量子力学 第二版 第六章__散射 习题答案 周世勋
量子力学答案-周世勋

第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学答案 周世勋

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThcekThcλλ ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
周世勋量子力学习题答案(七章全)

−
h2 2μ
d2 ψ dx2
(x)
+ U (x)ψ
(x)
=
Eψ
6.62559 ×10−34 × 2.997925 ×108 1.380546 ×10−23
= 2.898 ×10−3 m ⋅ k
[注]
ρν
根据
=
8πhν 3 c3
1
hν
e kT − 1
可求能量密度最大值的频率:
x = hν
令
kT
ρν
=
Ax3
1 ex −1
(
A
=
8πk 3T c3h2
3
)
dρν dν
球面波。
2.3 一粒子在一维势场
⎧∞ U (x) = ⎪⎨0
⎪⎩∞
x<0 0≤ x≤a x>a
中运动,求粒子的能级和对应的波函数。
[解]:由于势函数U (x) 不随时间变化
体系的状态波函数满足定态 Schrödinger 方程
0
a
− h2 ∇2ψ (x) + U (x)ψ (x) = Eψ (x) 2m
vj = ih [ψ (rv)∇ψ *(rv) −ψ *(rv)∇ψ (rv)] 则有: 2μ 即 vj 仅是空间坐标 (x, y, z) 的函数,与时间无关。
2.2 由下列两定态波函数计算几率流密度。
(1)
ψ1
=
1 r
eikr
ψ
(2)
2
=
1 e−ikr r
从所得结果说明ψ1 表示向外传播的球面波,ψ 2 表示向内(即向原点)传播的球面波。
m
= 2.43 ×10−12 m = 2.43 ×10−2 A°
量子力学教程(第二版)周世勋习题解答

(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)
⑤
④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)
②
12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)
③
由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2
《量子力学教程》_课后答案

2 ( x) A sin kx B coskx
④
13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥
⑤
B0 A sin ka 0
A0 s i n 0 ka ka n
《量子力学教程》 习题解答
1
《量子力学教程》
习题解答说明
• 为了满足量子力学教学和学生自学的需要,完 善精品课程建设,我们编写了周世勋先生编写 的《量子力学教程》的课后习题解答。本解答 共分七章,其中第六章为选学内容。 • 第一章 第二章 第三章 第四章 第五章 第六章 第七章
2
目录
• • • • • • • 第一章 绪论 第二章 波函数和薛定谔方程 第三章 力学量的算符表示 第四章 态和力学量的表象 第五章 微扰理论 第六章 弹性散射 第七章 自旋和全同粒子
(1)
J1与r 同向。表示向外传播的球面波。
i * * J1 ( 1 1 1 1 ) 2m i 1 ikr 1 ikr 1 ikr 1 ikr [ e ( e ) e ( e )]r0 2m r r r r r r i 1 1 1 1 1 1 [ ( 2 ik ) ( 2 ik )]r0 2m r r r r r r k k 2 r0 3 r mr mr
0
2
n , n 1,2, 。 eB
1 2 1 eBR 1 2 2 n e B n B B 电子的动能为 E v 2 2 2 eB
动能间隔为 E B B 9 10 J 热运动能量(因是平面运动,两个自由度)为 E kT ,所以当 T 4K 时, E 4.52 10 J ;当
《量子力学教程》周世勋 课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
《量子力学教学教程》周世勋课后答案解析

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
《量子力学教程》_课后答案

(n 1, 2, 3,)
∴ 2 ( x) A sin
n x a
由归一化条件
得
( x) dx 1
2
A2
a
2 sin
0
n xdx 1 a
由
a
b
sin
m n a x sin xdx mn a a 2
14
A
2 a 2 n sin x a a
2 ( x)
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,
2 2 T 2
A2 2 nh E nh , n 0,1,2, 2 T
6
v 2 v (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由 evB ,得 R eB R
其解为
2 ( x) A sin kx B coskx
④
13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥
⑤
B0 A sin ka 0
A0 s i n ka 0 ka n
max
0 h 6.626 1034 c 0.024A (电子的康普顿波长)。 31 8 e c 9.1 10 3 10
《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学习题解答-周世勋

