a 的n 次方根记作n a(B )如果n 是偶数,当且仅当a 是非负实数时,则n a 有意义(C )零的n 次方根无意义(D )任何实数都能开方2.5x -在实数范围内能开偶次方根的条件是( )(A )x 为任意实数 (B )5x ≥ (C )5x ≤ (D )0x ≤【分析】理解立方根和开立方的概念【解答】1.(B )当n 是奇数时,正数a 的n 次方根记作“n a ”, 当n 是偶数时,正数a 的n 次方根记作“n a ±”,故(A )错.当a 为非负实数时,a 有偶次方根,所以n a (n 是偶数)有意义,故(B )对.零的n 次方为零,故(C )错.负数没有偶次方根,任何实数不一定都能开方,故(D )错.2.(C )由被开方数50x -≥解得5x ≤,故选(C ).【例3】求适合下列等式中的x .(1)3910x -= (2)4810x =【分析】理解开n 次方与n 次乘方互为逆运算的关系 【解答】(1)x 是910-的立方根,因为3391010--=(),所以310-是910-的立方根,因此310x -= ,即0.001x =.(2)由已知可知,x 是810的四次方根,由于248(10)10±=,所以210±是810的四次方根,因此210x =±,即100x =±.【基础训练】 1.132-的五次方根是( ) 2.81的四次方根是 ( ) 3. 423⎛⎫- ⎪⎝⎭的四次方根是( ) 4. 5(5)-的五次方根是( )5.如果(0,)n x a a n =≥是偶数,那么x =6.下列式子中,正确的是54444()11()11()(1)1()11A B C D ±=±=±-=---= 7.用符号表示下列各方根,并求出各方根的值. (1) 12-的三次方的三次方根 (2)164的六次方根 (3)—8平方的六次方根8.计算:43343(56)⋅【能力提高】1.下列各式不正确的是4343()82()(6)6()1255()()n n A B C D a a n -=--=--=-=是奇数 2. ()(0)x y zy z z x x y xyz xyz x y z+++++≠= 3.计算:20072007333(21)(421)-++4.已知n 是自然数, a 是实数且()n n nn a a =成立.试讨论n 及a 的取值范围.第3讲实数的运算(1)用数轴上的点表示实数【知识要点】知识点1 用数轴上的点表示无理数方法一:用画图的方法找到数轴上的一个点来表示它.例如:边长为1的正方形,对角线长为2(这在学习了直角三角形中勾股定理后很容易知道,现在暂不作介绍),我们可以在数轴上以一个单位长为边长作一个2-B O2正方形,以原点O为圆心,正方形对角线为半径作弧,与数轴正(2)半轴交于点A就表示无理数2,与数轴负半轴交于点B就表示图1 -.无理数2方法二:用无限不循环小数点的近似值来确定这个点的位置.例如:π可以精确到百分位的近似数3.14来确定数轴上表示π这个点的位置.π-01233.144x1知识点2 数轴上的点和实数成一一对应每一个有理数和无理数都可以用数轴上的一个点来表示,反过来数轴上的每一个点都可以用一个有理数或无理数表示.为有理数和无聊隶属统称为实数,因此,全体实数所对应的点布满了整个数轴,数轴上的点和实数成一一对应.知识点3 实数的相反数和绝对值一个实数在数轴上所对应的点到原点的距离,叫做这个数的绝对值,实数a的绝对值记作a∣∣ ,a当0a>时a=时a∣∣=0当0-当0aa<时绝对值相等,符号相反的两个数叫做互为相反数,零的相反数是零,非零实数a的相反数-.是a知识点4 两个实数大小的比较两个实数可以比较大小,其大小顺序的规定同有理数一样,负数小于零,零小于正数,两个正数,绝对值大的数较大;两个负数,绝对值大的反而小,从数轴上看,右边的点所表示的数总比左边的点索表示的数大.知识点5 同一数轴上,两点间的距离在数轴上,如果点A 、点B 索对应的数分别是a b 、,那么A B 、两点的距离AB a b ∣∣=∣-∣.方法与技能:当有理数系扩展到实数后,有理数的绝对值、相反数、大小比较法则都自然延伸到实数系.有关概念、性质仍然正确,特别是数形结合思想仍然是研究的重要方法.了解了数学系扩大的原则,大大的提高了学习的效率.【学习目标】1.会用数轴上的点表示实数;2.理解在实数范围内绝对值、相反数的概念,会比较实数的大小;【典型例题】【例1】写出下列各数的相反数与绝对值:0.5,12-,7-,0,5π-,37- 【分析】与有理数一样,实数(0)a a ≠的相反数是a -;实数a 的绝对值的为(0)a a ≥或(0)a a -<.【解答】 0.5的相反数是0.5-,绝对值是0.5;12-的相反数是21-,绝对值是21-;7-的相反数是7,绝对值是7;0的相反数是0,绝对值是0;5π-的相反数是5π,绝对值是5π; 37-的相反数是37--,绝对值是37-【例2】比较53-与13-的大小.【分析】 5 2.236,53 2.23630.764≈-≈-≈- 3 1.732,131 1.7320.732≈-≈-≈-∴可以先将无理数用近似的有限小数表示,转化为有理数后再进行比较.【解答】 53 2.23630.764-≈-≈- 131 1.7320.732-≈-≈-0.7640.732-<-5313∴-<-【例3】 如图2,在数轴上,如果点A 、点B 所对应的数分别为6和3-,求A B 、 两点间的距离.B A 3 1- 0 1 26 3 图2【解答】 6(3)6363AB ∣∣=∣--∣=∣+∣=+【注】 也可以这样计算: 3636)[(36)]36AB ∣∣=∣--∣=∣-(+∣=--+=+【例4】 已知a b c 、、在数轴上的位置如图3所示,则22()a a b a c b c -∣+∣+-+∣+∣的值等于( )(A )2c a - (B )2a b -(C )a - (D )bb a 0 c图 3【解答】 如图12-5所示,知b a c -<-<.22,,(),()a a a b a b a c c a b c b c ∴=-∣+∣=---=-∣+∣=-+∴原式a a b c a b c a =-+++---=-.选(C ).【例5】 当1x <-是,2(2)21x x x ---∣-∣=( ) (A )0 (B )44x - (C )44x - (D )44x +【解答】 21,20,(2)2,11,x x x x x x <-∴->-=-∣-∣=- ∴原式22(1)44x x x x =-+--=-,选(B ).。