周世勋《量子力学教程》习题解答第一章 习题解答1.由黑体辐射公式导出维恩位移律:能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ(常数)。
并近似计算b 的数值,准确到两位有效数字。
解:由能量密度的公式:185-⋅=λλλλπλρkT hc ed hcd则由0=λρλd d 解得m λ: 2256181185⎪⎪⎭⎫ ⎝⎛-⋅-⋅--⋅⋅-=λλλλλλπλπλρkT hc kT hckT hc e e kT hc hce hc d d 0511186=⎪⎪⎪⎪⎭⎫ ⎝⎛---⋅=λλλλλπkT hc kT hckT hc e ekT hc e hc 即 051=--λλλkT hckT hce e kT hc 令x kT hcm=λ,则 051=--x xe xe 解得 97.4=x所以 )(29.097.41038.110999.210626.6161027K cm kx hc T m ⋅=⨯⨯⨯⨯⨯==--λ 2.在K 0附近,钠的价电子能量约为eV 3,求其德布罗意波长。
解:01019303409.7)(1009.7106.131091.0210626.62A m mE h P h K=⨯=⨯⨯⨯⨯⨯⨯===----λ3.氦原子的动能是kT E 23=(k 为玻尔兹曼常数),求K T 1=时,氦原子的德布罗意波长。
解:氦原子的动能)(1007.211038.1232323J E --⨯=⨯⨯⨯=,氦原子的质量kg kg M 27271068.61067.14--⨯=⨯⨯=,所以102327346.12)(106.121007.21068.6210626.62A m mEh =⨯=⨯⨯⨯⨯⨯==----λ4.利用玻尔——索末菲量子化条件,求 (1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。
已知外磁场T H 10=,玻尔磁子T J M B /10924-⨯=,试计算动能的量子化间隔E ∆,并与K T 4=及K T 100=的热运动能量相比较。
量子力学答案课后 习题答案详解(周世勋)

量子力学习题及解答第一章 量子理论基础1.1。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学(第二版)周世勋原著课后习题整理版

证明在定态中,几率流密度与时间无关。
证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r i e r e r e r e r i i J er t f r t r Et iEt iEt iEt iEtiψψψψμψψψψμμψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ----)()(,可见t J 与无关。
2.4证明(2.6-14)式中的归一化常数是aA 1='证:⎪⎩⎪⎨⎧≥<+'=a x a x a x an A n ,0 ),(sin πψ (2.6-14)由归一化,得aA a x a n n a A a A dx a x an A x A dx a x an A dx a x an A dx aa aaaa a a aan 222222222)(sin 2)(cos22)](cos 1[21)(sin 1'=+⋅'-'=+'-'=+-'=+'==-----∞⎰⎰⎰⎰πππππψ∴归一化常数aA 1='3.8.在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状态由波函数)()(x a Ax x -=ψ描写,A 为归一化常数,求粒子能量的几率分布和能量的平均值。
解:由波函数)(x ψ的形式可知一维无限深势阱的分布如图示。
粒子能量的本征函数和本征值为⎪⎩⎪⎨⎧≥≤≤≤a x x a x x an a x ,0 ,0 0 ,sin 2)(πψ 22222a n E n μπ = ) 3 2 1( ,,,=n 动量的几率分布函数为2)(n C E =ω⎰⎰==∞∞-an dx x x an dx x x C 0*)(sin)()(ψπψψ 先把)(x ψ归一化,由归一化条件,⎰⎰⎰+-=-==∞∞-aa dx x ax a x A dx x a x A dx x 022220222)2()()(1ψ⎰+-=adx x ax x a A 043222)2(30)523(525552a A a a a A =+-= ∴530aA =∴⎰-⋅⋅=an dx x a x x a n aa C 05)(sin 302π ]sin sin [1520203x xd a n x x xd a n x a a a a ⎰⎰-=ππ ax a n n a x a n x n a x a n x n a x a n n a x a n x n a a 0333222222323]cos 2sin 2 cos sin cos [152ππππππππππ--++-=])1(1[15433nn --=π∴2662])1(1[240)(n nn C E --==πω⎪⎩⎪⎨⎧=== ,6 ,4 ,205 3 196066n n n ,,,,,π ⎰⎰==∞∞-adx x p x dx x H x E 02)(2ˆ)()(ˆ)(ψμψψψ ⎰--⋅-=adx a x x dx d a x x a 02225)](2[)(30μ)32(30)(303352052a a adx a x x a a-=-=⎰μμ 225aμ = 4.5 设已知在Z L L ˆˆ2和的共同表象中,算符yx L L ˆˆ和的矩阵分别为 ⎪⎪⎪⎭⎫⎝⎛=010******** x L ⎪⎪⎪⎭⎫⎝⎛--=0000022ii i i L y 求它们的本征值和归一化的本征函数。
量子力学教程第二版周世勋习题解答共125页文档

11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 — 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
周世勋量子力学习题及解答(PDF)

量子力学习题及解答第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式dv e chv d kThv v v 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hc v v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kT hc kThc e kT hc ehc λλλλλπρ⇒0115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 散射1.粒子受到势能为2)(ra r U =的场的散射,求S 分波的微分散射截面。
[解] 为了应用分波法,求微分散射截面,首先必须找出相角位移。
注意到第l 个分波的相角位移l δ是表示在辏力场中的矢径波函数l R 和在没有散射势时的矢径波函数l j 在∞→r 时的位相差。
因此要找出相角位移,必须从矢径的波动方程出发。
矢径的波动方程是:0))1()((12222=+--+⎪⎭⎫ ⎝⎛l l R r l l r V k dr dR r dr d r其中l R 是波函数的径向部分,而Ekr U r V 2222),(2)(μμ==令rr x R l l )(=,不难把矢径波动方程化为02)1(2222=⎪⎭⎫ ⎝⎛-+-+''l l x r r l l k x μα再作变换 )(r f r x l =,得0)(221)(1)(2222=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-+'+''r f re k rf rr f μα这是一个贝塞尔方程,它的解是)()()(kr BN kr AJ r f p p +=其中222221 μα+⎪⎭⎫ ⎝⎛+=l p 注意到)(kr N p 在0→r 时发散,因而当0→r 时波函数∞→=rN R p l ,不符合波函数的标准条件。
所以必须有0=B故)(1kr J r AR p l =现在考虑波函数l R 在∞→r 处的渐近行为,以便和l j 在∞→r 时的渐近行为比较,而求得相角位移l δ,由于:)2sin(1)42sin(1)(l l kr rp kr rr R δπππ+-=+-→∞→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-=++-=∴21221224222l d l l p l μππππδ当l δ很小时,即α较小时,把上式展开,略去高次项得到⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-=2122l l μαπδ又因 l i i elδδ212=-故∑∞=-+=2)(c o s )1)(12(21)(l l i P el ikf lθθδ∑∞=⎪⎪⎪⎪⎭⎫ ⎝⎛+-+=02)(cos 122)12(21l l P l i l ik θμαπ∑∞=-=02)(cos l lP k θπμα注意到⎪⎪⎩⎪⎪⎨⎧≤⎪⎪⎭⎫⎝⎛≥⎪⎪⎭⎫ ⎝⎛=-+=∑∑∞=∞=02121202112121222112)(cos 1)(cos 1cos 211l l l l l lr r P r r r r r P r r r r r r r r 当当θθθ如果取单位半径的球面上的两点来看 则 121==r r ,即有∑∞===-02sin21)(cos )cos 1(21l lP θθθ故2s i n21)(2θπμαθk f -=微分散射截面为θθαμπθθαμπθθd Ed k d f 2csc82sin41)(2222242222==由此可见,粒子能量E 愈小,则θ较小的波对微分散射截面的贡献愈大;势能常数α愈大,微分散射截面也愈大。
2.慢速粒子受到势能为⎩⎨⎧><=a r a r U r U 当当,0,)(0的场的散射,若0,00><U U E ,求散射截面。
[解] 慢速粒子的德布罗意波长很长,所以只需要考虑S 分波。
在a r >处,方程为 2210l l l(l )x k x r +⎡⎤''+-=⎢⎥⎣⎦其中222E kμ=在a r <处,则有 2210l l l(l )x k x r +⎡⎤'''-+=⎢⎥⎣⎦其中202)(2 E U k -='μ而波函数是r x R l l =在a >>λ的情况下,只故虑S 分波,即0=l 的情况,上面两个方程变为002=+''>x k x a r 0020=-''<x k x ar其解分别为当a r >时, )sin(00δ+=kr B x当a r <时, 0x Ashk r A c hk r '''=+由于在0→r 时,r x R 00=有限,但1cos 0−−→−'→r r k 当故 0='A即 )(0a r r k A s hx <'=在a r =处,波函数0R 及其微商必须连续,因此得出)sin(0δ+='ka B a k Ash )sin()cot(0202δδ+-+='-''ka aB ka k aB a k sh aA a k ch k aA用前式除后式可得)cot(coth 0δ+=''ka k a k k 即)(0δ+'='ka tg kk a k tgka a k tg k ktg -⎪⎭⎫⎝⎛''=∴- 10δ因此S 分波的辐射截面是⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛''==-ka a k tg k ktg kkQ 1220220sin 4sin 4πδπ当速度较小时,0→k ,可以近似地认为2002U k k μ=='这时有 0t g h k a t g h k a= 000k tghk a kak δ∴=-2002220144⎪⎪⎭⎫ ⎝⎛-==a k a k tg a kQ πδπ假如∞→0U ,相当于在受到球形无限深势阱散射的情况,这时由于121)(100022020200−−−→−⎥⎦⎤⎢⎣⎡-+=⎪⎪⎭⎫ ⎝⎛-∞→k a k a k tg a k a k tg a k a k tg 当204Q a π∴=3.只考虑S 分波,求慢速粒子受到势能4)(rr U α=的场散射时的散射截面。