高三数学基础训练题集1-10套(含答案)

高三数学基础训练题集1-10套(含答案)

图2俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学根底训练一一.选择题:1.复数i1i,321-=+=zz,那么21zzz⋅=在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,,11=a84=a,那么=5aA.16 B.16或-16 C.32 D.32或-323.向量a =〔x,1〕,b =〔3,6〕,a⊥b ,那么实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,那么(2)f-=( )A.14B.4-C.41- D.46.图1是某赛季甲.乙两名篮球运发动每场比赛得分的茎叶图,那么甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.657.以下函数中最小正周期不为π的是A.xxxf cossin)(⋅= B.g〔x〕=tan〔2π+x〕C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则〞的否命题是A.,11a b a b>-≤-若则B.假设ba≥,那么11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,那么该几何体的侧面积为A .6B .24C .123D .3210.抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,那么实数t 的取值范围是 A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如下图的算法流程图中,输出S 的值为 .13.实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,那么2z x y =-的最大值为_______.14.c x x x x f +--=221)(23,假设]2,1[-∈x 时,2)(c x f <恒成立,那么实数c 的取值范围______ 三.解答题:()sin f x x x =∈x (R ).〔1〕求函数)(x f 的最小正周期;〔2〕求函数)(x f 的最大值,并指出此时x 的值.高三数学根底训练二一.选择题:1.在等差数列{}n a 中, 284a a +=,那么 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.命题p: {}4A x x a=-,命题q :()(){}230B x x x =--,且⌝p 是⌝q 的充分条件,那么实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组〔1~8号,9~16号,。

人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习

人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习

6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。

和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。

B.2+错误!未找到引用源。

C.2错误!未找到引用源。

-1D.2错误!未找到引用源。

+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。

C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。

C.-3错误!未找到引用源。

D.-3错误!未找到引用源。

10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。

实数的基础训练

实数的基础训练

实数的基础训练(一)1、下列各式3π,π2-,03)(+π,1+π中无理数的个数是 。

2、面积为3的正方形的边长为 。

(如果是有理数写出这个有理数,如果不是有理数,写出它的近似值保留两个有效数字)3、已知a 为非0的有理数,b 为无理数,下列命题正确的是( )①b a +是无理数; ②b a -是无理数; ③ab 是无理数; ④ba是无理数。

A 、①②③④ B 、①② C 、①③ D 、①③④4、π的整数部分为 ,小数部分为 。

5、将下列各数填入适当的横线上:2,722,..21.2-,03)(+π,π,3.14159,4.121121112…。

有理数 , 无理数 。

6、在长方形ABCD 中,∠DAE=∠CBE=45°,AD=1,则AE 、BE 的长是有理数吗?△ABE 的面积是有理数吗?7、有一个直角三角形的两边是3cm 和4cm 则第三边的长度是有理数吗?如果是求出这个有理数,如果不是求出近似值。

(保留到小数点后1位)实数的基础训练(二)1、下列说法正确的是( ) A 、5是25的算术平方根。

B 、±4是16的算术平方根; C 、—6是()26-的算术平方根;D 、0.01是0.1的算术平方根。

2、81的算术平方根是 。

3、若2-a 有意义,则a 的最小整数值是 。

4、如果032=++-b a 则a b 的值为 。

5、若322+-+-=x x y 则y x -= 。

6、计算下列各题(1)121 (2)36.0± (3)36225(4)25.04112484+-7、已知x x x y 82112+-+-=求654-+y x 的算术根。

8、已知△ABC 的三边长分别为a 、b 、c 满足096432=+-+-+-c c b a ,试判断△ABC 的形状,并求出△ABC 的周长。

9、若5+11的小数部分为a ,5—11的小数部分为b ,求b a +的值。

实数的基础训练(三)1、实数4的平方根是 。

实数—专题二、立方根

实数—专题二、立方根

实 数专题二、 立方根 【知识回顾】1.立方根:如果一个数x 的立方等于a ,即x 的三次方等于a(a x =3),即3个x 连续相乘等于a,那么这个数x 就叫做a 的立方根,也叫做三次方根。