[解] 当只考虑0=l ,即S 分波时,令r R α=,则x 满足的方程是:242=-''rx xμα为了解此方程,作如下代换,令)()(r f r r x =,由于)(121)(r f r r f r x +'=' 23)(41)()(-⋅-'+''=''rr f r r f r f r x可将原方程化为0411223272=⎪⎪⎭⎫⎝⎛+-'+''r r d f r f f r μ即04112242=⎪⎭⎫ ⎝⎛+-'+''r r d f r f f μ为了化简方程,再作变换,令ξμα12i r =注意到22212ξμαξμαξξξd df irid df drd d df drdf =-==drd d df i d fd i dr d d df i d d drf d ξξμαξξμαξξμαξξ222222222+=⎪⎪⎭⎫ ⎝⎛=232222222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=μαξξξμαξi d df i d f d方程可以化为04111222=⎪⎪⎭⎫⎝⎛-++ξξξξd dfd f d这是21阶的贝塞尔方程,它的解是⎪⎪⎭⎫ ⎝⎛=r i Hr f 12)()1(21 μα式中)1(H 表示第一类汉克尔函数,按定义为 [])()(sin )()1(ξξπξπp p ip p J J ep i H ---=当1<<ξ时,)1(2)(+=p J ppP Γξξ当0,→∞→ξr 时⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-−−→−--∞→2122322sin )(21212121)1(21ΓξΓξπξi i H r 当 而πΓΓπΓ21212123,21=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛==∴r x iH r r f r x μ2)()1(21当r 很大时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=41241222 μαμαr x 常数⎥⎦⎤⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛==r c C r r r x R 21412412212)(常数常数 μαμα另一方面rkr rkr C krkr C R )sin()0cos()0sin(021δ-=-+-=常数当1<<kr 时⎪⎭⎫ ⎝⎛+≅r C C R 21常数 其中 412241212,2⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=μαμαC C 01202δμαδ===∴k k C C tg散射截面222208424k k Q πμαπμαπδ⎪⎪⎭⎫ ⎝⎛==上述解的条件是,1<<kr 即112<<=r iμαξ亦即要求 k r 12<<<<μα4.用玻恩近似法求粒子在势能220)(reU r U α-=场中散射时的散射截面。
[解] 按玻恩近似法计算微分散射截面的公式2)()(θθf q =而⎰∞--=0222sin 2)(drkrer K f rαμθ[见教材(55-23)式]其中2s i n4222θk K=,θ为入射粒子方向和散射粒子方向之间的夹角。
在本题中220)(reU r U α-=⎰∞--=∴2022sin 2)(drKrer K U f rαμθ⎰∞--+--=02)(2222dreer K U iiKrr iKrr ααμ⎰⎰∞∞⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛----=242024202222222222drreeK U i dr reeK U i iK r K iK r K ααααααμμ注意到⎰⎰⎰∞∞∞⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=222222222222222dreiK dr e iK r dr reiK r iK r iK r αααααααα⎰∞-+=+=3224212222απααπααiK iK dx xe x又⎰⎰⎰∞∞∞⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+-=-002222222222222222dr eiK dr e iK r dr reiK r iK r iK r αααααααα32421απαiK +-=22224320342022)(αααπμαπμθK K eU iK e K U i f ---=⋅=∴而2s i n4222θK K =2226420224)()(ααπμθθK eUf q -==∴5.利用玻恩近似法求粒子在势能20s Ze r,r a U (r )r b,r a ⎧-<⎪=⎨⎪>⎩场中散射的微分散射截面,式中22s ab Ze =[解] 由势能)(r U 的形状容易看出,计算)(θf 时只需计算由a →0的积分即可。