2.开立方:求一个数的立方根的运算叫做开立方。

开立方与立方互为逆运算。

开立方的小数点移动规律:被开方数的小数点向右或向左每移动三位,则立方根的小数点就向右或向左移动一位。

3.常见立方数:113=; 823=; 2733=; 6443=; 12553=21663=; 34373=; 51283=; 72993=; 1000103=4、常用公式:a a =33,a a =33)( 5. 平方根与立方根的比较平 方 根立 方 根定 义如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根。

即:若)0(2≥=a a x 时,则x 称为a 的平方根,记作)0(≥±=a a x ,其中a 是被开方数,根指数是2如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根(也称作a 的三次方根)。

即:若3x a =,则x 称为a 的立方根,记作x=3a ,其中a 是被开方数,根指数是3 性 质 1. 一个正数有两个平方根,它们互为相反数1. 正数有一个正的立方根2. 0的平方根是0 2. 0的立方根是03. 负数没有平方根 3. 负数有一个负的立方根 开平方与平方互为逆运算开立方与立方互为逆运算n 次根偶数次方根与平方根性质相同 奇数次方根与立方根性质相同6.n 次方根的定义:如果一个数的n 次方等于a ,这个数叫做a 的n 次方根。

n 次方根的性质:(1)正数的偶次方根有两个,它们互为相反数;负数没有偶次方根; (2)任何数a 的奇次方根只有一个,且与a 同正负; (3)0的任何次方根为0。

【典型例题】【例1】求下列各式的值:(1)3125; (2)3271-- ; (3)38-; (4)338【变式练习】 1、填空2549的平方根是 ; -512的立方根是 ; 2(9)-的平方根是 ; -27的立方根是 ;64的平方根是 ; 343的立方根是 。

新人教版七年级第六章《实数》基础训练试题

新人教版七年级第六章《实数》基础训练试题

新人教版第六章《实数》基础训练试题姓名_____________ 成绩_____________(一)、精心选一选1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是( ) A .1 B .2 C .3 D .42.下列语句中正确的是 ( )A.49的算术平方根是7B.49的平方根是-7C.-49的平方根是7D.49的算术平方根是7±3. 下列说法正确的是( )A . 0.25是0.5 的一个平方根B ..正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D . 负数有一个平方根4.下列实数33,9,15.3,2,0,87,3--π中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个5. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2π D. 0.151151115…)个之间依次多两个115( 6.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.497.若一个数的平方根是它本身,则这个数是 ( )A 、1B 、-1C 、0D 、1或08.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 19.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数10.下列运算中,错误的是 ( ) ①1251144251=,②4)4(2±=-,③3311-=- ④2095141251161=+=+ A . 1个 B. 2个 C. 3个 D. 4个 11. 若225a =,3b =,则b a +的值为 ( )A .-8B .±8C .±2D .±8或±212.8-的立方根与4的算术平方根的和是 ( ) A.0 B.4 C.2± D.4±13.下列各组数中互为相反数的是 ( )A.2-与2)2(- B. 2-与38- C. 2-与21- D.2-与2 14.圆的面积增加为原来的n 倍,则它的半径是原来的 ( )A. n 倍;B. 倍2n C. n 倍 D. n 2倍. 15.实数在数轴上的位置如图16--C ,那么化简2a b a --的结果是 ( )A.b a -2B.bC.b -D.b a +-216.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是( ) A.22+x B 、2+x C.22-x D.22+x17.若033=+y x ,则y x 和的关系是 ( ) A.0==y x B. y x 和互为相反数 C. y x 和相等 D. 不能确定(二)、细心填一填18.在数轴上表示3-的点离原点的距离是 。

浙教版数学七年级上册《3.4实数的运算》教学设计

浙教版数学七年级上册《3.4实数的运算》教学设计

浙教版数学七年级上册《3.4实数的运算》教学设计一. 教材分析《3.4实数的运算》是浙教版数学七年级上册的一个重要内容,主要包含有理数的混合运算。

通过本节课的学习,学生将掌握有理数的加、减、乘、除以及乘方等基本运算方法,并能灵活运用这些运算方法解决实际问题。

本节课的内容是整个初中数学的基础,对于学生后续的学习具有重要意义。

二. 学情分析七年级的学生已经初步掌握了实数的概念,对于加、减、乘、除等基本运算也有了一定的了解。

但是,学生在运算过程中往往会存在一些错误,例如运算符号的误用、运算顺序的混乱等。

因此,在教学过程中,需要引导学生正确理解运算规则,提高运算的准确性。

三. 教学目标1.知识与技能:使学生掌握有理数的加、减、乘、除以及乘方等基本运算方法,能熟练地进行实数的运算。

2.过程与方法:通过自主学习、合作交流等方法,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。

四. 教学重难点1.重点:实数的加、减、乘、除以及乘方等基本运算方法。

2.难点:运算顺序的判断和运算符号的正确使用。

五. 教学方法1.采用自主学习、合作交流的教学方法,让学生在探究中发现问题、解决问题。

2.运用实例讲解,引导学生理解运算规则,提高运算的准确性。

3.注重练习,及时反馈,使学生巩固所学知识。

六. 教学准备1.准备相关课件,展示实数运算的规则和实例。

2.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实例引入实数运算的概念,激发学生的学习兴趣。

2.呈现(10分钟)展示实数运算的规则,引导学生理解并掌握加、减、乘、除以及乘方等基本运算方法。

3.操练(10分钟)让学生进行实数运算的练习,及时发现并纠正学生在运算过程中存在的问题。

4.巩固(5分钟)总结实数运算的规律,加深学生对运算方法的理解。

5.拓展(5分钟)引导学生运用所学知识解决实际问题,提高学生的应用能力。

6.小结(3分钟)对本节课的内容进行总结,强调实数运算的重要性和注意事项。

(完整word版)初三数学基础训练题

(完整word版)初三数学基础训练题

练习题(一)1。

计算:()12121138121-⎪⎭⎫⎝⎛+-+++2。

16的平方根是3。

分式112+-x x 的值为零,则=x4。

等腰三角形的两边是6cm 和9cm ,则周长是5。

若直角三角形的斜边长10,那么它的重心与外心之间的距离是6.函数112++=x x y 的定义域是 ,若113)(-+=x x x f 则=)4(f 7。

相切两圆的圆心距是5cm ,其中一个圆的半径是3cm ,则另一圆的半径是8。

在一陡坡上前进40米,水平高度升高9米,则坡度=i9。

把抛物线32-=x y 向右平移2个单位后,所得抛物线顶点是10.设m 、n 是方程0122=--x x 的两个根,那么=+n m 1111。

方程38151622=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y x x =+1原方程可变形关于y 的整式方程是12.如图弓形ACB 所在圆的半径是5, C 弦AB=8,则弓形的高CD 是A D B13.若正多边形的中心角是036,则这个正多边形的边数是14.分式方程01112=-+-xx x 的根是 15.分解因式=+--2221a ax x16。

数据5,-3,0,4,2的中位数是 方差是 17.不等式组 52+x ≤()23+x 的解集是21-x <3x18.已知四边形ABCD 中,AB//CD ,AB=BC 请填上一个适当的条件 使得四边形ABCD 是菱形。

19。

已知一次函数b kx y +=过点()1,1-与()4,2,则y 的值随x 的增大而 20。

两个相似三角形的周长之比是1∶9,则它们的面积之比是 21.上海市现有人口约一千七百万,用科学记数法表示是22。

在边长为2的菱形ABCD 中,045=∠B AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AB ′E,那么△AB ′E 与四边形AECD 重叠部分的面积是 23。

已知222=-x x 代简求值 24。

解方程:31066=+++x x x x ()()()()()133312--+-++-x x x x x练习题(二)1。

北师大版八年级数学上册第二章实数知识点及习题

北师大版八年级数学上册第二章实数知识点及习题

实数知识点一、【平方根】如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。

因此:1、当a=0时,它的平方根只有一个,也就是0本身;2、当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。

3、当a <0时,也即a 为负数时,它不存在平方根。

例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。

(3)若x 的平方根是±2,则x= ;的平方根是(4)当x 时,x 23-有意义。

(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少? 知识点二、【算术平方根】:1、如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a”,其中,a 称为被开方数。

特别规定:0的算术平方根仍然为0。

2、算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; (C )、81的平方根是3±; (D )、0没有平方根; (2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-(3)2)3(-的算术平方根是 。

(4)若x x -+有意义,则=+1x ___________。

(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。

实数的基础训练

实数的基础训练

实数的基础训练实数的基础训练(一)1、下列各式3π,π2-,03)(+π,1+π中无理数的个数是 .2、面积为3的正方形的边长为 。

(如果是有理数写出这个有理数,如果不是有理数,写出它的近似值保留两个有效数字)3、已知a 为非0的有理数,b 为无理数,下列命题正确的是( )①b a +是无理数; ②b a -是无理数;③ab 是无理数; ④ba是无理数。

A 、①②③④B 、①②C 、①③D 、①③④4、π的整数部分为 ,小数部分为 。

5、将下列各数填入适当的横线上:2,722,..21.2-,3)(+π,π,3。

14159,4.121121112…。

有理数 , 无理数 . 6、在长方形ABCD 中,∠DAE=∠CBE=45°,AD=1,则AE 、BE 的长是有理数吗?△ABE 的面积是有理数吗?7、有一个直角三角形的两边是3cm 和4cm 则第三边的长度是有理数吗?如果是求出这个有理数,如果不是求出近似值。

(保留到小数点后1位)实数的基础训练(二)1、下列说法正确的是( ) A 、5是25的算术平方根。

B 、±4是16的算术平方根; C 、—6是()26-的算术平方根;D 、0。

01是0.1的算术平方根.2、81的算术平方根是 .实数的基础训练是 .4、如果032=++-b a 则a b 的值为 。

5、若322+-+-=x x y 则y x -= 。

6、计算下列各题(1)121 (2)36.0±(3)36225(4)25.04112484+-7、已知x x x y 82112+-+-=求654-+y x 的算术根。

8、已知△ABC 的三边长分别为a 、b 、c 满足096432=+-+-+-c c b a ,试判断△ABC 的形状,并求出△ABC 的周长。

9、若5+11的小数部分为a ,5—11的小数部分为b ,求b a +的值。

实数的基础训练(三)1、实数4的平方根是 。

八年级上册数学基础训练答案人教版

八年级上册数学基础训练答案人教版

八年级上册数学基础训练答案人教版§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE &not;—∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2可得∠ACE=∠FDB§11.2全等三角形的判定(二)一、1.D 2.C二、1.OB=OC 2. 95三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中,∴△BAC≌△DAE(SAS)∴BC=DE3.(1)可添加条件为:BC=EF或BE=CF(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)§11.2全等三角形的判定(三)一、1. C 2. C二、1.AAS 2.(1)SAS (2)ASA 3.(答案不)∠B=∠B1,∠C=∠C1等三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)3. 提示:用“AAS”和“ASA”均可证明.§11.2全等三角形的判定(四)一、1.D 2.C二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不)3.Rt△ABC,Rt△DCB,AAS,△DOC三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF (HL)∴∠ACB=∠DBC ∴AC//DB2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,A D=CE∴△ADB≌△CEB(AAS)3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE.11.2三角形全等的判定(综合)一、1.C 2.B 3.D 4.B 5.B二、1. 80° 2. 2 3. 70° 4. (略)三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF,在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)§11.3角的平分线的性质一、1.C 2.D 3.B 4.B 5.B 6.D二、1. 5 2. ∠BAC的角平分线 3.4cm三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).2. 证明:∵D是BC中点,∴BD=CD.∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.在△BED与△CFD中, ∴△BED≌△CFD(AAS)∴DE=DF,∴AD平分∠BAC3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE(2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠E CD)=90°4. 提示:先使用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.第十二章轴对称§12.1轴对称(一)一、1.A 2.D二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴.2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E等;AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,CD与C′D′, BC与B′C′等.§12.1轴对称(二)一、1.B 2.B 3.C 4.B 5.D二、1.MB 直线CD 2. 10cm 3. 120°三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,点P就是所求作的点.2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以∠A=∠E=130°,∠D=∠B=110°,因为五边形内角和为(5-2)×180°=540°,即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,所以∠BCD=60°3. 20提示:利用线段垂直平分线的性质得出BE=AE.§12.2.1作轴对称图形一、1.A 2.A 3.B二、1.全等 2.108三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′. 2.图略3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C 为所求.当该站建在河边C点时,可使修的渠道最短.如图§12.2.2用坐标表示轴对称一、1.B 2.B 3.A 4.B 5.C二、1.A(0,2), B(2,2), C(2,0), O(0,0)2.(4,2)3. (-2,-3)三、1. A(-3,0),B(-1,-3),C(4,0),D(-1,3),点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图2.∵M,N关于x轴对称, ∴∴ ∴ba+1=(-1)3+1=03.A′(2,3),B′(3,1),C′(-1,-2)§12.3.1等腰三角形(一)一、1.D 2.C二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3. 82.5°三、1.证明:∵∠EAC是△ABC的外角∴∠EAC=∠1+∠2=∠B+∠C∵AB=AC∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C∴∠2=∠C ∴AD//BC2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC 中,∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.§12.3.2等腰三角形(二)一、1.C 2.C 3.D二、1.等腰 2. 9 3.等边对等角,等角对等边三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC ∴△ABC 是等腰三角形.2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,∴△BEC是等腰三角形.3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED可得∠ABO=∠AEO,AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE.§12.3.3等边三角形一、1.B 2.D 3.C二、1.3cm 2. 30°,4 3. 1 4. 2三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30° ∴∠FAE=60° ∵在△ABC中,∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE=×60°=30°∵在△ABE中,∠ABE=30°,∠BAE=90° ∴∠AEF=60°∴在△AEF中∠FAE=∠AEF=60° ∴FA=FE ∵∠FAE=60°∴△AFE为等边三角形.2.∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,因为∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6c m∴BC=CD+DE=3+6=9(cm)3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°.在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE=60°∴△ADE是等边三角形.4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,得DC=2AD.第十三章实数§13.1平方根(一)一、1. D 2. C二、1. 6 2. 3. 1三、1. (1)16 (2)(3)0.42. (1)0, (2)3 , (3)(4)40 (5)0.5 (6) 43. =0.54. 倍;倍.§13.1平方根(二)一、1. C 2. D二、1. 2 2. 3. 7和8三、1.(1)(2)(3)2.(1)43 (2)11.3 (3)12.25 (4) (5)6.623.(1)0.5477 1.732 5.477 17.32(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)移动一位. (3)0.1732 54.77§13.1平方根(三)一、1. D 2. C二、1. ,2 2, 3.三、1.(1)(2)(3)(4)2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-3.(1)(2)(3)(4)4. ,这个数是4 5. 或§13.2立方根(一)一、1. A 2. C二、1. 125 2. ±1和0 3. 3三、1.(1)-0.1 (2)-7 (3)(4)100 (5)- (6)-22.(1)-3 (2)(3)3. (a≠1)§13.2立方根(二)一、1. B 2. D二、1. 1和0; 2. 3. 2三、1. (1)0.73 (2)±14 (3)2. (1)-2 (2)-11 (3)±1 (4)- (5)-2 (6)3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1§13.3实数(一)一、1. B 2. A二、1.2. ±33.三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,42. 略3.16cm、12cm4. a= ,b=-§13.3实数(二)一、1. D 2. D二、1. 2. 3 3. ①,③-π。

10实数

10实数

6.1 平方根 立方根A 卷一、基础训练1.9的算术平方根是( )A .-3 B .3 C .±3 D .812.下列计算不正确的是( )A ±2 B ==0.4 D3.下列说法中不正确的是( )A .9的算术平方根是3 B 2 C .27的立方根是±3 D .立方根等于-1的实数是-14 )A .±8 B .±4 C .±2 D 5.-18的平方的立方根是( )A .4 B .18 C .-14 D .146_______;9的立方根是_______. 8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)234 二、能力训练 10.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x 2+1 C11.若2m-4与3m-1是同一个数的平方根,则m 的值是( ) A .-3 B .1 C .-3或1 D .-112.已知x ,y (y-3)2=0,则xy 的值是( )A .4 B .-4 C .94 D .-9413.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm 的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小铁球的半径是多少厘米?(球的体积公式为V=43πR 3) 三、综合训练15.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0; (3)274x 3-2=0; (4)12(x+3)3=4.B 卷一、选择题1.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D .2有意义的a 有( ).A .0个 B .1个 C .无数个 D .以上都不对3.下列说法中正确的是( ).A .若0a <0 B .x 是实数,且2x a =,则0a >C 0x ≤D .0.1的平方根是0.01±4.若一个数的平方根是8±,则这个数的立方根是( ).A .2 B .±2 C .4 D .±4 5.若22(5)a =-,33(5)b =-,则a b +的所有可能值为( ).A .0 B .-10 C .0或-10 D .0或±106.若10m -<<,且n =,则m 、n 的大小关系是( ).A .m n > B .m n < C .m n = D .不能确定7.设a =a 的取值范围正确的是( ).A .8.08.2a <<B .8.28.5a <<C .8.58.8a <<D .8.89.1a <<8.27- ).A .0 B .6 C .-12或6 D .0或-69.若a ,b 满足2|(2)0b +-=,则ab 等于( ).A .2 B .12 C .-2 D .-1210.若一个数的一个平方根是8,则这个数的立方根是( ).A .±2 B .±4 C .2 D .411.下列各式中无论x 为任何数都没有意义的是( ).A . B 12.下列结论中,正确的是( ).A .0.0027的立方根是0.03B .0.009的平方根是±0.3C .0.09的平方根是0.3D .一个数的立方根等于这个数的立方,那么这个数为1、0、-1 二、填空题13的平方根是 ,35±是 的平方根.14.在下列各数中0,254,21a +,31()3--,2(5)--,222x x ++,|1|a -,||1a -有平方根的个数是 个.16.代数式3-的最大值为 ,这是,a b 的关系是 .1735=-,则x = ,若6=,则x = .184k =-,则k 的值为 .19.若1n n +,1m m <<+,其中m 、n 为整数,则m n += . 20.若m 的平方根是51a +和19a -,则m = .三、解答题21.求下列各数的平方根⑴21+ ⑵1316⑶0 ⑷21-22.求下列各数的立方根:⑴10227- ⑵164⑶0 ⑷18-23.解下列方程:⑴264(3)90x --= ⑵2(41)225x -= ⑶31(1)802x -+= ⑷3125(2)343x -=-24⑵2||- |125.请你用2个边长为1正方形,要几个边长为1的小正方形,如何进行裁剪?26.已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.2712xy+的值.28.已知a x =M 的立方根,y =x 的相反数,且37M a =-,请你求出x 的平方根.29.若y =,求2x y +的值.304=,且2(21)0y x -+=,求x y z ++的值.31.已知a b 2a b -的值. C 卷一、填空题:1、144的算术平方根是 ,16的平方根是 ;2、327= , 64-的立方根是 ;3、7的平方根为 ,21.1= ;4、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;5、平方数是它本身的数是 ;平方数是它的相反数的数是 ;6、当x= 时,13-x 有意义;当x= 时,325+x 有意义;7、若164=x ,则x= ;若813=n,则n= ;8、若3x x =,则x= ;若x x -=2,则x ; 9、若0|2|1=-++y x ,则x+y= ; 二、选择题11、若a x =2,则( )A 、x>0 B 、x ≥0 C 、a>0 D 、a ≥012、一个数若有两个不同的平方根,则这两个平方根的和为( )A 、大于0 B 、等于0 C 、小于0 D 、不能确定 13、一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根 B 、a 是b 的的算术平方根 C 、b a ±=D 、a b =14、若a ≥0,则24a 的算术平方根是( ) A 、2a B 、±2a C 、a 2 D 、| 2a | 15、若正数a 的算术平方根比它本身大,则( )A 、0<a<1 B 、a>0 C 、a<1 D 、a>1 16、若n 为正整数,则121+-n 等于( )A 、-1 B 、1 C 、±1 D 、2n+117、若a<0,则aa 22等于( )A 、21 B 、21- C 、±21 D 、018、若x-5能开偶次方,则x 的取值范围是( )A 、x ≥0 B 、x>5 C 、x ≥5 D 、x ≤5 三、计算题19、49.0381003⨯-⨯ 20、18783333-+- 21、36662101010++ 22、914420045243⨯⨯⨯23、83122)10(973.0123+--⨯- 24、)131)(951()31(32--+- 25、解方程:0324)1(2=--x27、若12112--+-=x x y ,求x y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数的基础训练(一)1、 下列各式一,-2 , (3) , 1中3无理数的个数是 ____________ 。

2、 面积为3的正方形的边长为________________________________________ 。

(如果是有理数写出这个有理数, 如果不是有理数,写出它的近似值保留两个有效数 字) 7、有一个直角三角形的两边是 3cm 和4cm 则第三边的长度是有理数吗?如果是求出 这个有理数,如果不是求出近似值。

(保留到小数点后1位)3、已知a 为非0的有理数,b 为无理数,下 列命题正确的是( )①a b 是无理数; ②a b 是无理数;2.12 , ( 3)0 ,, 3.14159 ,4.121121112 …。

有理数 _________________________________ , 无理数 _________________________________ 。

6、在长方形 ABCD 中,/ DAE= / CBE=45 , AD=1,贝U AE 、BE 的长是有理数吗? △ ABE 的面积是有理数吗?③ab 是无理数; A 、①②③④ C 、①③4、 的整数部分为为 。

④a 是无理数。

bB 、①② D 、①③④_________ ,小数部分5、将下列各数填入适当的横线上:222, 丁,实数的基础训练(二)1下列说法正确的是( )A 、 5是25的算术平方根。

B 、 土 4是16的算术平方根;2C 、 一 6是 6 的算术平方根;D 、 0.01是0.1的算术平方根。

2、 ,81的算术平方根是 _______________ 。

3、 若•a 2有意义,则a 的最小整数值8、已知△ ABC 的三边长分别为a 、b 、c 满 足 Ja 3 b 4 c 2 6c 90,试判断厶ABC 的形状,并求出厶 ABC 的周长。

4、如果Ja 2 b 3 0则b a 的值为 _____ 。

5 、若 y •、x 2, 2 x 3 则x y= _________ 。

6、计算下列各题 (1) 121( 2) 0.369、若5+ •. 11的小数部分为a ,5 —、11的 小数部分为b ,求 a b 的值。

4x 5y 6的算术根。

(4)48412140.257、已知 y > 2x 1.1 2x 8x 求1实数4的平方根是 _______________ 。

2、 下列说法正确的是( )A 、 任何数的平方根都有两个;B 、 只有正数才有平方根;C 、 不是正数,没有平方根;D 、 正数的平方根的平方, 就是这个数本身。

3、 一个数的算术平方根是它本身,这个数 4、已知2a 1的平方根是 3,贝U a 的值为 __________ 。

5、已知,(x 2)22 x 则X 的取值范围为 _________________ 。

7、求下列各数的平方根。

6、已知 x 3yx 2 -90,则-的值y2(4) 49(x 1)25(3) 16x 2 811 4 916 25 36 496481100121144169196 225(5) (x 2)2 138、计算(1) 0.1 -400 0.2 ■ 16910、如果(2m 1)与(2 m )是同一个数的271251 若 a 0.064则 3 a = ___________ 。

2、 一个数的立方根与他的算术平方根相同, 则这个数是 ________________ 。

3、 数a 的立方根是3 a ,将数a 扩大1000倍后的立方根是 ______________ 。

3 ----- 1 4、 使式子3 X 1有意义,则X 的2x 4取值范围是 ________________ 。

5、 下列语句正确的是( )A 、3是27的立方根;B 、 1-82 ;C 、 负数没有立方根;D 、 两个相反数的立方根, 还是两个相反数。

6、 64的立方根是 _________________ 。

7、 如果3 5x 322 0,则x 17的平方根是 ______________ 。

8、 求下列各数的立方根 1 -1 8 -8 27-2764-64125-1259、计算或解方程3⑶、216x 1 010、已知:A= x. x 2是x 2的算术平方 根,B= 3x 2y 9 2 y 是2 y 的立方根,其 中x 1和2,y 1和2。

试求A+B 的立 方根。

C1)、x327125实数综合训练(一)一、选择题(10X 3/ =30')9.如图:一个长、宽、高分别为 4cm 3cm12cm 的长方体盒子能容下的J取长木棒长为( ) 1A. 11cmB.12cmC.13cmD.14cm1. 下列那组数不能作为直角三角形的三边长 ( )A . 1, 2, . 5B . 2, 3, 4C . 3, 4, 5D . 9, 12 , 15 2. 下列各数:—,0, 9 , 0.23 , 22 2 7 (5 X 4 / =20 / ) 二、填空题 3.010010001 …,1— 2 中, 无理数有 11.. 16的算术平方根是() A. 2个B . 3个C . 4个 3.直角三角形两边长分别是 是( ) D . 5个 4,第三边A. 5B. 、7C. 5 或.7D. 无法确定12.已知△ ABC 的三边长a 、b 、c 满足 .厂 |b 1| (c . 2)20,则厶ABC-定13. 三角形。

已知4(x 1)2 16,则 x =4.下列说法正确的是() 164的平方根是丄8 14. 若,4x 2020 4x y 4,则A. B. C. D. y 的值为5.已知一直角三角形的木版, 为1800cm 2,则斜边长为( A.80cm B.30cm C.90cm 三边的平方和 ) D.120cm6.若规定误差小于1,那么.60的估算值x 15.如图,沿倾斜角为30的山坡植树,要求 相邻俩棵树的水平距离 AC 为2m 那么相邻 两棵树的斜坡距离 AB 的 平方为 。

三、填空题(4 X 6 / =24')计算或解方程116、 (为() A. 3 B. 7 C. 8 D. 7 或 8 7.要式子「X 1有意义,字母 X 必须满足 的条件是() A. x >— 1 B . x > — 1 C . x > 1 D . x > 1 & 已知|a 5 + .b 3=0,那么a b 的值为 () A. 2 B. -2 C. 8 D. -8(2). 5X 2・11910.五根小木棒,其长度分别为7, 15,20, 24, 25,现将他们摆成两个直角 三角形,其中正确的是( )⑶.(X 3)2 6 10 18. (8,)已知x是...5的小数部分,y是3 、- 5的小数部分,求x y的值.(4). x是16的算术平方根,y是9的平方根的绝对值,求x2 y2的值.19. (10,)如图,矩形纸片ABCD中,AB= 4cm, BC= 8cm,现将纸片折叠压平,使A与C重合,设折痕为EF,求重叠部分△ AEF 的面积.(3)5.若 a ,7 , 5 , b 、8 2 ,c 3.3那么a 、b 、c 的大小关系是( )A. a >b >cB. b >a >cC. b >c >aD. c >a >b 6. 比较下面各组数的大小 9. 为提高市民的环保意识,现拟建一个以环 保为主题的公园,已知公园的长要求是宽的23倍,面积为600 000 m ,求这个公园的宽。

(2) 2,3 3皿.1 8 2 ' 9实数的基础训练(五)7•已知3 3n 1和[1 2m 互为相反数,求 1.下列结果正确的有 ___________ (填番号) (1) ,2536 〜60.4; (2) 3 19863 〜351; (3) .1234 - 35.1; (4) 3 1200 - 10.6. 2. 已知,39219.8,若 x 2 3.92 则 x 等于 _____________ 。

3.若 jm a ,贝U V100m____ .m:n 的值。

■.-;:■ x 34 .若亠」有意义,则 X 的取值范围X8.已知2m+2的平方根是4,3m+n+1的平方根是 5,求m+2n 的值。

(1)6 , 2.5实数的基础训练(六)8 •若x 1 . 9 x 有意义,求代数式4. 实数a 、b 、c 在数轴上的对应点如图 所示— ------ ----- - --------- >b E 0 a化简 a a b Jc 2b c = __________ 5•设a 是倒数等于本身的数,b 是最大负整数,c 是绝对值最小的实数,则 a+b+c=绝对值为■, 5,求代数式x 2 (a b)cd .. a b 3 cd 的值。

1 .下列各组数中,互为相反数的是( )A. 2 和-B. . 3 和 2 2C. 3 和 | . 3 |D. 2和 |-2 | 3 4 2. = ______________________________ • 3.下列说法错误的是()A. -.2 .3的相反数是 2 ,3B. 3 -3的相反数是3 3C. 2 3的相反数是.3 - . 2D. 2 5 的绝对值是 ,5-2|x1|10的值。

9•已知 2(、. x y 1 , z 求x,y,z 的值。

2) =x+y+z,6.代数式X? 1, - x是正数的有( )A . 1个B . 2个7•实数a,b 互为相反数, y ,(m 1)2 中一定C . 3个D . 4个c,d 互为倒数,x 的实数的基础训练(七)1•下列二次根式中,已经是最简的是()A. J1 B. <20D. ■■ 121AY ,5 35X5将下列各二次根式化为最简叫1 (1) 3 12(2)、2(3)—J3(4)2、• 7 .. 5C.2 22•下列运算中,正确的是()(3)(3 ..5)(3 ,5)3a B.2: 2 3a.2226aC.5 dX25丄5x (4)(2. 5 1)2V527a3 D. .3a 27a3.3a3a. < 3a宜3a3a3.已知三角形的三边a,b,c的长分别为45cm, . 80cm,、. 125cm,则这个三角形的面积是7. 在△ ABC中,a,b,c分别表示它的三边,试化简(a b c)221 c a b |6•化简求值4.已知丄一,则a的取值范围是a实数的基础训练(八)(2) (X y)3( x y 0)1.若x ,y 都是实数,且、2x 1 畀2x y 4,则4x+y=2 .若.x 1 (3x y 1)20,求a b- 4 J(3) b t a( a 0 , b 0 )3 .化简:(1) (3i2 2“3)2 = ________(2) (...7 、、6)1999(-.7..6 ) 2000=4.化简:(1)』9000 ;(2)2 12 ■48 ;(J—Vb) \ ab6.求代数式:a(3)的值,其中—A7.已知..a<a5,求(4) | .2 | -.8 ( -. 2 1)0(2. 2) 1(1) a+•a'(2) a(5). (2、3 1)2(.3 2)(2 3)5.化简下列各式(1)P25a3b3(a 0 , b 0 );。

相关文档
最新文档